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Abstract Electricity demand forecasting is key to ensuring that supply meets demand lest the grid

would blackout. Reliable short-term forecasts may be obtained by combining a Generalized

Additive Models (GAM) with a State-Space model , leading to an adaptive (or online) model.

A GAM is an over-parameterized linear model defined by a formula and a state-space

model involves hyperparameters. Both the formula and adaptation parameters have to be

fixed before model training and have a huge impact on the model’s predictive performance.

We propose to optimize them using automated Machine Learning. For this purpose, we

define an efficient modeling of the search space (namely, the space of the GAM formulae

and adaptation parameters) as well as mutation and crossover operators on this space and

apply an evolutionary algorithm to select the best parameters. We evaluate our method on

short-term French electricity demand forecasting which demonstrates the relevance of the

approach.

1 Introduction

Given the challenges of storing electricity on a large scale, it is essential to forecast electricity

demand as accurately as possible to ensure an efficient balance between production and demand,

thus maintaining the continuous operation of the electricity system. Hence, power stations can

calibrate their output by knowing the required electricity demand at any givenmoment. Generalized

Additive Models (GAM) are highly effective electricity demand forecasting models that have been

widely used over the last two decades to forecast short- and mid-term demand (ranging from a

day to a couple of years) - see, among others, Pierrot and Goude (2011) and Wood et al. (2015).

They model the expected value of the random target variable 𝑌 with a sum of potentially nonlinear

covariate effects, which we call a formula. The forecasts’ accuracy depends entirely on the choice of

terms in this sum, namely, for each term (or effect), the covariate or covariates and their relationship

(linear, polynomial, etc.) with the response variable. Further, in Section 3, we will detail how such

a formula 𝑓 characterizes a GAM.

GAMs are widely used in the electricity field because they combine the flexibility of fully non-

parametric models with the simplicity of multiple regression models. Indeed, they are trained on

large historical data sets (several years) and make the underlying assumption that the distribution

of the target variable is stationary conditionally to covariates. However, they fail to capture recent

changes in electricity demand behavior (sobriety, new electrical appliances, etc.). To overcome this

issue, models can be made adaptive in a second phase. Specifically, forecasters use the latest data to

dynamically reweight the terms in the GAM sum; see Ba et al. (2012) and Obst et al. (2021) for further

details. This procedure is detailed in Section 3. We will see that it depends on some hyperparameter

𝑄 which needs to be fixed before the adaptation process. Thus, to create a reliable GAM for

electricity demand forecasting, forecasters must set a GAM formula and the hyperparameter for
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its adaptive version. Then, the model is estimated with the Penalized Iterative Re-Weighted Least

Squares (P-IRLS) method from Wood et al. (2015), implemented in the mgcv R-package.
Choosing the formula and the adaptive hyperparameter is therefore crucial to obtain a good

electricity demand model (i.e. one that is efficient or simple to interpret, etc.). Testing a large

number of models (i.e., running the P-IRLS algorithm on many formulae) can be challenging,

time-consuming, and computationally expensive. In this work, we propose to automate these

choices using Automated Machine Learning (AutoML) algorithms. The latter estimate the best

adaptive model (𝑓 ★, 𝑄★) in a pool of models Ω containing all the candidates. To choose among

candidates, they need to evaluate the performance of any model (𝑓 , 𝑄) ∈ Ω: this is the costly part

because it requires training the model and evaluating its performance on a validation data set using

a loss function ℓ : Ω → R. A search algorithm is used to select the most promising models to be

tested. A summary of the AutoML framework as well as an outline of the paper are illustrated in

Figure 1.

(𝑓 ★, 𝑄★) ∈ argmin

(𝑓 ,𝑄) ∈ Ω
ℓ (𝑓 , 𝑄) .

Search Algorithm (Section 5)

Search Space (Section 3)

Performance Evaluation (Section 4)

Figure 1: Summary of the AutoML framework.

After a literature discussion in Section 2, we define the search space in which the AutoML

algorithm will search for its solutions in Section 3. In Section 4, we focus on performance evaluation,

while Section 5 discusses the search algorithms we consider. Finally, we demonstrate the relevance

of our method on French electricity demand data in Section 6.

2 Literature discussion

AutoML. Automated Machine Learning is made of two main subproblems: model selection and

hyperparameter optimization, which can be tackled jointly with the Combined Algorithm Selection

and Hyperparameter (CASH) optimization problem (Feurer et al., 2015). The state of the art in

AutoML offers both very general algorithms for selecting models and/or hyperparameters that

perform well for any type of machine learning model desired (see, for example Akiba et al. 2019 or

Tang et al. 2024), and more specialized algorithms for certain types of specific machine learning

models, such as models from the scikit-learn library (Feurer et al., 2022) or neural networks (White

et al., 2023). To our knowledge, GAMs have only been the subject of one specific approach, GAGAM

(Cus, 2020), which is described below. While generic approaches can be applied to GAMs to a

certain extent, they quickly become limited when it comes to capturing the hierarchical structure

of formulae.

Model selection for GAMs. Given a set of features, along with some training data, the Genetic

(Evolutionary) Algorithm for Generalized Additive Models (GAGAM) developed in the R language

by Cus (2020) applies a sequence of crossovers and mutations to subsets of a randomly initialized

population. After each sequence of evolutions, the models are ranked according to their loss, which

is calculated using the input training data. Eventually, the aim is that the algorithm will retain

the models with the best formula, constructed using some of the input features and by deciding

whether they should enter linearly or not. However, the same type of spline and the same degrees of

freedom are applied to all nonlinear features, which restrains the search space. Moreover, bi-variate

effects are not supported simultaneously with linear features.
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Dragon. DRAGON, or DiRected Acyclic Graphs optimizatioN, is an open-source Python package

offering tools to conceive Automated Machine Learning frameworks for diverse tasks. The package

is based on three main elements: building bricks for search space design, search operators to modify

those bricks and search algorithms. Originally developed for Deep Neural Networks optimization,

the package is based on the encoding of various computer objects (integers, floats, lists, etc.) and

can be easily extended to other optimization tasks. Search operators can be used to create neighbors

or mutants of a solution, allowing local search or evolutionary approaches to converge on optimal

solutions. The DRAGON package implements four search algorithms based on the search operators:

a random search, an asynchronous evolutionary algorithm (Keisler et al., 2024b), Hyperband (Li

et al., 2018), and Mutant-UCB (Brégère and Keisler, 2024). In this work, we used DRAGON’s various

building blocks to encode GAMs. We then adapted the search operators to our representation,

allowing us to directly use the search algorithms in the package.

3 Search space
Introduced by Hastie and Tibshirani (1986) in 1986, Generalized Additive Models (GAM) are

semiparametric models widely used for electricity demand forecasting. Before training a GAM

and using it for electricity demand forecasting, the GAM formula - i.e. the equation which links

the expectation of the target variable 𝑌 with the covariates 𝑋 - and the hyperparameters for its

adaptive version must be defined. We detail these two steps below.

3.1 Fixed setting

With 𝑔 a link function (e.g., identity or logarithmic function), a GAM models the value 𝑔(E[𝑌 |𝑋 ])
as a sum of smooth functions of the covariate 𝑋 . With 𝐾 the number of terms (also called effects) in

the sum, let, for any 𝑘 = 1, . . . , 𝐾 , 𝐽𝑘 be the set of indices of the covariates associated with the effect

𝑘 and 𝑓𝑘 the function that models the relationship between the target variable 𝑌 and the subset 𝑋 𝐽𝑘
of the covariates 𝑋 ; a GAM has a structure like:

𝑔

(
E
[
𝑌 |𝑋

] )
=

𝐾∑︁
𝑘=1

𝑓𝑘
(
𝑋 𝐽𝑘

)
.

As it is classically done for electricity demand forecasting, in all that follows, and without loss of

generality, we will consider additive models, namely 𝑔 is equal to the identity. In our context, the

target variable is a time series, and for a time 𝑡 , 𝑌𝑡 is the amount of electricity demanded between

𝑡 and 𝑡 + 1 (in the experiments of Section 6, the time step is half an hour). The latter depends

on various variables 𝑍𝑡 , including weather (temperature, wind, etc.) and calendar-related (public

holidays, weekdays, etc.) factors. Electricity consumers do not respond instantaneously to changes

in the weather, among other things, because of the thermal inertia of buildings. This is why (recent)

past weather may influence electricity demand. To be as general as possible, the set of covariates

𝑋𝑡 includes present and past covariates, so 𝑋𝑡 = (𝑍𝑠)𝑠=1,...,𝑡 . Therefore, we obtain the equation

E[𝑌𝑡 |𝑋𝑡 ] =
∑𝐾
𝑘=1

𝑓𝑘 (𝑋 𝐽𝑘 ,𝑡 ). It remains to specify the smooth functions 𝑓𝑘 to get a proper formula.

This task is divided into two: feature engineering (to extract useful information from 𝑋 𝐽𝑘 ,𝑡 ) and

relationship specification (to link this information with the target variable).

Feature engineering. For some 𝑘 = 1, . . . , 𝐾 , feature engineering for covariates 𝑋 𝐽𝑘 can provide

summarized information and prove extremely valuable. For example, taking into account an

exponentially smoothed temperature or selecting a subset of categories from a categorical variable

can be achieved by designing parameterized functions denoted by𝜓𝑘 . These two possibilities are

fully detailed in Appendix A. Only the parameters of the feature engineering functions have to be

set-up in the formula and these will be the ones optimized by the AutoML algorithm.

https://dragon-tutorial.readthedocs.io/en/latest/
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Relationship specification. For every 𝑘 = 1, . . . , 𝐾 , we need a basis of functions in which 𝑓𝑘 may

be represented. To define the formula, this basis, completely specified by its functions (𝑏𝑖
𝑘
)𝑖=1,...,𝑞𝑘 ,

where 𝑞𝑘 is the size of the basis, has to be picked. In our set-up, this means choosing 𝑞𝑘 and the

type of functions in the basis (linear, cubic spline, tensor product, etc.) - we refer to Appendix A for

further details.

Overall, a GAM can be seen as an over-parameterized linear model. The number of effects 𝐾 , and

for each 𝑘 = 1, . . . , 𝐾 , the subset 𝐽𝑘 , the function for potential feature engineering𝜓𝑘 , the size 𝑞𝑘
and the spline basis (𝑏𝑖

𝑘
)𝑖=1,...,𝑞𝑘 have to be chosen by the forecaster. It defines the formula 𝑓 and

implicitly assumes that:

𝑓 (𝑋𝑡 ) = E
[
𝑌𝑡 |𝑋𝑡

]
=

𝐾∑︁
𝑘=1

𝑞𝑘∑︁
𝑖=1

𝛽𝑘,𝑖𝑏𝑘,𝑖
(
𝜓𝑘 (𝑋 𝐽𝑘 ,𝑡 )

)
. (1)

The coefficients 𝛽𝑖,𝑘 are estimated using the Penalized Iterative Re-Weighted Least Squares (P-

IRLS) method from Wood et al. (2015), implemented in the mgcv R-package. This last step can be

considered as model training, while the choice of the formula corresponds to model optimization.

3.2 Adaptive setting

GAMs have a good ability to generalize relations between inputs and an output, but they lag behind

in terms of adaptability to new data. Hence, adaptive GAMs have been introduced by Ba et al.

(2012) to overcome this issue. They are well suited for short-term demand forecasting as they

take into account recent data and catch changes in the target variable distribution. With f (𝑋𝑡 ) the
𝐾-dimensional vector containing all the effects of the estimated GAM 𝑓𝑘 (𝑋 𝐽𝑘 ,𝑡 ), for 𝑘 = 1, . . . , 𝐾 ; we

consider the state-space model approach introduced by Obst et al. (2021) and assume, for 𝑡 = 2, . . . ,{
𝑌𝑡 = 𝜃 T

𝑡 f (𝑋𝑡 ) + 𝜀𝑡 , with 𝜀𝑡
i.i.d∼ N (0, 𝜎2)

𝜃𝑡 = 𝜃𝑡−1 + 𝜂𝑡 , with 𝜂𝑡
i.i.d∼ N (0, 𝑄 ) .

The variance 𝜎2
and covariance 𝐾 × 𝐾 matrix 𝑄 of the Gaussian white noises (𝜀𝑡 )𝑡 and (𝜂𝑡 )𝑡 ,

respectively, parameterize the model. This is the setting of Kalman filtering so we may use the

recursive formulae of Kalman providing the expectation of 𝜃𝑡 given the past observations, yielding

to a forecast for 𝑌𝑡 . As described in Obst et al. (2021), the Kalman filter is crucially dependent on

the hyperparameter 𝑄 = 𝑄/𝜎2
. It also requires some initialization parameters that we fix in this

work. Thus an adaptive version of a GAM relies on the choice of the parameter 𝑄 , a 𝐾 × 𝐾-matrix.

In all that follows, we consider only diagonal matrices.

Overall, the formula 𝑓 of a GAM and the parameter 𝑄 of the associated state-space model for the

adaptive version can be considered as hyperparameters from the standpoint of machine learning;

they cannot be modified during training but are significantly tied to a model’s accuracy.

3.3 Encoding through DRAGON

As mentioned above, we used the DRAGON package to build our search space. DRAGON provides

a set of variables for encoding different computer objects. Each element of the search space is

represented by a fixed size array containing 𝑓 and potentially𝑄 in the adaptive setup. The variables

𝑓 and 𝑄 are arrays of variable size, with a dimension 𝐾 equal to the number of effects in 𝑓 . Each

element of 𝑄 is a float, while each element of 𝑓 corresponds to an effect. Each effect is made

up of several elements, depending on the type of effect. First, one or two categorical variables

corresponding to the features (depending on whether we are in a univariate or bivariate case),

from the covariate set 𝑍 . Depending on the chosen feature(s), components of different types

(categorical, floats or integers) can also be added. The variables corresponding to the features and

4



𝑓1 (𝑋 𝐽1 ) 𝑓2 (𝑋 𝐽2 ) · · · 𝑓𝑘 (𝑋 𝐽𝑘 ) · · · 𝑓𝐾 (𝑋 𝐽𝐾 )

𝑏𝑘 (𝜓𝑘 (𝑋 𝐽𝑘 ))

Feature engineering
One or two categorical variables

encoding the feature(s) (from 𝑍 ),

and, if applicable, one or two

associated components.

Relationship specification
Categorical variable for the

spline basis (depending on

𝜓𝑘 (𝑋 𝐽𝑘 )) and integer for its

size 𝑞𝑘 .Example:
{ feature: wind, basis : cs, 𝑞𝑘 : 16 }

Figure 2: Encoding of a GAM formula 𝑓 using the DRAGON package.

their components, if any, are used to construct the value𝜓𝑘 (𝑋 𝐽𝑘 ) for each time step 𝑡 . Depending

on the value of𝜓𝑘 (𝑋 𝐽𝑘 ), several spline basis 𝑏𝑘 can be used. A categorical variable specifies the one

chosen for the effect 𝑘 . Finally, a last attribute 𝑞𝑘 , an integer, determines the basis size. The search

space is hierarchical in the sense that the elements of a given effect 𝑘 depend on the feature(s)

chosen for that effect. Moreover, at the scale of the variable-size array encoding the 𝑓 formula, the

addition of a new effect is done in such a way as to avoid any duplication of a given𝜓𝑘 (𝑋 𝐽𝑘 ). An
illustration of the encoding of a formula 𝑓 can be found Figure 2. The process of constructing a

GAM formula using DRAGON’s tools is fully described in Algorithm 1 in the appendix and works

as follows: first, the covariate, or the pair of covariates for bi-variate effects, is selected. Then comes

the feature engineering part, and subsequently, the relationship is chosen. Finally, the coefficients

𝑄 are also generated. Tuning a GAM with the P-IRLS algorithm can be a long and tedious job. We

then aim to apply efficient model selection algorithms to optimize them. We just define the search

space Ω that contains all the possible models we may consider, so basically the pairs of formulae

and hyperparameters (𝑓 ,𝑄). We now have to define a loss function ℓ : Ω → R so that we can

compare the models with each other.

4 Performance evaluation

We recall that we aim to find the best pair (𝑓 ★, 𝑄★) ∈ Ω and that this is done by minimizing a loss

function ℓ : Ω → R. For a model (𝑓 ,𝑄) ∈ Ω, we denote by 𝑓 the fixed generalized additive model

obtained by running the P-IRLS algorithm implemented in the mgcv-package on a training data set

Dtrain = (𝑌𝑡 , 𝑋𝑡 )𝑡=1,...,𝜏1
. This algorithm estimates the coefficients of Equation (1) by performing

a regularized over-parameterized linear regression. The regularization factor, optimized using

a cross-validation criterion, avoids over-fitting and ensures that covariate effect functions are

smoothed. This criterion involves the effective degrees of freedom of a GAM. It is defined by the

trace of the influence matrix: the matrix 𝐴 such that, for any 𝑡 = 1, . . . , 𝜏1, 𝑓 (𝑋𝑡 ) = 𝐴𝑌𝑡 . We refer

to Chapter 4 of Wood (2017) for further details. The effective degrees of freedom of a GAM 𝑓

may be interpreted as a (possibly non-integer) number of parameters of the model and is thus a

good measurement of its complexity; it is denoted by DF(𝑓 ). For any time step 𝑡 , this fixed model

provides the forecast �̃�𝑡 = 𝑓 (𝑋𝑡 ) =
∑𝐾
𝑘=1

𝑓𝑘 (𝑋 𝐽𝑘 ,𝑡 ). To evaluate the quality of the forecasts provided

by the model (𝑓 ,𝑄) on a validation data set Dvalid = (𝑌𝑡 , 𝑋𝑡 )𝑡=𝜏1+1,...,𝜏2
in an adaptive setting, the

forecasts are modified. Indeed, for each time step 𝑡 of the data set, the model provides the forecast

𝑌𝑡 =
∑𝐾
𝑘=1

𝜃𝑡 𝑓𝑘 (𝑋 𝐽𝑘 ,𝑡 ), where the adaptive vector 𝜃𝑡 was previously updated using the Kalman filter

equations. This calculation involves, among other things, the prediction error (𝑌𝑡−1 − 𝑌𝑡−1) and
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the hyperparameter 𝑄 (for further details, see, e.g. Obst et al., 2021). We consider the Root Mean

Squared Error (RMSE) to evaluate the prediction on Dvalid. Maximizing prediction accuracy while

avoiding overcomplicated models led us to define, for any model (𝑓 ,𝑄), the following loss function:

ℓ (𝑓 ,𝑄,Dvalid) =

√√√
1

𝜏2 − 𝜏1

𝜏2∑︁
𝑡=𝜏1+1

(
𝑌𝑡 − 𝑌𝑡

)
2 + 𝜂DF(𝑓 ) . (2)

and 𝜂 ∈ R+
is a regularization parameter which balances the two terms of the loss: the RMSE on

the validation data set and the degrees of freedom. We emphasize that running the Kalman filter

on the whole validation data set is computationally expensive: in our model selection framework,

both training and testing are costly.

5 Search algorithms

We now focus on the AutoML strategies we consider to solve the minimization problem

argmin ℓ (𝑓 ,𝑄) over Ω. It should first be pointed out that once a formula 𝑓 has been selected,

there are several statistical approaches to optimize the choice of the hyperparameter 𝑄 . For exam-

ple, in Chapter 5 of de Vilmarest (2022), Algorithm 5 proposes an iterative grid search procedure to

tune 𝑄 . We denote by Qigs(𝑓 ,Dtrain, 𝑄0, 𝑖) the matrix output by this algorithm, after 𝑖 iterations,

for a fixed trained model 𝑓 and an initial matrix 𝑄0. In the following, we explore algorithms which

make use of this iterative grid search optimization and others which view 𝑄 as a classical hyperpa-

rameter. We used the tools in the DRAGON package to encode the various elements of the search

space as detailed in Section 3. We then modified the search operators to use our representations

with the package’s search algorithms. We first designed a procedure to randomly generate a model

(𝑓 ,𝑄) and thus create an initial population. It is detailed in Algorithm 1 of Appendix B. Then,

we defined specific mutation and crossover operators useful for the Evolutionary Algorithm. In

comparison with the search operators that are already present in DRAGON, the ones that have

been implemented prevent a covariate from intervening more than once in the formula. This is

done to guarantee interpretability. Below, we detail these two processes.

Crossover. We used a two-point crossover between two GAMs (𝑓 1, 𝑄1) and (𝑓 2, 𝑄2) to create two

offsprings (𝑓 12, 𝑄12) and (𝑓 21, 𝑄21). It can be done on the formulae of respectively 𝐾1 < 𝐾2
terms

and eventually on the adaptation parameters as illustrated below. The effects from the formulae

and the elements from the matrix are swapped, just like bits in the regular two-points crossover.

This is illutrated in Figure 3.

𝑓 1
(
𝑋
)

= 𝑓 1

1

(
𝑋 𝐽 1

1

)
+ 𝑓 1

2

(
𝑋 𝐽 1

2

)
+ 𝑓 1

3

(
𝑋 𝐽 1

3

)
+ . . . + 𝑓 1

𝐾1

(
𝑋 𝐽 1

𝐾1

)
𝑄1 = diag(𝑞1

1
, . . . , 𝑞1

𝐾1
)

𝑓 2
(
𝑋
)

= 𝑓 2

1

(
𝑋 𝐽 2

1

)
+ 𝑓 2

2

(
𝑋 𝐽 2

2

)
+ 𝑓 2

3

(
𝑋 𝐽 2

3

)
+ . . . + 𝑓 2

𝐾2

(
𝑋 𝐽 2

𝐾2

)
𝑄2 = diag(𝑞2

1
, . . . , 𝑞2

𝐾2
)

↓ ↓
𝑓 12

(
𝑋
)

= 𝑓 1

1

(
𝑋 𝐽 1

1

)
+ 𝑓 2

2

(
𝑋 𝐽 2

2

)
+ 𝑓 2

3

(
𝑋 𝐽 2

3

)
+ . . . + 𝑓 1

𝐾1

(
𝑋 𝐽 1

𝐾1

)
𝑄12 = diag(𝑞1

1
, . . . ,𝑞2

𝐾1

)

𝑓 21
(
𝑋
)

= 𝑓 2

1

(
𝑋 𝐽 2

1

)
+ 𝑓 1

2

(
𝑋 𝐽 1

2

)
+ 𝑓 1

3

(
𝑋 𝐽 1

3

)
+ . . . + 𝑓 2

𝐾2

(
𝑋 𝐽 2

𝐾
2

)
𝑄21 = diag(𝑞2

1
, . . . ,𝑞1

𝐾1

, . . . , 𝑞2

𝐾2

)

Figure 3: Illustration of the crossover.

Mutation. The mutation operator creates a new model from an existing one (𝑓 ,𝑄). It may impact

a given effect in the GAM formula 𝑓 by randomly changing the covariate(s), the relationship with

the target variable (and, when it is relevant, the number of splines in the basis), or the feature
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engineering function. Multiple characteristics can be changed at once. The mutation can also be an

effect addition (the effect is then randomly generated) or deletion. We ensure that the new formula

is non-empty and that none of the effects appear twice. The coefficient in the matrix 𝑄 can be

randomly mutated as well. The size of 𝑄 matrix is automatically adjusted to the number of terms

in the formula.

We are now able to extend the search algorithms from DRAGON to GAM selection. For more

information on these algorithms, please refer to Keisler (2025). In the experiments of Section 6, we

will consider an evolutionary algorithm (EA). We propose two versions, which are fully described

in Algorithm 2 of Appendix B. For the first version, the EA is performed only on the formulae. This

first algorithm, referred to as EA(𝑓 ) + Qigs, trains the models with the P-IRLS algorithm so the

evolutionary algorithm outputs a fixed model. We finalize the optimization by running the iterative

grid search until convergence. For the second one, the adaptive hyperparameter is considered to be

part of the search space (so 𝑓 and 𝑄 are optimized at the same time) and we refer to it as EA(𝑓 ,𝑄).

6 Experiments: short-term electricity demand

6.1 Experiment design

Data sets and adaptation procedure. Our experiments consist in forecasting the French hourly

electricity demand on a short-term horizon. The open source data set comes from the French

Transmission System Operator. The set of covariates contains weather (temperature, cloud cover

and wind) and calendar covariates. We work within an operational framework: each week we

receive electricity demand data with a delay. Specifically, we assume that every Monday at 8:00 we

access new electricity demand records: data from Saturday 00:00 nine days earlier to the previous

Friday 23:00. Then, we update our models (namely the vector 𝜃𝑡 introduced in Section 3.2) using

these new data points and we predict the demand for the next seven days (from Monday 8:00 to

next Monday 7:00). Models were fitted on the training data set Dtrain, which contains electricity

demand, weather and calendar information from 2017 to 2020. Since they completely differ from

the rest of the data and to avoid some bias on the forecast, we remove the periods of lockdown

due to the COVID-19 pandemic from the training data set. The validation data set Dvalid used to

evaluated the models (i.e. to compute the loss defined in Section 4) consists of data from the years

2021 and 2022. Finally, models were tested on Dtest: the years 2023 and 2024.

Algorithms. The performance of the models found by the proposed approach is compared with that

of a state-of-the-art handcrafted model detailed in Appendix C and with that of the model found

by GAGAM (the R-package developed by Cus, 2020). As the effect of the hour 𝐻𝑡 ∈ {0, . . . , 23}
is crucial to forecast electricity demand, it is often more efficient to consider a model per hour

(see Fan and Hyndman, 2011 and Goude et al., 2013). Thus, we run the algorithms for each hour,

independently. The training of the handcrafted model (referred to as “SotA” in what follows) and the

one output by GAGAM (“GAGAM”) is completed with the optimization of the adaptation parameter

using the iterative grid-search algorithm (“+Qigs”). We executed the proposed AutoML algorithm

with a budget of 𝑇 = 200, which means that 200 calls to the P-IRLS algorithm will be made during

the entire runtime. All experiments were made with a population of 𝑀 = 20 individuals. Our

search space, well designed for our problem, allows us to represent the handcrafted model in order

to propose it in the initial population of both EAs. For these search algorithms, the tournament

selection size was chosen equal to 𝑘 = 5 (see Algorithm 2 in Appendix).

Search space. The search space defined in section 3 is parameterized by several elements, including

features, feature modifications, spline bases and the size of these bases. We have chosen these

elements based on our industrial knowledge to represent the largest number of GAM formulae that

https://www.rte-france.com/eco2mix
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we know are relevant to our problem. These choices impact the performance, particularly as we

have had to keep the size and complexity of our GAM formulae to a minimum in order to avoid

excessive computation time.

Performance evaluation. The evaluation of a model (𝑓 ,𝑄) starts with its training on Dtrain. To

get the forecasts 𝑌𝑡 defined in Section 4, the operational adaptation procedure described above

involving 𝑄 and Kalman filtering is then run. For 𝐸𝐴(𝑓 ,𝑄), we emphasize that both training and

forecasts computation (because of the adaptation) can be time consuming. In contrast, for GAGAM

(+𝑄igs) and 𝐸𝐴(𝑓 ) +𝑄igs, the forecasts are computed in the fixed setting (namely with 𝜃𝑡 = 1 for
all 𝑡 so 𝑌𝑡 = 𝑌𝑡 ). Once the forecasts on Dvalid have been computed, the loss of the model defined in

Equation (2) can be obtained. We recall that the loss function balances two terms: the RMSE on

Dvalid and the complexity of the model through the degrees of freedom. To give importance to

both terms and find a good trade-off, based on computations of the two terms of several models,

we empirically set 𝜂 =
√︁

Var[𝑌 ]/5000, where the variance is the empirical variance on Dvalid.

6.2 Results

We compared the performance of the state-of-the-art handcrafted model (“SotA” and “SotA +Qigs”)

and the one found by GAGAM (“GAGAM” and “GAGAM +Qigs”) with the two versions of the

evolutionary algorithm (EA): EA(𝑓 ) + Qigs and EA(𝑓 ,Q). Table 1 presents the RMSE and the MAPE

(Mean Absolute Percentage Error) for each data set (training, validation and testing). Figure 4

shows the RMSE for each hour on the testing set. For the fixed setting, GAGAM and 𝐸𝐴(𝑓 ) perform

Model Training data set Validation data set Testing data set

RMSE · MAPE RMSE · MAPE RMSE · MAPE

SotA 2510 MW · 3.44 % 2951 MW · 4.33 % 4397 MW · 7.95 %
GAGAM 2162 MW · 2.82 % 2776 MW · 4.25 % 4240 MW · 7.73 %

EA(𝑓 ) 1814 MW · 2.33 % 2440 MW · 3.58 % 4290 MW · 8.03 %
SotA +Qigs 3301 MW · 4.60 % 3051 MW · 4.22 % 3364 MW · 5.07 %
GAGAM +Qigs 11208 MW · 10.67 % 6636 MW · 7.76 % 5976 MW · 7.78 %
EA(𝑓 ) + Qigs 1805 MW · 2.32 % 2466 MW · 3.64 % 4320 MW · 8.10%
EA(𝑓 ,𝑄) 1594 MW · 2.10 % 1292 MW · 1.79% 1552 MW · 2.20%

Table 1: RMSE and MAPE on training, validation and testing data.

quite similarly to the SotA model on the testing data set. Errors on the validation data set highlight

the efficiency of the evolutionary algorithms and of the proposed search space modeling. For the

adaptive setting, GAGAM +Qigs and EA(𝑓 ) + Qigs perform much worse than the SotA model.

Figure 4 reveals that, for GAGAM +Qigs, most of this is due to a few hours: GAGAM probably

selects over-complicated models. Then, either Qigs does not converge to a relevant minimum, or

the adaptation process is no longer identifiable at all, leading to bad performances on the three

datasets. Comparing the performances of GAGAM +Qigs and EA(𝑓 ) + Qigs, specifically on Figure 4,

legitimates the addition in the loss - see Equation (2) - of the second term: less-complicated models

are selected. Finally, it is clear that EA(𝑓 ,𝑄) largely outperforms all the previous models and

improves the SotA model’s performance by 54%. It therefore seems crucial to optimize both the

formula and the adaptation parameter simultaneously. These promising results come with new

questions and possible improvements. Indeed, with this first work, 𝑓 and 𝑄 are treated by EA as

two independent parameters. Doing “smart” mutations and crossing-overs by considering the effect

of the GAM 𝑓𝑘 “attached” with the associated coefficient in the matrix 𝑄 could probably improve

the results. Moreover, we believe that Qigs (which is time-consuming) could be used partially (a
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few iterations) during the AutoML algorithm, and not only at the end. Finally, we highlight an

overfitting of our AutoML algorithms on the validation test. We should consider an evaluation

process involving methods close to cross-validation.

Figure 4: Hourly RMSE on testing data set for the adaptive models SotA +Qigs, GAGAM +Qigs,

𝐸𝐴(𝑓 ) + Qigs and 𝐸𝐴(𝑓 ,𝑄).

7 Conclusion
This work proposes a framework for automated online generalized additive model selection. It pro-

poses an efficient modeling of the search space which is compatible with the DRAGON framework.

Application to short-term electricity demand forecasting attests the relevance of the approach and

highlights how it is crucial to optimize both the formula of the GAM and the adaptation parameter

simultaneously. In practice, it is possible to greatly improve electricity demand forecasts by using

mixtures of models (see for example Gaillard et al. (2016)). The idea is to have several good predic-

tors, called “experts”, who make quite different errors from one another, and to make time-evolving

weighted averages of their predictions. This AutoML work on GAMs could be improved by trying

to optimize not a single formula but a mix of formulae, or even by integrating different types of

models into the search space for the best mix. The homogenization, through the DRAGON package,

of the representation of the GAMs in this work with that of the deep learning models proposed in

EnergyDragon (Keisler et al., 2024a; Keisler and Brégère, 2024), which are also applied to electricity

demand forecasting, would make it easy to design search spaces containing both neural networks

and GAMs. These two types of models naturally model electricity demand in very different ways

and therefore do not make the same errors, which would probably produce a good mix. Finally,

these model choices, whether in a mix or not, could vary over time. While online tuning can

produce gains, too much change in the data distribution may require online AutoML.

8 Broader Impact Statement
Our work automates the creation of reliable load forecasting models. It could provide different

actors in the electricity system with access to reliable electricity demand forecasts without the

need to spend a lot of time building models by hand. While this work is limited to short-term

national forecasts, GAMs can be used for different forecast horizons and spatial aggregation scales

(see, for example, the applications of GAMs to mid-term forecasting Zimmermann and Ziel 2025

and to local load signals Lambert et al. 2023). These different electricity demand forecasts play

a crucial role in the fight against global warming. On the one hand, they facilitate the massive

integration of renewable energy (by reducing uncertainty about demand, we can afford to increase

uncertainty about electricity production). They also make it possible to adjust the demand of both

individual and industrial actors, for example, to run large calculations or start machines at times

when demand is low and production is guaranteed by low-carbon emission sources.
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
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AutoML on GAMs for electricity demand forecasting. The results show the ability of our

framework to find better formulae than the handcrafted one.
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(c) Did you discuss any potential negative societal impacts of your work? [Yes] We suggested

ways to reduce computation time: beingmindful before running the algorithm and searching
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leverage resource allocation.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] The paper conforms to the guide-

lines
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(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] GAGAM did not have the same loss

function: it relied solely on the RMSE to rank its models. The resources given were the

same for all AutoML frameworks: 200 iterations for a population of 20 individuals.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] The "Experiment design" section gives all

these details and the chosen scaling factor is mentioned in section 3.4.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [No] We did not want to launch

too many experiments. But we ran our framework for the 24 hours of the day, and for each

hour, our approach managed to find a better solution than GAGAM or the handcrafted

model. We think it is enough to attest to the pertinence of our approach.
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splits)? [No] We did not report the variance as we only launched each experiment once,
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improve by 54% the current state of the art.
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industrial use case.
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duration? [No] The maximum duration was set due to time constraints. We believe that

allowing more resources could lead to even better results.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] This information is given Section 6.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We ran two versions of our framework to show the impact of the joint selection of 𝑓

and 𝑄 , which is very relevant in our context.
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results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] The code can be found in the supplementary

material. It requires both a Python and an R environment.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] We provide a notebook to run the algorithms for a small number of

iterations (20 iterations and a population of 5 models, which can be modified).

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] We did, the only tricky part is to manage both Python

and R environments.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] We did.
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(a) Did you cite the creators of used assets? [Yes] The creator of GAGAM, that of the DRAGON

package, and that of the data set were all cited.
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using/curating if the license requires it? [Yes] GAGAM and DRAGON are open-source, and

so is the RTE data set.

(c) Did you discuss whether the data you are using/curating contains personally identifiable in-

formation or offensive content? [Yes] The RTE data is open-source and free from personally

identifiable information or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

The code in the supplementary material is open-source.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] The code in the supplementary material is open-source.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We did not use crowdsourcing or conduct research with subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not use crowdsourcing or conduct research

with subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not use crowdsourcing or conduct research

with subjects.

7. If you included theoretical results. . .
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(b) Did you include complete proofs of all theoretical results? [N/A] There are no theoretical
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A Detailed structure of generalized additive models (fixed setting)

In the following, we detail the two steps required to set a GAM formula in our set-up. We recall that

the target variable is a time series (𝑌𝑡 )𝑡≥1 where 𝑌𝑡 represents the amount of electricity demanded

between times 𝑡 and 𝑡 + 1. The latter depends on a multitude of variables 𝑍𝑡 , including weather

(temperature, wind, etc.) and calendar-related (public holidays, weekdays, etc.) factors. The set of

covariates 𝑋𝑡 used in the GAM formula includes actual and past covariates, so 𝑋𝑡 = (𝑍𝑠)𝑠=1,...,𝑡 and

we obtain the equation

E[𝑌𝑡 |𝑋𝑡 ] =
𝐾∑︁
𝑘=1

𝑓𝑘 (𝑋 𝐽𝑘 ,𝑡 ) .

The specification of the smooth functions 𝑓𝑘 is divided into two: feature engineering (to extract

useful information from 𝑋 𝐽𝑘 ,𝑡 ) and relationship specification (to link this information with the

target variable).

Feature engineering. For any 𝑘 = 1, . . . , 𝐾 , feature engineering for covariates 𝑋 𝐽𝑘 may be relevant.

We detail in the following the two examples that we consider.

Example 1: Exponential smoothing of the temperature. The incorporation of exponentially smoothed

temperatures, which model the thermal inertia of buildings, is likely to improve electricity demand

forecasts; see, e.g. Goude et al. (2013). The creation of such a variable is based on a smoothing

parameter 𝛼 ∈ [0, 1] and requires access to all past temperature values, so we consider, for any

time step 𝑡 , 𝑋 𝐽𝑘 ,𝑡 = (𝑇1, . . . ,𝑇𝑡 )T, where𝑇𝑡 denotes the temperature at time step 𝑡 . The exponentially

smoothed temperature parameterized by 𝛼 is defined by:

𝜓𝑘 (𝑇𝑡 ) =
{

𝑇1 if 𝑡 = 1

𝛼𝜓𝑘 (𝑇𝑡−1) + (1 − 𝛼)𝑇𝑡 else.

By induction, for any time step 𝑡 = 1, 2 . . . , we get 𝜓𝑘 (𝑋 𝐽𝑘 ,𝑡 ) =
∑𝑡−1

𝑠=0
(1 − 𝛼)𝛼𝑠𝑇𝑡−𝑠 + 𝛼𝑡𝑇1. We

emphasize that the function𝜓𝑘 depends only on the smoothing parameter 𝛼 .

Example 2: Categorical variable selection. We may consider a categorical variable 𝐷 taking integer

values between 1 and𝑚, and possibly a default value 0. Among the𝑚 modalities, the objective is to

select only a subset of them. Let 𝑣 a vector in {0, 1}𝑚 such that 𝑣 𝑗 = 1 if the modality 𝑗 is selected

and 0 otherwise. We define the engineering function𝜓𝑘 for the feature 𝐷 that depends only on 𝑣 by

𝜓𝑘 (𝐷𝑡 ) = 𝐷𝑡1𝑣𝐷𝑡 =1 .

When no feature engineering is required, the function 𝜓𝑘 is the identity. To consider bi-variate

effects, with, e.g. some exponentially smooth temperature and categorical variable selection, the

above functions of Examples 1 and 2 can be combined.

Relationship specification. Let ˜𝑓𝑘 be the GAM effect associated to the engineered feature𝜓𝑘 (𝑋 𝐽𝑘 ),
namely the function such that 𝑓𝑘 (𝑋 𝐽𝑘 ) = ˜𝑓𝑘

(
𝜓𝑘 (𝑋 𝐽𝑘 )

)
. In the GAM framework, we take

˜𝑓𝑘 in the

linear span of a set of 𝑞𝑘 basis functions. More precicely, with 𝑏𝑘,𝑖 the 𝑖
th
basis function, and any 𝑥

belonging to set of the values of the covariate𝜓𝑘 (𝑋 𝐽𝑘 ), ˜𝑓𝑘 is assumed to have the representation

˜𝑓𝑘 (𝑥) =
𝑞𝑘∑︁
𝑖=1

𝛽𝑘,𝑖𝑏𝑘,𝑖 (𝑥) ,

for some values of the unknown parameters 𝛽𝑘,𝑖 . For a univariate smooth effect, that is, when

𝜓𝑘 (𝑋 𝐽𝑘 ) is a quantitative real variable, classical basis functions are obtained using cubic splines,

cyclic cubic splines, thin plate splines, etc. - see Wood et al. (2015) for further details. We emphasize
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that the above notation also works for tensor products, i.e. when
˜𝑓𝑘 takes any number 𝑚 of

covariates as input. By defining a spline basis (𝑏𝑖)𝑖=1,...,𝑞 𝑗 for each component 𝑗 of the already

engineered feature vector𝜓𝑘 (𝑋 𝐽𝑘 ), with 𝑥 𝑗 belonging to the set of values of feature 𝑗 , we consider

˜𝑓𝑘 (𝑥1, . . . , 𝑥𝑚) =
𝑞1∑︁
𝑖1=1

𝑞2∑︁
𝑖2=1

· · ·
𝑞𝑚∑︁
𝑖𝑚=1

𝛽𝑖1,𝑖2,...,𝑖𝑚𝑏𝑖1 (𝑥1)𝑏𝑖2 (𝑥2) . . . 𝑏𝑖𝑚 (𝑥𝑚) =
𝑞1𝑞2 ...𝑞𝑚∑︁
𝑖=1

𝛽𝑖𝑏𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑚) ,

where 𝛽𝑖 = 𝛽𝑖1,𝑖2,...,𝑖𝑚 and 𝑏𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑏𝑖1 (𝑥1)𝑏𝑖2 (𝑥2) . . . 𝑏𝑖𝑚 (𝑥𝑚) with, for 𝑙 = 1, . . . ,𝑚,

𝑖𝑙 =

[
𝑟 (𝑖, 𝑞1𝑞2 . . . 𝑞𝑙−1) − 1

𝑞𝑙+1𝑞𝑙+2 . . . 𝑞𝑚

]
+1 , where 𝑟 (𝑖, 𝑞) is the remainder of the Euclidean division of 𝑖 by 𝑞 .

Finally, when 𝜓𝑘 (𝑋 𝐽𝑘 ) is a categorical variable, taking integer values between 1 and 𝑚, we set

𝑞𝑘 =𝑚 and 𝑏𝑖 (𝑥) = 1𝑥=𝑖 , for 𝑖 = 1, . . . ,𝑚. Thus, a coefficient 𝛽𝑘,𝑖 is estimated of each modality 𝑖 .

B Algorithms

We aim to find the best adaptive Generalized Additive Model (GAM) among a search-space Ω
defined in Section 3. We recall that we used the P-IRLS algorithm from the mgcv R-package to

train the GAMs. In what follows, for a formula 𝑓 and a training data set Dtrain, we denote by

𝑓 = P-IRLS(𝑓 ,Dtrain) the trained GAM. In Chapter 5 of de Vilmarest (2022), Algorithm 5 proposes

an iterative grid search procedure to optimize the matrix which parameterizes the adaptive version

of a model 𝑓 . In the following, we denote by Qigs(𝑓 ,Dtrain, 𝑄0) the matrix output of this algorithm,

for a model 𝑓 and an initial matrix 𝑄0. Once the model (𝑓 ,𝑄) ∈ Ω has been trained, it is possible

to evaluate its performance. To do so, we use the loss function defined in Equation (2) which takes

as arguments the formula 𝑓 , the hyperparameter 𝑄 and the data set D. As detailed in Section 4,

ℓ (𝑓 ,𝑄,D) requires the calculation of forecasts in the adaptive setting. In what follows, if 𝑄 = −∞,

the forecasts are computed in the fixed setting (namely with 𝜃𝑡 = 1 for all 𝑡 ). Table 2 contains the
notations used in the algorithms defined below. Algorithm 1 describes the generation of a model

(𝑓 ,𝑄) ∈ Ω. Algorithm 2 is declined in two versions: EA(𝑓 ) + Q𝐼𝐺𝐷 and EA(𝑓 ,𝑄). It explores 𝑇
models by evolving a population of constant size𝑀 . To do so, it starts with𝑀 sampled models (using

Algorithm 1). At each round, it creates two new models from two good ones using evolutionary

operators and then deletes the two models with the highest loss among the entire population

(including the two new ones). In the first version EA(𝑓 ) + Q𝐼𝐺𝐷 , the evolutionary algorithm is

used only to optimize the GAM formula, and in a second step, the hyperparameter for its adaptive

version is optimized using the iterative grid-search Q𝐼𝐺𝐷 . In contrast, in EA(𝑓 ,𝑄), we do not use the
iterative grid search and the evolutionary algorithm optimizes the formula and the hyperparameter

of the adaptive version both at the same time.

C Experiments: state-of-the-art handcrafted model

We refer, among others, to Goude et al., 2013 and Gaillard et al., 2016 for an exhaustive presentation

of the generalized additive models used to forecast power demand. Our state-of-the-art handcrafted

model takes into account some meteorological variables at an hourly time step: the temperature 𝑇𝑡
and the smoothed temperature 𝑇𝑡 , the cloud cover 𝐶𝑡 , and the wind speed𝑊𝑡 ; and some calendar

variables: the day of the week 𝐷𝑡 , the hour of the day 𝐻𝑡 ∈ {1, ..., 24} and the position in the

year 𝑃𝑡 ∈ [0, 1], which takes linear values between 𝑃𝑡 = 0 on January 1st at 00:00 and 𝑃𝑡 = 1 on

December the 31st at 23:59. We also add a “Break” variable 𝐵𝑡 : a categorical variable refering to

various moment in the year (Winter time, Summer time, August and Christmas break, etc.). The
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𝑡 Time step within the time series

𝑖 Iteration of a search algorithm

𝑓 Formula of a Generalize Additive Model (GAM)

𝑄 Hyperparameter of the adaptive version of a GAM (𝐾 ×𝐾-matrix, where

𝐾 is the number of effects of the GAM)

Ω Search space containing the GAM formulae and the associated matrices

Dtrain Data set used for model training (P-IRLS and Qigs algorithms)

Dvalid Data set used for model evaluation

Dtest Data set used for AutoML algorithms’ performance evaluation

Algorithms and operators

B(𝑝) Function to generate a realization of a random variable that follows a

Bernoulli distribution of parameter 𝑝

P-IRLS(𝑓 ,Dtrain) GAM output by P-IRLS algorithm (mgcv R-package) for a formula 𝑓 and

a training data set Dtrain

ℓ (𝑓 ,𝑄,Dvalid) Loss defined in Equation (2)

Qigs(𝑓 ,Dtrain, 𝑄0) Adaptive version hyperparameter for trained model 𝑓 output by Algo-

rithm 5 of de Vilmarest (2022) for an initial hyperparameter 𝑄0 and a

training data set Dtrain

M(𝑓 ,𝑄) Mutant model created from (𝑓 ,𝑄) ∈ Ω using the mutation operator

described in Section 5

CO
(
(𝑓1, 𝑄1), (𝑓2, 𝑄2)

)
Children models created from models (𝑓1, 𝑄1) and (𝑓2, 𝑄2) ∈ Ω using

the crossing-over operator described in Section 5

Table 2: Table of Notation

state-of-the-art handcrafted model is then the sum of 24 daily models, one for each hour of the day.

Thus, at any time step 𝑡 , with ℎ = 𝐻𝑡 , the following model is considered:

𝑓 ℎ (𝑋𝑡 ) = �̂�ℎ𝑇
(
𝑇ℎ𝑡

)
+ �̂�ℎ

𝑇

(
𝑇
ℎ

𝑡

)
+ �̂�ℎ𝐶

(
𝐶ℎ𝑡

)
+ �̂�ℎ𝑊

(
𝑊 ℎ
𝑡

)
+

𝐷∑︁
𝑑=1

𝛿ℎ
𝑑
1𝐷𝑡=𝑑 +

𝐵∑︁
𝑏=1

𝛽ℎ
𝑏
1𝐵𝑡=𝑏 + �̂�ℎ𝑃

(
𝑃ℎ𝑡

)
.

The �̂�ℎ
𝑇
, �̂�ℎ
𝑇
, �̂�ℎ
𝐶
, �̂�ℎ
𝑊
, and �̂�ℎ

𝑃
functions catch the effect of the the meteorological variables and of

the yearly seasonality. They are cubic splines: C2
-smooth functions made up of sections of cubic

polynomials joined together at points of a grid. The coefficients 𝛿ℎ
𝑑
and 𝛽ℎ

𝑏
model the influence of

the day of the week and the period of the year respectively; these effects are represented as a sum

of indicator functions. As we consider a model per hour, all the coefficients and splines are indexed

by ℎ. In our automated model selection approach, we consider other variables such as the month of

the year, the maximum and minimum temperatures per day, the binary variable Weekend, and so

on.
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Algorithm 1 Generation of an (adaptive) GAM model

Inputs:
Covariate list 𝐿var
Categorical covariates list 𝐿cat_var ⊂ 𝐿var
Spline list 𝐿sp (for the uni-variate effects), Tensor list 𝐿te (for the bi-variate effects)

Maximum number of effects in the GAM 𝐾max. (If None, use the number of features),

Minimum / Maximum degree of freedom for a spline 𝑘min / 𝑘max,

Probability of generating a bi-variate effect 𝑝bi_var,

Minimum / Maximum smoothing coefficient for the temperature 𝛼min / 𝛼max,

List of days / offsets to be calculated 𝐿day / 𝐿os,

Boolean specifying whether 𝑄 should also be generated or not Kalman

Minimum / Maximum value for the 𝑄 matrix coefficients 𝑄min / 𝑄max,

Minimum / Maximum value for the 𝑄 matrix coefficients’ standard deviation 𝜎min / 𝜎max

Initialization
Sample a number of effects 𝐾 ∈ {1, . . . , 𝐾max}
Create an empty list 𝐿gam that will contain the effects of the generated GAM

If Kalman = True:

Uniformly choose a standard deviation 𝜎 between 𝜎min and 𝜎max,

Logarithmically choose the 𝑄 matrix’s diagonal coefficients between 𝑄min and 𝑄max,

Append a list containing 𝜎 and the diagonal coefficients to 𝐿gam
For 𝑘 = 1, . . . , 𝐾 :

Sample 𝑋𝑘 ∼ B(𝑝bi_var)
If 𝑋𝑡 = 1, a bi-variate is generated:

Select two distinct covariates from 𝐿var while making sure they do not already exist as a

bi-variate effect in 𝐿gam and that they are not both categorical using 𝐿cat_var,

Sample a relationship in 𝐿sp if one of the covariates is in 𝐿cat_var and a degree of freedom

between 𝑘min and 𝑘max; or in 𝐿te and two degrees of freedom otherwise while ensuring

compatibility with the chosen relationship

Else:
Select a covariate while making sure it does not already exist in 𝐿gam
Sample a relationship in 𝐿sp and a degree of freedom while ensuring compatibility with

the chosen relationship

If the covariate(s) are temperature, days or offsets, generate a temperature smoothing

coefficient between 𝛼min and 𝛼max, or a list among 𝐿day or 𝐿os
Add the effect to 𝐿gam

Output: 𝐿gam
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Algorithm 2 Steady state evolutionary algorithm (EA) for adaptive GAM selection

Inputs:
Training data set Dtrain, validation data set Dvalid, loss function ℓ

P-IRLS algorithm, Mutation operatorM, Crossover operator CO,

Population size𝑀 , Size of the tournament selection𝑚 ∈ {1, . . . , 𝑀 − 1},
Parameter for the initialization of the iterative grid search 𝑞0, Number of tested models 𝑇 ,

VEA ∈ {EA(𝑓 ) + Q𝐼𝐺𝐷 , EA(𝑓 ,𝑄)} the version of EA considered

Initialization
For 𝑖 = 1, 2, . . . , 𝑀 :

If VEA = EA(𝑓 ,𝑄):
Sample a model (𝑓𝑖 , 𝑄𝑖) using Algorithm 1 with Kalman = True

Train the model: 𝑓𝑖 = P-IRLS(𝑓𝑖 ,Dtrain)
Else:
Sample a formula 𝑓𝑖 using Algorithm 1 with Kalman = False

Train the associated fixed model: 𝑓𝑖 = P-IRLS(𝑓𝑖 ,Dtrain)
𝑄𝑖 = −∞ (when VEA = EA(𝑓 ) + Q𝐼𝐺𝐷 )

Get the loss ℓ𝑖 = ℓ
(
𝑓𝑖 , 𝑄𝑖 ,Dvalid)

For 𝑖 = 1, . . . , ⌊𝑇−𝑀
2

⌋:
Sample a partition I ∈ {1, . . . , 𝑀} of size𝑚 and select 𝑗𝐴 ∈ argmin𝑗∈I ℓ𝑗
Sample a partition J ∈ {1, . . . , 𝑀}\{ 𝑗𝐴} of size𝑚 and select 𝑗𝐵 ∈ argmin𝑗∈J ℓ𝑗
Apply the crossover operator on models 𝑗𝐴 and 𝑗𝐵 :(

(𝑓 new1, 𝑄new1), (𝑓 new2, 𝑄new2)
)
= CO

(
(𝑓𝑗𝐴 , 𝑄 𝑗𝐴), (𝑓𝑗𝐵 , 𝑄 𝑗𝐵 )

)
Mutate the two new models:

(𝑓 new1, 𝑄new1) = M
(
𝑓 new1, 𝑄new1

)
and (𝑓 new2, 𝑄new2) = M

(
𝑓 new2, 𝑄new2

)
Train two the new models: 𝑓 new1 = P-IRLS(𝑓 new1,Dtrain), 𝑓 new2 = P-IRLS(𝑓 new2,Dtrain)
If VEA = EA(𝑓 ,𝑄):
𝑄new1 = Q𝐼𝐺𝐷 (𝑓 new1,Dtrain, 𝑄

new1, 𝑁 ) and 𝑄new2 = Q𝐼𝐺𝐷 (𝑓 new2,Dtrain, 𝑄
new2, 𝑁 )

Get the losses: ℓnew1 = ℓ
(
𝑓 new1, 𝑄new1,Dvalid

)
, ℓnew2 = ℓ

(
𝑓 new2, 𝑄new2,Dvalid

)
If ℓnew1 < max𝑗∈{1,...,𝑀 } ℓ𝑗 :

Replace (𝑓𝑗old, 𝑄 𝑗old) where 𝑗old ∈ argmax𝑗∈{1,...,𝑀 } ℓ𝑗 by (𝑓 new1, 𝑄new1)
If ℓnew2 < max𝑗∈{1,...,𝑀 } ℓ𝑗 :

Replace (𝑓𝑗old, 𝑄 𝑗old) where 𝑗old ∈ argmax𝑗∈{1,...,𝑀 } ℓ𝑗 by (𝑓 new2, 𝑄new2)
Select the best model

(
𝑓𝑗best, 𝑄 𝑗best

)
with 𝑗best ∈ argmin𝑗=1,...,𝑀 ℓ𝑗

If VEA = EA(𝑓 ) + Q𝐼𝐺𝐷 :

𝑄 𝑗best = Q𝐼𝐺𝐷 (𝑓𝑗best,Dtrain, 𝑄0) with 𝑄0 = 𝑞0𝐼𝑑
Output:

(
𝑓best, 𝑄best

)
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