
Do Large Code Models Understand Programming Concepts?
Counterfactual Analysis for Code Predicates

Ashish Hooda 1 2 Mihai Christodorescu 2 Miltiadis Allamanis 3 Aaron Wilson 2 Kassem Fawaz 1 Somesh Jha 1 2

Abstract

Large Language Models’ success in text gener-
ation has also made them better at code genera-
tion and coding tasks. While a lot of work has
demonstrated their remarkable performance on
tasks such as code completion and editing, it is
still unclear as to why. We help bridge this gap by
exploring to what degree auto-regressive models
understand the logical constructs of the underly-
ing programs. We propose Counterfactual Anal-
ysis for Programming Concept Predicates (CACP)
as a counterfactual testing framework to evaluate
whether Large Code Models understand program-
ming concepts. With only black-box access to the
model, we use CACP to evaluate ten popular Large
Code Models for four different programming con-
cepts. Our findings suggest that current models
lack understanding of concepts such as data flow
and control flow.

1. Introduction
Language Language Models (LLMs) have demonstrated
remarkable performance on a variety of automated program-
ming tasks, such as code completion (Austin et al., 2021;
Fried et al., 2022), code repair (Jiang et al., 2021; Joshi
et al., 2023), and code translation (Pan et al., 2023; Chen
et al., 2023b). Automating a programming task is a complex
problem that requires understanding many concepts in the
underlying code. These concepts include how variables are
stored, accessed, and modified in memory; how execution
proceeds across various constructs; and how different parts
of the code compose sequentially or in parallel to perform a
computation. We refer to these concepts as Programming-
Concept Predicates (PCPs). Despite their remarkable perfor-

1UW-Madison 2Google Research 3Google DeepMind.
The majority of this work was completed while Ashish Hooda was
an intern at Google Research.. Correspondence to: Ashish Hooda
<ahooda@wisc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

mance, the degree to which LLMs understand the PCPs in
the programs they manipulate remains unclear.

Empirical evaluations on benchmark datasets such as Hu-
manEval (Chen et al., 2021), MBPP (Austin et al., 2021),
and CodeContests (Li et al., 2022) drive the current un-
derstanding of the code capabilities of LLMs. While task-
driven evaluation measures the end-to-end performance, it
does not reveal the LLM’s fine-grained understanding of
PCPs. As a result, we often cannot attribute the failures in
these coding tasks to specific aspects of the underlying code
— was the code completion wrong due to confusing variable
names, unusual control flow, inherent algorithmic complex-
ity, or code size? Such a fine-grained attribution would allow
practitioners to better reason about these models’ limits and
highlight the avenues to improve their performance.

In this work, we consider the problem of evaluating a given
model’s understanding of programming concepts. We focus
on four PCPs that represent classical concepts in the program
analysis literature (Allen, 1970; Fosdick & Osterweil, 1976;
Lin & Wu, 2008; Dart & Zobel, 1992):

Control Flow: The output of the automated coding task
does not change with the ordering of independent code
statements.

Data Flow: The automated coding task uses only vari-
ables that are in scope (and live) within the coding task.

Data Types: The automated coding task satisfies the
constraints of the type system.

Identifier Naming: Functionality of the automated cod-
ing task does not depend on the names of the variables
or functions.

We introduce Counterfactual Analysis for Programming
Concept Predicates (CACP), a counterfactual analysis frame-
work for evaluating whether large code models understand
PCPs. As the name suggests, CACP builds on counterfactual
analysis to cast concept understanding as the problem of
determining how controlled input changes result in model
output changes. There are two main components of CACP–
(1) Generating counterfactuals for code that only perturb
specific PCPs, and (2) Using them to analyze the model’s
performance. Specifically for a given PCP, we define code

1

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

def max_path_sum(tri, m, n):
for i in range(m-1, -1, -1):
for j in range(i+1):
if (tri[i+1][j] > tri[i+1][j+1]):

def max_path_sum(tri, m, n):
for i in range(m-1, -1, -1):
for j in range(i+1):
if (tri[i+1][j] <= tri[i+1][j+1]):

tri[i][j] += tri[i+1][j]
else:
tri[i][j] += tri[i+1][j+1]

return tri[0][0]

tri[i][j] += tri[i+1][j]
else:
tri[i][j] += tri[i+1][j+1]

return tri[0][0]

Input

Completion [Correct]

Counterfactual Input

Completion [Incorrect]

Figure 1. In this example the counterfactual input is generated
by negating the relational expression in the if statement. Star-
coder (Li et al., 2023) generates an incorrect completion for the
input on the right. This suggests that LLMs have incomplete
understanding of programming concepts such as control-flow.

perturbations (called mutations) that are minimal in that they
influence only one PCP, but not others. The challenge lies
in defining these minimal mutations and predictably evalu-
ating their impact on the model output. The minimality of
mutations allows us to explain failures concerning specific
PCPs that are not well understood by the model.

We apply our CACP framework on code completion (the most
popular code task for language models) and show how to
benchmark predicate understanding with only hard-label
black-box access to a model. This allows us to quantify the
model’s coding capability through an end-to-end automated
measurement of understanding of PCPs related to the task,
without having to adapt the model to those predicates (e.g.,
without fine-tuning or using additional training data). We
develop four mutations that instantiate the PCPs described
above: flipping if-else conditions, swapping independent
statements, breaking def-use chains, and changing variable
names. Building on these mutations, we create a new bench-
mark dataset to evaluate how LLMs understand PCPs.

Our evaluations of ten popular LLMs reveal that state-of-
art completion models have gaps in understanding PCPs,
where some mutations result in more than 20% of the tasks
completed with incorrect code. Figure 1 shows an example
generated by our framework, where flipping an if-condition
results in an incorrect code output.

In summary, our work makes the following contributions:

1. We propose CACP, a counterfactual testing framework
for evaluating understanding of Programming Concept
Predicates (PCPs). We show how to overcome challenges
of generating counterfactual programs.

2. We apply CACP to the code completion task and test four
types of PCPs. To this end, we extend three popular
code datasets—HumanEval, MBPP, and CodeContests—
and create a new benchmark dataset for evaluating PCP
understanding in LLMs.

3. Using CACP, we evaluate ten popular LLMs and provide

insights on how the model’s understanding depends on
different model and data parameters. We highlight the
gaps in the state-of-art models’ understanding of coding
concepts.

2. Background and Related Work
Programming Concept Predicates and LLMs for Code.
Programming Concept Predicates describe properties of
specific elements of the program (variables, functions, data
values, execution paths, etc.) either by themselves or in
relation to other elements (Hoare, 1969). For example, a
predicate may describe the range of values a variable v may
take at a program location l, or whether some execution
from location l1 in function f1 could reach location l2 in
function f2 (these are a type of control-flow predicates), or
whether the value assigned to variable w at location l1 could
be the value used when w is later accessed at location l2 (a
type of data-flow predicate). We say a program satisfies a
predicate if in every possible execution of that program the
predicate evaluated over the actual values of the relevant
program elements is true1.

Large language models (LLMs) have shown strong per-
formance on a variety of code tasks, from code comple-
tion (Austin et al., 2021; Fried et al., 2022), to code trans-
lation (Pan et al., 2023; Chen et al., 2023b), and to code
repair (Jiang et al., 2021; Joshi et al., 2023). A code LLM
takes as input a sequence of natural-language instructions
and a sequence of code statements (i.e., a partial program)
and outputs another partial program (depending on the task).
We consider the general case where the task of interest has
an associated function (called the attribution function) that
determines whether the output of the model satisfies the
input instruction. For generative tasks for code such as code
completion or code repair, it is common to use program
testing as attribution function, where the output program is
executed against a test suite.

The core problem we investigate is how to estimate a
model’s understanding of PCPs. Such an estimation can
be useful to validate a model’s suitability for a particular
task, where the task is expected to depend (or not depend at
all) on a particular predicate. For example, the task of code
completion is useful only when it is sensitive to the order
of program statements and thus it is expected to depend on
control-flow predicates. In turn, a model trained for code
completion should yield different outputs on programs with
statements in different orders. If a task depends on a predi-
cate, we want any model trained for that task to have high
understanding of the predicate.

1For our purposes, describing PCPs as holding over all program
executions is without loss of generality, as the predicate itself may
limit its scope to some subset of executions.

2

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

Robustness of Code Models. Recent work has studied
the robustness of code models against both natural and ad-
versarial perturbations. Shirafuji et al. (2023) & Wang et al.
(2022) study robustness of code completion against different
representations for the problem description as well as the
input program. Henkel et al. (2022); Jha & Reddy (2023)
demonstrate that function name prediction models can be at-
tacked using semantic preserving transformation applied to
the input program. Chen et al. (2023a) have similar findings
for the code summarization task. In this work, we focus
on evaluating the understanding of specific programming
concepts. Our approach is based on causal analysis, which
involves carefully designing counterfactuals and attribut-
ing their effect. Similar to robustness, our approach also
involves mutating programs and performing inference. How-
ever, our mutations are aimed at generating counterfactuals
and need to ensure that the input for the original prompt and
the counterfactual prompt differ only along the concept to
be tested.

Counterfactual Analysis. For ML models, counterfac-
tual analysis proceeds by performing interventions on the
inputs and observing the changes in the model outputs. This
can be achieved via counterfactual (CF) inputs generated
by changing an input x such that only a specific concept
Ck of the input is changed to a different value i.e. xCk=c′

is a counterfactual for input xCk=c for concept C. Now,
the effect of the concept on the model can be estimated by
observing how the model output differs from the counter-
factual. To be effective, CFs are designed to achieve three
main properties (Abid et al., 2022) — (1) Correctness: CF
perturbations should lead to a predictable change in the
ground-truth output, (2) Validity: CFs should pertain to real
world constraints, and (3) Specificity: CFs should only per-
turb individual properties in order to evaluate understanding
of specific concepts.

In contrast to tabular and image data, generating counter-
factuals has been relatively unexplored for programs. Past
work on counterfactual explanations for code has looked
only into syntactic perturbations and has primarily focused
on finding the minimum perturbations that change the out-
put (Cito et al., 2022). Since these perturbations do not
change isolated concepts, they are more useful in explaining
model behaviour for individual inputs rather than evaluating
understanding of specific concepts. In contrast, we focus on
both syntactic and semantic perturbations that only change
programs along specific PCPs.

Independently, there has been work on counterfactual analy-
sis of output token probabilities of large code models (Pala-
cio et al., 2023a;b). These methods only work for the next
predicted token and do not apply to outputs with multiple
tokens. They also require access to the probability distribu-
tion of the output token prior to sampling. In contrast, our

method works for the entire output and works in the hard
label black box setting with access only to the final output.

3. Counterfactual Analysis for Programming
Concept Predicates

In the following, we describe CACP, starting with the basic
notation. Second, we discuss the requirements associated
with counterfactual analysis for PCPs. Third, we describe
how CACP addressed these challenges for four PCPs. Finally,
we describe how CACP estimates the model’s understanding.

3.1. Notation

Let M be a code LLM such that

M : H×X → Y,

whereH is the space of instructions and X ,Y ∈ P with P
being the space of programs. For code completion,H is the
docstring or the problem specification in natural language,
and X and Y are program prefixes and completions, respec-
tively. An attribution function A : H × X × Y → {0, 1}
evaluates if the model output satisfies the instruction. Also,
let Oh×x = {y | y ∈ Y,A(h, x, y) = 1} be the set of
correct outputs for a given instruction-input pair, where
x ∈ X , h ∈ H. For code completion, a common attribution
function evaluates if the completed program passes the unit
tests specified by the problem.

3.2. Requirements

We now describe the requirements, and related challenges,
for generating counterfactual programs (Abid et al., 2022).

1. Correctness: A counterfactual needs to correctly solve
the original task. For programs, this would mean that
the perturbed program should still be able to solve the
task described by the instructions. We use the task’s
attribution function to verify this condition. Specifically,
for a model M, a counterfactual pair x, x′ ∈ X , asso-
ciated problem description h ∈ H and corresponding
attribution function A, we ensure that |Oh×i| > 0 ∀i ∈
{x, x′}.

2. Validity: The generated counterfactuals also need to be
valid, i.e., they need to pertain to real-world constraints.
This means that the perturbed programs should be syn-
tactically correct. Furthermore, they should be “natural,”
i.e., in distribution with programs seen in the software
development pipeline (Hindle et al., 2016).

3. Specificity: Counterfactual perturbations should only
change specific attributes/concepts in the input, which
is especially challenging for programs. Formally, let
Preds(x) be the infinite set of all PCPs that a program
x ∈ X satisfies. Note that Preds(x) is infinite because

3

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

for any predicates p1 and p2 in Preds(x), the predicates
p1 ∨ p2 and p1 ∧ p2 are also in Preds(x). This implies
that any mutation applied to the program x cannot affect
exactly one predicate p ∈ Preds(x), but rather it affects
a subset of Preds(x). Therefore, for programs, we re-
lax this requirement by considering counterfactuals that
affect only a minimal set of PCPs.

3.3. Mutations for Counterfactual Programs

Now, we discuss how CACP generates counterfactual pro-
grams that satisfy the above requirements. CACP automates
the CF generation process using mutations. These are trans-
formation functions that perturb programs with respect to
specific concepts, i.e., Tpk : X → X where pk is the target
PCP. A PCP can have more than one associated mutation.
Given an input program x ∈ X , the mutation function is
then used to generate a counterfactual xpk = Tpk(x) ∈ X .
Our comprehensive review of the program analysis literature
revealed four themes of studied program predicates: control
flow (Allen, 1970; Yang et al., 2015), data flow (Fosdick
& Osterweil, 1976; Nilsson-Nyman et al., 2009), identifier
names (Lin & Wu, 2008), and data types (Dart & Zobel,
1992; Allamanis et al., 2020). As we study weakly typed
programs (for instance, Python), we consider four distinct
PCPs that cover the first three themes. Next, we show how
CACP automates the generation of these four distinct PCPs
(also illustrated in Figure 2).

If-Else Flip: We use a mutation that swaps the branches
of an if-else statement and negates the condition to test
for the PCP: Inverting the relational expression of an if-
else block flips the ordering of the then and else bodies.
It involves two steps: Negating the test condition of the
if-else statement using DeMorgan’s law and swapping the
then body with the else body. This mutation satisfies – (1)
Correctness: The counterfactual still solves the task since
it is semantically equivalent to the input; (2) Validity: We
negate the relational expression by using complementary
operators, for example, we substitute x==y with x!=y; (3)
Specificity: We ensure that we do not affect other PCPs by
only applying this perturbation to relational expressions that
do not include any method calls that might change the state
of the program.

Independent Swap: Next, we evaluate the PCP: Code Com-
pletion is invariant to the ordering of independent state-
ments. This mutation swaps pairs of independent statement
blocks in the program. We use data-flow analysis to identify
pairs of independent blocks. This mutation satisfies – (1)
Correctness: Since we only swap independent blocks, the
perturbed program is semantically identical and still solves
the problem; (2) Validity: Ordering of independent state-
ments does not change the “naturalness” of the program;
(3) Specificity: Our data-flow analysis ensures that we only

swap statements where the ordering does not affect any
other PCP.

Def-Use Break: We design a mutation that breaks def-use
chains to evaluate the PCP: Breaking a def-use chain alters
the scope of variables. Def-Use chains capture the relation-
ship between the definitions of variables (where a variable
is assigned a value) and their subsequent uses (where that
value is accessed or modified). To break a def-use chain,
we substitute a variable’s second chain with a new name
(a random string of 5 characters), i.e., we simply rename
the second definition and all subsequent uses. For exam-
ple, in Figure 2, we rename the second chain of variable
list1. This mutation satisfies – (1) Correctness: we ensure
that the counterfactual is semantically equivalent and still
solves the problem by consistently substituting all subse-
quent occurrences; (2) Validity: Random strings are often
used as identifiers in obfuscated or minified versions of pro-
grams (Tran et al., 2019); (3) Specificity: We use def-use
analysis to identify and perturb individual chains.

Variable-Name Invariance: Next, we evaluate the PCP:
Variable names do not affect the semantics of a program.
Here, we generate counterfactuals by renaming variables.
We consider two variants of this mutation — renaming to
random strings and permuting or shuffling existing names
between variables. For the first variant, we substitute vari-
able names with randomly generated strings of five charac-
ters. For the second variant, we shuffle names among the
variables defined in the program. This mutation satisfies –
(1) Correctness: we ensure that the counterfactual is seman-
tically equivalent by consistently substituting each variable;
(2) Validity: We only substitute user-defined variables and
do not rename reserved keywords; (3) Specificity: We do
not substitute function parameters as their names decide the
order in which arguments are passed during invocation.

3.4. Measuring Counterfactual Effect

We need a way to analyze the effect of mutations on the
observed output. For a single program x ∈ X , instruction
h ∈ H, attribution function A, and model M, we formulate
the mutation effect (ME) as:

MEM
(pk,h,x) = |A(h, xpk ,M(h, xpk))− A(h, x,M(h, x))|

For code completion, a model that understands: Variable
names do not affect the semantics of a program would gen-
erate a correct completion even for the renamed program,
leading to a mutation effect of 0. A model that relies on
variable names might generate erroneous completions, lead-
ing to a mutation effect of 1. To compute the ME across all
programs, we define the Average Mutation Effect (AME):

AMEM
pk = E

h,x∈H,X

[
MEM

(pk,h,x)

]
4

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

def frequency_lists(list1):
...
for num in list1:
if num in dic_data.keys():

def frequency_lists(list1):
abcd = [item for sublist ...
dic_data = {}

def frequency_lists(list1):
list1 = [item for sublist ...
dic_data = {}

def frequency_lists(list1):
...
for num in list1:
if num not in dic_data.keys():

def frequency_lists(list1):
list1 = [dic_data for value ...
item = {}
for key in list1:
...
num = key

def frequency_lists(list1):
list1 = [item for sublist ...
dic_data = {}
for num in list1:
...
key = num

def frequency_lists(list1):
dic_data = {}
list1 = [item for sublist ...
for num in list1:
...
key = num

def frequency_lists(list1):
list1 = [item for sublist ...
dic_data = {}
for num in list1:
...
key = num

def frequency_lists(list1):
list1 = [ZKqhC for Pkixk ...
vaRuM = {}
for eNFhP in list1:
...
cUIEz = eNFhP

def frequency_lists(list1):
list1 = [item for sublist ...
dic_data = {}
for num in list1:
...
key = num

def frequency_lists(list1):
list1 = [item for sublist ...
dic_data = {}
for num in list1:
if num in dic_data.keys():
dic_data[num] += 1

else:
key = num
value = 1
dic_data[key] = value

return dic_data

Reference Solution

Write a function to find frequency
count of list of lists.

Problem Description

assert frequency_lists([[1, 2, 3,
2], [4, 5, 6, 2], [7, 8, 9,
5]])=={1: 1, 2: 3, 3: 1, 4: 1, 5:
2, 6: 1, 7: 1, 8: 1, 9: 1}
...

Test Cases

def frequency_lists(list1):
list1 = [ZKqhC for Pkixk ...
vaRuM = {}
for eNFhP in list1:
if eNFhP in vaRuM.keys():
...

Var. Name Random

def frequency_lists(list1):
dic_data = {}
list1 = [item for sublist ...
for num in list1:
if num in dic_data.keys():
...

Independent Swap

def frequency_lists(list1):
list1 = [dic_data for value ...
item = {}
for key in list1:
if key in item.keys():
...

Var. Name Shuffle

...
if num not in dic_data.keys():
key = num
...

else:
dic_data[num] += 1

return dic_data

If-Else Flip

def frequency_lists(list1):
abcd = [item for sublist ...
dic_data = {}
for num in abcd:
if num in dic_data.keys():
...

Def-Use Break

Original Counterfactual

Original Counterfactual

Original Counterfactual

Original Counterfactual

Original Counterfactual

Code Dataset

Semantic
Preserving
Mutations

Counterfactual
Generation

Counterfactuals for
Code Completion

Program
Cutting

Figure 2. The counterfactual generation pipeline of CACP. It consists of two stages. First, the reference solution for the problem is perturbed
using predicate-specific mutations. Second, both the original and the perturbed solution are cut at the same location to generate a pair of
counterfactual inputs.

AME with a small magnitude indicates a better understand-
ing of the PCP. On the other hand, a large magnitude indi-
cates poor understanding since the model performs worse
after the mutation. Note that this formulation is similar to
the Average Treatment Effect used in counterfactual anal-
ysis (Pearl, 2009). The treatment Effect is defined for the
output of the model, whereas we compute the Mutation
Effect using the attribution function.

4. CACP for Code Completion
In this section, we instantiate CACP for the Code Completion
task. We first briefly describe the code completion task.
Then, we demonstrate how CACP generates counterfactuals
for code completion for the four PCPs. Finally, we describe
how we measure the mutation effect.

4.1. Large Language Models for Code Completion

Code completion tasks, such as HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021), have become instru-
mental in evaluating the capabilities of code completion
models. These tasks challenge models with an array of pro-
gramming tasks designed to test different aspects of coding
proficiency. In these benchmarks, problems are presented as

Python function skeletons with accompanying descriptions
that specify what the function should accomplish, along
with unit tests to validate the correctness of the generated
code. Each problem in these benchmarks is also accom-
panied by a reference solution that acts as a gold standard,
allowing for direct comparison between model-generated
code and the expected output.

While HumanEval and MBPP excel in testing a model’s
ability to generate syntactically and semantically correct
code, they do not assess the model’s understanding of PCPs.
To address this gap, CACP extends these datasets by using
reference solutions as a base and generating counterfactuals
that can be used to evaluate the understanding of specific
PCPs.

4.2. CACP Counterfactual Generation

CACP generates counterfactuals for code completion using a
two-step procedure: (1) Reference solutions are transformed
using mutations specified in Section 3 to generate mutated
solutions, and (2) Reference and mutated solutions are cut
at the same location to create partial programs which act as
counterfactual inputs. Additionally, we test these mutated
solutions by compiling and executing them to confirm that

5

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

they pass the required test cases. Below, we describe how
we cut the solutions for each mutation (also illustrated in
Figure 2):

If-Else Flip: We cut both the reference solution as well as
the perturbed solution at the beginning of the then body. As
shown in Figure 2, this generates partial programs which
end at a statement of the form - if <condition> and the
relational condition for the counterfactual is the negation of
the original.

Independent Swap: We only consider mutations where
both the swapped statements are part of the initial 75% of the
program. Then, we cut the trailing 25%, and the remaining
acts as the input for the code completion task. Note that the
cutting for both the original and the counterfactual happens
at the same location since the ordering of statements after
the swapped pair does not change.

Def-Use Break: We only consider mutations where the per-
turbed chain is at least partially present in the initial 75% of
the program. Then, we cut trailing 25% for both the origi-
nal and the counterfactual. This ensures that counterfactual
input is not identical to the original. Note that the cutting
happens at the same location since renaming the variable
does not affect the line numbers of statements.

Variable-Name Invariance: We only consider mutations
where at least one variable appearance is renamed in the
initial 75% of the program. This ensures that counterfactual
input is not identical to the original. We cut off the trailing
25% and use the rest as the counterfactuals.

4.3. CACP Effect Measurement

There are two primary approaches to evaluating the gener-
ations of a code-completion task—testing and exact string
matching. Exact string-matching techniques like Code-
BLEU (Ren et al., 2020) and chrF (Popović, 2015) evaluate
generations by computing the distance from the reference
solution. However, such match-based metrics are unable to
account for the large space of programs that are functionally
equivalent to, yet syntactically distinct from, a reference
solution and thus underestimate the capabilities of a model
that understands programming concepts. Testing provides a
more direct evaluation, where a generation is deemed cor-
rect if it passes all the unit tests for that code-completion
instance. Therefore, we use unit-test correctness as the at-
tribution function for computing the AME. We generate
candidate solutions by querying the model on both the origi-
nal input as well as the counterfactual. Then, we execute the
candidate solutions against the test cases, resulting in one of
two outcomes: passing all test cases or at least one failure.
Note that we only consider problems where the model gen-
erates a successful completion (i.e. passing all test cases) for
the original (non-perturbed) input, the perturbed input, or

Table 1. Number of valid counterfactual pairs per mutation type.
Mutation Counterfactual Pairs

HumanEval+MBBP CC Total

Var. Name Random 724 1000 1724
Var. Name Shuffle 724 1000 1724
If-Else Flip 103 1000 1103
Independent Swap 624 1000 1624
Def-Use Break 22 277 299

both. The cases where the model fails for both the original
and perturbed inputs are not necessarily informative about
the impact of the PCP, and we discard them. In that case, the
perturbed inputs are not considered as counterfactual.

5. Experiments
Using CACP, we evaluate ten popular Large Language Mod-
els against five different mutations. Our evaluation answers
the following questions.

Q1: How are leading LLMs affected by counterfactual
mutations?
We evaluate ten popular LLMs and show that they suffer
significant drops in unit test correctness for mutations on
Variable-Names, IfElse-Flip, and DefUse-Break, leading to
AMEs as high as 34%. The effect is smaller in magnitude
for Independent-Swap. Overall, these results suggest that
current models lack understanding of program predicates.

Q2: How does the Average Mutation Effect (AME) de-
pend on LLM parameters?
We observe that understanding of predicates seems to im-
prove with model size. Training or fine-tuning on code-
specific data also seems to improve understanding, specifi-
cally for variable name-related predicates.

Q3: Are the errors related? What do they depend on?
We analyze the correlation between pairs of mutations and
show that all pairs exhibit low correlation apart from the
two Variable Names mutations. In the case of StarCoder (Li
et al., 2023), our analysis suggests a relation between AME
for the IfElse-Flip mutation and the frequency of appearance
of different relational operators in the model’s training data.

5.1. Experimental Setup

We use the following settings to demonstrate how CACP
evaluates understanding of programming concepts.

Datasets and mutations. We instantiate CACP using three
popular code generation benchmarks — HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and CodeCon-
tests (Li et al., 2022). All of the problems in these datasets
include a reference solution, which is used to generate coun-
terfactual pairs as described in section 4. Since not every

6

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

Table 2. We compute the AME using the Pass/Fail attribute function as described in subsection 4.3. We only consider problems where the
model achieves non zero accuracy on either the original or the counterfactual setting.

Average Mutation Effect (AME)

Dataset Model
Original
Accuracy

Variable-Names
Random

Variable-Names
Shuffle

IfElse-
Flip

Independent-
Swap

DefUse-
Break

HumanEval
+

MBPP

Starcoder (13B) 66.04 % 16.86 % 19.42 % 21.07 % 07.47 % 05.00 %
Llama 2 (7B) 43.20 % 24.58 % 29.08 % 25.18 % 13.45 % 21.88 %
Llama 2 (13B) 48.40 % 21.14 % 26.84 % 20.00 % 09.12 % 15.88 %
Llama 2 (70B) 63.37 % 14.37 % 19.81 % 20.83 % 05.54 % 06.50 %
Llama Code (7B) 60.10 % 19.84 % 21.44 % 17.71 % 10.88 % 05.00 %
Llama Code (13B) 66.61 % 12.56 % 18.06 % 16.62 % 05.04 % 09.50 %
Llama Code (34B) 72.65 % 12.55 % 15.14 % 17.09 % 04.76 % 07.62 %
PaLM 2 (64B) 45.74 % 23.75 % 22.58 % 25.00 % 12.96 % 19.38 %
PaLM 2 (340B) 66.98 % 14.71 % 17.70 % 19.72 % 06.13 % 17.00 %
PaLM 2-S∗ (24B) 70.01 % 12.31 % 19.74 % 16.09 % 06.51 % 11.90 %
GPT4 (gpt-4-1106) 88.94 % 06.43 % 07.21 % 05.95 % 01.57 % 04.76 %

Code
Contests

Starcoder (13B) 43.75 % 16.90 % 21.18 % 30.93 % 06.43 % 22.92 %
Llama 2 (7B) 24.75 % 29.14 % 25.38 % 29.72 % 13.24 % 34.07 %
Llama 2 (13B) 29.48 % 23.78 % 23.86 % 29.52 % 09.26 % 23.98 %
Llama 2 (70B) 40.18 % 17.19 % 18.20 % 28.58 % 09.14 % 26.04 %
Llama Code (7B) 38.74 % 22.16 % 21.62 % 26.95 % 09.21 % 20.23 %
Llama Code (13B) 40.66 % 21.45 % 22.52 % 32.53 % 07.48 % 29.40 %
Llama Code (34B) 49.55 % 16.53 % 18.09 % 32.02 % 07.04 % 26.60 %
PaLM 2 (64B) 38.75 % 18.18 % 21.53 % 26.43 % 08.06 % 23.11 %
PaLM 2 (340B) 47.27 % 15.57 % 17.90 % 27.31 % 07.58 % 18.56 %
PaLM 2-S∗ (24B) 47.28 % 13.22 % 15.59 % 29.37 % 05.48 % 18.25 %
GPT4 (gpt-4-1106) 67.83 % 11.25 % 16.48 % 14.89 % 05.05 % 21.58 %

mutation applies to all reference solutions, the final number
of counterfactual pairs differs based on the mutation type.
As shown in Table 1, mutations related to Variable Names
can be applied to almost all solutions, whereas mutations
related to control-flow or def-use are more selective. In this
evaluation, we focus on Python programs, but our methodol-
ogy applies to any programming language. We use libCST
(LibCST Developers) for parsing and manipulating source
code for our mutations.

Models. We use CACP to evaluate popular models, including
Llama 2 (Touvron et al., 2023) and PaLM (Anil et al., 2023).
We also evaluate counterparts of these models that are fine-
tuned for coding tasks – Code Llama (Roziere et al., 2023)
and PaLM 2-S∗ (Anil et al., 2023). Finally, we also evaluate
the popular open source code LLM StarCoder (Li et al.,
2023). We set the sampling temperature to 0 for all models
to have deterministic results.

5.2. Average Mutation Effect

Table 2 shows the AME for the three datasets, five muta-
tions, and ten models. The table shows that the original
unit test correctness rates vary across models. AME val-
ues are non-zero, which suggests that models do not fully
understand the evaluated PCPs. In the case of the Variable-
Names and IfElse-Flip perturbations, AME values are as high

as 33%. On the other hand, the Independent-Swap mutation
is the most well-understood. While most mutations have
similar effects across the two kinds of datasets, the DefUse-
Break perturbation shows a relatively lower effect on the
HumanEval and MBPP datasets. This is likely due to the
small number of valid problems — only 22.

Across Models: For Variable-Name related perturbations,
we first observe that smaller models perform worse and
larger models do better. This is evident in Figure 3, which
shows the AME as a function of the model size. Secondly,
models trained on code (StarCoder) or fine-tuned on code
(Llama Code, PaLM 2-S∗) perform better than models that
are not. Perturbations related to control flow and data flow
follow a similar trend for model size, but code fine-tuning
does not always seem to improve performance. GPT4 per-
forms much better on HumanEval and MBPP, but is similar
to the other models for the CodeContests dataset.

Correlation across Mutations: Until now, we have seen
the average effect of the perturbations across the datasets.
Figure 4 shows the correlation between different perturba-
tion types. As expected, the two Variable-Names pertur-
bations correlate highly. Other perturbations have fairly
low correlation, suggesting that our mutations are predicate-
specific and have minimal correlated errors.

Errors due to Memorization: We performed an additional

7

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

101 102

Model Size (in Billion)

0.20

0.25

0.30

A
M

E

Def-Use Break

101 102

Model Size (in Billion)

0.06

0.08

0.10

0.12

Independent Swap

101 102

Model Size (in Billion)

0.26

0.28

0.30

If-Else Flip

101 102

Model Size (in Billion)

0.15

0.20

0.25

Var. Name Random

101 102

Model Size (in Billion)

0.175

0.200

0.225

0.250

0.275
Var. Name Shuffle

Llama Code Llama 2 PaLM 2 PaLM 2-S*

Figure 3. AME as a function of model size (number of parameters in Billions). The different model classes are depicted using different
colors.

SWAP IFFP RAND SHUF

Mutation

SWAP

IFFP

RAND

SHUF

M
u

ta
ti

on

1 0.053 0.3 0.28

0.053 1 0.16 0.22

0.3 0.16 1 0.48

0.28 0.22 0.48 1 0.2

0.4

0.6

0.8

1.0

Figure 4. Correlation between AME values across pairs of muta-
tions. The number of samples used to compute each value de-
pends on the size of the intersection of the two mutation types.
Independent-Swap: SWAP, IfElse-Flip: IFFP, Variable Names Ran-
dom: RAND, Variable Names Shuffle: SHUF

Table 3. Memorization Analysis for the If-Else mutation for Star-
coder. We parse Starcoder’s training data and show the relative
frequency of appearance of pairs of complementary relational
operators. We also show the average change in unit test correct-
ness computed over all valid programs in HumanEval, MBPP and
CodeContests.

Op A Op B Ratio ∆(A→B) ∆(B→A)

== ! = 3.9 13.21 % 07.37 %
> <= 3.8 16.92 % 01.48 %
< >= 2.2 05.00 % 0.00 %

experiment to gain some insights on whether memoriza-
tion (Carlini et al., 2022) contributes to the observed muta-
tion effects. For the If-Else perturbation, we analyze the con-
nection between the frequency of appearance of relational
operators in the training set and their respective change in
unit test correctness. We perform this analysis with Star-
Coder’s training data (Husain et al., 2019). More specifi-
cally, in Table 3, we show the relative frequency of com-
plement relational operators and the change in correctness
values when substituted. We can see that operators that ap-
pear more frequently in the training set face a significantly
higher drop in correctness when they are being substituted.

Effect of cutoff point: In subsection 4.2, we describe that
we keep 75% of the program as the prefix for generating

counterfactuals for the Independent-Swap, DefUse-Break and
Variable Name Invariance mutations. To study the effect of
the cutoff point, we evaluated counterfactuals generated us-
ing the same set of programs but cut at different places. In
Table 4, we present the original accuracy and the AME for
the Starcoder model. This does not include the IfElse-Flip
mutation since in that case the cut depends on the location
of the If block. We find that an earlier cut leads to a decrease
in the original accuracy as well as a higher AME. This is
expected since cutting earlier increases the complexity of
the completion task. However, we observe that AME is rela-
tively more stable than the original accuracy. This suggests
that AME is a good measure of the model’s understanding,
irrespective of the complexity of the coding task.

Code Repair Task: We also evaluate CACP for the code re-
pair task. We use the HumanEvalPack (Muennighoff et al.,
2023) dataset which is an extension of HumanEval to also
include the Code Repair task. This dataset is constructed
by manually adding a bug to each solution in HumanEval.
For this task, the model is tasked with fixing the bug and
generating the correct solution. In this case, we generate
counterfactuals by applying mutations on the buggy solu-
tion. In Table 5, we show the performance of Octocoder
(Muennighoff et al., 2023) which is an instruction-tuned
version of Starcoder. Similar to code completion, we ob-
serve a high average mutation effect which suggests a lack
of understanding for the Code Repair task as well.

6. Future Work
Automating Semantic Preserving Perturbations. Cur-
rently, crafting these perturbations requires a significant
amount of manual effort and deep domain knowledge to
ensure they do not alter the underlying logic of the program
and only change specific predicates. Developing automated
tools and techniques that can reliably generate such pertur-
bations will not only streamline the evaluation process but
also enhance the scalability of our testing framework.

Perturbation-based Data Augmentation. A promising

8

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

Table 4. AME for different cutoff settings when evaluating Star-
coder. A lower prefix ratio implies an earlier cut. Independent-
Swap: SWAP, Variable Names Random: RAND, Variable Names
Shuffle: SHUF, DefUse-Break: DUBR
Prefix
Ratio

Orig.
Acc. RAND SHUF SWAP DUBR

0.4 - 0.6 32.8 % 18.7 % 21.4 % 08.0 % 26.0 %
0.6 - 0.8 50.1 % 16.7 % 19.6 % 25.0 % 06.0 %
0.8 - 1.0 60.1 % 12.4 % 17.7 % 19.6 % 04.0 %

Table 5. AME for the code repair task. We evaluate OctoCoder
(Muennighoff et al., 2023) on countefactuals generated on the
code repair benchmark from HumanEvalPack. Independent-Swap:
SWAP, Variable Names Shuffle: SHUF, IfElse-Flip: IFFP

Original Accuracy SHUF IFFP SWAP

15 % 36 % 33 % 15 %

area of future work is the application of perturbations to data
augmentation to reduce the mutation effect observed in mod-
els. By systematically introducing perturbed data during
the training phase, models could potentially develop a more
nuanced understanding of code, reducing their susceptibility
to errors. This approach requires careful consideration to
balance the augmentation process without introducing bias
or overly diluting the training data.

Expanding Counterfactual Analysis with Diverse Code
Datasets. Our framework would benefit from adding more
code datasets including ones that may not support test-based
attribution functions (Lu et al., 2021; Husain et al., 2019).
This would also help increase the number of input sam-
ples for more selective perturbations like def-use chains.
However, in absence of test cases, this would require the
development of specialized attribution functions. Moreover,
careful attention must be paid to the provenance of the data
to avoid contamination of the evaluation set with examples
that may have been part of the model’s training set.

7. Conclusion
In conclusion, we explore whether Large Code Models un-
derstand programs and propose CACP, a counterfactual test-
ing framework for evaluating understanding of program
predicates. CACP builds upon existing code datasets and re-
quires only hard-label, black-box access to the model. We
use CACP to evaluate ten popular large code models and
demonstrate that current models suffer from accuracy drops
up to 33% due to lack of understanding of program predi-
cates related to control-flow and data-flow.

Acknowledgements
We thank Saswat Anand, Sajjad Arshad and Fengguo Wei
for their help with evaluating Google models. We also
thank John Cyphert, Jordan Henkel, Zi Wang and Neal
Mangaokar as well as the anonymous reviewers for their
valuable feedback.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here

References
Abid, A., Yuksekgonul, M., and Zou, J. Meaningfully de-

bugging model mistakes using conceptual counterfactual
explanations. In International Conference on Machine
Learning, pp. 66–88. PMLR, 2022.

Allamanis, M., Barr, E. T., Ducousso, S., and Gao, Z. Typ-
ilus: Neural type hints. In Proceedings of the 41st acm
sigplan conference on programming language design and
implementation, pp. 91–105, 2020.

Allen, F. E. Control flow analysis. ACM Sigplan Notices, 5
(7):1–19, 1970.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. PaLM 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F.,
and Zhang, C. Quantifying memorization across neural
language models. In The Eleventh International Confer-
ence on Learning Representations, 2022.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, N., Sun, Q., Wang, J., Gao, M., Li, X., and Li, X. Eval-
uating and enhancing the robustness of code pre-trained
models through structure-aware adversarial samples gen-
eration. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023a.

9

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023b.

Cito, J., Dillig, I., Murali, V., and Chandra, S. Counter-
factual explanations for models of code. In Proceedings
of the 44th International Conference on Software Engi-
neering: Software Engineering in Practice, pp. 125–134,
2022.

Dart, P. W. and Zobel, J. Efficient run-time type checking of
typed logic programs. The Journal of Logic Programming,
14(1-2):31–69, 1992.

Fosdick, L. D. and Osterweil, L. J. Data flow analysis in
software reliability. ACM Computing Surveys (CSUR), 8
(3):305–330, 1976.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, W.-t., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and
synthesis. arXiv preprint arXiv:2204.05999, 2022.

Henkel, J., Ramakrishnan, G., Wang, Z., Albarghouthi, A.,
Jha, S., and Reps, T. Semantic robustness of models
of source code. In 2022 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER), pp. 526–537. IEEE, 2022.

Hindle, A., Barr, E. T., Gabel, M., Su, Z., and Devanbu, P.
On the naturalness of software. Communications of the
ACM, 59(5):122–131, 2016.

Hoare, C. A. R. An axiomatic basis for computer pro-
gramming. Commun. ACM, 12(10):576–580, oct 1969.
ISSN 0001-0782. doi: 10.1145/363235.363259. URL
https://doi.org/10.1145/363235.363259.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. CodeSearchNet challenge: Evalu-
ating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Jha, A. and Reddy, C. K. Codeattack: Code-based adversar-
ial attacks for pre-trained programming language models.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 37, pp. 14892–14900, 2023.

Jiang, N., Lutellier, T., and Tan, L. Cure: Code-aware neural
machine translation for automatic program repair. In 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 1161–1173. IEEE, 2021.

Joshi, H., Sanchez, J. C., Gulwani, S., Le, V., Verbruggen,
G., and Radiček, I. Repair is nearly generation: Multilin-
gual program repair with llms. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(4):5131–5140,
2023.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Lago,
A. D., Hubert, T., Choy, P., de Masson d’Autume, C.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Rob-
son, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K.,
and Vinyals, O. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097, 2022. doi:
10.1126/science.abq1158. URL https://www.science.
org/doi/abs/10.1126/science.abq1158.

LibCST Developers. LibCST documentation. URL https:
//libcst.readthedocs.io/en/latest/.

Lin, J.-C. and Wu, K.-C. Evaluation of software understand-
ability based on fuzzy matrix. In 2008 IEEE International
Conference on Fuzzy Systems (IEEE World Congress on
Computational Intelligence), pp. 887–892. IEEE, 2008.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A.,
Blanco, A., Clement, C. B., Drain, D., Jiang, D., Tang,
D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M.,
Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng,
S. K., Fu, S., and Liu, S. Codexglue: A machine learning
benchmark dataset for code understanding and generation.
CoRR, abs/2102.04664, 2021.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., Von Werra, L., and Long-
pre, S. Octopack: Instruction tuning code large language
models. arXiv preprint arXiv:2308.07124, 2023.

Nilsson-Nyman, E., Hedin, G., Magnusson, E., and Ekman,
T. Declarative intraprocedural flow analysis of java source
code. Electronic Notes in Theoretical Computer Science,
238(5):155–171, 2009.

Palacio, D. N., Cooper, N., Rodriguez, A., Moran, K.,
and Poshyvanyk, D. Toward a theory of causation
for interpreting neural code models. arXiv preprint
arXiv:2302.03788, 2023a.

Palacio, D. N., Velasco, A., Rodriguez-Cardenas, D., Moran,
K., and Poshyvanyk, D. Evaluating and explaining
large language models for code using syntactic structures.
arXiv preprint arXiv:2308.03873, 2023b.

Pan, R., Ibrahimzada, A. R., Krishna, R., Sankar, D., Wassi,
L. P., Merler, M., Sobolev, B., Pavuluri, R., Sinha, S.,
and Jabbarvand, R. Understanding the effectiveness of
large language models in code translation. arXiv preprint
arXiv:2308.03109, 2023.

10

https://doi.org/10.1145/363235.363259
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://libcst.readthedocs.io/en/latest/
https://libcst.readthedocs.io/en/latest/

Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Programming Predicates

Pearl, J. Causal inference in statistics: An overview. Statis-
tics Surveys, 3(none):96 – 146, 2009. doi: 10.1214/
09-SS057. URL https://doi.org/10.1214/09-SS057.

Popović, M. chrF: character n-gram F-score for automatic
MT evaluation. In Bojar, O., Chatterjee, R., Federmann,
C., Haddow, B., Hokamp, C., Huck, M., Logacheva, V.,
and Pecina, P. (eds.), Proceedings of the Tenth Workshop
on Statistical Machine Translation, pp. 392–395, Lis-
bon, Portugal, September 2015. Association for Compu-
tational Linguistics. doi: 10.18653/v1/W15-3049. URL
https://aclanthology.org/W15-3049.

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sun-
daresan, N., Zhou, M., Blanco, A., and Ma, S. Code-
bleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Shirafuji, A., Watanobe, Y., Ito, T., Morishita, M., Naka-
mura, Y., Oda, Y., and Suzuki, J. Exploring the robustness
of large language models for solving programming prob-
lems. arXiv preprint arXiv:2306.14583, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Tran, H., Tran, N., Nguyen, S., Nguyen, H., and Nguyen,
T. N. Recovering variable names for minified code with
usage contexts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 1165–
1175, 2019. doi: 10.1109/ICSE.2019.00119.

Wang, S., Li, Z., Qian, H., Yang, C., Wang, Z., Shang, M.,
Kumar, V., Tan, S., Ray, B., Bhatia, P., et al. Recode:
Robustness evaluation of code generation models. arXiv
preprint arXiv:2212.10264, 2022.

Yang, S., Yan, D., Wu, H., Wang, Y., and Rountev, A. Static
control-flow analysis of user-driven callbacks in android
applications. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pp. 89–
99. IEEE, 2015.

11

https://doi.org/10.1214/09-SS057
https://aclanthology.org/W15-3049

