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Abstract: We present See, Point, Fly (SPF), a training-free aerial vision-
and-language navigation (AVLN) framework built atop vision-language models
(VLMs). SPF is capable of navigating to any goal based on any type of free-form
instructions in any kind of environment. In contrast to existing VLM-based ap-
proaches that treat action prediction as a text generation task, our key insight is
to consider action prediction for AVLN as a 2D spatial grounding task. SPF har-
ness VLMs to decompose vague language instructions into iterative annotation of
2D waypoints on the input image. Along with the predicted traveling distance,
SPF transforms predicted 2D waypoints into 3D displacement vectors as action
commands for UAVs. Moreover, SPF also adaptively adjusts the traveling dis-
tance to facilitate more efficient navigation. Notably, SPF performs navigation in a
closed-loop control manner, enabling UAVs to follow dynamic targets in dynamic
environments. SPF sets a new state of the art in DRL simulation benchmark, out-
performing the previous best method by an absolute margin of 63%. In extensive
real-world evaluations, SPF outperforms strong baselines by a large margin. We
also conduct comprehensive ablation studies to highlight the effectiveness of our
design choice. Lastly, SPF shows remarkable generalization to different VLMs.

Keywords: Vision-Language Models, Zero-shot UAV Navigation, 2D-to-3D
Waypoint Prompting

1 Introduction

The rapid development of unmanned aerial vehicles (UAVs) has revolutionized applications from
environmental monitoring to security patrol. However, autonomous UAV navigation remains chal-
lenging due to requirements for strong visual reasoning in unstructured environments, language
understanding for user instructions, and high-level task planning with low-level action control [1].
These autonomous UAV navigation tasks are often framed as aerial vision-and-language (AVLN)
tasks [2, 3].

The autonomous UAV navigation tasks are commonly framed as aerial vision-and-language (AVLN)
tasks [2, 3]. Conventional methods primalily adopt end-to-end policy learning frameworks which
consist of a text and vision encoder that maps language instructions and visual observations into
latent representations, followed by a policy head that converts these representations into UAV ac-
tions [4, 5, 6, 7, 8, 9, 10]. The entire models are trained on a curated set of expert demonstra-
tions [11, 12, 13, 14]. However, due to the limited scale and diversity of the training data, these
methods fail to generalize to unseen environments or task instructions. In contrast, recent works
explore a training-free direction that directly converts Vison Large Language Models (VLM) into
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Figure 1: Zero-shot language-guided UAV control. (a) The UAV continually replans to keep pace
with a moving person. (b) The UAV chains multiple goals across the hall. (c) The UAV locates
the person on the ground and navigates around obstacles. Coloured 3D boxes mark successive
camera viewpoints, revealing the UAV’s full flight trajectory over the reconstructed point cloud. All
waypoints are generated directly by the vision-language model, with no task-specific training.

AVLN policies [15, 16, 17, 18]. As VLMs are trained on large-scale internet data, these mod-
els have demonstrated not only rich common-sense knowledge of the world, strong capabilities in
visual/language understanding, reasoning and planning, but also, strong generalization to novel en-
vironments and tasks [19, 20, 21].

How to repurpose VLMs that generate texts into embodied agents that generate physical actions
has attracted increasing interest in robotics [22, 23, 24, 25], while the research direction is still
underexplored in AVLN. Existing VLM-based approaches to AVLN build atop a direct solution, that
considers action prediction simply as a text-generation task. VLMs are prompoted to output either
continuous actions [16] or pre-defined skills [15, 17, 18], in terms of texts. Despite the simplicity
of these methods, they have two obvious problems: (1) embodied agents need to execute fine-
grained actions, while texts are not suitable to represent high-precision floating numbers; (2) these
VLMs have not been trained on aerial navigation data to predict 3D actions for navigation. In
contrast, our key insight is to consider action prediction for AVLN as a 2D spatial grounding task.
Instead of predicting 3D actions directly, we harnesses VLMs to annotate 2D waypoints [26, 27,
28, 29] on the image, which do not require any domain knowledge of AVLN but general spatial
understanding [30, 31]. As these 2D waypoints are grounded in the visual scene, they inherently
contain precise action information. These 2D waypoints can then be transformed into 3D actions
using the camera information.

Notably, we do not introduce the concept of predicting 2D waypoints for action selection—similar
ideas have been explored in both robot manipulation and navigation [28, 26, 27, 20]. For example,
RT-Trajectory [26] leverages VLMs to directly label 2D waypoints on the image, which are then
used by a separately trained policy network to predict corresponding actions. PIVOT [28], in con-
trast, samples multiple candidate actions as 2D waypoints and employs a VLM to select the most
appropriate one for execution. In this work, we build on this general idea and adapt it to the AVLN
setting. Our method requires no additional neural network training, yet it significantly outperforms
PIVOT, which is also a training-free approach.

We introduce See, Point, Fly (SPF), a novel VLM-based AVLN framework that navigates to any goal
based on any free-form instructions in any environment. At the core of our method is a VLM [20]
that conditions on the current scene and language instructions, and outputs the 2D waypoints in
terms of pixel locations. These 2D waypoints are unprojected into unit-length 3D positions based
on the camera parameters. These 3D positions denote the relative 3D actions to the current UAV
location. To enhance the navigation speed, we propose an adaptive controller module that adjust
the scale of the actions based on the distance between the UAV and the target. Since our method
naturally enables closed-loop control of the UAV, as shown in Fig. 1, UAVs are capable of following
dynamic targets. Moreover, building atop VLMs, our method can easily tackle long-horizon and
even ambiguous task instructions in a zero-shot manner.

We test SPF on a simulation and a real-world benchmark. Our method outperforms prior state-of-
the-art, TypeFly [15] by a large margin. We show that our method works well across a wide range of
tasks, including long-horizon, abstract, and dynamic navigation tasks. We also conduct an extensive
ablation study to validate the effectiveness of each design choice.



In summary, our contributions are: (1) We propose a state-of-the-art AVLN framework that gen-
eralizes to novel scenes and free-form instructions; (2) We set a new state-of-the-art in the DRL
simulator [32] simulation benchmark, outperforming prior SOTAs with a margin of 63% in success
rate; (3) We set a new state of the art in the real-world benchmark, outperforming prior SOTAs with
a margin of 82% in success rate.

2 Related Work

End-to-end policy learning in UAV navigation. The goal of policy learning is to train a model that
outputs control actions for UAVs. Policy learning for UAV navigation can be broadly categorized
into imitation learning (IL) [33] and reinforcement learning (RL) [34]. The objective of RL is
to maximize cumulative rewards through interaction with the environment. These methods have
achieved strong performance in drone racing [35, 36, 37], collision avoidance [38] and optimal
quadrotor control [39, 40, 41, 42, 43]. Recent work has also explored NeRF-based environments
for validating autonomous navigation policies [44], providing realistic simulation environments for
training and testing. However, RL often struggles with tasks involving long temporal horizons and
sparse reward signals, and have shown limited success in navigation tasks.

On the other hand, the objective of IL is to maximize the likelihood of the actions from expert
demonstrations [11, 12, 13, 14]. Prior works focus on exploring effective policy architectures for
navigation. GSMN [4] proposes to construct intermediate map representations inside the policy, to
facilitate action predictions. CIFF [5] utilizes a mask generator to annotate the goal location on the
image, followed by recurrent neural network to predict the corresponding UAV actions. LLMIR [6]
and AVDN [8] instead build policies based on conditional transformers. Recent advances in robotic
control have also demonstrated the effectiveness of diffusion-based methods for precise manipula-
tion tasks [45], suggesting potential applications in UAV control. Notably, due to the limited capacity
of language encoders inside these methods, they are incapable of handling free-form instructions in
recent AVLN benchmarks [2, 3, 9, 46]. To enhance language understanding, recent works propose
to fine-tune large language models as navigation policies [7, 10].

While these end-to-end learning frameworks show good evaluation performance in similar settings
as training data, due to the limited scale and diversity of the training data, these methods fail to
generalize to unseen environments or task instructions. We instead explore a training-free alternative
that deploy VLMs for AVLN in a zero-shot manner.

Vison language models for training-free UAV Navigation. Converting VLMs, originally designed
for text generation, into embodied agents that output action controls has drawn increasing attention.
A direct solution is to prompt VLMs to generate UAV actions in textual forms. For instance, [16]
proposes to construct semantic map representation that localizes task-related objects in the bird’s-eye
aerial map, with VLMs. Prompted with the map representations, VLMs output the corresponding 2D
actions to reach the target on the map. In stead of outputting continuous actions, TypeFly [15], UAV-
VLA [17], Flex [47] and GeoNav [17] prompt VLMs to generate discrete actions, selected from a
predefined set of navigation skills. While both paradigms simplify the interface between language
models and control systems, they restrict the UAV’s action space, often leading to suboptimal motion
trajectories and reduced control precision. In stark contrast, our SPF considers action prediction
as a 2D spatial grounding task. We utilize recent VLMs’ [20] strong capabilities in affordance
annotation, prompting VLMs to label 2D waypoints [26, 27, 28, 29] on the image. Transforming
these 2D points into 3D actions with the camera information results in more effective UAV control.

3 Method

We formulate UAV navigation as an iterative target-reaching process in 3D space. At each timestep
t, the system processes the current visual observation I; € R>Wx3 along with a natural language
instruction ¢ to determine the next motion. Formally, we define a policy (- | ¢, I;) that maps the
observation-instruction pair to a 3D motion command m; € .A, where the action space A C R3
represents feasible displacement vectors.
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Figure 2: Pipeline overview. A camera frame and user instructions enter a frozen vision-language
model, which returns a structured JSON with a 2D waypoint and any obstacle boxes. An Action-to-

Control layer converts this output into low-level velocity commands (yaw, throttle, pitch) that steer
the UAV. The loop repeats until the task is completed.

We leverage vision-language models (VLMs) to implement the policy 7, transforming complex and
vague navigation nature language instructions into sequences of interpretable waypoint decisions.
This approach decomposes the navigation task into discrete spatial reasoning steps that can be ef-
ficiently converted into UAV control signals, while remaining robust to diverse environments and
instruction types.

As illustrated in Fig. 2, our system runs an iterative perception-action loop with three stages: (1)
Given £ and I;, we use the VLM G to produce a structured spatial understanding, 2D waypoints and
moving step sizes (Sec. 3.1), (2) We transform the predicted 2D waypoint and step size into a 3D
displacement vector, yielding executable low-level commands m; (Sec. 3.2 and Sec. 3.3), and (3)
A lightweight reactive controller continuously updates the observation, replans using the VLM, and
executes the resulting motion commands in a closed-loop manner (Sec. 3.4).

By outsourcing high-level spatial reasoning to the VLM and employing a lightweight geometric
controller, our method achieves robust zero-shot UAV navigation directly from language—without
relying on skill libraries, external depth sensors, policy optimization, or model training.

3.1 VLM-based Obstacle-Aware Action Planning

We frame the first stage of our method as a structured visual grounding task, where a VLM G pro-
cesses an egocentric UAV camera observation I; € R¥*W >3 alongside a natural language instruc-
tion ¢ specifying the desired UAV task. Conditioned on this input, the VLM outputs a probability
distribution P (w | ¢, I;) over candidate waypoint plans w € W, where W represents the discrete
space of feasible spatial waypoint sequences. We define the intermediate spatial plan O; as the most
likely waypoint sequence under this distribution:

O = arggle%Pg(w | £,1). (1)

The output O; = {u, v, dyrm } specifies a 3D navigation target in image space, where (u, v) are pixel
coordinates and dypm € {1,2,..., L} is a discretized depth label. Importantly, dyyym represents the
VLM’s prediction of intended travel distance along the UAV’s forward direction (positive y-axis in
body frame), rather than a sensored depth measurement.

When obstacle-avoidance mode is activated, the VLM is further constrained to generate waypoints
that guide the UAV toward the goal while avoiding intersection with detected object bounding boxes,
promoting safe navigation through cluttered environments. By formulating UAV control through
this visual grounding approach, we transform complex spatial reasoning into a computationally
efficient task that enables robust, zero-shot, obstacle-aware navigation without requiring iterative
optimization or exhaustive low-level action sampling.

3.2 Adaptive Travel Distance Scaling

Although VLMs can infer high-level spatial plans from visual inputs, they often lack a precise
understanding of real-world 3D geometry and UAV navigation intuition possessed by human pilots.
Consequently, motion commands derived directly from VLM outputs may result in overly aggressive
or unsafe movements, particularly in cluttered or constrained environments.
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Figure 3: Control-geometry details of our VLM-driven flight loop. A frozen vision-language
model first predicts a 2D waypoint (u,v) and a discrete depth cue dypym. (a) A nonlinear scaling
curve converts dypy into an adaptive step size dagj, letting the UAV take larger strides in open space
and smaller ones near obstacles. (b) The pair (u, v, daqj) is unprojected through the pin-hole model
to a 3D displacement vector (S, Sy, S.) in the UAV’s body frame. (c) This vector is decomposed

into control primitives: yaw Af = tan~—'(S,/ Sy), pitch APitch = \/Sf + 5,2, and throttle

AThrottle = S,. These quantities are sent as timed velocity commands by the execution layer. The
perception, planning, and control cycle repeats until the language instruction is fulfilled.

To address this limitation, as shown in Fig. 3 (a), we employ a non-linear scaling curve that converts
the discrete depth label dyy .y into an adjusted step size dag;:

dog — dVLM b
adj — Max dmin» s X L ) (2)

where s is a global scaling factor, p controls the nonlinearity of the scaling curve, and d,;,, specifies
a lower bound on the step size to ensure safety.

This adaptive scaling approach enables the UAV to take larger steps in open areas while executing
smaller, more cautious movements near targets and obstacles. The UAV can thus adapt its trajectory
naturally to scene geometry without requiring explicit 3D maps or external depth sensors. This
capability is particularly valuable for lightweight UAVs where onboard perception and strict latency
constraints limit the feasibility of deploying traditional depth-sensing hardware.

3.3 Policy Mapping from Image Space to 3D Actions

Given the structured VLM output O; = {u, v, daq; }, our system transforms this image-space way-
point into executable 3D motion commands. This transformation defines the core of our reactive
policy, enabling the UAV to navigate toward visually grounded targets using only RGB inputs.

As depicted in Fig. 3 (b), we unproject the predicted 2D waypoint (u, v) together with the adjusted
depth d,q; through a pin-hole camera model to obtain a 3D displacement vector (.S,, S, S.), which
is later decomposed into yaw, pitch and throttle commands.

To compute the desired 3D displacement vector (S, Sy, S.), the angular projection of the pixel
location onto the camera’s field of view is used:

Sg = - dagj - tan(e), Sy =dagj, S = dyuj - tan(p), 3)
where v and (3 are the camera’s horizontal and vertical half field-of-view angles, respectively. The
forward motion S, is aligned with the UAV’s body-frame y-axis.

3.4 Reactive Control Loop Execution

Operating within a closed-loop control framework, desired 3D displacements are decomposed into
UAV control primitives: pitch, yaw, and throttle, as illustrated in Fig. 3 (c). Each control primi-
tive is converted into a velocity-duration pair, where the duration is derived from the magnitude of
the required adjustment and a predefined constant speed. Commands are enqueued into an execu-
tion queue and sent to the UAV with temporal synchronization, allowing for smooth, responsive,
and low-latency control through continuous correction. This approach enables efficient adaptation
to dynamic environments without requiring complex trajectory optimization. For more technical
details, please refer to the supplementary material.



4 Experimental Results

Experimental Setup. We evaluated our approach in both simulated and real-world environments.
For simulation, we employed the high-fidelity DRL simulator [32], which serves as a standard
benchmark from the Drone Racing League competition and effectively bridges the simulation-to-
real gap through accurate physics modeling and realistic sensor simulation. For real-world valida-
tion, we implemented our system on a DJI Tello EDU drone platform, controlled through the Python
SDK using low-level rc velocity commands. We conducted extensive tests across various indoor
environments (office spaces, corridors, living areas) and outdoor settings (parks, campus walkways)
with different lighting conditions, obstacle densities, and visual complexities to thoroughly assess
real-world performance.

Metrics. We evaluated performance using two metrics: Success Rate (SR), the percentage of trials
where the drone reached its target without collisions, and Completion Time, measuring duration
from movement initiation to task completion. These metrics together assess both reliability and
efficiency across diverse navigation scenarios.

Task Categories. Our evaluation framework includes 6 distinct task categories designed to assess
the robustness and versatility of VLM-guided UAV control across diverse navigation scenarios: (1)
Navigation: Navigating to specified static targets or objects / locations in the real-world. (2) Ob-
stacle Avoidance: Reaching designated targets while avoiding static and dynamic obstacles. (3)
Long Horizon: Multi-stage navigation sequences requiring sustained performance and composi-
tional planning across extended spatial and temporal scales. (4) Reasoning: Tasks requiring con-
textual interpretation, spatial inference, and environmental understanding beyond literal instruction
following. (5) Search: Target localization tasks where targets initially lie outside the UAV’s field of
view. (6) Follow: Identifying and tracking real-world objects or people.

We design a total of 23 tasks for simulation and 11 tasks for real-world evaluation, across task
categories. Each task was executed 5 times per method to account for execution variability. Perfor-
mance metrics were aggregated by category to assess domain-specific capabilities. Complete task
specifications and evaluation protocols are detailed in the supplementary material.

Baselines. We benchmark our approach against three representative methods for language-guided
UAV control: (1) TypeFly [15]: A language-driven approach that uses GPT-4 to interpret natural
language commands and select appropriate actions from a predefined skill library. While effective
for known tasks, this method’s reliance on a fixed action space fundamentally limits its zero-shot
generalization capabilities; (2) PIVOT [28]: A visual-language approach that overlays candidate 2D
waypoints on the input image as visual prompts, from which a VLM selects the most appropriate
waypoint for navigation. This approach requires pre-generating and evaluating multiple candidate
paths rather than directly predicting optimal waypoints; (3) Plain VLM: An ablation of our method
that directly prompts a VLM to predict drone actions in textual form without our proposed structured
output formulation, spatial transformation, or adaptive depth scaling techniques.

We used the publicly released implementation for TypeFly, while PIVOT and Plain VLM were
re-implemented following their published methodologies to ensure fair comparison within our eval-
uation framework.

4.1 Performance Evaluation

We demonstrate the effectiveness of our method with the quantitative results shown in Table 1. In
simulation, our approach achieves 93.9% average success rate, significantly outperforming PIVOT
(28.7%) and TypeFly (0.9%, limited by its predefined skill library). In particular, our framework
excels in complex scenarios that require spatial reasoning and planning, such as obstacle avoidance
(92% vs. 16% for PIVOT), long-horizon tasks (92% vs. 28% for PIVOT) and search tasks (92% vs.
36% for PIVOT).



Table 1: Success rate (%) comparison across task categories. Our framework significantly out-
performs TypeFly [15] and PIVOT [28] baselines in both high-fidelity simulation and real-world DJI
Tello experiments. We achieve 93.9% and 92.7% overall success rates in simulation and real-world
settings, respectively. Note that Search tasks were exclusively evaluated in simulation, while Follow
tasks were only tested in real-world settings due to environment constraints.

Method Navigation Obstacle Long Reasoning Search / Overall
Avoid Horizon Follow Avg.
Simulation
TypeFly [15] 1/25 0/25 0/25 0/15 0/25 0.9%
PIVOT [28] 11725 4/25 7/25 2/15 9125 28.7%
SPF (Ours) 25/25 23/25 23/25 14/15 23/25 93.9%
Real-world
TypeFly [15] 1/5 3/10 5/10 2/20 2/10 23.6%
PIVOT [28] 0/5 1/10 0/10 2/20 0/10 5.5%
SPF (Ours) 5/5 7/10 9/10 20/20 10/10 92.7%

(a) Obstacle avoidance (c) Pattern searching

Figure 4: Qualitative comparison of flight trajectories in the simulator. Trajectory of our
method is colored in green, PIVOT [28] in blue, and TypeFly [15] in purple. The absence of a
colored path indicates the baseline failed to issue any fly command. Full videos are included in the
supplementary materials.

(b) Target identification

Real-world experiments confirmed our method’s effectiveness with a 92.7 % average success rate. In
contrast, TypeFly struggled with object recognition and language understanding, while PIVOT per-
formed poorly in real-world settings, demonstrating the advantages of our structured visual ground-
ing approach. We evaluated completion time across 5 representative real-world tasks including ob-
stacle avoidance, long horizon, reasoning, and follow categories. As shown in Fig. 6, SPF not only
successfully completed all tasks where both baselines often failed, but also achieved faster com-
pletion times. These results demonstrate our method’s superior efficiency and reliability in diverse
scenarios.

We present qualitative results in simulation (Fig. 4) and in the real-world (Fig. 5). Our results suggest
that our SPF is more effective in generating smooth navigation trajectories, avoiding obstacles, and
reaching the target than TypeFly and PIVOT.

4.2 Ablations

We conducted an ablation study to evaluate the effectiveness of each model component in simulation.
Our study includes five simulated tasks and three real-world tasks across different categories. The
results are presented in Table 2.

Structured Prompting and Grounding. We compared three VLM-based action prediction ap-
proaches: our method (prompting VLM to label 2D waypoints on images), plain VLM (predicting
actions as text) and PIVOT (selecting from candidate 2D points on images). Our approach signifi-
cantly outperforms alternatives with a success rate of 100% versus just 7% for plain VLM and 40%
for PIVOT on navigation tasks, demonstrating the effectiveness of our structured visual grounding
formulation.

VLM. Our method performs robustly across multiple VLMs: Gemini 2.5 Pro, Gemini 2.0 Flash,
and GPT-4.1 all achieved 100% success rate; Claude 3.7 Sonnet and Llama 4 Maverick reached
93.3%; and even Gemini 2.0 Flash-Lite achieved 87%. This demonstrates our framework’s effective
generalization across vision-language models of varying capabilities.
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Table 2:  Ablation of prompting strategies Table 3: Adaptive step-size controller
and VLM backbones in simulation. 2D—3D cuts completion time while preserving suc-
waypoint prompting (SPF) lifts SR from 40%  C€ess. Across two representative tasks, switch-
(PIVOT) to 87% with Flash-Lite and hits 100% ing from a fixed step to our adaptive scaling
on stronger VLMs, whereas plain text generation ~halves flight duration and raises the success ra-

scores only 7%. tio to 5/5.

Action prediction VLM model SR (%) Task Step  Compl. time SR
Plain VLM Text Generation Gemini 2.0 Flash[48] 7 “Fly to the cones and the Fixed 61s 515
PIVOT [28] Visual Prompting Gemini 2.0 Flash[48] 40 next.” Adaptive 28s 5/5
Gemini 2.0 Flash-Lite [48] 87 “I'm thirsty. Find something Fixed 50.25s 4/5
GGem"." .ZéOSFll)ash E;SJ igg that can help me.” Adaptive 35.20s 5/5

SPF (Ours) 2D Waypoint Labeling e’g‘;‘T " ro [48] pr—— -
4.1 [49] 100 It’s raining. Head to the Fixed 47s 5/5
Claude 3.7 Sonnet [50] 93.3 comfiest chair that will keep Adaptive 30s 5/5

Llama 4 Maverick [51] 93.3 you dry.”

Adaptive Travel Distance Scaling. Our method significantly speeds up the travel time using the
proposed adaptive distance scaling. It maintains navigation performance, while reducing the average
completion time from 50.25 to 35.20 seconds. The results are presented in Table 3. We refer to the
supplementary material for more details of the experimental setup.

Our VLM-Integrated Approach. Our approach generates bounding boxes directly from the
Vision-Language Model (VLM) in a single pass, enabling zero-shot generalization and low latency.
This offers critical advantages over specialized detectors limited by fixed vocabularies.

Table 4: Design trade-off for obstacle avoidance.

Method Latency  Accuracy (%) Generalization
Ours (VLM-integrated) 1.077s 88.8 Zero-shot (any object)
+ External Detector (YOLOv8n) [52] 1.726s 72.2 Limited to known classes

Conclusion We presented SPF, a training-free framework that repurposes frozen vision-language
models for universal UAV navigation. By casting action prediction as 2D waypoint grounding,
then geometrically lifting these points to 3D displacements, our method sidesteps task-specific data
collection and policy optimization. A lightweight adaptive controller closes the perception-action
loop, yielding smooth flights despite second-level VLM latency. Across 23 simulated and 11 real-
world tasks, SPF achieved 93.9% and 92.7% success rates, respectively, substantially outperform-
ing TypeFly and PIVOT while remaining model-agnostic and hardware-friendly.



Limitations. Despite promising results, our system has limitations. VLM inaccuracies (hallucina-
tions and misinterpretations) can occur, and grounding precision may decrease for small or distant
targets. The adaptive step heuristic provides implicit depth but can be imprecise. Performance can
be sensitive to prompt phrasing. Reactivity to highly dynamic obstacles is limited by the VLM in-
ference latency (=1-3s). Finally, VLM-generated search patterns are not guaranteed to be optimal.
These limitations highlight avenues for future work, including improving perception robustness,
improving grounding mechanisms, reducing system latency for better reactivity, exploring VLM
fine-tuning, and developing more sophisticated exploration strategies.
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