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ABSTRACT

Compositional generalization—the ability to train on some combinations of mod-
ules and then generalize to unseen module combinations—is an important form of
out-of-distribution generalization. A large body of work has evaluated this form
of reasoning in transformer-based models, but the underlying mechanisms of suc-
cess and failure remain poorly understood. We systematically evaluate compo-
sitional generalization in transformer-based models, and we identify two factors
that play important roles in determining performance: composition equivalence
and module coverage. We show that the apparent performance of direct mod-
els (trained only on final outputs) can be entirely due to exploiting composition
equivalences—different sequences of modules that reduce to identical end-to-end
functions. When benchmarks eliminate these equivalences, the performance of
these models drops to near zero, showing their inability to generalize to composi-
tions of known modules that produce novel end-to-end functions. We discuss two
key failure modes of step-by-step learning (trained on intermediate outputs). We
show that composition equivalences encourage shortcut learning in step-by-step
models, and these models fail to generalize when specific modules always appear
at certain positions or in fixed combinations in the training set. These findings
provide new insights into the conditions under which atomic modules that consti-
tute a compositional task can be correctly learned by a model class for a specific
train-test distribution.

1 INTRODUCTION

Many real-world tasks require reasoning about novel combinations of familiar components. Ex-
amples include reasoning about the output of a new software program built from known modules,
planning novel sequences of actions to accomplish a given task, or constructing a novel proof from
known logical operations. As transformer-based models are increasingly used in real-world appli-
cations, such as software development, robotics, and scientific discovery, it is useful to know the
conditions under which they will reliably exhibit compositional reasoning.

In this work, we focus on understanding the extent to which transformer models exhibit task-based
compositional generalization—the ability to generalize to unseen module combinations after being
trained on a limited set of such combinations. We study task-based compositional generalization
in the context of one of its simplest forms: sequential compositional tasks. Such tasks consist of
a sequence of “atomic” modules that transform input data into output data (see Figure 1(a) for an
example). One effective way for a model to achieve sequential compositional generalization is for
it to learn internal representations that implement the behavior of these atomic modules, allowing
it to generalize to arbitrary compositions of these modules. However, many open questions remain
about the extent to which transformer-based models can correctly identify and learn the behavior of
atomic modules when trained on data with compositional structure.

Substantial theoretical and empirical work has focused on understanding the compositional gener-
alization abilities of transformers (Hupkes et al., 2020; Csordás et al., 2021; Ontanon et al., 2022;
Wang et al., 2024; Song et al., 2025; Ahuja & Mansouri, 2025; Lippl & Stachenfeld, 2025). Theo-
retical work suggests that specific transformer architectures can identify and learn atomic modules
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(a) Task-based compositional generalization (b) Composition equivalence (c) Module coverage

Figure 1: (a) A sequential composition task combines “atomic” functions (e.g., sort, mode,
filter). Task-based compositional generalization is the ability to generalize to unseen sequences
after training on a subset. (b) Composition equivalence: Different sequences are composition
equivalent if they reduce to the same end-to-end function. For example, one equivalence class con-
sisting of the first four sequences reduces to returning the most frequently occurring vowel in a set
of strings; direct models succeed on the test sequence (mode ◦ filter ◦ sort) from this class but
fail on the remaining two test sequences from a different composition equivalence class. (c) Module
coverage: Examples of coverage failures include position-wise (e.g., function 2 never appearing in
the first position) and pair-wise (e.g., missing the ordered pair (2,1) in the training set.)

and can exhibit strong compositional generalization and other forms of out-of-distribution gener-
alization (Zhou et al., 2024; Ramesh et al., 2024; Ahuja & Mansouri, 2025; Lippl & Stachenfeld,
2025; Abedsoltan et al., 2025). However, empirical evaluation has shown that these models often
fail to generalize over a large variety of unseen module combinations, creating a gap between the-
oretical claims and empirical performance. Various hypotheses have been proposed to explain this
discrepancy between theory and practice, including shortcut learning (Dziri et al., 2023), having
an insufficient number of forward passes available (Ramesh et al., 2024), lacking explicit training
on autoregressive compositional structure (Abedsoltan et al., 2025), and insufficient model capacity
(Peng et al., 2024). However, these explanations have primarily focused on model characteristics to
explain successes and failures in compositional generalization.

In this work, we focus on the properties of the data-generating process that can significantly impact
the compositional generalization abilities of transformer models. Through systematic experimen-
tation,1 we identify two types of distribution shifts between the train and test sets that explain the
significant variability observed in the performance of transformer-based models: composition equiv-
alence and module coverage. Composition equivalence occurs when distinct sequences of atomic
modules in the train and test data reduce to identical end-to-end functions. Module coverage is de-
fined as the extent to which each atomic module is observed at different positions and in similar
contexts between train and test data.

Through the concepts of composition equivalence and module coverage, we systematically study
compositional generalization across transformer variants: direct models (trained on final outputs)
and step-by-step models (trained on intermediate outputs). Our key findings can be summarized as
follows:

• The compositional generalization performance of transformer models varies significantly between
within-k settings (in which train and test compositions consist of the same number of modules) and
cross-k settings (in which train and test compositions consist of different numbers of modules).

• Transformers can learn equivalences at the composition level—learning that different sequential
compositions perform identical end-to-end mappings.

• Direct models appear to compositionally generalize when train and test splits share composition
equivalences—module sequences that are equivalent in their overall end-to-end function, but not
in their composition structure. However, their performance drops to near zero when these compo-
sition equivalences are eliminated.

1Code is available at: https://github.com/anonymous-submission-cs/task based cg
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• Failures of module coverage create spurious correlations, negatively impacting the compositional
generalization performance of both direct and step-by-step models.

1.1 RELATED WORK

In this section, we explain how our work fills important gaps in the understanding of the conditions
under which compositional generalization can occur in transformers. An additional related work
discussion is provided in A.2.

Task-based compositional generalization in transformers: Recent work on task-based compo-
sitional generalization (Ramesh et al., 2024; Abedsoltan et al., 2025) has shown that step-by-step
models can generalize to an exponential number of sequences, but direct models (trained directly
on final outputs) often fail to generalize compositionally. Our findings on the existence of compo-
sition equivalences (or the lack thereof) in training data explain the lack of generalization observed
in direct models. Previous work has also observed that direct model performance improves when
the types of module functions in the composition change (Ramesh et al., 2024; Xu et al., 2024).
Our findings on composition equivalence show how different module functions produce different
degrees of composition equivalence that can be exploited by direct models. The sensitivity of the
models to the selection of module orderings (i.e., module coverage) has also been studied in previous
work (Ramesh et al., 2024; Abedsoltan et al., 2025). Our work demonstrates that module coverage
failures can negatively impact the learning of composition equivalences in direct models.

Relation to functional equivalence and coverage criteria: Recently, Chang et al. (2025) discussed
functional equivalence and coverage principles in compositional generalization—seemingly related
concepts to composition equivalence and module coverage. However, our work differs significantly.
Chang et al. focus on data-based compositional generalization, which has also been studied by oth-
ers (Dziri et al., 2023; Ahuja & Mansouri, 2025). Data-based compositional generalization is defined
as the ability to generalize to new data combinations within a fixed task, such as multiplication. In
contrast, we study task-based compositional generalization. The key distinction is that the labeling
function is fixed in data-based generalization but dependent on the composition of module functions
in task-based generalization, requiring extrapolation to unseen labeling functions, which makes it
more challenging. As a result, functional equivalence defined by Chang et al. (2025) operates at the
input data level, i.e., two inputs are functionally equivalent if they return the same output under a
fixed function. In contrast, composition equivalence operates at a higher abstraction level, defining
similarity between compositions that share the same end-to-end function.

2 SYSTEMATIC EVALUATION OF TASK-BASED COMPOSITIONAL
GENERALIZATION

We first formally define the setup of task-based compositional generalization and then present the
evaluation results across different train-test distributions and models.

2.1 TASK-BASED COMPOSITIONAL GENERALIZATION

We adapt the formalism proposed by Ramesh et al. (2024), and use it to describe the train-test
distribution shifts that we study. Consider a set of n module functions F = {f1, f2, . . . , fn} where
each function fi : Vm → Vm maps input sequences to output sequences of equal length m over
vocabulary V . Assume the input sequence is denoted as x = (x1, . . . , xm) ∈ Vm and the output
sequence is denoted as y = (y1, . . . , ym) ∈ Vm. A sequential composition of length k is defined
as the composition of k functions applied to inputs to obtain outputs, formally expressed as y =
(fik ◦ fik−1

. . . ◦ fi1)(x), where fij ∈ F . Intermediate outputs of j compositions are denoted as yj ,
where j ∈ {1, 2, . . . k} .

In sequence-to-sequence models, sequential composition can be represented by concatenating task
tokens and input data tokens such that, the input sequence is s = (t1, t2, . . . , tk, x1, x2, . . . , xm),
where tj ∈ T are task tokens corresponding to module functions F and xi ∈ V are data tokens.
The task space over sequences of length k is defined as T k, representing all possible sequences
of k task tokens from the task token vocabulary T . Let T = (T1, . . . , Tk), X = (X1, . . . , Xm),
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Y = (Y1, . . . , Ym) denote the vector of random variables corresponding to task, data, and output
sequences.

Direct models: Direct models are trained autoregressively on a data set consisting of final outputs
Ddirect := {(ti,xi,yi)}Ni=1, and learns a complex mapping from input sequences to final output
sequences hdirect : T k × Vm → Vm, hdirect ∈ Hdirect.

Step-by-step models: Step-by-step models trained on data with intermediate and the final outputs
Dsbs := {(ti,xi,y(1:k)i

)}Ni=1. The model learns a mapping from input sequences to intermediate
and final output sequences hsbs : T k × Vm → Vkm, hsbs ∈ Hsbs.

Train and test distributions: Let Ptrain and Ptest be the train and test distributions over input se-
quences. The full support for the joint task–data space is S = T ∗×Vm, where T ∗ =

⋃kmax

k=1 T k. We
assume that data tokens are sampled uniformly from Vm in both train and test distributions, i.e., X ∼
Uniform(Vm). We mainly focus on compositional generalization over tasks where train and test dis-
tributions have mutually exclusive support over task sequences, i.e., supp(PT

train) ∩ supp(PT
test) = ∅.

Task-based compositional generalization is defined as the ability of models to generalize to unseen
sequences in Ptest, when trained on sequences from Ptrain.

The key research question is: Under what conditions do the direct and step-by-step models accu-
rately predict outputs for test sequences sampled from Ptest when trained on sequences from Ptrain?

2.2 EVALUATION SETTINGS

We present a systematic evaluation of the compositional generalization capabilities of direct and
step-by-step models over a wide variety of systematically constructed train and test sets, as described
below.

Uniform vs. diverse set of module functions: We evaluate compositional generalization on two
benchmarks by varying the set of available module functions. The first benchmark is similar to that
proposed by Ramesh et al. (2024), consisting of six random bijection functions that all belong to the
same function class, which we call the uniform benchmark. Each bijection maps an input character
to an output character based on a pre-defined lookup table.

Since real-world compositional reasoning tasks might consist of modules of varied complexity
and might not be exactly random in their logic, we also create a diverse benchmark, inspired by
string manipulation functions in software programs and RASP primitives that transformer mod-
els can represent and learn (Weiss et al., 2021; Zhou et al., 2024). The module functions are:
{sort, concatenate, filter, shift, union, mode}. The logic of these functions
is: shift shifts each character by one position to the right in the alphabet (e.g., a → b, z →
a); sort rearranges characters in lexicographic order; mode returns the most frequent character
(lexicographically smallest in case of a tie); concatenate appends the second string to the first;
union returns ordered unique characters preserving first occurrence order; and filter extracts
vowels while maintaining their original order. Module definitions are provided in Appendix A.3.2.

Within-k and cross-k generalization: We examine two kinds of task-based generalization depend-
ing on the sequence length. In within-k generalization, both the training and test distributions are
samples from disjoint subsets of the fixed-length task space T k, corresponding to all possible per-
mutations of the same combination of k functions, where k ∈ {2, . . . 6}. We randomly sample 80%
of the permutations and evaluate on the remaining 20% of the permutations.

In cross-k generalization, training data includes samples from the composition of k modules T k but
evaluated on the composition of k′ modules T k′

, where (k ̸= k′). Cross-k evaluation of compo-
sitional generalization allows us to evaluate to what extent the models can generalize to complex
compositions from simpler ones and vice-versa. For implementation purposes, to allow evaluation
of sequences with different lengths, we use a dummy identity function, as explained below.

Including identity module as a dummy module function: To enable cross-k generalization with
fixed input length, we introduce an identity module token tid ∈ T corresponding to fid(x) = x. For
sequences of length k < kmax, we uniformly distribute (kmax − k) identity tokens across module
positions to avoid out-of-distribution prompts at test time. For example, if k = 2, and kmax = 7, for
a given module sequence (mode, sort), one of the padded module sequences is: (id, id, mode,
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id, id, sort, id). For fair comparison between within-k and cross-k, we also evaluate within-k
settings both with and without identity modules to assess sensitivity to identity modules. Ramesh
et al. (2024) merged within-k and cross-k using identity as a dummy module, but we separate them,
as we demonstrate in our results that performance differs significantly between these settings.

Models: We train four variants of autoregressive transformer models—direct and step-by-step mod-
els with absolute and relative positional embeddings. We use the nanoGPT architecture (Karpathy,
2023) with three layers and six attention heads (see Appendix A.4 for more details). We implement
both absolute and relative positional encoding schemes (Shaw et al., 2018), as relative positional
embeddings have demonstrated effectiveness for length generalization (Kazemnejad et al., 2023).
We see that it is also effective for compositional generalization, especially cross-k generalization.
Training data includes 100k samples, and test data includes 10k samples, where the number of sam-
ples per unique sequence is uniformly distributed. Input data tokens are of length six, randomly
sampled from the vocabulary consisting of lowercase alphabets V = {a, b, c, . . . z}. More details
about data format and training can be found in Appendix A.5.

2.3 LARGE VARIABILITY IN COMPOSITIONAL GENERALIZATION PERFORMANCE

Experimental results are shown in Figures 2 and 3. We report the mean accuracy on unseen se-
quences using exact match scoring (1.0 for perfect predictions and 0.0 otherwise). Performance
variability is computed by training the model five times with different random seeds. Our exper-
iments demonstrate substantial variation in compositional generalization performance across both
direct and step-by-step models with different positional encodings and train/test distributions. The
key findings can be summarized as:
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Figure 2: Within-k evaluation: Direct models fail completely (0% accuracy) on uniform bijections
without identity tokens, while step-by-step models maintain near-perfect performance across all
conditions. We observe that including identity tokens or different function types seems crucial for
the generalization performance of direct models.

(1) Direct models fail on the uniform (random bijection) benchmark without identity modules,
while maintaining reasonable performance on the diverse benchmark: Figure 2 presents within-
k evaluation results. Comparing Figure 2(a) and (b) for the diverse benchmark, the performance of
direct models drops from roughly 95% to 80% when identity tokens are excluded. However, for the
uniform benchmark consisting of random bijections (Figure 2(c) vs. (d)), the performance of direct
models drops from 100% to near zero. Step-by-step models maintain near-perfect performance
across all settings, except k = 2 in Figure 2(b). Strong performance of direct models on the diverse
benchmark or with identity modules, but near zero performance on the uniform benchmark without
identity modules, implies that module functions play an essential role.

(2) Significant performance differences between within-k and cross-k evaluation. Cross-k per-
formance is highest for the evaluation k′ closer to training k. Figure 3 shows cross-k results,
where train-k = 6 is in (a) and (c), and train-k = 3 is in (b) and (d), and evaluation is done on all
possible permutations (including identity tokens) across all k ∈ {1, 2, . . . , 6}. We observe that step-
by-step models with relative position embeddings achieve the best overall performance across all k
values. We also observe that when training on k = 3, step-by-step models appear to be learning the
behavior of atomic functions, as they exhibit near-perfect performance for K = 1, 2, 4, and 5. How-
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Figure 3: Cross-k evaluation: Overall, step-by-step models with relative position embeddings
achieve the best cross-k compositional generalization. For the diverse benchmark, direct models
show the best performance for evaluation k values closer to training k. Direct models fail on uni-
form functions even with identity tokens, showing that identity tokens only help within-k evaluation.

ever, when we see the results for train k = 6, this behavior is no longer visible, with low performance
scores across all datasets and position embeddings. We also observe significant differences between
absolute and relative positional embeddings for step-by-step models.

This shows that the compositional generalization performance of these models is not robust for all
values of train-k, as the module distribution in cross-k changes significantly due to the distribution
of the identity modules.

(3) Direct models perform worse for cross-k generalization and identity modules only help in
within-k generalization. Direct models maintain 40%-60% accuracy for test k values closest to
training k with diverse functions, but their performance again drops to zero for the uniform bench-
mark. Importantly, while identity tokens helped achieve perfect performance for direct models in
within-k evaluation with uniform functions (Figure 2(c)), they fail to improve cross-k performance
(Figure 3(c,d)), indicating that identity tokens only benefit within-k generalization. We show addi-
tional results for the remaining combination sizes in the Section A.6.

On analysis of failure examples of direct and step-by-step models, we identify the interplay between
two key train-test distribution shifts that explain the successes and failures of these models: (1)
composition equivalence based shift, in which train and test sets have sequences that reduce to
exactly or approximately identical end- to-end functions, and (2) module coverage based shift, in
which train and test vary in terms of whether modules appear at the same positions or in the same
relative context. We formalize these in the next two sections.

3 EXPLAINING COMPOSITIONAL GENERALIZATION PERFORMANCE VIA
COMPOSITION EQUIVALENCE

Two distinct sequential compositions are defined as equivalent in terms of final outputs if they reduce
to the exact input-output mapping for a given set of data tokens. More formally,

Composition equivalence: Let F = f1 ◦ f2 ◦ · · · ◦ fk and F ′ = f ′
1 ◦ f ′

2 ◦ · · · ◦ f ′
k be two sequential

compositions. We say that F and F ′ are equivalent over an input subspace X ∈ S ⊆ Vm if they
produce identical input-output mapping according to the end-to-end labeling function g : Vm → Vm

for the final output Y ∈ Vm:

f1 ◦ f2 ◦ · · · ◦ fk(x) = g(x) = y and f ′
1 ◦ f ′

2 ◦ · · · ◦ f ′
k(x

′) = g(x′) = y′ ∀x,x′ ∈ S

Composition equivalence class: A composition equivalence class is a set of sequential composi-
tions that all reduce to the same input-output labeling function g for all inputs sampled from subspace
S: [F ]gS = {F ′ : F ′ is equivalent to F w.r.t. g over S}
Identity-based equivalence class: Let id : Vm → Vm denote the identity function. For any
sequential compositions F = f1 ◦ f2 ◦ · · · ◦ fk, the following set of k sequences belongs to the same
equivalence class: F1 := f1◦f2◦· · ·◦fk◦id, F2 := f1◦f2◦· · ·◦id◦fk, . . . , Fk := id◦f1◦f2◦· · ·◦fk.
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Identity-based composition equivalence causes near-perfect performance of direct models in
within-k evaluation: For within-k evaluation with an identity module, random sampling of the
sequences creates train-test splits consisting of composition equivalences, resulting in almost-perfect
direct model performance. However, when we remove identity modules, the performance drops for
the diverse benchmark (still non-zero) and becomes exactly zero for the uniform benchmark.

Identity-based equivalence represents an exact form of composition equivalence over the full input
space V . In the uniform benchmark consisting of random map functions (bijections), this is the only
form of equivalence possible, since different permutations or combinations of non-identity functions
induce distinct end-to-end labeling functions. As a result, direct models exhibit zero compositional
generalization in two cases: (1) within-k evaluation without identity modules (Figure 2(d)), and (2)
cross-k evaluation regardless of identity modules (Figure 3(c),3(d)). Cross-k failures occur because
identity-based composition equivalence exists only among sequence lengths with fixed k.

Thus, benchmarks consisting of random module functions where each unique permutation of non-
identity functions reduces to novel input-output labeling functions are the most challenging, and
direct models fail entirely in those cases. Note that (Ramesh et al., 2024) used this benchmark but
included identity modules interleaving between module functions, which might explain the success
of direct models in some of their experiments.

Exact and approximate equivalence in the diverse benchmark causes non-zero performance in
direct models: In the diverse benchmark, we observed that the inclusion of module functions such
as {mode, filter} introduces equivalences for a set of input strings due to the invariance of these
functions to some input characters. More specifically, filter extracts vowels, mode selects the
maximum-occurring character. Including these functions enables shortcut reasoning, allowing the
final answer to be arrived at in some cases without needing to reason accurately through each step.
Similarly, concatenate and union are similar in logic and give the same answer for a pair of
strings, if the strings consist of distinct characters. The composition of shift (if shifting preserves
lexicographic order) and sort is commutative, i.e., shift(sort(x)) = sort(shift(x)) for a
wide variety of strings. An example of approximate equivalence is provided in the Figure 1(b).

Direct models exploit the exact and approximate composition equivalence due to the above function
properties to superficially achieve non-zero compositional generalization. But these models fail on
sequences that define novel end-to-end functions. This explains their strong performance across
all combinations in within-k evaluation (Figure 2(b)) and for nearby training k values in cross-k
generalization (Figure 3(a), (b)). Equivalences may also arise across different combination sizes
when a function does not affect the overall labeling function (e.g., sort after mode).
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(a) Within-k evaluation (k= 6)
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(b) Cross-k evaluation (Train-k = 6)

Figure 4: Composition equivalence encourages shortcuts in step-by-step models: We observe
that composition equivalences in the diverse benchmark cause discrepancies between final output
accuracy and full output (intermediate and final output) accuracy for both within-k evaluation and
cross-k evaluation. Final accuracy > full accuracy implies the model is learning shortcuts to reach
the final answer. If we eliminate composition equivalences, the performance difference is zero
between full and final outputs (see Figures 11(a), 11(b))

Composition equivalences encourage learning of shortcuts in step-by-step models: Training on
the intermediate outputs breaks composition equivalences based on end-to-end labeling functions,
improving the identifiability of individual labeling functions. Still, equivalences can also arise at the
intermediate output level.
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We find that such equivalences encourage step-by-step models to rely on shortcuts rather than step-
by-step reasoning, creating multiple paths to the correct answer. In the diverse benchmark consisting
of a large number of equivalences, this results in higher final output accuracy but lower step-by-step
accuracy, as models often produce incorrect intermediate outputs while still providing the correct
final result (Figures 4(a),(b)). In contrast, for the uniform benchmark, where no equivalences exist,
step-by-step and final output accuracy exactly match as shown in Figures 11(a), 11(b). Thus, com-
position equivalence can negatively impact compositional generalization in step-by-step models by
promoting shortcuts over accurate step-by-step reasoning.

On necessity and sufficiency of composition equivalence: We evaluate whether all non-zero di-
rect model performance stems only from composition equivalence, and the number of sequences
per equivalence class is required in the training data to enable the learning of corresponding test
equivalences.
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(a) Equivalence classes shared between train/test
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(b) Number of training equivalences needed
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Figure 5: Equivalence class necessity and training requirements: (a) Generalization perfor-
mance to unseen sequences is correlated strongly with the number of shared composition equiv-
alence classes between train and test. (b) Models need to see at least 4–5 composition equivalences
(per class) in training to generalize to the corresponding test equivalences.

Number of shared equivalence classes strongly predicts performance of direct models: Figure
5(a) shows that direct model performance, for both absolute and relative embeddings, is strongly
predicted by the number of shared equivalence classes. We systematically increase the number of
shared identity-based equivalent classes in the train and test sets. We use the uniform benchmark
because there is a one-to-one mapping between sequences and classes, making it simpler to control
the number of shared equivalences. However, the mere existence of shared classes does not always
guarantee correct generalization; for example, the absolute positional embedding model saturates
in performance after 51% shared classes in Figure 5(a). Upon further analysis, we find that most
failures correspond to test sequences that have the identity module in the first position (Figure 14).
This highlights the importance of module coverage, which we explore in the next section.

Four-six training composition equivalences per class required to generalize to corresponding
equivalences in the test set: We vary the number of equivalent training sequences per class from
1 to 6 in (Figure 5(b)). We observe that models require at least four to six equivalents per class
for accurate generalization, with absolute position encoding more demanding than relative. The
requirement for absolute embeddings is greater than that of relative positional embeddings.

4 THE ROLE OF MODULE COVERAGE IN COMPOSITIONAL GENERALIZATION

In this section, we evaluate the compositional generalization performance when module coverage
shifts between the training and test sets.

Our experiments evaluate the effects of module coverage shift by using two sampling regimes:
(1) random sampling selects compositions uniformly from a fixed-k-size sequence space T k such
that module functions are uniformly distributed across module positions, (2) systematic sam-
pling serially selects compositions in order, e.g., (f1, f2, f3, f4, f5, f6), (f1, f2, f3, f4, f6, f5),
(f1, f2, f3, f6, f5, f4), . . . (f6, f5, f4, f3, f2, f1). We focus on the case of k = 6, and the total
number of possible unique sequences is 6! = 720. Systematic sampling creates a lack of overlap
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in the train-test module coverage. For example, for n = 120, module f1 always appears in the first
position in the training set, and for n = 600, f6 never appears in the first position in the training set.
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10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

Training Permutation Size (n)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(d) Diverse (Systematic)

Direct (Absolute) Direct (Relative) Step-by-Step (Absolute) Step-by-Step (Relative)

Figure 6: Random vs. systematic selection of compositions: (a,b) Step-by-step models generalize
faster with random selection due to reduced spurious correlations between positions and task to-
kens. Systematic selection creates position-task correlations that slow generalization. (c,d) Random
sampling converges faster than systematic sampling. Direct models achieve lower performance with
systematic selection than with random selection.

Effective training of step-by-step models requires much smaller training sets with random
sampling than with systematic sampling: Figure 6(a) shows that step-by-step models achieve
higher compositional generalization performance after seeing only 10 (1%) sequences with relative
position embeddings and roughly 100 (14%) sequences with absolute embeddings. However, with
systematic selection (Figure 6(b)), models need to see a larger number of sequences. We also observe
a drop in performance at n = 600 permutations (80%). Upon further analysis, we find that the poor
performance for n = 600 is due to the test set consisting only of compositions starting with f6,
which none of the systematic orderings in the training set had, demonstrating effects of module
coverage failure.

In the case of composition equivalences in the diverse benchmark, step-by-step models need more
sequences under random selection than needed in the uniform benchmark without equivalences (Fig-
ure 6(c)). This is due to composition equivalences at the intermediate output level, which creates
shortcut learning in step-by-step models, as discussed in Section 3.

Module coverage interacts with composition equivalence in direct models: For the diverse
benchmark, 6(c) and (d), we observe that these models saturate at a lower performance in the case of
systematic composition selection than in the case of random selection, showing that module cover-
age also affects the learning of composition equivalences. The difference in performance due to the
varying module coverage between train-test shows that merely accessing intermediate outputs for
step-by-step learning is insufficient for models to exhibit robust compositional generalization, and
that module coverage affects learning of equivalences in direct models.

5 CONCLUSION

We introduce the novel concept of composition equivalence as a key mechanism through which
direct models appear to achieve compositional generalization. We show that direct models often ex-
trapolate by learning composition equivalent sequences rather than learning atomic modules or de-
composing individual sequences. This highlights a critical challenge in benchmark design: Should
we eliminate equivalences to truly assess compositional reasoning, or include them to reflect real-
world conditions where semantic similarities can be exploited? Our findings emphasize the im-
portance of analyzing compositional generalization through the lens of the data-generating process
and identifiability, showing how composition equivalences and module coverage failures can lead
to shortcut learning in both direct and step-by-step models. While our experiments used synthetic
benchmarks with GPT-2-style transformers, extending this analysis to real-world benchmarks and
large-scale pre-trained models is a promising future direction.
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A APPENDIX

A.1 LARGE-LANGUAGE MODEL USAGE

We have used large language models to aid and polish writing minimally in the main paper and to a
reasonable extent in the Appendix.

A.2 RELATED WORK

In this section, we discuss additional related work.

Other studies of compositional generalization in transformers Beyond the work discussed in
1.1, several other works consider compositional generalization within transformer models, investi-
gating the phenomenon in different settings. Several work (Petty et al., 2024; Csordás et al., 2021;
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Ontanon et al., 2022; Zhang et al., 2024) investigate the effect of different hyperparameters and
architectural choices on the performance of transformers on various generalization tasks. Others
(Li et al., 2023a; Garg et al., 2022; Xu et al., 2024; An et al., 2023) have considered the composi-
tional generalization capabilities of transformers when trained on samples using in-context learning.
Several works (Li et al., 2023b; Wei et al., 2022; Zhou et al., 2023; Li et al., 2024) investigate com-
positional generalization in the context of chain-of-thought prompts, finding gains in performance
in various compositional tasks. Yang et al. (2024) evaluates the performance of compositional ca-
pabilities of large-language models after instruction-tuning by testing on unseen combinations of
instructions. Another line of work investigates the internal circuitry that is learned to enable compo-
sitional generalization (Song et al., 2025; Wang et al., 2024), finding specific parts of the transformer
architecture that affect generalization capability. Our work contributes to this area of research by
investigating the effect of module orderings and data-generating characteristics on the compositional
generalization of transformer models.

Training bias and shortcut learning: Shortcut learning (Geirhos et al., 2020; Du et al., 2023) is
the phenomenon where models rely on superficial features in the training data, which may have
spurious correlations with the output, instead of the robust features that capture the true underlying
data-generating process. We can view shortcut learning as one of the consequences of the compo-
sition equivalence and module coverage violations. Understanding whether data contains compo-
sition equivalence or violates module coverage provides a principled approach to mitigate spurious
correlations and understand the cases where the model would exhibit robust out-of-distribution gen-
eralization.

A.3 MODULE FUNCTION DEFINITIONS

A.3.1 UNIFORM BENCHMARK

We define six random bijection functions f : Vm → Vm that randomly map each input data token
xi ∈ V := {a, b . . . z} to a random output data token yi ∈ V := {a, b . . . z}, based on a pre-
defined lookup table. We ensure there is a one-to-one, unique mapping between input and output
data tokens, and each input data token doesn’t map to itself. We assume input data length m = 6.
The six tokens are sampled uniformly at random from V without replacement.

A.3.2 DIVERSE BENCHMARK

1. shift(x): The shift function applies a predetermined bijective transformation to each
character in the input string according to a fixed character substitution table.
shift(h j f s d h) = i k g t e i

2. sort(x): The sorting function rearranges the characters of the input string in lexico-
graphic (ascending alphabetical) order.
sort(c g m a h b) = a b c g h m

3. mode(x): The mode function returns the character that appears most frequently in the
input string. In case of equal frequencies, the lexicographically smallest character is se-
lected.
mode(w j d n k k) = k

4. concatenate(x, y): The concatenation function performs string concatenation, ap-
pending the second string to the end of the first string.
join(s e w l r z, y s e o q n) = s e w l r z y s e o q n

5. union(x, y): The union function returns the ordered union of unique characters from
both input strings, preserving the order of first occurrence within each string.
union(s e w l r z, y s e o q n) = s e w l r z y o q n

6. filter(x): The filter function extracts all vowel characters from the input string while
preserving their original order.
filter(d c f o j i) = o i

7. identity(x): The identity function returns the input string unchanged.
identity(x) = x
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We sample two input data tokens of length six from the vocabulary V = {a, b, c, . . . z}, as some
of the module functions are binary. The maximum possible length of output is 12. We ignore the
remaining data tokens if the length exceeds 12, to maintain a fixed output length. We pad with the
space token in case output is less than length 12, for example, in case of mode, filter, union
functions.

A.4 TRANSFORMER ARCHITECTURE

We use a modified nanoGPT implementation Karpathy (2023) with three transformer layers, each
containing a multi-head causal self-attention block (6 heads, embedding size 120), layer normaliza-
tion, and an MLP with GELU activation. The model has a context window of 36 tokens for direct
models and 114 tokens for step-by-step models. The vocabulary size is around 40 tokens. We dis-
able dropout and biases in LayerNorm layers, and apply weight tying between the token embedding
and the output projection layer. Both absolute and relative (global) positional encodings were tested
in separate experiments.

Models are trained with an autoregressive objective, predicting the next token given the previous
sequence. For a sequence x1:T of length T , the training loss is the cross-entropy:

L(w) = −
T−1∑
t=1

log pw(y = xt+1 | x1:t),

where pw denotes the model distribution parameterized by weights w.

We train for 100 epochs with a batch size of 512. The optimizer is AdamW with β1 = 0.9, β2 =
0.95, and weight decay 0.1. The learning rate follows a cosine annealing schedule with warmup
(100 steps), starting from 3 × 10−4 and decaying to 6 × 10−6. Gradient clipping is applied with
a maximum norm of 1. Training is performed on a single GPU using PyTorch 2.0, with Flash
Attention kernels (scaled dot product attention) enabled when available.

A.4.1 ABSOLUTE AND RELATIVE POSITIONAL EMBEDDINGS

We experiment with two positional encoding embeddings: absolute embeddings and relative global
embeddings.

Absolute embeddings. In the absolute case, we follow the original transformer formulation
(Vaswani et al., 2017), where a learnable position embedding P (t) is added to the token embed-
ding E(xt) before being passed into the transformer layers:

zt = E(xt) + P (t), t = 1, . . . , T.

This ensures that positional information is directly encoded in the input sequence representation,
with the embedding table learned jointly with the model. In our implementation, the transformer
instantiates both token and position embedding tables, which are added elementwise at each time
step.

Relative global embeddings. In the relative case, we replace the absolute embedding table with
a learned relative representation incorporated into the attention mechanism. This approach is mo-
tivated by the relative position representations of Shaw et al. (2018) and extended in the Music
Transformer (Anna et al., 2018). Formally, each attention head maintains a trainable relative em-
bedding matrix Er ∈ RC×dh , where C is the maximum context length and dh the head dimension.
Given query vectors Q ∈ RB×H×T×dh , we compute relative logits as:

Srel = skew(QE⊤
r ),

where the skew operation aligns relative positions with their corresponding offsets. These logits are
then added to the standard dot-product attention QK⊤/

√
dh, yielding attention weights that encode

both content and relative distance. This modification removes the absolute embedding table, instead
parameterizing Er within each attention block.
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A.5 TRAINING DETAILS

Data generation. We generate 100K training samples evenly distributed across the unique train
permutations and 10k test samples evenly distributed across the unique test permutations. For ex-
ample, for k = 6, there are a total 720 module permutations without identity module–so we sample
roughly 138 samples per permutation with random data strings combined in train and test sets. All
input data tokens are of fixed-size strings of length six and sampled uniformly without replacement
from the V = {a− z}. For binary functions in the diverse benchmark, we sample two input strings
of length 6, and the output can be of max-length 12, from the same vocabulary space. As the uniform
benchmark consists of unary bijection functions, both input and output data tokens are of length 6.

Distinct input data strings: As we randomly sample input strings of length six without replace-
ment, there are a total of 11,576,560 unique strings. In our datasets, we found approximately 99.9%
unique strings across both the training and test sets of total size 110k (100k + 10k = 110k). .

Prompt format: To generate the training sequences for the transformers, we serialize a vocabulary
consisting of lowercase alphabet characters along with special tokens <START>, <SEP>, <END>,
and a space token. <START> and <END> mark the sequence boundaries, while <SEP> separates
function tokens, input strings, intermediate outputs (for step-by-step data), and the final output.
Spaces are used for padding to ensure fixed input lengths across examples.

We evaluate module orderings on two sets of functions. In the uniform case, all functions are bi-
jective map operations and require only a single input string. In the diverse case, where functions
are based on common string operations, functions may take up to two input strings and therefore
each prompt must contain two input sequences. With this in mind, the following is the exact prompt
structure used to train and evaluate our models:

For data points generated with the direct setting, the prompt structure is:

<START> f1f2 . . . fk <SEP> x1 . . . xn [<SEP> x′
1 . . . x

′
n ] <SEP> y1 . . . ym <END>,

where f1, . . . , fk denote the module composition, x1 . . . xn the first input string, [<SEP> x′
1 . . . x

′
n ]

the second input string present only in the diverse setting, and y1 . . . ym the final output.

In the step-by-step setting, the intermediate outputs of each function are also included between
separators, yielding multiple <SEP> segments:

<START> f1f2 . . . fk <SEP> x1 . . . xn [<SEP> x′
1 . . . x

′
n] <SEP> x(1) <SEP> x(2) . . .<SEP> y <END>,

where x(i) denotes the intermediate output after applying the ith function in the composition.

Positional Embeddings and Length Generalization Positional embeddings have been a major area
of research when considering the length generalization of transformer architectures. Length general-
ization in transformers is the behavior where models trained on shorter sequences still perform well
on longer ones unseen in the training data. In a sense, this requires that the transformer generalize
seen modules at one position to perform the same task at another. This framing provided some of
the motivation for including relative embeddings in transformers–the idea is that sequences of set
behaviors should be learned relative to each other instead of at an absolute position. Indeed, sev-
eral works (Neishi & Yoshinaga, 2019; Ruoss et al., 2023) have shown that using relative positional
embeddings outperforms absolute ones. We refer readers to the survey by Zhao et al. (2024) for a
larger collection of community efforts. It is this same motivation that informs our decisions to con-
sider relative positional embeddings. Though we do not test length generalization (since our input
prompts are fixed length), we instead consider scenarios where modules do not appear in specific
positions or appear less frequently.

A.6 ADDITIONAL CROSS-k COMPOSITIONAL GENERALIZATION RESULTS

A.7 COMPOSITION EQUIVALENCE AND SHORTCUT LEARNING IN STEP-BY-STEP MODELS

A.8 REPRESENTATION VISUALIZATION OF EQUIVALENCE CLASSES

To analyze the internal representations learned by our models, we extract hidden states from the
final layer normalization block of the transformer. During inference, we hook the final layer block
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(a) Diverse (Train K=1)
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Figure 7: Cross-k evaluation (Diverse), train-k = 1, 2 and 3
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(a) Diverse (Train K=4)
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(b) Diverse (Train K=5)
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Figure 8: Cross-k evaluation (Diverse), train-k = 4, 5 and 6

1 2 3 4 5 6
Evaluation K

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) Uniform (Train K=1)
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(b) Uniform (Train K=2)
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Figure 9: Cross-k evaluation (Uniform), train-k = 1, 2 and 3
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Figure 10: Cross-k evaluation (Uniform), train-k = 4, 5 and 6
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(a) Within-k evaluation (k= 6)
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(b) Cross-k evaluation (Train-k = 6)

Figure 11: Eliminating composition equivalences removes shortcut learning in step-by-step
models : We observe that the lack of composition equivalence in the uniform benchmark removes
shortcut learning behavior in the step-by-step models. This is shown by the exactly same step-by-
step accuracy, and the final accuracy is the same for both within-k evaluation (k = 6) and cross-k
evaluation (train-k = 6).

to capture the hidden representation associated with the last generated token at each decoding step.
For each input sequence, this yields a fixed-dimensional vector summarizing the model’s processing
of the prompt and its continuation. We perform this extraction across both training and held-out test
sets. To study the structure of these embeddings, we apply t-SNE to reduce the dimensionality of
the representation matrix to two dimensions.

In 12 and 13, we present t-SNE plots of the two-dimensional representations of all training and
test samples, where squares and diamonds denote training module orderings and circles denote test
orderings. Test sequences are colored according to their evaluation accuracy. Training orderings
that are deemed equivalent to a given test ordering are highlighted on a blue scale, with intensity
determined by their equivalence class score. Formally, let f test denote a test function composition,
f train a training composition, and x an input string. Denoting the model output as ŷ(f, x), the
equivalence class score is

S(f test, f train) =
∑
x∈X

1
[
ŷ(f test, x) = ŷ(f train, x)

]
,

where X is the set of test input strings and 1[·] is the indicator function. Thus, the score reflects the
number of inputs on which the model assigns identical outputs to the two function orderings.

From the figures, we demonstrate visually what we present in the main paper, that direct models
only demonstrate performance when there exist equivalence classes in the uniform dataset. We can
see in 12 that the outputs for high accuracy test orderings are only those which predict the same
output as the train equivalence classes. Upon investigating the diverse dataset in 13, we find that the
patterns are less identifiable, likely because of the many equivalences that exist within the training
data.

B FAILURE ANALYSIS

B.1 WITHIN-k EVALUATION

Step-by-step models for K=2, and diverse benchmark n Figure 2(b), both direct and step-by-
step models perform poorly when evaluated on tasks with k=2 modules. This happens for two main
reasons: First, there are fewer possible task combinations without identity modules. Without identity
modules, there are only 30 unique task sequences, but with identity modules, there are 630 sequences
(when kmax = 7 and k = 2). This means models with identity modules get a larger number of
training sequences. Second, identity modules create beneficial mathematical relationships between
different task combinations, which helps improve overall performance. Similar logic applies for
k=3. With k=4, 5, the number of training sequences increases to 360 and 720, respectively.
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Figure 12: TSNE representation of model evaluated on uniform benchmark with four equiv-
alence classes shared: We highlight test sequences and the corresponding equivalent training se-
quences. Test sequences are colored based on their accuracy (Dark red: 1.0 accuracy and white: 0.0
accuracy). In this split, four identity-based equivalence classes are shared between train and test,
and we can see that test sequences only belonging to those equivalent classes have 1.0 accuracy,
while remaining test sequences have 0.0 accuracy, demonstrating the equivalent class phenomenon
at the model representation level. For the purpose of this plot, we evaluated the model on the same
input data tokens to visualize equivalences at the final layer output representation level. In our actual
experiments, we sampled distinct input data tokens.
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Figure 13: TSNE representation of model evaluated on diverse benchmark with k = 3: We
highlight test sequences and the data-generating process based on the computation of composition
equivalence. Test sequences are colored based on their accuracy (Dark red: 1.0 accuracy and white:
0.0 accuracy). Overall, we can see that diverse benchmark has a wide variety of equivalences among
different sequences. There also exist approximate equivalences based on the input strings. For
example, small clusters on the right correspond to the single-character outputs resulting from the
mode and filter operations. Multiple sequences can belong to different equivalence classes,
depending on the input data.
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B.2 EQUIVALENCE CLASS NECESSITY EXPERIMENT

We focus on sequences with k = 6 non-identity functions and one identity function, generating a
total 7! = 5, 040 permutations grouped into a total of 620 equivalence classes. Each class consists of
seven equivalent tasks corresponding to the possible positions of the identity module, while keeping
the relative ordering of non-identity functions fixed. We maintain constant train-test split sizes in
terms of equivalence classes (576/144) and vary the percentage of shared equivalence classes from
0–100%. To maintain a fixed total number of samples, we exchange half of the tasks within shared
equivalence classes between the training and test sets. A setting of 0% means disjoint classes, while
100% means all test tasks have equivalents in training. Accuracy is computed based on shared
equivalence classes.

Failure details:
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Figure 14: Percentage of test sequences with 0.0 accuracy and identity at first position
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