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ABSTRACT

Reinforcement learning (RL) has seen significant success across various domains,
but its adoption is often limited by the black-box nature of neural network poli-
cies, making them difficult to interpret. In contrast, symbolic policies allow repre-
senting decision-making strategies in a compact and interpretable way. However,
learning symbolic policies directly within on-policy methods remains challeng-
ing. In this paper, we introduce SYMPOL, a novel method for SYMbolic tree-
based on-POLicy RL. SYMPOL employs a tree-based model integrated with a
policy gradient method, enabling the agent to learn and adapt its actions while
maintaining a high level of interpretability. We evaluate SYMPOL on a set of
benchmark RL tasks, demonstrating its superiority over alternative tree-based RL
approaches in terms of performance and interpretability. In contrast to existing
methods, SYMPOL allows a gradient-based end-to-end learning of interpretable,
axis-aligned decision trees within existing on-policy RL algorithms. Therefore,
SYMPOL can become the foundation for a new class of interpretable RL based
on decision trees.
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(b) State-Action DT
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(c) Discretized Soft DT

Figure 1: Information Loss in Tree-Based Reinforcement Learning on PD-C. Existing meth-
ods for symbolic, tree-based RL (see Figure 1b and 1c) suffer from severe information loss when
converting the differentiable policy used for training (e.g., the MLP for SA-DT) into the symbolic
policy used for interpretation (i.e., the DT). Using SYMPOL (Figure 1a), we can directly optimize
the symbolic policy with PPO and therefore have no information loss during the application.

1 INTRODUCTION

Reinforcement learning lacks transparency. Reinforcement learning (RL) has achieved remark-
able success in solving complex sequential decision-making problems, ranging from robotics and
autonomous systems to game playing and recommendation systems. However, the policies learned
by traditional RL algorithms, represented by Neural Networks (NNs), often lack interpretability and
transparency, making them difficult to understand, trust, and deploy in safety-critical or high-stakes
scenarios (Landajuela et al., 2021).

Symbolic policies increase trust. Symbolic policies, on the other hand, offer a promising alterna-
tive by representing decision-making strategies in terms of RL policies as compact and interpretable
structures (Guo et al., 2024). These symbolic representations do not only facilitate human under-
standing and analysis but also ensure predictable and explainable behavior, which is crucial for
building trust and enabling effective human-AI collaboration. Moreover, the deployment of sym-
bolic policies in safety-critical systems, such as autonomous vehicles or industrial robots, could
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significantly improve their reliability and trustworthiness. By providing human operators with a
clear understanding of the decision-making process, symbolic policies can facilitate effective moni-
toring, intervention, and debugging, ultimately enhancing the safety and robustness of these systems.
In this context, decision trees (DTs) are particularly effective as symbolic policies for RL, as their
hierarchical structure provides natural interpretability.

Existing challenges. Despite these promising prospects, the field of symbolic RL faces several
challenges. One main reason is given by the fact that many symbolic models, like DTs, are non-
differentiable and cannot be integrated in existing RL frameworks. Therefore, traditional methods
for learning symbolic policies often rely on custom and complex training procedures (Costa et al.,
2024; Vos & Verwer, 2023; Kanamori et al., 2022), limiting their applicability and scalability. Al-
ternative methods involve pre-trained NN policies combined with some post-processing to obtain
an interpretable model (Silva et al., 2020; Liu et al., 2019; 2023; Bastani et al., 2018). However,
post-processing introduces a mismatch between the optimized policy and the model obtained for
interpretation, which can lead to loss of crucial information, as we show in Figure 1.

Contribution. In this paper, we introduce SYMPOL, SYMbolic tree-based on-POLicy RL,
a novel method for efficiently learning interpretable, axis-aligned DT policies end-to-end (Sec-
tion 4.1). Our contributions are as follows:

• We integrate GradTree (Marton et al., 2024a) into existing RL frameworks through a sepa-
rate actor-critic to directly optimize DTs policies and extend it to continuous action spaces.

• We propose a dynamic rollout buffer to enhance exploration stability and a dynamic batch
size through gradient accumulation to improve gradient stability (Section 4.2) to mitigate
the instability of DT training in dynamic environments.

• We propose using weight decay on a subset of parameters to support a dynamic adjustment
of the model parameters when optimizing DTs with gradient descent (Section 4.1).

SYMPOL does not depend on pre-trained NN policies, complex search procedures, or post-
processing steps, but can be seamlessly integrated into existing on-policy RL algorithms, such as
proximal policy optimization (Section 3). Existing methods for learning DT policies, such as those
described by Silva et al. (2020) learn differentiable, soft decision trees which do not provide a high
level of interpretability. To obtain interpretable, axis-aligned DTs, these methods require post-hoc
distillation or discretization and therefore suffer from information loss (see Figure 1). SYMPOL
guarantees that the learned, interpretable policy remains consistent from training to inference.

Results. Through extensive experiments on benchmark RL environments, we demonstrate that
SYMPOL outperforms existing tree-based RL approaches in terms of interpretability and perfor-
mance (Section 5.2), providing human-understandable explanations for its decision-making process.
In most environments, SYMPOL’s performance is comparable to full-complexity models, while in
categorical environments, it even surpasses them. Furthermore, we provide a case study (Section 6)
to show how interpretable policies help in detecting misbehavior and misgeneralization which might
remain unnoticed with commonly used black-box policies.

2 RELATED WORK

Recently, the integration of symbolic methods into RL has gained significant attention. Symbolic
RL does cover different approaches including program synthesis (Trivedi et al., 2021; Penkov &
Ramamoorthy, 2019; Verma et al., 2018), concept bottleneck models (Ye et al., 2024), piecewise
linear networks (Wabartha & Pineau, 2024), logic (Delfosse et al., 2024b), mathematical expres-
sions (Landajuela et al., 2021; Guo et al., 2024; Luo et al., 2024; Xu et al., 2022). Another line
of work aims to synthesize symbolic policies using logical rules, leveraging differentiable inductive
logic programming for gradient-based optimization (Jiang & Luo, 2019; Cao et al., 2022). In con-
trast to first-order rules, DTs offer greater flexibility by not only combining atomic conditions but
also comparing features against thresholds — a critical capability for handling continuous observa-
tion spaces. In this paper, we focus exclusively on tree-based methods for symbolic RL. Several
approaches have been proposed to leverage the strengths of interpretable, tree-based representations
within RL frameworks. However, each approach comes with its own critical limitations. We sum-
marize existing methods into three streams of work:
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(1) Post-processing. One line learns full-complexity policies first and then performs some kind of
post-processing for interpretability. One prominent example is the VIPER algorithm (Bastani et al.,
2018). In this case, a policy is learned using NNs before DTs are distilled from the policy. However,
distillation methods often suffer from significant performance mismatches between the training and
evaluation policies (see Figure 1b). To mitigate this mismatch, existing methods often learn large
DTs (VIPER learns DTs with 1,000 nodes) and therefore aim for systematic verification rather than
interpretability. In contrast, SYMPOL is able to learn small, interpretable DTs (average of only 50
nodes) without information loss. Following VIPER, various authors proposed similar distillation
methods (Li et al., 2021; Liu et al., 2019; 2023; Jhunjhunwala et al., 2020). Furthermore, Kohler
et al. (2024) propose a novel distillation method that distills interpretable and editable programmatic
tree policies. In contrast to SYMPOL, the extracted trees are not considered axis-aligned as they
allow for linear combinations and multiple features within the internal nodes.

(2) Custom optimization. The third line involves custom, tree-specific optimization techniques
and/or objectives (Ernst et al., 2005; Roth et al., 2019; Gupta et al., 2015; Kanamori et al., 2022)
and, hence, is more time-consuming and less flexible. As a result, their policy models cannot be
easily integrated into existing learning RL frameworks. Examples are evolutionary methods (Costa
et al., 2024; Custode & Iacca, 2023) and linear integer programming (Vos & Verwer, 2023). Topin
et al. (2021) propose Iterative Bounding Markov Decision Process (IBMDP) that allow learning
DT policies through a masking procedure and modified value updates by using arbitrary function
approximators. However, using IBMDP, the learning problem becomes more complex compared
to the base MDP, which can result in poor scalability and limits the applicability to very simple
tasks (Milani et al., 2022; Kohler et al., 2024). In contrast, SYMPOL optimizes a DT policy directly
on the base MDP, avoiding these limitations.

(3) Soft Decision Trees (SDTs). Methods optimizing SDTs (Silva et al., 2020; Silva & Gom-
bolay, 2021; Coppens et al., 2019; Tambwekar et al., 2023; Liu et al., 2022; Farquhar et al., 2017)
are difficult to interpret since they usually involve multiple features simultaneously at each decision
node, creating complex, multidimensional splits rather than straightforward, single-feature thresh-
olds. Nevertheless, the trees are usually not easily interpretable and techniques such as discretizing
the learned trees into more interpretable representations are applied (Silva et al., 2020), occasionally
resulting in high performance mismatches (Figure 1c). In contrast, SYMPOL directly optimizes
hard, axis-aligned DTs and therefore does not exhibit a performance loss (Figure 1a).

Distinction of SYMPOL from Differentiable and Soft Decision Trees. In existing work like
Silva et al. (2020), differentiable decision trees typically correspond to SDTs, achieving differen-
tiability by relaxing discrete decisions in terms of feature selection at each internal node and path
selection. This approach is fundamentally different from SYMPOL, which does not use differen-
tiable decision trees. Instead, SYMPOL leverages GradTree to optimize standard, non-differentiable
decision trees through gradient descent, as we will show in Section 4.

Furthermore, trees have also been in used in other agentic components than the policy, such as
reward functions (Milani et al., 2022; Kalra & Brown, 2023; 2022). Similarly, ensemble methods
(Fuhrer et al., 2024; Min & Elliott, 2022) have been proposed. However, policies consisting of
hundreds of trees and nodes lack interpretability and therefore are out of scope for this paper.

3 PRELIMINARIES

Markov Decision Process. We study a deterministic Markov decision process (S,A,P, r, γ)
where S is a finite state space, A is the finite action space, P : S ×A×S → [0, 1] defines the tran-
sition dynamics of the environment, r : S×A → R is the reward function and γ the discount factor.
At each timestep t, an agent samples an action from policy π : S → A based on the current observa-
tion st ∈ S and executes it in the environment. The environment transitions and the agent receives
a reward rt. In this context, the value function Vπ(s) = Eat∼π,st+1∼P [

∑∞
t=0 γ

tr(st, at) | st = s]
approximates the expected return when starting in state s and then acting according to policy π.
Similarly, the action-value function Qπ(s, a) = Eat∼π,st+1∼P [

∑∞
t=0 γ

tr(st, at) | st = s, at = a]
estimates the expected return when selecting action a in state s and then following policy π. Finally,
the advantage function Aπ(s, a) = Qπ(s, a) − Vπ(s) defines the difference between the expected
return when choosing action a in state s and the expected return when following the policy π from
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state s. Overall, we aim for finding an optimal policy π∗ that maximizes the expected discounted
return J(π) = E [

∑∞
t=0 γ

tr(st, at)].

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is an on-policy, actor-critic
RL method designed to enhance the training stability. The algorithm introduces a clipped surrogate
objective to restrict the policy update step size. The main idea is to constrain policy changes to a
small trust region, preventing large updates that could destabilize training. Formally, PPO optimizes:

LCLIP(θ) =Eat∼πθold
,st+1∼P

[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip
(

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
(1)

where πθ(at|st)
πθold (at|st) is the probability ratio between the new policy πθ and old policy πθold . Ât is an

estimate of the advantage function at time step t and ϵ is a hyperparameter for the clipping range.

4 SYMPOL: SYMBOLIC ON-POLICY RL

In the following, we formalize the online training of hard, axis-aligned DTs with the PPO objective.
In contrast to existing work on RL with DTs, this allows an optimization of the DT on-policy without
information loss. The main conceptual difference to existing work that learn symbolic policies end-
to-end (Delfosse et al., 2024b; Fuhrer et al., 2024; Delfosse et al., 2024c; Topin et al., 2021; Luo
et al.) is that SYMPOL does not require any modification of the RL framework itself, making the
proposed method framework-agnostic. As a result, interpretable policies with SYMPOL are learned
in the same way as NN policies are commonly learned. In the main paper, we focus on PPO as the,
we believe, most prominent on-policy RL method. To support our claim of seamless integration, we
provide additional results using Advantage Actor-Critic (A2C) (Mnih et al., 2016) in Appendix A.1
To efficiently learn DT policies with SYMPOL, we employed several crucial (see ablation study in
Table 5) modifications, which we will elaborate below.

4.1 LEARNING DTS WITH POLICY GRADIENTS

SYMPOL utilizes GradTree (Marton et al., 2024a) as a core component to learn a DT policy directly
from policy gradients as we will show in the following.

Arithmetic DT policy formulation. Traditionally, DTs involve nested concatenations of rules. In
GradTree, DTs are formulated as arithmetic functions based on addition and multiplication to facil-
itate gradient-based learning. Therefore, our resulting DT policy is fully-grown (i.e., complete, full)
and can be pruned post-hoc. Our basic pruning involves removing redundant paths, which signifi-
cantly reduces the complexity. We define a path as redundant if the decision is already determined
either by previous splits or based on the range of the selected feature. More details are given in
Appendix A.4. Overall, we formulate a DT policy π of depth d with respect to its parameters as:

π(s|a, τ , ι) =
2d−1∑
l=0

al L(s|l, τ , ι) (2)

where L is a function that indicates whether a state s ∈ R|S| belongs to a leaf l, a ∈ A2d denotes
the selected action for each leaf node, τ ∈ R2d−1 represents split thresholds and ι ∈ N2d−1 the
feature index for each internal node.

Dense architecture. To support a gradient-based optimization and ensure an efficient computation
via matrix operations, we make use of a dense DT representation. Traditionally, the feature index
vector ι is one-dimensional. However, as in GradTree, we expand it into a matrix form. Specif-
ically, this representation one-hot encodes the feature index, converting ι ∈ R2d−1 into a matrix
I ∈ R(2d−1)×|S|. Similarly, for split thresholds, instead of a single value for all features, individ-
ual values for each feature are stored, leading to T ∈ R(2d−1)×|S|. The dense representation is
visualized in Figure 2. Please note, that in contrast to SDTs, the dense representation of SYMPOL
corresponds to an equivalent standard DT representation at each point in time, ensuring that the un-
derlying model is a hard, axis-aligned DT. By enumerating the internal nodes in breadth-first order,
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(b) Dense DT Representation

Figure 2: Standard vs. Dense DT Representation. A comparison between the standard decision
tree representation and its dense equivalent, illustrated using an example decision tree of depth 2,
with a state space of dimensionality 3 and two possible actions.

we can redefine the indicator function L for a leaf l, resulting in

π(s|a, T, I) =
2d−1∑
l=0

al L(s|l,T , I) (3)

where L(s|l,T , I) =

d∏
j=1

(1− p(l, j)) S(s|Ii(l,j),Ti(l,j)) + p(l, j)
(
1− S(s|Ii(l,j),Ti(l,j))

)
(4)

Here, i is the index of the internal node preceding a leaf node l at a certain depth j and p indicates
whether the left (p = 0) or the right branch (p = 1) was taken.

Axis-aligned splitting. Typically, DTs use the Heaviside function for splitting, which is non-
differentiable. We use the split function introduced in GradTree to account for reasonable gradients:

S(s|ι, τ ) = ⌊S (ι · s− ι · τ )⌉ (5)

where S(z) = 1
1+e−z represents the logistic function, ⌊·⌉ stands for rounding and a · b denotes the

dot product. We further need to ensure that ι is a one-hot encoded vector to account for axis-aligned
splits. This is achieved by applying a hardmax transformation before calculating S. Both rounding
and hardmax operations are non-differentiable and therefore, SYMPOL is not considered as a soft or
differentiable DT method. Instead, to overcome non-differentiability, SYMPOL employs a straight-
through operator (Bengio et al., 2013) during backpropagation. This allows the model to use non-
differentiable operations in the forward pass while ensuring gradient propagation in the backward
pass. As a result, we can directly learn an interpretable DT from policy gradient. This makes
SYMPOL framework-agnostic and facilitates a seamless integration into existing RL frameworks.

Weight decay. In contrast to GradTree, which employs an Adam (Kingma & Ba, 2014) opti-
mizer with stochastic weight averaging (Izmailov et al., 2018), we opted for an Adam optimizer
with weight decay (Loshchilov & Hutter, 2017). In the context of SYMPOL, weight decay does
not serve as a regularizer for model complexity, as the interpretation of model parameters differs.
We distinguish between three types of parameters: the distributions in the leaves (a), the split index
encoding (I), and the split values (T ). We do not apply weight decay to the split values because
they are independent of magnitude. However, for the split indices and leaves, weight decay enhances
exploration during training by penalizing large parameter values. As a result, the distribution of the
split index selection and class prediction are narrow and have lower variance. This aids in dynami-
cally adjusting which feature is considered at a split and in altering the predicted leave distribution.

Actor-critic network architecture. Commonly, the actor and critic use a similar network archi-
tecture or even share the same weights (Schulman et al., 2017). While SYMPOL aims for a simple
and interpretable policy, we do not have the same requirements for the critic. Therefore, we decided
to only employ a tree-based actor and use a full-complexity NN as a value function. As a result,
we can still capture complexity through the value function, without loosing interpretability, as we
maintain a simple and interpretable policy.

Continuous action spaces. Furthermore, we extend the DT policy of SYMPOL to environments
with continuous action spaces. Therefore, instead of predicting a categorical distribution over the
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classes, we predict the mean of a normal distribution at each leaf and utilize an additional variable
σlog ∈ R|A| to learn the log of the standard deviation.

4.2 ADDRESSING TRAINING STABILITY

One main challenge when using DTs as a policy is the stability. While a stable training is also
desired and often hard to achieve for a NN policy, this is even more pronounced for SYMPOL.
This is mainly caused by the inherent tree-based architecture. Changing a split at the top of the
tree can have a severe impact on the whole model, as it can completely change the paths taken for
certain observations. This is especially relevant in the context of RL, where the data distribution can
vary highly between iterations. To mitigate the impact of highly non-stationary training samples,
especially at early stages of training, we made two crucial modifications for improved stability.

Exploration stability. Motivated by the idea that rollouts of more accurate policies contain in-
creasingly diverse, higher quality samples, we implemented a dynamic number of environment steps
between training iterations. Let us consider a pendulum as an example. While at early stages of
training a relatively small sample size facilitates faster learning as the pendulum constantly flips,
more optimal policies lead to longer rollouts and therefore more expressive and diverse experiences
in the rollout buffer. Similarly, the increasing step counts stabilize the optimization of policy and
critic, as the number of experiences for gradient computation grow with agent expertise and capture
the diversity within trajectories better. Therefore, our novel collection approach starts with ninit

environment steps and expands until nfinal actions are taken before each training iteration. For
computational efficiency reasons, instead of increasing the size of the rollout buffer at every time
step, we introduce a step-wise exponential function. The exponential increase supports exploration
in the initial iterations, while maintaining stability at later iterations. Hence, we define the number
of steps in the environment nt at time step t as

nt = ninit × 2

⌊
(t+1)×i
1+ttotal

⌋
−1 with i = 1 + log2

(
ninit

nfinal

)
(6)

For our experiments, we define ninit as a hyperparameter (similar to the static step size for other
methods) and set nfinal = 128×ninit and therefore i = 8 which we observed is a good default value.

Gradient stability. We also utilize large batch sizes for SYMPOL resulting in less noisy gradients,
leading to a smoother convergence and better stability. In this context, we implement gradient
accumulation to virtually increase the batch size further while maintaining memory-efficiency. As
reduced noise in the gradients also leads to less exploration in the parameter space, we implement a
dynamic batch size, increasing in the same rate as the environment steps between training iterations
(Equation 6). Therefore, we can benefit from exploration and fast convergence early on and increase
gradient stability during the training.

5 EVALUATION

We designed our experiments to evaluate whether SYMPOL can learn accurate DT policies without
information loss and observe whether the trees learned by SYMPOL are small and interpretable.
As mentioned above, we focus on PPO as the most prominent actor-critic, on-policy RL algorithm
in our evaluation. To support our claim that SYMPOL can be seamlessly integrated into existing
on-policy RL frameworks, we additionally provide results using A2C in Appendix A.1.

5.1 EXPERIMENTAL SETTINGS

Setup. We implemented SYMPOL in a highly efficient single-file JAX implementation that al-
lows a flawless integration with highly optimized training frameworks (Lange, 2022; Weng et al.,
2022; Bonnet et al., 2024). Our implementation is available in the supplementary material, and
will be made publically available upon acceptance. We evaluated our method on several environ-
ments commonly used for benchmarking RL methods. Specifically, we used control environments
including CartPole (CP), Acrobot (AB), LunarLander (LL), MountainCarContinuous (MC-C) and
Pendulum (PD-C), as well as the MiniGrid (Chevalier-Boisvert et al., 2023) environments Empty-
Random (E-R), DoorKey (DK), LavaGap (LG) and DistShift (DS).

6
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Figure 3: Selected Training Curves. Shows the training reward of the full-complexity policy (e.g.
MLP in the case of SA-DT) as solid line and the test reward of the interpretable policy as dashed
line for three control environments. Additional, more detailed results are in Appendix A.6.

Methods. The goal of this evaluation is to compare SYMPOL to alternative methods that allow an
interpretation of RL policies as a symbolic, axis-aligned DTs. Therefore, we build on previous work
(Silva et al., 2020) and use two methods grounded in the interpretable RL literature, as follows:

• State-Action DTs (SA-DT): SA-DTs are the most common method to generate inter-
pretable policies post-hoc. Hereby, we first train an MLP policy, which is then distilled
into a DT as a post-processing step after the training. SA-DT can be considered as a ver-
sion of DAGGER (Ross et al., 2011) and therefore a simplified version of VIPER (Bastani
et al., 2018). In a comparative experiment (see Appendix A.3), we showed that for the
case of learning small, interpretable DTs the performance of SA-DT is similar to those of
VIPER, which is in-line with results reported e.g. by Kohler et al. (2024).

• Discretized Soft DTs (D-SDT): SDTs allow gradient computation by assigning probabili-
ties to each node. While SDTs exhibit a hierarchical structure, they are usually considered
as less interpretable, since multiple features are considered in a single split and the whole
tree is traversed simultaneously (Marton et al., 2024a). Therefore, Silva et al. (2020) use
SDTs as policies which are discretized post-hoc to allow an easy interpretation.

We further included an MLP and SDT, providing an orientation to state-of-the-art results.

Evaluation procedure. We report the average undiscounted cumulative reward over 5 random
trainings with 5 random evaluation episodes each (=25 evaluations for each method). We trained
each method for 1mio timesteps. For SYMPOL, SDT and MLP, we optimized the hyperparameters
based on the validation reward with optuna (Akiba et al., 2019) for 60 trials using a predefined
grid. For D-SDT we discretized the SDT and for SA-DT, we distilled the MLP with the highest
performance. More details on the hyperparameters can be found in Appendix C.

5.2 RESULTS

Table 1: Information Loss. We cal-
culated Cohens’s D to measure effect
size between the validation reward of the
trained and the test reward of the applied
model. Values > 0.8 are considered as a
large effect. Detailed results are in Ap-
pendix A.2

Cohen’s D ↓
SYMPOL (ours) -0.019
SA-DT (d=5) 3.449
SA-DT (d=8) 2.527
D-SDT 3.126

MLP 0.306
SDT 0.040

SYMPOL does not exhibit information loss. Ex-
isting methods for learning DT policies usually in-
volve post-processing to obtain the interpretable model.
Therefore, they introduce a mismatch between the op-
timized and interpreted policy, which can result in in-
formation loss. The main advantage of SYMPOL is
the direct optimization of a DT policy, which guaran-
tees that there is no information loss between the opti-
mized and interpreted policy. To show this, we calcu-
lated Cohens’s D to measure the effect size comparing
the validation reward of the trained model with the test
reward of the applied, optionally post-processed model
(Table 1). We can observe very large effects for SA-DT
and D-SDT and only a very small effect for SYMPOL,
similar to full-complexity models MLP and SDT. This
discrepancy can also be observed in the training curves
in Figure 3.
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Table 2: Control Performance. We report the average
undiscounted cumulative test reward over 25 random tri-
als. The best interpretable method, and methods not sta-
tistically different, are marked bold.

CP AB LL MC-C PD-C

SYMPOL (ours) 500 - 80 - 57 94 - 323
D-SDT 128 -205 -221 -10 -1343
SA-DT (d=5) 446 -97 -197 97 -1251
SA-DT (d=8) 476 - 75 -150 96 - 854

MLP 500 - 72 241 95 - 191
SDT 500 - 77 -124 - 4 - 310

SYMPOL learns accurate DT poli-
cies. We evaluated our approach
against existing methods on control
environments in Table 2. SYM-
POL is consistently among the best
interpretable models and achieves
significantly higher rewards compared
to alternative methods for learning DT
policies on several environments, espe-
cially on LL and PD-C. Further, SYM-
POL consistently solves CP and AB
and is competitive to full-complexity
models on most environments.

Table 3: MiniGrid Performance. We report the aver-
age undiscounted cumulative test reward over 25 random
trials. The best interpretable method, and methods not
statistically different, are marked bold.

E-R DK LG-5 LG-7 DS

SYMPOL (ours) 0.964 0.959 0.951 0.953 0.939
D-SDT 0.662 0.654 0.262 0.381 0.932
SA-DT (d=5) 0.583 0.958 0.951 0.458 0.952
SA-DT (d=8) 0.845 0.961 0.951 0.799 0.954

MLP 0.963 0.963 0.951 0.760 0.951
SDT 0.966 0.959 0.839 0.953 0.954

DT policies offer a good inductive
bias for categorical environments.
While SYMPOL achieves great results
in control benchmarks, it may not be an
ideal method for environments model-
ing physical relationships. As recently
also noted by Fuhrer et al. (2024), tree-
based models are best suited for cate-
gorical environments due to their effec-
tive use of axis-aligned splits. In our ex-
periments on MiniGrid (Table 3), SYM-
POL achieves comparable or superior
results to full-complexity models (e.g.
on LG-7). The performance gap be-
tween SA-DT and SYMPOL is smaller in certain MiniGrid environments due to less complex en-
vironment transition functions and missing randomness, making the distillation easy. Considering
more complex environments with randomness or lava like E-R or LG-7, SYMPOL outperforms
alternative methods by a substantial margin.

Car	Velocity
≤ −0.01

NoYes

Left
(-0.26)

Car	Velocity
≤ −0.04

Yes No

Car	Position
≤ 0.00

Car	Velocity
≤ 0.06

Car	Position
≤ 0.00

Yes No

Right
(1.14)

Right
(0.01)

Car	Position
≤ 0.00

Yes No

Right
(0.82)

Right
(0.32)

Yes No

Yes No

Left
(-0.16)

Right
(0.67)

Figure 4: SYMPOL Policy for MC-C. The main rule
encoded by this tree is that the car should accelerate to
the left, if its velocity is negative and to the right if it is
positive, which essentially increases the speed of the car
over time, making it possible to reach the goal at the top
of the hill. The magnitude of the acceleration is mainly
determined by the current position, reducing the cost of
the actions.

DT policies learned with SYMPOL
are small and interpretable. While
we trained SYMPOL with a depth of
7 and therefore 255 possible nodes, the
effective tree size after pruning is sig-
nificantly smaller with only 50.5 nodes
(internal and leaf combined) on aver-
age. This can be attributed to a self-
pruning mechanism that is inherently
applied by SYMPOL in learning redun-
dant paths during the training and there-
fore only optimizing relevant parts. Fur-
thermore, DTs learned with SYMPOL
are smaller than SA-DTs (d=5) with an
average of 60.3 nodes and significantly
smaller than SA-DTs (d=8) averaging
291.6 nodes. The pruned D-SDTs are significantly smaller with only 16.5, but also have a very
poor performance, as shown in the previous experiment. An exemplary DT learned by SYMPOL,
showcasing its interpretability, is visualized in Figure 4. Extended results are in Appendix A.4.

SYMPOL is efficient. In RL, the actor-environment interaction frequently constitutes a significant
portion of the total runtime. For smaller policies, in particular, the runtime is mainly determined by
the time required to execute actions within the environment to obtain the next observation, while
the time required to execute the policy itself having a comparatively minimal impact on runtime.
Therefore, recent research put much effort into optimizing this interaction through environment
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Figure 6: DistShift. We show the training
environment for the agent along with the
starting position and goal. The path taken
by SYMPOL (see Figure 7) is marked by
green arrows and solves the environment.

NoYes

Turn
Left

No
Move

Forward

No
Turn
Left

Turn
Right

Yes

Yes

Figure 7: SYMPOL Policy. This image shows the DT
policy of SYMPOL. Split nodes are visualized as the
3x3 view grid of the agent with one square marking the
considered object and position. If the visualized object
is present at this position, the true path (left) is taken.

vectorization. The design of SYMPOL, in contrast to existing methods for tree-based RL, allows
a seamless integration with these highly efficient training frameworks. As a result, the runtime of
SYMPOL is almost identical to using an MLP or SDT as policy, averaging less than 30 seconds for
1mio timesteps. Detailed results are in Appendix A.6.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Mean

SYMPOL

w/o separate architecture

w/o dynamic rollout

w/o batch size adjustment

w/o adamW

Figure 5: Ablation Study. We report the mean normalized
reward over all control environments (details in Table 11).

Ablation study. In Section 4, we
introduced several crucial compo-
nents to facilitate an efficient and sta-
ble training of SYMPOL. To sup-
port the intuitive justifications for our
modifications, we performed an abla-
tion study (Figure 5) to evaluate the
relevance of the individual compo-
nents. Our results confirm that each
component substantially contributes
to the overall performance.

6 CASE STUDY: DETECTING GOAL MISGENERALIZATION

To demonstrate the benefits of SYMPOLs enhanced transparency, we present a case study on goal
misgeneralization (Di Langosco et al., 2022). Good policy generalization is vital in RL, yet agents
often exhibit poor out-of-distribution performance, even with minor environmental changes. Goal
misgeneralization is a well-researched out-of-distribution robustness failure that occurs when an
agent learns robust skills during training but follows unintended goals. This happens when the
agent’s behavioral objective diverges from the intended objective, leading to high rewards during
training but poor generalization during testing. For instance, NNs were shown to systematically
misgeneralize on Atari environments (Farebrother et al., 2018; Delfosse et al., 2024a).

To demonstrate that SYMPOL can help in detecting misaligned behavior, let us consider the Dist-
Shift environment from MiniGrid, shown in Figure 6. The environment is designed to test for
misgeneralization (Chevalier-Boisvert et al., 2023), as the goal is repeatedly placed in the top right
corner and the lava remains at the same position. We can formulate the intended behavior accord-
ing to the task description as avoiding the lava and reaching a specific goal location. SYMPOL,
similar to other methods, solved the task consistently. The advantage of SYMPOL is the tree-based
structure, which is easily interpretable. When inspecting the SYMPOL policy (Figure 7), we can
immediately observe that the agent has not captured the actual task correctly. Essentially, it has only
learned to keep an empty space on the left of the agent (which translates into following the wall) and
not to step into lava (but not to get around it). While this is sufficient to solve this exact environment,
it is evident, that the agent has not generalized to the overall goal.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at conference 2025

Figure 8: DistShift with Domain Random-
ization. This is a modified version of Dist-
Shift, with goal and lava at random positions.
SYMPOL (Figure 7), visualized as the green
line, is not able to solve the randomized en-
vironment. Training SYMPOL with domain
randomization (Figure 9), visualized as the
red line, is able to solve the environment.

NoYes

Turn
Left

No

Turn
Right

No

Move
Forward

Yes

Yes

No

Turn
Right

YesNoYes

Turn
Left

No
Move

Forward

Yes
Move

Forward

No
Turn
Left

Yes

Figure 9: SYMPOL Policy with Domain Ran-
domization. The SYMPOL policy (Figure 9) re-
trained with domain randomization. The agent
now has learned to avoid lava and walls, as well
as identifying and walk into the goal.

In order to test for misgeneralization, we created test environments in which the agent has to reach
a random goal placed with lava placed at a varying locations. As already identified based on the
interpretable policy, we can observe in Figure 8 that the agent gets stuck when the goal or lava
positions change. Alternative non-interpretable policies exhibit the same behavior, which might
remain unnoticed due to the black-box nature. Instead of simply looking at the learned policy
with SYMPOL, alternative methods would require using external methods or designing complex
test cases to detect such misbehavior. Alternative methods to generate DT policies like SA-DT
also provide an interpretable policy, but as already shown during our experiments, frequently come
with severe information loss. Due to this information loss, we cannot ensure that we are actually
interpreting the policy, which is guaranteed using SYMPOL.

Based on these insights, we retrained SYMPOL with domain randomization. The resulting pol-
icy (see Figure 9) now solves the randomized environments (see Figure 8), still maintaining in-
terpretability. In line with our results, Delfosse et al. (2024c) showed that using interpretable DT
policies can help to mitigate goal misgeneralization which showcases the potential benefit of using
interpretable RL policies to ensure a good generalization.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced SYMPOL, a novel method for tree-based RL. SYMPOL can be seam-
lessly integrated into existing on-policy RL frameworks, where the DT policy is directly optimized
on-policy while maintaining interpretability. This direct optimization guarantees that the explanation
exactly matches the policy learned during training, avoiding the information loss often encountered
with existing methods that rely on post-processing to obtain an interpretable policy. Furthermore,
the performance of interpretable DT policies learned by SYMPOL is significantly higher compared
to existing methods, particularly in environments involving more complex environment transition
functions or randomness. We believe that SYMPOL represents a significant step towards bridging
the gap between the performance of on-policy RL and the interpretability and transparency of sym-
bolic approaches, paving the way for the widespread adoption of trustworthy and explainable AI
systems in safety-critical and high-stakes domains.

While we focused on an actor-critic on-policy RL method, the flexibility of SYMPOL allows an
integration into arbitrary policy optimization RL frameworks including off-policy methods like Soft
Actor-Critic (SAC) (Haarnoja et al., 2018) or Advantage Weighted Regression (AWR) (Peng et al.,
2019), which can be explored in future work. Also, it would be interesting to evaluate a more
complex, forest-like tree structure as a performance-interpretability trade-off, similar to Marton et al.
(2024b), especially based on the promising results of Fuhrer et al. (2024) for tree-based RL.
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A ADDITIONAL RESULTS

In this section, we present additional results to support the claims made in the main paper, along
with extended results for the summarizing tables. We focus on the control environments because
they offer a diverse suite of benchmarks that cover different tasks and include both continuous and
discrete action spaces. We chose not to include the MiniGrid environments here because their inclu-
sion could distort the results, particularly the averages calculated in the main paper, as all MiniGrid
environments involve similar tasks and feature a discrete action and observation space. The primary
reason for including MiniGrid in the main paper is to provide additional experimental results that
confirm the robustness and applicability of our method across different domains, as well as to high-
light that tree-based methods offer a beneficial inductive bias for these categorical environments.

A.1 EVALUATION WITH ALTERNATIVE RL ALGORITHMS: ADVANTAGE ACTOR CRITIC
(A2C)

To suppport our claim that SYMPOL can be integrated into arbitrary on-policy frameworks, we
provide results on A2C in the following. The reported results use optimized hyperparameters for
each method. In general, A2C is considered as less stable compared to PPO, which is an additional
challenge for SYMPOL, as training stability is especially crucial for DT policies. As A2C does not
update the policy in minibatches over multiple epochs, we did not include a dynamic batch size here,
but update SYMPOL with a single update over the rollout to stay consistent with the A2C algorithm.

Table 4: A2C Control Performance. We report the average undiscounted cumulative test reward
over 25 random trials. The best interpretable method, and methods not statistically different, are
marked bold.

CP AB LL MC-C PD-C

SYMPOL (ours) 500 - 84 - 85 58 - 502
D-SDT 11 -427 -396 -0 -1137
SA-DT (d=5) 295 -102 -348 0 -1467
SA-DT (d=8) 223 - 99 -367 2 -1526

MLP 500 - 78 208 0 - 202
SDT 500 - 85 -159 0 - 201

Table 5: A2C Control Performance Comparison. We report the average undiscounted cumulative
test reward over 25 random trials, comparing A2C with PPO using optimized hyperparameters. A
number is marked bold if the performance achieved with the underlying RL algorithm (PPO or A2C)
is significantly better or not statistically different from the best result.

MLP SDT SYMPOL (ours) SA-DT (d=5) SA-DT (d=8) D-SDT
A2C PPO A2C PPO A2C PPO A2C PPO A2C PPO A2C PPO

CP 500 500 500 500 500 500 295 446 223 476 11 128
AB -78 -72 -85 -77 -84 -80 -102 -97 -99 -75 -427 -205
LL 208 241 -159 -124 -85 -57 -348 -197 -367 -150 -396 -221
MC-C 0 95 0 -4 58 94 0 97 -2 96 0 -10
PD-C -202 -191 -201 -310 -502 -323 -1467 -1251 -1526 -854 -1137 -1343

We compared the performance of all methods using A2C on control environments in Table 4, and
additionally provided a direct comparison between PPO and A2C in Table 5. When using A2C,
SYMPOL consistently outperforms other interpretable models. The performance gap becomes even
more pronounced when using A2C instead of PPO, as SYMPOL achieves substantially higher per-
formance than all other interpretable models in each environment. On MC-C, SYMPOL is the only
method that achieves a positive reward, whereas even full-complexity models were unable to solve
the task. This can be attributed to the lower training stability of A2C compared to PPO. This could
also explain the poor results of distillation methods, as the policy learned by full-complexity models,
even when achieving a high test reward, is potentially less consolidated, making it harder to distill.
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However, to confirm this assumption, further experiments would be required. Based on these results,
we can confirm that SYMPOL can seamless be integrated into other RL algorithms, demonstrating
the high flexibility of our proposed method. Additionally, our method can benefit from advances in
RL, as it can be seamlessly integrated into novel frameworks.

A.2 INFORMATION LOSS

We provide detailed results on the information loss which can result as a consequence of discretiza-
tion (for D-SDT) or distillation (for SA-DT). In Table 6, we report the validation reward of the
trained model along with the test reward of the discretized model. We can clearly observe that there
are major differences for SA-DT and D-SDT on several datasets, indicating information loss. In
Table 7, we report Cohen’s D to measure the effect size comparing the validation reward of the
trained model with the test reward of the applied, optionally post-processed model. Again, we can
clearly see large effects for SA-DT and D-SDT on several datasets, especially for PD-C and LL, but
also CP. Furthermore, the training curves in Figure 12 visually show the information loss during the
training.

Table 6: Information Loss (Comparison). We report the validation reward of the trained model
and the test reward of the applied model.

MLP SDT SYMPOL (ours) SA-DT (d=5) SA-DT (d=8) D-SDT
valid test valid test valid test valid test valid test valid test

CP 500 500 500 500 500 500 500 446 500 476 500 128
AB -71 -72 -89 -77 -79 -80 -71 -97 -71 -75 -89 -205
LL 256 241 -91 -124 -9 -57 256 -197 256 -150 -91 -221
MC-C 95 95 -4 -4 87 94 95 97 95 96 -4 -10
PD-C -169 -191 -295 -310 -305 -323 -169 -1251 -169 -854 -295 -1343

Table 7: Information Loss (Cohen’s D). We calculated Cohens’s D to measure effect size between
the validation reward of the trained model and the test reward of the applied model. Typically,
values > 0.5 are considered a medium and values > 0.8 a large effect. positive effects that are at
least medium are marked as bold.

MLP SDT SYMPOL (ours) SA-DT (d=5) SA-DT (d=8) D-SDT

CP 0.000 0.000 0.000 0.632 1.214 4.075
AB 0.035 -0.630 0.104 0.728 0.338 0.982
LL 0.341 0.750 0.370 4.776 8.155 2.254
MC-C -0.042 -0.002 -1.035 -2.011 -1.172 0.745
PD-C 1.195 0.081 0.468 13.120 4.101 7.573

Mean ↓ 0.306 0.040 -0.019 3.449 2.527 3.126

A.3 COMPARISON OF SYMPOL, SA-DT (DAGGER) AND VIPER (Q-DAGGER)

In this section, we provide a direct comparison of SYMPOL with SA-DT and VIPER for control
environments (see Table 8) and MiniGrid environments (see Table 9). SA-DT (Silva et al., 2020)
can be considered as a version of DAGGER (Ross et al., 2011) and is conceptually similar to VIPER
(Q-DAGGER) (Bastani et al., 2018) which improves data collection including additional weighting.
Our results remain consistent with our original claims, demonstrating that SYMPOL outperforms
alternative approaches. This is also in-line with the results reported by Kohler et al. (2024), where
the authors show, that the sampling in VIPER does not yield a better performance compared do
DAGGER/SA-DT for interpretable DTs. The results reported in the original VIPER paper (Bastani
et al., 2018) stating to achieve a perfect reward for CP are on a different version of the environment
(CartPole-v0) with only 200 opposed to 500 time steps and less randomness (CartPole-v1), making
the underlying task easier. Also, we want to note, that the reported results are in-line with related
work, reporting comparable or worse results than ours. For instance, Vos & Verwer (2024) report
a mean reward of only 367 for VIPER on CartPole-v1. Also, Kenny et al. (2023) showcase a poor
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Table 8: Control Performance. We report the average undiscounted cumulative test reward over
25 random trials. The best interpretable method, and methods not statistically different, are marked
bold. Please note that VIPER cannot be applied to continuous environments.

CP AB LL MC-C PD-C

SYMPOL (ours) 500 - 80 - 57 94 - 323
D-SDT 128 -205 -221 -10 -1343
SA-DT (d=5) 446 -97 -197 97 -1251
SA-DT (d=8) 476 - 75 -150 96 - 854
VIPER (d=5) 457 - 77 -200 - -
VIPER (d=8) 480 - 75 -169 - -

MLP 500 - 72 241 95 - 191
SDT 500 - 77 -124 - 4 - 310

Table 9: MiniGrid Performance. We report the average undiscounted cumulative test reward over
25 random trials. The best interpretable method, and methods not statistically different, are marked
bold.

E-R DK LG-5 LG-7 DS

SYMPOL (ours) 0.964 0.959 0.951 0.953 0.939
D-SDT 0.662 0.654 0.262 0.381 0.932
SA-DT (d=5) 0.583 0.958 0.951 0.458 0.952
SA-DT (d=8) 0.845 0.961 0.951 0.799 0.954
VIPER (d=5) 0.651 0.958 0.948 0.456 0.954
VIPER (d=8) 0.845 0.963 0.948 0.801 0.954

MLP 0.963 0.963 0.951 0.760 0.951
SDT 0.966 0.959 0.839 0.953 0.954

performance of VIPER in general and specifically for LL the performance is worse than what we
reported. Our findings align with these, suggesting that differences in performance may reflect
randomness and missing generalizability in the evaluation.

A.4 TREE SIZE

We report the average tree sizes over 25 trials for each environment. The DTs for SYMPOL and
D-SDT are automatically pruned by removing redundant paths. There are mainly two identifiers,
making a path redundant:

• The split threshold of a split is outside the range specified by the environment. For instance,
if x1 ∈ [0.0, 1.0] the decision x1 ≤ −0.1 will always be false as −0.1 ≤ 0.0.

• A decision at a higher level of the tree already predefines the current decision. For instance,
if the split at the root node is x1 ≤ 0.5 and the subsequent node following the true path is
x1 ≤ 0.6 we know that this node will always be evaluated to true as 0.5 ≤ 0.6.

We excluded the MiniGrid environments here, as they require a more sophisticated, automated prun-
ing as there exist more requirements making a path redundant. For instance, if for the decision
whether there is a wall in front of the agent is true, the decision for all other objects at the same
position has to be always false.
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Table 10: Tree Size. We report the average size of the learned DT for each environment.

SYMPOL (ours) D-SDT SA-DT (d=5) SA-DT (d=8)

CP 39.4 14.2 61.8 315.0
AB 78.6 17.0 56.5 173.0
LL 55.0 19.8 59.8 270.2
MC-C 23.4 3.0 61.0 311.8
PD-C 56.2 28.6 62.2 388.2

Mean ↓ 50.5 16.5 60.3 291.6

A.5 ABLATION STUDY

Our ablation study was designed to support our intuitive justifications for the modifications made
to the RL framework and our method. Therefore, we disabled individual component of our method
and evaluated the performance without the specific component. This includes the following modifi-
cations introduced in Section 4:

1. w/o separate architecture: Instead of using separate architectures for actor and critic, we
use the same architecture and hyperparameters for the actor and critic.

2. w/o dynamic rollout: We proposed a dynamic rollout buffer that increases with a stepwise
exponential rate during training to increase stability while maintaining exploration early
on. Here we used a standard, static rollout buffer.

3. w/o batch size adjustment: Similar to the dynamic rollout buffer, we proposed using a
dynamic batch size to increase gradient stability in later stages of the training. Here, we
used standard, static batch size.

4. w/o adamW: We introduced an Adam optimizer with weight decay to SYMPOL to support
the adjustment of the features to split on and the class predicted. Here, we use a standard
Adam optimizer without weight decay.

Detailed results for each of the control datasets are reported in Table 11. The results clearly confirm
our intuitive justifications, as each adjustment has a crucial impact on the performance of SYMPOL.

Table 11: Ablation Study. We report the average test performance over a total of 25 random trials.
This normalized performance consists in normalizing each reward between 0 and 1 via an affine
renormalization between the top- and worse-performing models. Instead of the worse-performing
model, we use the 20% test reward quantile to account for outliers.

Agent Type CP AB LL MC-C PD-C Normalized Mean (↑)

SYMPOL 500.0 - 79.9 - 57.4 94.3 - 323.3 0.988
w/o separate architecture 135.6 -196.4 -276.8 -552.4 -1219.4 0.080
w/o dynamic rollout 456.1 - 92.0 -178.2 -144.1 - 434.4 0.598
w/o batch size adjustment 498.8 - 81.7 -320.7 -1818.8 - 434.4 0.372
w/o adamW 416.1 - 78.3 - 97.3 0.0 - 393.5 0.865

A.6 RUNTIME AND TRAINING CURVES

The experiments were conducted on a single NVIDIA RTX A6000. The environments for CP, AB,
MC-C and PD-C were vectorized (Lange, 2022) and therefore the training is highly efficient, taking
only 30 seconds for 1mio timesteps on average (excluding the sequential evaluation which cannot
be vectorized). The remaining environments are not vectorized, and we used the standard Gymna-
sium (Towers et al., 2024) implementation. In Table 12 can clearly see the impact of environment
vectorization, as the runtime for LL, which is not vectorized, is more than 10 times higher with over
400 seconds.
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Figure 10: Exemplary large CartPole DT. This figure visualizes a larger tree with 59 nodes learned
by SYMPOL on the CartPole environment. While the tree is comparatively large, we can observe
that the main logic is contained in the nodes at higher levels, focusing on the pole angle and the
pole angular velocity. The less important features are in the lower levels where splits are often
mage on the cart position, which is not required to solve the task perfectly. This also highlights the
potential for advanced post-hoc pruning methods to increase interpretability and potentially even
generalization.
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Table 12: Runtime. We report the average runtime over 25 trials. One trial spans 1mio timesteps
for each environment. We excluded LL from the mean runtime calculation, as this is the only non-
vectorized environment. To provide a fair comparison of different methods, we aligned the step and
batch size.

SYMPOL (ours) SDT MLP

CP 28.8 23.9 25.2
AB 35.5 37.7 33.8
MC-C 23.4 19.4 18.4
PD-C 28.7 28.2 18.5

Mean ↓ 29.1 27.3 24.0

LL 402.3 394.0 405.6

In addition to the training times, we report detailed training curves for each method. Figure 11
compares the training reward and the test reward of SYMPOL with the full-complexity models
MLP and SDT. SYMPOL shows a similar convergence compared to full-complexity models on
most environments. For AB, SYMPOL converges even faster than an MLP which can be attributed
to the dynamic rollout buffer and batch size. For MC-C we can see that the training of SYMPOL is
very unstable at the beginning. We believe that this can be attributed to the sparse reward function
of this certain environment and the fact that as a result, minor changes in the policy can result in a
severe drop in the reward. Combined with the small rollout buffer and batch size early in the training
of SYMPOL, this can result in an unstable training. However, we can see that the training stabilizes
later on, which again confirms the design of our dynamic buffer size increasing over time.

Furthermore, we provide a pairwise comparison of SYMPOL with SA-DT and D-SDT in Figure 12.
Here, we can again observe the severe information loss for D-SDT and SA-DT by comparing the
training curve with the test reward.
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Figure 11: Training Curves (Full-Complexity). Shows the training reward as solid line and the
test reward as dashed line for SYMPOL (blue), MLP (orange) and SDT (green).
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(b) CP SYMPOL vs. SA-DT (d=8)
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(c) CP SYMPOL vs. D-SDT
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(d) AB SYMPOL vs. SA-DT (d=5)

200k 400k 600k 800k 1M
Global Timestep

400

350

300

250

200

150

100

50

0

Re
wa

rd

SYMPOL Train
SYMPOL Test

SA-DT (d=8) Train
SA-DT (d=8) Test

(e) AB SYMPOL vs. SA-DT (d=8)
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(f) AB SYMPOL vs. D-SDT
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(g) LL SYMPOL vs. SA-DT (d=5)
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(h) LL SYMPOL vs. SA-DT (d=8)
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(i) LL SYMPOL vs. D-SDT
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(j) MC-C SYMPOL vs. SA-DT
(d=5)
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(k) MC-C SYMPOL vs. SA-DT
(d=8)
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(l) MC-C SYMPOL vs. D-SDT
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(o) PC-C SYMPOL vs. D-SDT

Figure 12: Training Curves. Shows the training reward as solid line and the test reward as dashed
line for SYMPOL (blue), SA-DT-5 (orange) SA-DT-8 (green) and D-SDT (red). Thereby, the test
reward is calculated with the discretized/distilled policy for SA-DT and D-SDT. For several datasets,
we can again observe the severe information loss introduced with the post-processing (e.g. for PD-C
and LL).

B MINIGRID

We used the MiniGrid implementation from (Chevalier-Boisvert et al., 2023). For each environment,
we limited to observations and the actions to the available ones according to the documentation.
Furthermore, we decided to use a view size of 3 to allow a good visualization of the results. In the
following, we provide more examples for our MiniGrid Use-Case, along with more detailed visual-
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izations. In the following, we visualized the SYMPOL agent sequentially acting in the environment
as one image for one step from left to right and top to bottom. Figure 13 shows how SYMPOL (see
image in the main paper or tree function(obs) defined below) solves the environment. Fig-
ure 14 and Figure 16 show the same agent failing on the environment with domain randomization,
proving that the agent did not generalize, as we could already observe by inspecting the symbolic,
tree-based policy. Retraining the agent with domain randomization (see image in the main paper or
tree function retrained(obs) defined below), SYMPOL is able to solve the environment
(see Figure 15 and Figure 17), maintaining interpretability.

B.1 VISUALIZATIONS ENVIRONMENT

Figure 13: DistShift SYMPOL. This figure visualizes the path taken by the SYMPOL agent trained
on the basic DistShift environment (see image in the main paper or tree function(obs) de-
fined below) from left to right and top to bottom. The agent follows the wall and reaches the goal at
the top right corner.
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Figure 14: DistShift (Domain Randomization) SYMPOL Example 1. This figure visualizes the
path taken by the SYMPOL agent trained on the basic DistShift environment (see image in the main
paper or tree function(obs) defined below) from left to right and top to bottom. The agent
follows the wall gets stuck by the lava.

Figure 15: DistShift (Domain Randomization) SYMPOL (retrained) Example 1. This figure
visualizes the path taken by the SYMPOL agent trained on the randomized DistShift environment
(see image in the main paper or tree function retrained(obs) defined below) from left
to right and top to bottom. The agent avoids the lava, identifies the goal and walks into the goal.
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Figure 16: DistShift (Domain Randomization) SYMPOL Example 2. This figure visualizes the
path taken by the SYMPOL agent trained on the basic DistShift environment (see image in the main
paper or tree function(obs) defined below) from left to right and top to bottom. The agent
follows the wall until there is no empty space on the left. Instead of an empty space there is the goal,
but instead of walking into the goal, the agent surpasses it and again gets stuck at the lava.

Figure 17: DistShift (Domain Randomization) SYMPOL (retrained) Example 2. This figure
visualizes the path taken by the SYMPOL agent trained on the randomized DistShift environment
(see image in the main paper or tree function retrained(obs) defined below) from left
to right and top to bottom. The agent avoids the lava, identifies the goal, and walks into the goal.
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B.2 SYMPOL ALGORITHMIC PRESENTATION

1 def tree_function(obs):
2 if obs[field one to front and one to left] is ’empty’:
3 if obs[field one to front] is ’lava’:
4 if obs[field one to left] is ’empty’:
5 action = ’turn right’
6 else:
7 action = ’turn left’
8 else:
9 action = ’move forward’

10 else:
11 action = ’turn left’
12 return action

1 def tree_function_retrained(obs):
2 if obs[field one to left] is ’goal’:
3 action = ’turn left’
4 else:
5 if obs[field one to right] is ’goal’:
6 action = ’turn right’
7 else:
8 if obs[field two to front] is ’wall’:
9 if obs[field one to front and one to right] is ’goal’:

10 if obs[field one to right] is ’lava’:
11 action = ’turn left’
12 else:
13 action = ’move forward’
14 else:
15 if obs[field one to front] is ’goal’:
16 action = ’move forward’
17 else:
18 action = ’turn left’
19 else:
20 if obs[field one to front] is ’lava’:
21 action = ’turn right’
22 else:
23 action = ’move forward’
24 return action

C METHODS AND HYPERPARAMETERS

The main methods we compared SYMPOL against are behavioral cloning state-action DTs (SA-DT)
and discretized soft decision trees (D-SDT). In addition to the information given in the paper, we
want to provide some more detailed results of the implementation and refer to our source code for
the exact definition.

• State-Action DTs (SA-DT) Behavioral cloning SA-DTs are the most common method to
generate interpretable policies post-hoc. Hereby, we first train an MLP policy, which is then
distilled into a DT as a post-processing step after the training. Specifically, we train the DT
on a dataset of expert trajectories generated with the MLP policy. The number of expert
trajectories was set to 25 which we experienced as a good trade-off between dataset size
for the distillation and model complexity during preliminary experiments. The 25 expert
trajectories result in a total of approximately 12500 state-action pairs, varying based on the
environment specification.

• Discretized Soft Decision Trees (D-SDT) SDTs allow gradient computation by assigning
probabilities to each node. While SDTs exhibit a hierarchical structure, they are usually
considered as less interpretable, since multiple features are considered in a single split and
the whole tree is traversed simultaneously (Marton et al., 2024a). Therefore, Silva et al.
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(2020) use SDTs as policies which are discretized post-hoc to allow an easy interpretation
considering only a single feature at each split. Discretization is achieved by employing an
argmax to obtain the feature index and normalizing the split threshold based on the feature
vector. We improved their method by replacing the scaled sigmoid and softmax, with an
entmoid and entmax transformation(Peters et al., 2019), resulting in sparse feature selectors
with more responsive gradients, as it is common practice Popov et al. (2019); Chang et al.
(2021).

In the following, we list the parameter grids used during the hyperparameter optimization (HPO)
as well as the optimal parameters selected for each environment. For SYMPOL, SDT and MLP,
we optimized the hyperparameters based on the validation reward with optuna Akiba et al., 2019
for 60 trials. Thereby, we ensured that the environments evaluated during the HPO were distinct to
the environments used for reporting the test performance in the rest of the paper. Additionally, we
decrease the learning rate if no improvement in validation reward is observed for five consecutive
iterations, allowing for finer model adjustments in later training stages.

C.1 HPO GRIDS

Table 13: HPO Grid SYMPOL

hyperparameter values

learning rate actor weights [0.0001, 0.1]
learning rate actor split values [0.0001, 0.05]
learning rate actor split idx array [0.0001, 0.1]
learning rate actor leaf array [0.0001, 0.05]
learning rate actor log std [0.0001, 0.1]
learning rate critic [0.0001, 0.01]
n update epochs [0, 10]
reduce lr {True, False}
n steps {128, 512}
n envs [4, 16]
norm adv {True, False}
ent coef {0.0, 0.1, 0.2, 0.5}
gae lambda {0.8, 0.9, 0.95, 0.99}
gamma {0.9, 0.95, 0.99, 0.999}
vf coef {0.25, 0.50, 0.75}
max grad norm [None]
SWA {True}
adamW {True}
depth {7}
minibatch size {64}
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Table 14: HPO Grid MLP

hyperparameter values

neurons per layer [16, 256]
num layers [1, 3]
learning rate actor [0.0001, 0.01]
learning rate critic [0.0001, 0.01]
minibatch size {64, 128, 256, 512}
n update epochs [1, 10]
n steps {128, 512}
n envs [4, 16]
norm adv {True, False}
ent coef {0.0, 0.1, 0.2, 0.5}
gae lambda {0.8, 0.9, 0.95, 0.99}
gamma {0.9, 0.95, 0.99, 0.999}
vf coef {0.25, 0.50, 0.75}
max grad norm {0.1, 0.5, 1.0, None}

Table 15: HPO Grid SDT

hyperparameter values

critic {’MLP’, ’SDT’}
depth [4, 8]
temperature {0.01, 0.05, 0.1, 0.5, 1.0}
learning rate actor [0.0001, 0.01]
learning rate critic [0.0001, 0.01]
minibatch size {64, 128, 256, 512}
n update epochs [1, 10]
n steps {128, 512}
n envs [4, 16]
norm adv {True, False}
ent coef {0.0, 0.1, 0.2, 0.5}
gae lambda {0.8, 0.9, 0.95, 0.99}
gamma {0.9, 0.95, 0.99, 0.999}
vf coef {0.25, 0.50, 0.75}
max grad norm {0.1, 0.5, 1.0, None}
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C.2 BEST HYPERPARAMETERS

Table 16: Best Hyperparameters SYMPOL (Control)

CP AB LL MC-C PD-C

ent coef 0.200 0.000 0.000 0.500 0.100
gae lambda 0.950 0.950 0.900 0.990 0.800
gamma 0.990 0.990 0.999 0.999 0.999
learning rate actor weights 0.048 0.003 0.072 0.000 0.022
learning rate actor split values 0.000 0.000 0.001 0.000 0.000
learning rate actor split idx array 0.026 0.052 0.010 0.000 0.010
learning rate actor leaf array 0.020 0.005 0.009 0.028 0.006
learning rate actor log std 0.001 0.002 0.021 0.094 0.000
learning rate critic 0.001 0.000 0.002 0.002 0.000
max grad norm None None None None None
n envs 7 8 6 5 15
n steps 512 128 512 128 128
n update epochs 7 7 7 2 7
norm adv False False True False True
reduce lr True True True True False
vf coef 0.500 0.250 0.500 0.500 0.750
SWA True True True True True
adamW True True True True True
dropout 0.000 0.000 0.000 0.000 0.000
depth 7 7 7 7 7
minibatch size 64 64 64 64 64
n estimators 1 1 1 1 1

Table 17: Best Hyperparameters SYMPOL (MiniGrid)

E-R DK LG-5 LG-7 DS

ent coef 0.100 0.200 0.100 0.100 0.500
gae lambda 0.990 0.950 0.900 0.900 0.950
gamma 0.900 0.990 0.950 0.990 0.999
learning rate actor weights 0.063 0.042 0.055 0.001 0.036
learning rate actor split values 0.001 0.001 0.006 0.001 0.000
learning rate actor split idx array 0.001 0.001 0.012 0.001 0.009
learning rate actor leaf array 0.003 0.004 0.009 0.008 0.001
learning rate actor log std 0.043 0.021 0.005 0.002 0.038
learning rate critic 0.001 0.001 0.001 0.001 0.001
max grad norm None None None None None
n envs 14 14 16 7 10
n steps 128 512 512 128 512
n update epochs 8 9 5 4 5
norm adv True True True True False
reduce lr False True True True True
vf coef 0.500 0.500 0.250 0.500 0.250
SWA True True True True True
adamW True True True True True
dropout 0.000 0.000 0.000 0.000 0.000
depth 7 7 7 7 7
minibatch size 64 64 64 64 64
n estimators 1 1 1 1 1

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at conference 2025

Table 18: Best Hyperparameters MLP (Control)

CP AB LL MC-C PD-C

adamW False False False False False
ent coef 0.200 0.000 0.100 0.100 0.100
gae lambda 0.900 0.900 0.900 0.950 0.950
gamma 0.999 0.990 0.999 0.999 0.990
learning rate actor 0.001 0.000 0.001 0.005 0.000
learning rate critic 0.003 0.005 0.003 0.001 0.002
max grad norm 1.000 1.000 0.500 0.100 None
minibatch size 256 256 128 512 128
n envs 13 12 13 15 8
n steps 128 512 512 512 512
n update epochs 7 9 8 2 2
neurons per layer 139 185 46 240 75
norm adv False True False True True
num layers 2 2 3 2 2
reduce lr False False False False False
vf coef 0.250 0.500 0.500 0.250 0.250

Table 19: Best Hyperparameters MLP (MiniGrid)

E-R DK LG-5 LG-7 DS

adamW False False False False False
ent coef 0.100 0.100 0.100 0.100 0.100
gae lambda 0.950 0.900 0.950 0.950 0.990
gamma 0.990 0.900 0.990 0.900 0.990
learning rate actor 0.000 0.000 0.002 0.000 0.000
learning rate critic 0.001 0.000 0.003 0.001 0.001
max grad norm 0.100 0.100 1 0.500 0.100
minibatch size 64 256 128 512 256
n envs 13 8 8 12 10
n steps 512 256 512 128 128
n update epochs 5 7 9 8 7
neurons per layer 112 169 76 28 158
norm adv False True False True True
num layers 3 1 1 1 2
reduce lr False False False False False
vf coef 0.500 0.500 0.250 0.750 0.500
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Table 20: Best Hyperparameters SDT (Control)

CP AB LL MC-C PD-C

adamW False False False False False
critic mlp mlp mlp mlp mlp
depth 7 6 8 7 7
ent coef 0.000 0.100 0.200 0.000 0.200
gae lambda 0.950 0.950 0.990 0.900 0.900
gamma 0.990 0.990 0.999 0.990 0.900
learning rate actor 0.001 0.002 0.001 0.001 0.000
learning rate critic 0.000 0.000 0.001 0.007 0.000
max grad norm 0.100 0.100 1.000 0.500 0.100
minibatch size 128 128 128 64 128
n envs 15 6 7 14 7
n steps 512 128 512 512 256
n update epochs 4 10 2 1 7
norm adv True False True False False
reduce lr False False False False False
temperature 1 0.500 1 1 0.100
vf coef 0.500 0.500 0.750 0.250 0.500

Table 21: Best Hyperparameters SDT (MiniGrid)

E-R DK LG-5 LG-7 DS

adamW False False False False False
critic sdt mlp sdt sdt sdt
depth 7 6 7 8 7
ent coef 0.100 0.100 0.200 0.100 0.100
gae lambda 0.900 0.950 0.990 0.950 0.900
gamma 0.990 0.900 0.999 0.950 0.950
learning rate actor 0.004 0.001 0.000 0.002 0.001
learning rate critic 0.000 0.002 0.000 0.005 0.002
max grad norm 0.100 0.100 0.500 0.100 None
minibatch size 512 256 512 256 512
n envs 10 10 10 13 5
n steps 512 256 256 128 512
n update epochs 5 10 8 4 7
norm adv True True True True True
reduce lr False False False False False
temperature 1 1 1 1 1
vf coef 0.750 0.750 0.750 0.250 0.750
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