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ABSTRACT
Recently, food recognition is gaining more attention in the multi-
media community due to its various applications, e.g., multimodal
foodlog and personalized healthcare. Most of existing methods di-
rectly extract visual features of the whole image using popular
deep networks for food recognition without considering its own
characteristics. Compared with other types of object images, food
images generally do not exhibit distinctive spatial arrangement
and common semantic patterns, and thus are very hard to capture
discriminative information. In this work, we achieve food recogni-
tion by developing an Ingredient-Guided Cascaded Multi-Attention
Network (IG-CMAN), which is capable of sequentially localizing
multiple informative image regions with multi-scale from category-
level to ingredient-level guidance in a coarse-to-fine manner. At
the first level, IG-CMAN generates the initial attentional region
from the category-supervised network with Spatial Transformer
(ST). Taking this localized attentional region as the reference, IG-
CMAN combined ST with LSTM to sequentially discover diverse
attentional regions with fine-grained scales from ingredient-guided
sub-network in the following levels. Furthermore, we introduce a
new dataset ISIA Food-200 with 200 food categories from the list
in the Wikipedia, about 200,000 food images and 319 ingredients.
We conducted extensive experiment on two popular food datasets
and newly proposed ISIA Food-200, and verified the effectiveness
of our method. Qualitative results along with visualization further
show that IG-CMAN can introduce the explainability for localized
regions, and is able to learn relevant regions for ingredients.

CCS CONCEPTS
• Computing methodologies → Image representations; Ob-
ject recognition.

KEYWORDS
Food Recognition, Multi-Attention Network, Ingredients
ACM Reference Format:
Weiqing Min1,2, Linhu Liu1,2, Zhengdong Luo1,2, Shuqiang Jiang1,2. 2019.
Ingredient-Guided CascadedMulti-Attention Network for Food Recognition.
In Proceedings of the 27th ACM International Conference on Multimedia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3350948

Category:
caesar salad

Ingredients:
tomato,cheese,
basil,oil

Category:
chicken wings

Ingredients:
chicken, garlic, 
soy

Category:
baby back ribs

Ingredients:
baby back ribs, 
apple,  mustard, 
chili

Category:
scrambled egg with 
loofah

Ingredients:
crushed pepper, 
scrambled egg, loofah

Category:
braised beef with 

potatoes
Ingredients:
hot and dry pepper, 
beef chunks, hob blocks 
of potato
Category:
prime rib 

Ingredients:
rib eye roast, oil, 
rosemary, garlic, 

thyme

Figure 1: Some food samples with rich ingredients

(MM’19), Oct. 21–25, 2019, Nice, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3343031.3350948

1 INTRODUCTION
Food recognition has attracted more and more attention in com-
puter vision and multimedia [3], [20], [10], [11], [15] in recent years.
It is an important and basic step for food image analysis, leading
to deep understanding of food from different perspectives, such
as health and culture. Automatically recognizing food can also
enable various applications. Once we recognize the category of
the meal, we can further conduct calorie estimation [20], health-
aware recommendation [27], dietary tracking [25] and eating habit
analysis [21, 28]. It is particularly helpful for many commercial
scenarios, such as fast food restaurants, smart restaurants, grocery
stores and supermarkets. For example, in the self-service restau-
rants, food recognition can help bill the grabbed meal by customers
via recognizing food and monitoring food consumption. In addition,
food recognition can help restaurant review platforms like Yelp
and Foursquare to categorize user-shared content automatically for
food photo organization and management.

Image recognition has undergone a fundamental paradigm shift
towards using deep learning as a general-purpose solution for its
powerful capability of discriminative feature learning, and food
recognition is no exception. To our knowledge, Kagaya et al. [15]
applied a Convolutional Neural Network (CNN) to the task of food
recognition in the multimedia community for the first time. Later,
different neural networks are directly used for food recognition,
such as GoogLeNet [20], Network-In-Network [30], Inception V3
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Category: 
caprese salad   
Ingredients: 
tomato,cheese,
basil,oil

Category: 
baby back ribs     
Ingredients: baby 
back ribs, apple, 
mustard, chili

Category: 
prime rib    
Ingredients: 
rib-eye roast, oil, 
rosemary, garlic, 
thyme

Original image Category-supervised sub-network Ingredient-supervised sub-network

Figure 2: Localized regions of some food images from our
proposed method under both category-level and ingredient-
level guidance, where five discriminative regions are local-
ized based on multi-ingredient supervision. All these local-
ized regions are resized into the same fixed size.

[8] and ResNet [25]. Recently,Martinel et al. [19] combined thewide-
slice residual network and its variant for food recognition. However,
most of these works simply adopt CNN to extract visual features
for food recognition without considering its special features, and
thus probably lead to suboptimal performance.

Food recognition belongs to fine-grained recognition, which
refers to the task of distinguishing sub-ordinate categories, such
as birds and cars. A key to address this problem is to localize dis-
criminative parts for feature extraction. Existing works focused
on multiple semantic region localization by category-supervised
CNN [37]. However, image-level category labels only provide weak
supervised information. Therefore, CNNs trained with category
labels can miss fine-grained food regions, which could provide com-
plementary information, and are probably not optimal to guide
multiple region localization. Furthermore, existing fine-grained
categories have fixed semantic parts, and distinctive relationships
between semantic parts and thewhole. Under this assumption, these
methods mainly localized fixed semantic regions, and meanwhile
utilized such relation constraints to remove unreasonable regions
for feature extraction. However, compared with these objects, many
types of food are non-rigid, and do not exhibit distinctive spatial
configuration and fixed semantic patterns. Therefore, it is hard to
capture discriminative semantic information from food images via
existing fine-grained methods.

On the other hand, the profusion of online recipe-sharing web-
sites with user-uploaded food photos provides additional ingredient
information (as shown in Fig. 1). Like the importance of objects for
the scene, we argue that the use of semantically meaningful ingre-
dients, as basic units of food images, probably offer one promising
venue to empower a visual recognizer to arbitrary food images.
Compared with existing fine-grained methods, which explore mul-
tiple discriminative regions via the deep network with weakly-
supervised category guidance, ingredients can be used to explicitly
guide the network to discover diverse semantic regions over fine-
grained image scales. These regional features generated from the
network under the supervision from different granularity are very
complementary. Therefore, integrating diverse regional features
are not only based on the global shape or appearance variation but
also local parts or patterns, leading to more comprehensive and

discriminative representation. Furthermore, associating ingredients
with regions can introduce the explainability for localized regions.

To this end, we propose an Ingredient-Guided Cascaded Multi-
Attention Network (IG-CMAN) for food recognition, which is ca-
pable of sequentially localizing diverse attentional regions over
different image scales from category-level to ingredient-level guid-
ance. IG-CMAN first generates the initial attentional region from
first-level category-supervised sub-network. Taking this initial at-
tentional region as the reference, at the following levels, IG-CMAN
iteratively discovers diverse attentional regions from ingredient-
supervised sub-network. In this way, our approach enables to learn
contextualized and interpretable multi-scale regions corresponding
to ingredients while improving the discriminability for food recog-
nition. Particularly, IG-CMAN mainly consists of two components:
1) a Spatial Transformer (ST) layer to locate attentional regions
under different types of supervised signals and 2) a Long-Short
Term Memory (LSTM) to sequentially predict ingredient scores
on the located regions from ST. Combing LSTM and ST can it-
eratively localize diverse regions, and associate ingredients with
attentional regions. We finally fuse features from discovered multi-
scale attentional regions into final feature representation for food
classification. Once IG-CMAN has been trained, we can obtain
multi-scale representations for food recognition from full-size im-
ages to multiple coarse-to-fine attentional regions. Three examples
generated by IG-CMAN are illustrated in Fig. 2.

Furthermore, we propose a new food dataset ISIA Food-200 for
real-world food recognition and analysis with 200 food categories
from the list in the Wikipedia, 200,000 images and 319 ingredi-
ents. Compared with existing datasets for food recognition, such as
FoodCam-256 [16], ISIA Food-200 provides additional ingredient in-
formation. In addition, it shared less common categories with exist-
ing datasets with ingredients, such as VireoFood-172 [4]. Therefore,
ISIA Food-200 is very complementary to these released datasets
for food recognition in the food domain, and is very helpful for
prompting the development of food computing in the multimedia.

Our main contributions can be summarized as follows: (1) We
develop an Ingredient-Guided Cascaded Multi-Attention Network
(IG-CMAN) to sequentially localize diverse multi-scale image re-
gions for discriminative feature extraction from category-level to
ingredient-level guidance in a coarse-to-fine manner. (2) We intro-
duce a new food dataset ISIA Food-200 for food recognitionwith 200
food categories, 200,000 food images and 319 ingredients1. (3) We
conduct extensive experiment and evaluations on three large-scale
benchmark datasets including ETH Food-101 [3], VireoFood-172
and newly proposed ISIA Food-200, and verified the effectiveness
of our method.

2 RELATEDWORK
FoodRecognition. Recently, Min et al. [22] provided a comprehen-
sive survey on food recognition and other food-related works. In the
earlier years, various hand-crafted features are extracted from food
images for recognition [3, 36]. For example, Yang et al. [36] adopted
one statistical method to exploit spatial relationships between ingre-
dients for food recognition. Lukas et al. [3] utilized random forests

1http://isia.ict.ac.cn/dataset/ISIAFood-200.html
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to mine discriminative patches of food images as visual representa-
tion. Deep learning’s revolutionary advances in image recognition
have gained significant attention because of its powerful expressive
capacity. As a result, more works on food recognition resort to deep
learning for feature extraction [15, 19]. Some works further utilized
additional context information, such as GPS [10, 33] and restaurant
information [31] to improve the recognition performance. Zhou et
al. [38] exploited rich relationships among ingredients, food cate-
gory and restaurant information through the bi-partite graph for
food classification. Min et al. recently [14] used deep models to
fuse three different types of features, including high-level seman-
tic features, mid-level ingredient features and abstract deep visual
features for food recognition on existing benchmarks.

In addition, our work is also relevant to multimodal recipe anal-
ysis [4, 5, 24, 29]. Different types of food labels, such as food types,
ingredients and other attributes can be learned simultaneously via
multi-task deep learning architectures, such as CNN [4] and Deep
Boltzmann Machine [23] for food recognition, where ingredients
are fully exploited as supervised information for fine-tuning the net-
work. Our work also adopts a multi-task learning framework. How-
ever, different from existing works, which simply learn two types
of labels by connecting the label layer to the full-connected layer,
we sequentially localize diverse multi-scale attentional regions over
different image scales from category-level to ingredient-level guid-
ance, and then fuse features from these multi-scale regions for food
recognition.
Visual Attention. Attention models have been recently applied to
various tasks, such as image classification [26], visual place recog-
nition [39] and person re-identification [35]. Earlier works use the
Recurrent Neural Network (RNN) for sequential attentions, and
optimize their models with reinforcement learning. For example,
Mnih et al. [26] present a RNN for object detection by adaptively se-
lecting a sequence of attentional regions and extracting appearance
representations in these regions. Jaderberg et al. [13] proposed the
Spatial Transformer Network (STN), which can provide the spa-
tial transformation capability to extract attentional regions. This
makes networks not only select regions of an image that are most
relevant, but also to transform those regions to enhance the recog-
nition performance. Our work also utilizes ST for attentional region
localization. However, we further combine ST with LSTM in a cas-
caded way to sequentially localize diverse attentional regions with
different scales for food categories and ingredients.

In addition, our work is relevant to fine-grained image recogni-
tion [6, 37]. For example, Fu et al. [6] proposed a recurrent attention
deep network to recursively learn discriminative regions. Different
from [6], which tries to focus on only one sub-region, and then
delves into more details of this sub-region, our work uses rich in-
gredient information to explicitly guide the network to localize
diverse sub-regions. Our method is also inspired by work [32],
but with two important differences: (1) [32] focuses on multi-label
classification, while we explore attentional regions under multi-
ple ingredient based guidance for food category recognition; (2)
[32] directly localizes the image regions without such hierarchical
coarse-to-fine structure modeling. In contrast, we design a cas-
caded multi-attention network, which is capable of sequentially
localizing diverse multi-scale image regions from category-level to
ingredient-level guidance in a coarse-to-fine manner.

3 METHOD
In this section, we will introduce the proposed Ingredient-Guided
Cascaded Multi-Attention Network (IG-CMAN) for food recogni-
tion. Fig. 3 illustrates the architecture of IG-CMAN, which is de-
composed into two main components, namely Category-supervised
Attention Sub-Network (CASN) and Ingredient-supervised Atten-
tion Sub-Network (IASN). CASN is used to localize coarse atten-
tional region of the full food image while IASN is used to capture
multiple fine-grained attentional regions with smaller scales based
on the localized coarse region from CASN. To implement this, IG-
CMAN cascades several CNNs in a hierarchical way, where each
sub-network at each level includes ST and LSTM. ST for each level
is used to localize the attentional region, while LSTM from different
levels is stacked together to model global sequential dependencies
of these localized regions, and meanwhile generates transforma-
tion parameters for ST in the next level. To this end, IG-CMAN
adopts a multi-task learning formulation with both category loss
and ingredient loss, and is trained in an end-to-end fashion.

3.1 CASN
As shown in the top of Fig. 3, CASN is a category-supervised STN
with an additional LSTM. Compared with traditional CNN, one
ST layer is embedded into CNN to form STN, which can spatially
transform its input maps to output maps with a given size, which
correspond to a subregion of input maps. For ST in CASN, a transfor-
mation matrixM0 is first estimated by a localization network. After
that, the corresponding coordinate grid in f0 is obtained, based on
coordinates of f1, where f0 is feature maps from one CNN, such as
VGG-16. Then the sampled feature maps f1 that correspond to the
attentional region are generated by bilinear interpolation. That is
f1 = ST(f0,M0), where ST is the spatial transformation function.
M0 involves cropping, translation and scaling, and is expressed as[

sx 0 tx
0 sy ty

]
where sx , sy , tx , ty are scaling and translation parameters.

Different from traditional STN, one LSTM is introduced in CASN,
which is used to combine with the following LSTMs to construct
stacked LSTMs for sequential dependency modeling of localized
regions.

After STN, we obtain the transformed input x1 for LSTM.

f1 = ST(f0,M0) x1 = relu(Wf x f1 + bx ) (1)

where relu() is the rectified linear function.Wf x and bx are trans-
formation parameters.

We can obtain the hidden representation h1 and cell state c1
via LSTM. Based on the output h1, LSTM can not only predict the
category labeling score based on s1, but also output parametersM1
for the following ST:

z1 = relu(Whzh1 + bz )

s1 =Wzsz1 + bs
M1 =Wzmz1 + bm

(2)

whereWhz ,Wzs ,Wzm ,bs ,bz and bm are transformation parameters.
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Figure 3: Overview of proposed Ingredient-Guided CascadedMulti-AttentionNetwork (IG-CMAN) for food recognition, where
we also show localized normalized regions corresponding to feature maps on the right of the framework.

3.2 IASN
Based on localized regions f1 and transformation matrix M1 from
CASN, in IASN, the stacked LSTM and ST work collaboratively in
an iterative manner: LSTM predicts ingredient scores regarding this
localized region from ST and simultaneously updates transforma-
tion parameters of ST for the next attentional region localization.

For each sub-network in IASN, it all takes localized coarse region
f1 as the reference and used updated parametersMk−1 to calculate
fine-grained localized region: fk = ST(f1,Mk−1). LSTM takes the
sampled feature map fk as input to compute memory cells and
hidden states:

xk = relu(Wf x fk + bx )

fk = σ (Wxf xk +Whf hk−1 + bf )

ik = σ (Wxixk +Whihk−1 + bi )

дk = tanh(Wxдxk +Whдhk−1 + bд)

ck = fk ⊙ ck−1 + ik ⊙ дk

ok = σ (Wxoxk +Whohk−1 + bo )

hk = ok ⊙ ck

(3)

where σ () is the sigmoid function, tanh() is the hyperbolic tangent
function, ⊙ is pointwise multiplication. hk−1 and ck−1 are the hid-
den state and memory cell of previous iteration; ik , fk , ok and дk
are outputs of the input gate, forget gate, output gate, and input
modulation gate, respectively at the k-level sub-network.

Given the hidden state hk , we updateMk as follows:
zk = relu(Whzhk + bz ) Mk =Wzmzk + bm (4)

whereMk is the transformation matrix for the k + 1 level.

3.3 Cascaded Multi-Attention Network
The collaboration between CASN and IASN leads to cascaded multi-
attention network. At the first levelk = 1, CASN localizes the coarse

region f1 from the original input feature map f0. The following
levels of IASN take the localized region f1 as the input for fine-
grained region-localization fk . They are expressed as follows at the
k-th level:

f1 = ST(f0,M0) k = 1
fk = ST(f1,Mk−1) k > 1 (5)

The LSTM takes sampled feature map fk as input to compute the
memory cell and hidden state, and it is first changed into the input
for LSTM. Then the following computation process from LSTM can
be conducted using Eqn. 3 to obtain hk at the k-th level. Given the
hidden state hk , we updateMk using Eqn. 4. Note that at the first
level, we directly estimateM0 via CASN. Based onM0, we update
Mk in IASN.

3.4 Multi-Task Learning
We finally model IG-CMAN in a multi-task formulation, which is
optimized mainly by two types of losses, i.e., category-level classi-
fication loss Lcls and ingredient-level attribute learning loss Linд ,
for generating large-scale coarse image region and multiple fine-
grained smaller image regions, respectively. In addition, we utilize
another type of loss Lloc for attentional region localization con-
straints from ST to guarantee the localization accuracy of atten-
tional regions, leading to the following loss function:

L = Lcls + γ1Linд + γ2Lloc (6)

where γ1 and γ2 are balance parameters.
Category-level Classification Loss. CASN adopts the food

category as supervised information to guide STN to localize the
attentional region. Through LSTM in CASN, the input is finally
changed into s1 using Eqn. 2. The cross-entropy classification loss
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function is adopted as follows:

Lcls = −
1
N

∑
i
log(P(yi |s1i )) (7)

where N is the number of training samples. s1i is the feature rep-
resentation for the i-th sample and yi is the corresponding food
category.

Ingredient-level Attribute Learning Loss. In IASN, we ob-
tain its final feature representation sk for each level as follows:

zk = relu(Whzhk + bz ) sk =Wzszk + bs (8)

where sk is the predicted ingredient score distribution of the k-
th level sub-network. The following K − 1 level sub-network in
IASN results in K-1 score vectors {s2, ..., sk , ...sK }, where sk =
{s1k , ..., s

v
k , ..., s

V
k } denotes scores over V ingredient labels. The

ingredient-wise max-pooling is then used to fuse scores into the
final result s = {s1, ..., sv , ..., sV }, and sv for each ingredient is
calculated as follows:

sv = max(sv2 , ..., s
v
K ),v = 1, 2, 3, ...,V . (9)

We then obtain the predicted probability vector pi

pvi =
exp(svi )∑V

m=1 exp(s
m
i )

v = 1, 2, ...,V , (10)

This loss function is finally expressed as

Linд =
1
N

∑
i

∑
v
(pvi − p̂vi )

2 (11)

where p̂i = qi/∥qi ∥1 is the ground-truth probability vector of the
i-th sample, and its ingredient vector qi = {q1i ,q

2
i , ...,q

V
i }, q

v
i is a

0 − 1 indicator vector.
AttentionalRegionLocalizationLoss Similar to [32], tomake

STN successfully localize diverse multi-scale image regions, we also
adopt the following three types of losses, including anchor con-
straint, scale constraint and positive constraint.

For anchor constraint, this constraint makes attentional regions
scatter over different semantic regions in the food image. It is for-
mulated as

ΓA =
1
2 {

(
tkx − ckx

)2
+
(
tky − cky

)2
} (12)

where
(
ckx , c

k
y

)
is the location of the k-th anchor point, and tkx , tky

are horizontal and vertical translation, respectively for the k-level
sub-network (k ≥ 2).

For scale constraint, this constraint is used to push the located
attentional region in a certain range, and can be formulated as

ΓS = (max (|sx | − α, 0))2 +
(
max

(
|sy | − α, 0

) )2 (13)
where α is a threshold value. Not that in different sub-networks, α
is different. For example, α should be large in CASN since CASN is
used to localize coarse image region. In contrast, α should be small
in IASN. This is because IASN is used to localize fine-grained image
regions with smaller scales.

For positive constraint, this constraint is used tomake attentional
regions not be mirrored, and can be formulated as

ΓP = max (0, β − sx ) +max
(
0, β − sy

)
(14)

Category:wonton noodles
Ingredient:flour,egg,pork,

shrimp

Category:takoyaki
Ingredient:batter,octopus,

tempura scraps,onion,
takoyaki

Category:bacon 
and eggs

Ingredient:bacon,sausage,
egg,oil

Category:shuizhu
Ingredient:meat,oil,chili 

pepper

Category:cream of 
mushroom soup

Ingredient:roux,cream, 
milk, mushroom

Category:colcannon
Ingredient:mashed 

potatoes, kale,cabbage

Category:kwetiau goreng
Ingredient:fried flat 

noodles,chicken,meat,
beef,prawn,crab

Category:nuomici
Ingredient:glutinous 

rice,dried coconut,sugar

Figure 4: Some food examples from ISIA Food-200

Table 1: The statistics of three different datasets.

Dataset ♯categories ♯images ♯ingredients
ETH Food-101 [3] 101 101,000 174
VireoFood-172 [4] 172 110,241 353
ISIA Food-200 200 197,323 319

where β is a threshold value.
Finally, these constraints on the parameters of the transformation

matrix are combined to the localization loss:

Lloc = ΓS + λ1ΓA + λ2ΓP (15)
where λ1 and λ2 are weighted parameters.

3.5 Multi-scale Joint Representation
Once IG-CMAN has been trained, we can obtain multiple coarse-to-
fine attentional regions for each food image. Particularly, there are
three types of regions, the full image, the coarse region from CASN
and several fine-grained regions from IASN. We train one CNN
model for each type of regions. Based on these trained CNNmodels,
we extract three types of features from the full image, coarse region
and fine-grained regions: {F0, F1, ..., FK }, where F0 denotes visual
features from the full image and K is the total number of regions.
We normalize each descriptor independently, and then concatenate
them as the final feature representation.

4 EXPERIMENT
4.1 Dataset
ETH Food-101 is a dataset with 101 food categories and 101,000
images. There are 1,000 images including 750 training images and
250 test images for each category. Bolaños et al. [2] further provided
corresponding ingredient list. Our method should utilize ingredi-
ents to localize attentional image regions. Therefore, we remove
ingredients, which are non-visible to food images. The size of final
visible ingredient list is 174.
VireoFood-172 contains 110,241 food images from 172 categories
and the size of visible ingredient list is 353. Similar to [4], in each
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food category, 60%,10%, 30% of images are randomly selected for
training, validation and testing, respectively.
ISIA Food-200. In order to prove the advantage of our method, we
further propose a new dataset with ingredients. To construct this
dataset, we first build the vocabulary of food categories according
to “Lists of foods by ingredient” from Wikipedia2. We then use
the food name as the query to crawl candidate food images from
different image search engines, such as Google and Bing for bet-
ter visual diversity. We finally removed irrelevant and noisy food
images through manual annotation. Our resulting food dataset con-
tains 197,323 images with 200 categories and 319 visible ingredients.
There are at least 500 images for each category. We coin this dataset
ISIA Food-200. Similar to [4], the dataset is split into 60%, 10% and
30% images for training, validation and testing, respectively. Fig. 4
shows some examples.

Table 1 provides the statistics of three food datasets. From Table
1, we can see that ISIA Food-200 is larger than both ETH Food-101
and VireoFood-172 in the number of food classes and images. Fur-
ther observation shows that there are very few shared categories
between ISIA Food-200 and other two datasets (only 15 categories
with ETH Food-101 and 2 categories with VireoFood-172). There-
fore, ISIA Food-200 is complementary to these two datasets, and
we expect ISIA Food-200 can further promote the development of
food community.

4.2 Experimental Setup
For IG-CMAN, the input image I is fed into a VGG-16 network. Here,
we use the conv feature maps from the last conv layer as the input
of ST. All the training images are resized to 224 × 224. The models
are optimized using Adam with a batch size of 16, momentum of 0.9
and 0.999. The learning rate is set to 10−5 initially and divided by
10 after 30 epochs. We select the model with the lowest validation
loss for testing. For Food-101, there is no validation dataset, and we
thus select the model when the training loss no longer changes.

For multi-task learning in IG-CMAN, we use the standard back-
propagation for optimization. The classification loss and ingredient-
level attribute loss are set as the same weight without any prior.
Therefore, γ1 = 1.0. We empirically set γ2 as 0.1, 0.5 and 0.5 for ETH
Food-101, VireoFood-172 and ISIA Food-200, respectively. In Eqn
12, we set the number of localized fine-grained image regions as 5
in IASN. Therefore, besides the center (0, 0), four anchor points are
empirically set as (0.4, 0.4), (0.4,−0.4), (−0.4, 0.4) and (−0.4,−0.4),
respectively. In Eqn 13, α is set as 0.9 and 0.5 for CASN and IASN,
respectively. This is because α should be large in CASN since CASN
is used to localize the coarse image region. In contrast, α should
be small in IASN since IASN is used to localize fine-grained image
regions. In Eqn 14, β is empirically set as 0.6 and 0.1 in CASN and
IASN, respectively. In Eqn 15, λ1 and λ2 are empirically set as 0.01
and 0.5, respectively for food-101, 1 and 1 for VireoFood-172, 0.2
and 0.2 for ISIA Food-200.

Once IG-CMAN has been trained, we can obtain multiple coarse-
to-fine attentional regions for each food image.We fine-tuneDenseNet-
161 [12] for the full image and regions from CASN and IASN, re-
spectively. For the fusion strategy, we simply concatenate them
as fused representation, and adopt the softmax classifier for fair

2https://en.wikipedia.org/wiki/Category:Lists_of_foods

Table 2: Performance comparison on feature fusion from
different regions in IASN on ETH Food-101 (%).

Method Top-1 Top-5
IASN(Region1-1) 83.53 96.03
IASN(Region1-2) 86.50 97.13
IASN(Region1-3) 87.17 97.35
IASN(Region1-4) 88.27 97.71
IASN(Region1-5) 88.94 97.87

Table 3: Performance comparison for different components
of IG-CMAN on ETH Food-101 (%).

Method Top-1 Top-5
CASN 85.41 96.67
IASN 88.94 97.87

CASN+IASN 89.89 98.21
IG-CMAN 90.37 98.42

comparison. Without loss of generality, we all adopt the same fea-
ture concatenation method for fusion in the following experiment.
Top-1 and Top-5 accuracy is used as evaluation metrics [4, 19].

4.3 Experiments on ETH Food-101
PerformanceComparison onRegion Feature Fusion in IASN.
In our experiment, IASN localizes several fine-grained image re-
gions. We compare the fusion results for different number of re-
gions, and show the results in Table 2. For continuously localized
fine-grained regions in IASN, we denote Region1-C as top C con-
tinuously localized regions. For example, Region1-1 is the first fine-
grained region while Region1-5 means all the localized regions. We
can see that (1) When more and more localized regions are added
into the feature fusion, the recognition performance is improved
incrementally. (2) The performance on feature fusion from all the
regions is the best, and such best result benefits from the comple-
mentary advantage from multiple fine-grained image regions.
Performance Comparison on Different Components of IG-
CMAN. Table 3 shows the experimental results from different com-
ponents of IG-CMAN. We can see that the feature fusion from
coarse regions in CASN and fine-grained regions in IASN can fur-
ther improve the performance compared with single CASN or IASN.
After fusing features from the full image, IG-CMAN achieves the
best performance in both Top-1 and Top-5 accuracy. We can con-
clude that the regions from the full image, CASN and IASN are
complementary, and fused features from different types are more
comprehensive and discriminative.
Comparison with State-of-the-Arts.We list recent state-of-the-
art methods on ETH Food-101 in Table 4. The performance on
different neural networks such as AlexNet [3], Inception V3 [8],
ResNet [9], DenseNet and WRN [19] is provided. From Table 4,
we can see that (1) The performance of WRN is better than other
single networks. (2) WISeR improves WRN by adding the other
slice branch network with slice convolutional layers, which is used
to capture specific vertical food layers. (3) Our method achieves
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Table 4: Comparison of ourmodel and state-of-the-artmeth-
ods on ETH Food-101 (%).

Method Top-1 Top-5
AlexNet-CNN [3] 56.40 -
DCNN-FOOD [34] 70.41 -
DeepFood [17] 77.40 93.70
FCAN [18] 86.50 -
CurriculumNet [7] 87.30 -
Inception V3 [8] 88.28 96.88
ResNet-200 [9] 88.38 97.85
DenseNet-161 [12] 86.94 97.03
WRN [19] 88.72 97.92
WISeR [19] 90.27 98.71
IG-CMAN 90.37 98.42

Table 5: Performance comparison on feature fusion from
different regions in IASN on VireoFood-172 (%).

Method Top-1 Top-5
IASN(Region1-1) 82.35 95.35
IASN(Region1-2) 85.96 96.92
IASN(Region1-3) 87.47 97.46
IASN(Region1-4) 88.83 97.91
IASN(Region1-5) 89.43 98.06

the best performance in Top-1 accuracy, and can improve the Top-
1 performance of WISeR specifically designed for food recogni-
tion by 0.1%. Although marginal performance improvement, our
method did not use additional data augmentation strategy like
WISeR, which additionally applied various photometric distortions
and AlexNet-style color augmentation.

4.4 Experiments on VireoFood-172
We first compare experimental results on feature fusion from dif-
ferent regions in IASN. As shown in Table 5, we can see that the
feature fusion from all the localized regions in IASN achieves the
best performance. Table 6 further shows experimental results from
different components of our method on VireoFood-172. By combin-
ing features from three types of regions, we achieve the best 90.63%
in Top-1 accuracy and 98.40% in Top-5 accuracy. The classification
accuracy from different methods are summarized in Table 7. We can
see that our method achieves the best performance in both Top-1
accuracy and Top-5 accuracy. Compared with existing multi-task
approaches [4] with the same basic network, there are performance
improvement of about 3.4% and 1.1% in Top-1 and Top-5 accuracy,
respectively. This improvement mainly derives from both seman-
tic attentional region localization and multiple attentional region
fusion.

4.5 Experiments on ISIA Food-200
As shown in Table 8, we can see that the feature fusion from all the
localized regions in IASN achieves the best performance. Table 9
further shows experimental results from different components of
our method on ISIA Food-200. Our method similarly achieves the

Table 6: Performance comparison for different components
of IG-CMAN on VireoFood-172 (%).

Method Top-1 Top-5
CASN 87.39 97.15
IASN 89.43 98.06

CASN+IASN 90.34 98.31
IG-CMAN 90.63 98.40

Table 7: Comparison of ourmodel and state-of-the-artmeth-
ods on VireoFood-172 (%).

Method Top-1 Top-5
AlexNet 64.91 85.32
VGG-16 80.41 94.59
DenseNet-161 86.93 97.17
MultiTaskDCNN(VGG-16)[4] 82.06 95.88
MultiTaskDCNN(DenseNet-161)[4] 87.21 97.29
IG-CMAN 90.63 98.40

Table 8: Performance comparison on feature fusion from
different regions in IASN on ISIA Food-200 (%).

Method Top-1 Top-5
IASN(Region1-1) 58.88 86.18
IASN(Region1-2) 62.09 88.36
IASN(Region1-3) 63.29 89.33
IASN(Region1-4) 64.39 89.92
IASN(Region1-5) 65.59 90.70

Table 9: Performance Comparison for different components
of IG-CMAN on ISIA Food-200 (%).

Method Top-1 Top-5
CASN 61.13 87.66
IASN 65.59 90.70

CASN+IASN 66.71 91.45
IG-CMAN 67.47 91.75

best 67.47% in Top-1 accuracy and 91.75% in Top-5 accuracy. The
classification accuracy from different methods are summarized in
Table 10. Because ISIA Food-200 is the proposed new dataset, we
conduct different benchmark baselines. The experimental results
from different neural networks including AlexNet, VGG, ResNet
and DenseNet are listed. From Table 10, we can see that our method
achieves the best performance in both Top-1 accuracy and Top-5
accuracy. This again verified the effectiveness of proposed method.

4.6 Qualitative Analysis and Visualization
To have a richer grasp on this outcome, we conducted qualitative
analysis of attentional regions from IG-CMAN. We first showed
fine-grained localized regions in IASN. Fig. 5 shows some examples,
where at the bottom of each row, we show top-3 ingredient dis-
tribution based on softmax transformation from S at each level in
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Table 10: Method comparison on ISIA Food-200 (%).

Method Top-1 Top-5
AlexNet 49.34 79.30
VGG-16 59.05 86.53
ResNet-152 61.07 87.87
DenseNet-161 62.62 88.28
IG-CMAN 67.47 91.75

Category：
Chicken wings

Ingredient:
chicken, garlic, soy

Category：

chicken salad

Ingredient:
chicken,salad 

dressing,lettuce,
tomato,avocado

0.20 

0.21 

0.22 

tomato lettuce chicken

0.23 

0.22 0.22 

tomato avocado chicken

0.22 
0.23 

0.26 

tomato lettuce chicken

0.12 

0.37 0.36 

tomato lettuce chicken

0.19 0.17 

0.34 

tomato lettuce chicken

0.30 

0.34 
0.35 

soy  garlic chicken

0.25 
0.28 

0.47 

soy  garlic chicken

0.34 

0.32 

0.33 

soy  garlic chicken

0.32 

0.33 

0.34 

soy  garlic chicken

0.29 0.31 

0.39 

soy  garlic chicken

Figure 5: Localized image regions with probability distri-
bution on top-3 ingredients from some food examples in
IASN(Best viewed in magnification).

Category: grilled salmon    Ingredient: salmon, lemon, soy, oil

Category: caprese_salad   Ingredient: tomato,cheese,basil,oil

Category: chicken salad   Ingredient: chicken,salad dressing,lettuce,tomato,avocado

Category: bangers and mash   Ingredient: mashed potatoes,sausage,onion,pea

Original image CASN IASN

Category: beefsteak   Ingredient: batonnet carrot,broccoli,double-side fried egg,spaghetti,steak

Category: rice with stewed pork   Ingredient: black sesame,broccoli,spiced corned egg,rice,stewed pork

Figure 6: Localized regions from some samples in IG-CMAN.

IASN. We can observe that these localized regions are discrimina-
tive to corresponding food categories. In addition, many localized
regions correspond to semantic ingredients and are more inter-
pretable. For example, in the first row, we can observe that many
localized regions correspond to their ingredients with the highest

score, respectively. The first localized region is chicken and the
predicted chicken ingredient has the highest probability. The third
localized region is soy and the predicted soy ingredient has the
highest probability. Fig 6 further showed coarse and fine-grained
localized regions of more image examples.

4.7 Discussions
In our method, we utilize rich ingredients to explicitly guide the
network to discover diverse fine-grained attentional regions. In ad-
dition, many localized regions correspond to semantic ingredients.
Therefore, our proposed method can introduce the interpretability
for localized regions. However, it is not always true in the food
domain. The reasons are various, such as mixed ingredients with-
out clear division, too small ingredients and the change of spatial
structure of ingredients (Fig. 4). In these cases, our method fail
to localize semantic regions for ingredients. However, even these
localized regions are not interpretable, they can still also provide
complementary visual information, and thus is still helpful in food
recognition.

Another aspect is that we pre-define five regions in IASN and
IASN can thus only localize five fine-grained image regions. As
shown in Table 2, Table 5 and Table 8, we can see that with the
increase of localized fine-grained regions, the recognition perfor-
mance has consistent improvement. We deduced that with the
increase of localized regions, there will probably be performance
increase. However, with the increase of cascaded sub-networks,
the network training needs more time cost and GPU resources.
Therefore, how many regions are fixed before or even learned auto-
matically to enable the best recognition performance needs further
study. How to balance the network complexity and the number of
localized regions is worth exploration in the future.

5 CONCLUSIONS
In this paper, we have proposed an ingredient-guided cascaded
multi-attention network for food recognition. It is capable of se-
quentially localizing diverse multi-scale image regions via com-
bining STN with LSTM under both category-level and ingredient-
level guidance. As a result, the fused features from coarse and
fine-grained regions are complementary, comprehensive and more
discriminative. Furthermore, we present a new dataset ISIA Food-
200, which is very complementary to existing datasets for food
recognition with ingredients. Comprehensive experimental results
on two popular datasets and ISIA Food-200 have verified the ef-
fectiveness of our method. Such improvement benefits from both
semantic attentional region localization and multiple attentional
region fusion. Future directions include introducing more context
information, such as cuisine and course [23] for improving the per-
formance and applying proposed method into various applications,
such as foodlog [1] and health-aware recommendations [27].
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