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Abstract
Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diag-

nosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermato-

surgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack

altogether. Automated determination of anatomical location could benefit both situations.

Objective Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the

gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images.

Methods Retrospective study based on three datasets: macro-anatomy for the main body regions with 6000 patient

pictures partially labelled by a student, micro-anatomy for the ear region with 182 pictures labelled by a student and DD

with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained

and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95%

CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pic-

tures and locations.

Results The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro-anatomy, 81% (CI 80–

83), 80% (CI 77–83) for micro-anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD

performance of 6% (McNemar test P-value 0.0009) for both average precision and sensitivity when training with both

lesion pictures and locations.

Conclusion Including location can be beneficial for DD DLM performance. The proposed method can generate body

region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method

enables automated search of large clinical databases and make targeted anatomical image retrieval possible.
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Introduction
In clinical practice, the differential diagnosis (DD) of a skin

lesion is influenced to a great extent by its anatomical location.

Certain body regions are more likely than others to be affected

by skin diseases, some of which have specific predilection sites.1

Although this information is straightforward to obtain manually

in clinical settings, it is more difficult to infer from patient pic-

tures only, for example, in teledermatology context. The

complexity increases the more zoomed-in the pictures and the

less visible the anatomical landmarks are. An example of skin

patches that are increasingly difficult to localize for human raters

from image alone is shown in the Fig. S2. The ability to auto-

matically localize small skin patches would also be useful for the

automation of anatomical region mapping in skin photographs,

as smaller skin patches are less likely to contain overlapping

body parts, for example, folded arms over the trunk.
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To be relevant in clinical settings, automated anatomical map-

pings should be more detailed than the main body regions and

ideally reproduce the established international surface anatomy

terminology.2 Mohs micrographic surgery is a common operation

in dermatology to remove cancerous lesions. In practice, surgeons

are regularly confronted with situations where lesion’s locations

defined in a patient’s profile are imprecise, sometimes wrong.3

These mistakes happen due to the sheer number of different

regions in the human anatomy and the difficulty of remembering

them all, even for experienced clinicians. To avoid wrong site sur-

gery, the anatomical description of biopsy sites is crucial as they

may heal scar-free and the remaining tumour may become invisi-

ble.4 Photographs might be unavailable to the surgeon, and

patients may not be able to clarify biopsy sites, especially after sev-

eral weeks delay for surgical appointment. With Mohs micro-

graphic surgery, these issues are even more critical as it is a

margin-controlled surgery, where there might not be a positive

histological confirmation of the tumour right after the first stage

of surgery. An automated system to assist clinicians with precise

localization could benefit the documentation of biopsy locations.

Finally, another aspect to consider is the ever-increasing size

of patient records and image databases kept for disease monitor-

ing, future reference or research. The metadata of these images is

often limited, restricting the usability of this data. To improve

flexibility of these databases and accommodate new purpose of

use, targeted image retrieval should be possible. Anatomical

metadata would enable searching for specific regions of interest.

However, producing such metadata manually is too costly in

practice. With no automation in place, these valuable data

sources remain underused.

Our study aimed to solve these challenges. We proposed a

macro-anatomical deep learning model (DLM) to localize small

skin patches on the main body regions, compared its perfor-

mance with experts and showed that lesion location could

improve classical DD DLM performance. Then, we trained a

micro-anatomical DLM to segment the ear in its sub-regions, an

approach that could assist dermatologists in lesion documenta-

tion. Both DLMs enable the generation at scale of the anatomical

metadata required to perform targeted image retrieval.

Materials and methods
All images were obtained at the University Hospital of Zurich

mainly from adult patients, type 1 to 3 on the Fitzpatrick scale. The

data were anonymized by the removal of metadata and all personal

identifying information. Subsequently, pictures were split and stored

in small tiles (patches) precluding patient identification. Clinical

images were taken at the same hospital with standard camera by a

professional photographer. Capturing conditions were standardized:

similar backgrounds and distances, controlled lighting and illumina-

tion. The visible anatomical region depended on lesions locations

and were photographed mostly systematically. There were no arte-

facts such as pen markings, rulers or markings. We did not perform

post- or pre- processing such as colour normalization, filtering or

cropping (aside for the macro-anatomy location dataset).

Macro-anatomy

Body regions dataset The full dataset contained 6000 high-

resolution patient’s pictures showing the main body regions

(Fig. S1): arms, legs, feet, hands, heads, and trunks. The initial

training set, referred to as expert labelled (EL), contained 600

images (100 per body region) manually cropped to a single region.

The remaining pictures composed the DL labelled (DLL) dataset.

Their annotations were generated iteratively during the training

process. We also included an “other” category of randomly

selected pictures from the ImageNet5 dataset to make the DLM

robust against non-skin pictures such as clothes and background.

The images were cut into square patches with side length of

512 pixels corresponding to squares of 5–15 cm side length. This

resulted in a training set composed of 277 122 DLL patches and

27 685 EL patches.

The DLM performance was evaluated on a separate test set of

140 independent images divided in 3570 strongly labelled

patches. The body region distribution of the patches is available

in the supplementary material. An example of a picture along

with the DLM predictions is shown in the Fig. S3.

DLM training. The DLM was trained to localize each patch indi-

vidually without having access to the rest of the image. We fine-

tuned an EfficientNet6 B2 DLM pre-trained on the ImageNet

dataset with batch size 32 and input size 260 pixels for 40

epochs. We adopted a cyclic training approach inspired from

Yalniz et al.7 The DLM was first trained on EL patches with pro-

gressive resizing and used to predict the DLL set labels. Then, we

retrained the DLM over the larger DLL dataset and fine-tuned

with the EL patches. We repeated this cycle three times until the

performance over the validation set stopped improving. During

training, we scheduled the learning rate by applying the one

cycle policy as suggested in Smith.8

Differential diagnosis from lesion image and
macro-anatomical location

DD dataset We selected 16 skin diseases (detailed in Table 2)

known to have specific predilection sites for a total of 3347 pic-

tures. Diagnosis labels were provided by the photographer fol-

lowing dermatologists instructions who diagnosed patients in-

person. The pictures repartition and usual predilection sites are

presented in Table S5. The test set was generated by randomly

sampling 20% of the pictures per disease ensuring no patient

leak, which resulted in a total of 670 images.

DLM training We trained two DLMs based on the ResNet9

architecture to perform the DD. Model A used only the
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lesion image, while Model B also had access to the lesion

location predicted by the macro-anatomy DLM. To include

this information, Model B learned a 128 dimensions embed-

ding of the location, which was appended to the extracted

lesion features (the following layer’s size was adapted to

account for this change). This is the only difference between

both DLMs, which were trained following similar procedure,

ImageNet pretraining, one cycle scheduling for the learning

rate, with a batch size of 32, an input size of 512 pixels for

40 epochs.

Micro-anatomy

Ear segmentation dataset This dataset consisted of 182 ear

photographs, each annotated for 12 different regions: anti-helix,

anti-tragus, concha cavum, concha cymba, external auditory

canal, helical root, helix, lobule, notch, scaphoid fossa, tragus,

and triangular fossa. We also included the “non-ear” class to

represent anything but ears. We kept 37 randomly selected pic-

tures for the test set (ensuring no leak) to evaluate performance.

An example of ear picture with its ground truth annotation is

presented in Fig. 1.

DLM training We fine-tuned a U-Net10 DLM with a ResNet

backbone pre-trained on ImageNet. The training procedure was

similar to the macro-anatomy DLM if we consider only the EL

part of the cycle. The DLM was trained with an input size of 380

pixels, a batch size of 4 for 40 epochs.

Analysis
The performance of all DLMs was evaluated on the respective

test sets using the average precision and sensitivity metrics

(specificity available in the supplementary material) with 95%

confidence interval determined using the non-parametric boot-

strap resampling method.

In addition, for the macro-anatomy experiment, we randomly

sampled 175 patches (25 per body region + the other category)

from the test set, requested 6 dermatologists and 12 medical stu-

dents to localize them and evaluated their performance similarly

to the DLM.

For the DD experiment, we applied the McNemar’s test to

confirm whether the DLMs had significant difference in error

proportions, following established practice for experiments with

limited data.11

In the case of the micro-anatomy experiment, the average per-

formance was evaluated on every pixel of the test images.

Results

Macro-anatomy
The DLM and experts performance are presented in Table 1,

while Fig. 2 shows both confusion matrices. There was no

Figure 1 Ear test sample (a) with expert’s annotations (b) and DLM’s predictions (c). Picture randomly selected from the test set. The
original image is shown in (a), the expert’s annotation in (b) and the DLM’s predictions in (c). The regions are coloured as follows: anti-
helix in violet, anti-tragus in light violet, concha cavum in blue, concha cymba in light blue, external auditory canal in green, helical root in
light green, helix in light yellow, lobule in yellow, notch in light orange, scaphoid fossa in orange, tragus in red, triangular fossa in light
brown, non-ear in dark shade.
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significant difference between the performance of dermatologists

and medical students (Table S2).

The DLM reached an average precision of 85% (CI 84–86)
and an average sensitivity of 84% (CI 83–85). In contrast, the

average of experts’ precision was 62% (CI 56–70) and for sensi-

tivity 57% (CI 52–65).
Unsurprisingly, the DLM could almost flawlessly differentiate

skin picture from non-skin pictures. The different body regions

were well discriminated by the DLM, the best example being the

patches coming from the head region, which were rarely con-

fused (~6%) with any other classes. Leg was the worst perform-

ing class, confused with either arms or trunk and vice versa.

The experts’ large standard deviation (Fig. 2b) for each region

indicates an important inter-individual variation and thus high-

lights the lack of consensus. The confusion matrix shows diffi-

culties with the trunk, arm and leg regions. The relatively higher

sensitivity of the trunk region and its lower precision when com-

pared with the legs and arms indicates that participants tended

to default to the trunk region when no clear cues were available.

The confusion of the trunk with the head region was due to

patches showing skin from the cheeks. Feet were also mistaken

with hands, but the opposite occurred less frequently. Two to

three patches from the head containing mainly hairs were mis-

taken with the non-skin class.

Table 1 Macro-anatomy performance

Region DLM Experts

Test images Precision Sensitivity Test images Precision Sensitivity

Arm 510 75% (72–80) 77% (74–80) 25 44% (24–83) 35% (13–54)

Leg 510 80% (75–84) 69% (65–72) 25 49% (34–65) 42% (26–57)

Feet 510 86% (83–89) 88% (86–91) 25 78% (50–97) 50% (31–66)

Hand 510 93% (90–95) 84% (80–87) 25 62% (44–82) 71% (49–90)

Head 510 89% (86–92) 94% (92–96) 25 68% (42–90) 48% (28–77)

Other 510 100% (100–100) 99% (98–99) 25 91% (79–100) 100% (100–100)

Trunk 510 70% (66–74) 80% (77–84) 25 39% (27–59) 55% (22–81)

Average - 85% (84–86) 84% (83–85) – 62% (56–70) 57% (52–65)

Performance evaluated on the full test set for the DLM and on a stratified random sample of the test set for the expert panel composed of 6 dermatologists
and 12 students. The values in parentheses are the 95% confidence interval. For the experts, the performance reported is the average of all individual perfor-
mances.

(a) (b)

Figure 2 Confusion matrices for the macro-anatomy DLM (a) and the experts (b). The values show the proportion of patches � SD. The
average proportion � SD of the patches localized among the six body regions and the “other” class. The vertical axis shows the true
labels of the patches while the horizontal axis shows the predicted labels. The diagonal values correspond to the sensitivity for the body
regions.
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Differential diagnosis from lesion image and
macro-anatomical location
The performance of both DLMs is presented in Table 2. Model

B reached an average precision and sensitivity of 82% (CI 78–
85) and 81% (CI 77–84). Compared with model A, which

achieved 76% (CI 73–80) and 75% (CI 72–79) for average preci-
sion and sensitivity, this represents an average improvement of

6% for both metrics.

The McNemar’s test applied to the full test set confirmed that

both classifiers had significant difference in error proportions

with P-value 0.0009.

We observed a reduction of the sensitivity for acne, ony-

chomycosis and vitiligo in model B. This was due to confusions

with diseases sharing similar predilection sites (see confusion

matrices in Figs. S4-S5), for example, the head for acne with

rosacea, melasma and impetigo. The drop in precision for mel-

asma and rosacea can be explained similarly.

Micro-anatomy
The performance of the ear segmentation DLM is presented in

Fig. 3.

The DLM reached an average precision of 81% (CI 80–83)
and an average sensitivity of 80% (CI 77–83). The most chal-

lenging classes were the external auditory canal, notch and sca-

phoid fossa. These were also the smallest regions with less

training samples in comparison to the other classes. Depending

on the ear type and orientation, they could be absent or very

small in comparison with neighbouring regions.

Discussion
We addressed the challenge to automatically map skin pictures

to their corresponding anatomical regions. A macro-anatomy

DLM was trained using a dataset of 60000 patient images to map

small skin patches to the corresponding body regions. An expert

panel of 18 dermatologists and medical students performed a

similar task with lower precision and sensitivity and with high

inter-rater variability. We showed that lesions location could

improve DD DLM performance. Finally, we presented a micro-

anatomy DLM able to segment ear pictures precisely enough for

surgery applications.

Previous studies on anatomy segmentation with DL have

focused on 3D CT scans to identify body parts and organs.12,13

While there have been studies on geographical mapping of pho-

tographs’ origin using DL on a global scale,14 our study is to the

best of our knowledge the first attempt to do the same on the

human body surface from standard photographs. The combined

use of lesion location and image for DD were limited so far to

skin cancer studies,15,16 which also leveraged other patient clini-

cal features such as age and gender, yielding improved DD accu-

racy. Lesion location was also used as secondary objective in

multi-task learning context to improve performance of lesion

morphology classification.17

One design limitation of this study is to restrict the DD exper-

iment to diseases with specific predilection sites. In future work

we will confirm if the reported performance improvement also

holds when including other diagnoses without this constraint.

This study is also limited by its choice of macro-anatomy body

Table 2 Differential diagnosis performance

Disease Test images Precision A Sensitivity A Precision B Sensitivity B

Acne 48 84% (74–94) 77% (66–88) 88% (74–96) 73% (63–83)

Drug eruptions 43 85% (74–94) 79% (66–89) 97% (93–100) 86% (73–95)

Darier disease 14 64% (33–89) 50% (24–72) 67% (33–91) 57% (32–83)

Dyshidrotic eczema 50 77% (66–88) 88% (80–96) 87% (78–96) 94% (88–100)

Nummular dermatitis 34 79% (68–90) 88% (75–97) 84% (72–93) 91% (78–100)

Hand eczema 50 74% (63–84) 74% (62–85) 76% (66–86) 82% (70–92)

Impetigo 19 76% (56–97) 68% (44–92) 88% (71–100) 79% (55–98)

Melasma 42 60% (44–74) 67% (51–80) 57% (41–69) 74% (58–89)

Morphea 68 84% (75–91) 75% (66–84) 97% (91–100) 88% (81–96)

Onychomycosis 60 81% (72–91) 90% (83–97) 85% (79–94) 88% (81–96)

Palmoplantar keratoderma 45 85% (73–93) 73% (60–84) 92% (83–98) 76% (64–85)

Pityriasis rosea 50 74% (62–83) 84% (75–92) 78% (67–88) 94% (84–99)

Rosacea 49 79% (67–91) 69% (55–83) 75% (63–87) 73% (63–84)

Tinea pedis 27 71% (49–89) 56% (40–74) 84% (71–98) 78% (63–94)

Ulcer 41 90% (81–99) 93% (79–100) 95% (87–100) 93% (79–100)

Vitiligo 40 61% (49–72) 70% (58–82) 62% (49–76) 62% (47–75)

Average – 76% (73–80) 75% (72–79) 82% (78–85) 81% (77–84)

Performance evaluated on a 20% random sample of the images for each diagnosis (ensuring no patient leak). Model A was trained with lesion pictures only,
while model B also had access to the lesions’ locations. The 95% confidence interval is shown in parentheses.
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regions, which is not sufficiently precise for dermatological

description of lesions. The natural improvement is to refine the

taxonomy. Approaches similar to the proposed micro-anatomy

DLM for ears can be applied to other regions, which we plan to

do in future work as well. Finally, another limitation of this

study comes from the standardized nature of the data used to

train the DLMs. All training images came from the same hospital

and were taken with similar lighting, zoom and patient posture.

Following the CLEAR guidelines,18 we determined the follow-

ing bias sources in our study. There was a relative class imbal-

ance between some of the diagnoses, which we mainly mitigated

during dataset preparation by capping the total number of

images per diagnoses (images were selected randomly). We

chose not to vary the class distribution between the train and test

set due to the limited amount of available pictures. The achieved

performance showed that the minority classes (Darier disease,

Impetigo and Tinea pedis) were not overlooked by the DLM and

did benefit from the addition of lesions location.

Patients included in our datasets mainly had skin type 1 to 3

on the Fitzpatrick scale, implying that our DLM performance

are valid only on patients with this skin pigmentation. Unfortu-

nately no patient-level image metadata was available, which pre-

cluded the evaluation of related biases and constitutes a

theoretical limit of this study.

Finally, since the chosen diseases had specific predilection

sites, the images showed different anatomical parts, e.g., acne

pictures always included patients heads, causing a bias. This was

mitigated by selecting skin diseases such that each of the main

body regions were among the predilection sites of at least four

different diseases.

In direct application of our study, we generated both the

macro- and micro-anatomical metadata of our institutes derma-

tology database (over 180 000 images), fully automatically and

with no time-consuming manual intervention, illustrating the

scalability and applicability of our approach. While the whole

analysis was performed in <6 h with our DLMs, we estimate that

one human annotator would require a minimum of 763 working

days for the macroanatomical mapping (2 min per images) and

32 days for the microanatomical mapping of the ear pictures (10

min per images). With this metadata, the dermatology institute

can now query its database for full or cropped pictures contain-

ing specific body regions or ear sub-regions. Since diagnosis is

usually kept as metadata, a practical example of image retrieval

would be to look for cases of eczema located on the leg: a first fil-

ter would return the available images diagnosed with eczema,

followed by a second filter, which would extract the leg region.

An error analysis revealed that the DLMs performance were

lower when images were captured in too dissimilar conditions

or from specific regions (genitals, tongue, etc.). This drawback is

faced by all deep learning (DL) approaches and can be tackled

by fine-tuning the DLM on an external validation set acquired

under the same conditions. This process would directly start

(a) (b)

Figure 3 Ear segmentation DLM’s micro-anatomical performance. The values show the proportion of images� SD. (a) Precision and sen-
sitivity: the average pixel precision and sensitivity reached on the test set by the DLM. (b) Confusion matrix: the average pixel proportion
segmented among the 12 ear regions and the “non-other” class achieved by the DLM. The vertical axis shows the true pixel labels while the
horizontal axis shows the pixel labels predicted by the DLM. The diagonal values correspond to the sensitivity for the ear regions.
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with the DLMs’ parameters learned in this study instead of the

ones obtained on ImageNet, effectively reducing training costs

and dataset size requirements.

While lesions locations could theoretically also be extracted

by text mining patients records, this information should be

accurately documented and properly linked to the correspond-

ing patients images, which is not usually the case in clinical prac-

tice where reported locations can be imprecise.3,4 One of our

DLMs purposes is especially to assist clinicians in reporting

accurate locations. The DLMs presented in this work can be

regarded as a building block for future automated DD systems.

One open issue with current photo diagnosis systems is that by

fully relying on the capacities of DLMs to autonomously find

features and learn how to combine them, researchers are not

able to understand the algorithms’ decision process anymore as

the complexity of the DLMs grow. An alternative would be to

base DL systems on the actual DD processes (usually decision

trees) followed by dermatologists and use different DLMs for

each step in the decision tree. Clinicians could then inspect and

validate the intermediate DLMs’ predictions to better under-

stand the final recommendation of the system. As with any dif-

ferential diagnosis, this starts with the location on the body.
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