
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VARIABLE COUPLING-ENHANCED LARGE
NEIGHBORHOOD SEARCH FOR SOLVING IN-
TEGER LINEAR PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Neighborhood Search (LNS) is a heuristic for integer programming that it-
eratively destroys part of an incumbent solution and repairs it using an ILP solver
to efficiently explore large solution spaces. Recent advances in neural LNS have
shown strong performance on Integer Linear Programs (ILPs), where graph neural
networks (GNNs) learn neighborhood-selection policies under an independence
assumption. However, through an example, we identify that the independence
assumption ignores variable coupling and assigns equal probability to neighbor-
hoods with vastly different optimization potential. To overcome this limitation, we
propose a coupling-enhanced neural LNS (CE-LNS). CE-LNS augments GNN-
based neighborhood prediction with graph decomposition to explicitly capture
variable coupling, enabling coupling-aware calibration of neighborhood selection.
Theoretically, CE-LNS can (i) predict whether constraints are effective or redun-
dant and (ii) refine neighborhood predictions to approximate optimal neighbor-
hoods. Empirically, CE-LNS achieves stronger performance than existing neural
LNS frameworks across diverse ILP benchmarks, demonstrating its effectiveness
in escaping local optima.

1 INTRODUCTION

Combinatorial optimization has a wide spectrum of real-world applications in logistics (Tordecilla
et al., 2023; Vadseth et al., 2021; Tordecilla et al., 2023), scheduling (Adams et al., 1988; Dell’Amico
& Trubian, 1993; Lenstra et al., 1990), resource allocation (Gavish & Pirkul, 1991; Regaieg et al.,
2021; Mystakidis et al., 2024), and network design (Magnanti & Wong, 1984; Gendron et al., 1999;
Grötschel et al., 1995), where many problems admit natural formulations as Integer Linear Pro-
grams (ILPs). Exact branch-and-bound (B&B) solvers such as SCIP, CPLEX, and Gurobi have seen
decades of engineering, yet their exhaustive search can make closing the primal–dual gap imprac-
tical on large instances. Large Neighborhood Search (LNS), an effective paradigm for large ILPs,
starts from a feasible incumbent and alternates (i) a destroy step that selects a subset of variables to
free and (ii) a repair step that re-optimizes only those variables via an off-the-shelf ILP solver.

Designing the destroy policy is pivotal to LNS. Classical heuristics range from fast but weak ran-
dom selection to informative yet costly Local Branching. Recent learning-based approaches—CL-
LNS (Huang et al., 2023), RL-LNS (Wu et al., 2021), and IL-LNS (Sonnerat et al., 2021)—learn
destroy policies (via LB imitation, per-variable RL factorization, or contrastive curation) and deliver
strong anytime performance across ILP benchmarks. Within the LNS framework for integer pro-
gramming, whether under reinforcement learning or contrastive learning, the decision space grows
exponentially with the problem size. Therefore, most neural LNS frameworks (Huang et al., 2023;
Wu et al., 2021; Sonnerat et al., 2021) factorize neighborhood selection into binary choices for
each variable—whether the variable is selected for destruction—rather than treating the entire vari-
able subset as a single action. In Section 4, we provide an example to substantiate our theory:
two neighborhoods have identical products of per-variable selection probabilities; consequently, any
framework based on the independence assumption would assign equal probability to selecting these
two neighborhoods. However, one neighborhood admits only a single feasible solution—the current
solution—whereas the other contains a strictly better feasible solution.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Neural LNS frameworks represent ILPs as bipartite graphs and employ GNN-based representation
learning to output neighborhood selections. However, the expressive power of GNNs is bounded by
the 1-Weisfeiler–Lehman (1-WL) test (Xu et al., 2019), which implies that GNNs cannot distinguish
between neighborhoods that are equivalent under 1-WL. Since LNS requires rapid decision-making,
even though 2-FWL has been shown to approximate strong branching scores (Chen et al., 2024c),
its higher-order complexity O(n3) and substantially larger parameter/data requirements make it un-
suitable for LNS. In this paper, we propose CE-LNS. First, a GNN predicts an initial neighborhood.
Then, using graph decomposition, CE-LNS refines bag-level representations to model variable cou-
pling. Finally, CE-LNS calibrates the initial neighborhood prediction using the refined outputs. We
prove that CE-LNS (1) predicts whether a constraint is active or redundant and (2) effectively cali-
brates the first-stage prediction to approximate the optimal neighborhood. Experiments show clear
improvements over existing neural LNS baselines on both synthetic benchmarks (MVC, MIS, CA,
SC) and real-world datasets (WA, IP). Ablations confirm that both the alignment and calibration
components are necessary.

2 BACKGROUND

Integer Linear Program. An integer linear program (ILP) instance I = (A,b, c) is defined as

min
x∈{0,1}n

c⊤x s.t. Ax ≤ b, (1)

where x = (x1, . . . , xn)
⊤ denotes the n binary decision variables, c ∈ Rn is the vector of objective

coefficients, and A ∈ Rm×n and b ∈ Rm specify the m linear constraints.

Bipartite Graph Representation. As shown in Figure 3, representing an ILP as a bipartite graph
Gn,m = (V ∪ U,E) is a mainstream approach for ILP representation learning. The variable nodes
V = {vj}nj=1 correspond to decision variables {xj}nj=1, and the constraint nodes U = {ui}mi=1

correspond to constraints. An edge (vj , ui) ∈ E exists if and only if Ai,j ̸= 0, and it carries Ai,j as
an edge feature.

Large Neighborhood Search (LNS) for ILP. LNS is a heuristic that starts from an initial solution
and iteratively destroys and re-optimizes a part of the solution until a time limit or a stopping con-
dition is met. Let I be the input ILP and let x0 be the initial solution (e.g., obtained by running
B&B briefly). At iteration t ≥ 0, given the incumbent xt (the best solution found so far), a destroy
heuristic selects a subset of kt variables

X t = {xj1 , . . . , xjkt}.

Re-optimization is performed by solving a sub-ILP in which the variables in X t are free while all
xj /∈ X t are fixed to their values in xt. The solution to the sub-ILP becomes the new incumbent
xt+1, and LNS proceeds to iteration t + 1. Compared to B&B, LNS often improves c⊤x more ef-
fectively on difficult instances Song et al. (2020); Sonnerat et al. (2021); Wu et al. (2021); compared
to other local-search schemes, it explores larger neighborhoods per step, helping avoid poor local
minima while balancing exploration and tractability.

Following Huang et al. (2023), if iteration t finds an improved solution, we set the adaptive neigh-
borhood size kt+1 = min{γ · kt, β · n}, where γ > 1 and β ∈ (0, 1) are constants.

Local Branching (LB) Heuristic. Given the incumbent xt, LB seeks a subset of variables to destroy
that yields an optimal xt+1 differing from xt on at most kt variables. Let h ∈ {0, 1}n be the
neighborhood indicator, where hj = 1 means the j-th variable is destroyed (i.e., xt+1

j may differ
from xt

j), and hj = 0 otherwise.

Neighborhood Search Space. Given an ILP I, an incumbent xt, and an indicator h, define the
neighborhood search space as

M(I,xt, h) =
{
x ∈ {0, 1}n : Ax ≤ b, xj = xt

j whenever hj = 0
}
. (2)

If there exists x′ ∈M(I,xt, h) with c⊤x′ < c⊤xt, we say thatM(I,xt, h) is effective.

Effective / Redundant Constraint. Let the i-th constraint be
∑n

j=1 Ai,jxj ≤ bi. For a given
neighborhoodM(I,xt, h):

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• The i-th constraint is called effective forM(I,xt, h) if there exists x′ ∈M(I,xt, h) such
that

∑
j Ai,jx

′
j ≤ bi and c⊤x′ < c⊤xt. The effectiveness indicator is R(I,xt, h) ∈

{0, 1}m.
• Let I ′ be the ILP obtained by deleting the i-th constraint. If there exists x′ ∈M(I ′,xt, h)

with x′ /∈ M(I,xt, h) and c⊤x′ < c⊤x for all x ∈ M(I,xt, h), then the i-th constraint
is redundant forM(I,xt, h). The redundancy indicator is T (I,xt, h) ∈ {0, 1}m.

3 INDEPENDENCE ASSUMPTION OF THE PROBABILITY DISTRIBUTION

Inspired by Han et al. (2023), which constructs a probability distribution over solution predictions
via an energy function, our goal is to construct a distribution over neighborhood indicators that
assigns higher conditional probability to neighborhoods whose induced search space M(I,xt, h)
contains solutions closer to optimality.

Given an ILP instance I and the current incumbent xt = (xt
1, . . . , x

t
n), the destroy heuristic selects

kt variables to free. Let h ∈ {0, 1}n be the neighborhood indicator with hj = 1 iff variable xj is
destroyed (free) and hj = 0 otherwise; we also write ∥h∥1 = kt. We define the (unnormalized)
energy of a neighborhood by the best achievable improvement within its search space:

∆⋆(I,xt, h) = max
x′∈M(I,xt,h)

(
c⊤xt − c⊤x′) ≥ 0, (3)

and set

E(I,xt, h) =


1

∆⋆(I,xt, h)
, ∆⋆(I,xt, h) > 0,

+∞, ∆⋆(I,xt, h) = 0.
(4)

Let LB(k) = {h ∈ {0, 1}n : ∥h∥1 = k} be the local-branching neighborhood family of size k. A
Boltzmann distribution over neighborhoods of size kt is then

P (I,xt, h) =
exp
(
− E(I,xt, h)

)∑
h′∈LB(kt)

exp
(
− E(I,xt, h′)

) . (5)

Because xt ∈ M(I,xt, h) for any h, we have ∆⋆(I,xt, h) ≥ 0. If a neighborhood is ineffective
(no improvement over xt), then ∆⋆ = 0, hence E = +∞ and P (I,xt, h) = 0. Conversely,
neighborhoods admitting larger improvements have smaller energy and thus higher probability.

Independent (factorized) modeling. Prior work (Han et al., 2023; Huang et al., 2023; Wu et al.,
2021; Nair et al., 2020b) typically avoids modeling the full joint distribution over h due to the
prohibitive sampling cost in high dimensions, and instead assumes conditional independence across
variables. Concretely, a message-passing GNN (MP-GNN) outputs

Fθ(I,xt) = (p̂1, . . . , p̂n), p̂j ≈ P (hj = 1 | I,xt),

and the joint is factorized as

P̂ (I,xt, h) ≈
n∏

j=1

p̂
hj

j (1− p̂j)
1−hj . (6)

Under this independence assumption, the maximum-probability neighborhood of size kt is obtained
by selecting the kt variables with the largest p̂j (i.e., a top-kt rule), which explicitly biases the search
toward variables with high marginal destruction probability while ignoring inter-variable coupling.

4 INDEPENDENCE ASSUMPTION FAILS IN REPRESENTING THE
PROBABILITY DISTRIBUTION

The number of neighborhoods of size kt is
(
n
kt

)
, which grows combinatorially (and exponentially

in n when kt = Θ(n)). To keep LNS applicable on large-scale problems, most methods factorize
neighborhood selection into independent per-variable decisions. In this subsection, we present a
counterexample showing that the independence assumption can assign equal estimated probability
to two neighborhoods whose true utilities (and thus probabilities under equation 5) differ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 4.1 There exists an ILP instance I with incumbent solution xt, and two neighborhoods
with indicators h(1) and h(2), such that for any MP-GNN producing per-variable marginals p̂j ≈
P (hj = 1 | I,xt), the factorized estimate

P̂ (I,xt, h) =

n∏
j=1

p̂
hj

j (1− p̂j)
1−hj

satisfies P̂ (I,xt, h(1)) = P̂ (I,xt, h(2)), while the true probability defined in equation 5 satisfies
P (I,xt, h(1)) ̸= P (I,xt, h(2)).

Proof of theorem 4.1: Consider n = 8 and incumbent xt = (1, 0, 1, 0, 1, 0, 1, 0). Assume the ILP is
represented as a bipartite graph whose 1-WL refinement yields two equivalence classes by parity, so
that variables with the same parity share the same WL label (denote the label by χ): χ(xi) = χ(xj)
iff (i − j) mod 2 = 0. By standard results on MP-GNN expressivity (cf. Theorem B.3), a 1-WL-
bounded MP-GNN must output identical scores within each class; hence, for some α, β ∈ (0, 1),

p̂1 = p̂3 = p̂5 = p̂7 = α, p̂2 = p̂4 = p̂6 = p̂8 = β.

Let kt = 4 and define

h(1) = (1, 1, 1, 1, 0, 0, 0, 0), h(2) = (1, 1, 1, 0, 0, 0, 0, 1).

Both neighborhoods free two odd-parity variables and two even-parity variables, so their factorized
estimates coincide:

P̂ (I,xt, h(1)) = α2β2(1− α)2(1− β)2 = P̂ (I,xt, h(2)).

Now construct I so that an improvement is possible only when a specific coupled subset of variables
is freed together (e.g., a pairwise-coupling constraint allowing a simultaneous flip of (x1, x3) but not
individually, with additional tying constraints involving x4). Choose the couplings so that freeing
the set indicated by h(1) enables a strictly better feasible solution x′ ∈M(I,xt, h(1)) with c⊤x′ <
c⊤xt, whereasM(I,xt, h(2)) contains no improvement (i.e., it is ineffective and only contains xt).
Then

∆⋆(I,xt, h(1)) > 0 but ∆⋆(I,xt, h(2)) = 0,

which, by equation 4 and equation 5, implies

P (I,xt, h(1)) > 0 and P (I,xt, h(2)) = 0,

hence P (I,xt, h(1)) ̸= P (I,xt, h(2)) while the factorized estimates are equal.

The mismatch arises because the independence assumption collapses neighborhood quality to a
product of marginal scores and is blind to feasibility/optimality effects that are triggered only by
jointly freeing a coupled set of variables. Consequently, two neighborhoods that look identical
under factorized estimates can have sharply different true utilities.

min 2x1 + x2 + 2x3 + x4 + 2x5 + x6 + 2x7 + x8,

s.t. x1 + x2 = 1, x2 + x3 = 1, x3 + x4 = 1, x4 + x1 = 1,

x5 + x6 = 1, x6 + x7 = 1, x7 + x8 = 1, x8 + x5 = 1,

xj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , 8}.

Figure 1: An ILP instance where two WL-
equivalent neighborhoods lead to different effects.

Figure 2: Decomposition graph.

For the instance above, ML-based LNS under the independence assumption may struggle to predict
an effective neighborhood. Each variable is judged only by its own marginal probability, ignoring
inter-variable coupling that is critical for constructing effective neighborhoods. This shows that
neglecting coupling can yield indistinguishable neighborhood estimates with markedly different true
utilities, undermining LNS guided by such factorized models.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 VARIABLE COUPLING ENHANCEMENT FOR LARGE NEIGHBORHOOD
SEARCH

In the previous section, we reveal that ML-based LNS under the independence assumption might
fail to account for variable coupling, leading to indistinguishable neighborhood predictions and re-
duced effectiveness. The current approaches include: adding random features as variable extra
feature(Chen et al., 2023) and 2-FGNN framework(Chen et al., 2024c). However, as it has been val-
idated in subsequent experiments, although adding random features can improve the GNN’s fitting
ability during the training phase, since random features do not contain meaningful ILP information,
therefore they cannot effectively improve the GNN’s generalization performance on the test set, po-
tentially leading to overfitting. Since 2-FGNNs operate on each variable-constraint pair rather than
on single variables, causing their message-passing state space to grow quadratically and their up-
dates to involve cubic-time aggregation, which makes both memory O(n2) and compute O(n3) far
more expensive. Therefore, for LNS that requires making rapid decisions on neighborhood selec-
tion, such expensive complexity is unacceptable for LNS on large-scale ILPs.

It is worth noting that the limitations of representing ILP as a bipartite graph arise from the in-
sufficient expressive power of GNNs on bipartite graphs. No information is lost in the process of
representing an ILP as a bipartite graph.

5.1 DECOMPOSITION GRAPH FOR VARIABLES

Given an ILP instances I, the variable graph of I as Gn = (V,E), where its vertices set V is the set
of variables, two variables vertices vi1 , vi2 are considered adjacent if the two variables appear in the
same constraint. Graph decomposition refers to the process of breaking a graph G = (V,E) into
smaller subgraphs or vertex subsets as “bags” or “components”, and optionally imposing a structure
on these subgraphs. Formally, a graph decomposition is defined as follow, :

Definition 5.1 A graph decomposition of a graph G = (V,E), denoted as Dec(G) = (X,Ξ), is a
collection of subgraphs or vertex subsets X = {X1, X2, · · ·Xk}(Xi ⊆ V) (called bags or compo-
nents) which serve as the vertices of the decomposition graph, subject to the following conditions,
and :(1) Vertex coverage: Every vertex of G appears in at least one bag:

⋃k
i=1 Xi = V .(2) Edge

coverage: Each edge (v1, v2) ∈ E is included in at least one bag Xi ⊆ V .(3) Structural relation-
ship: In Dec(G) = (X,Ξ), two bags Xi, Xj are considered adjacent if they share common variable
nodes (Xi ∩Xj ̸= ∅ → (Xi, Xj) ∈ Ξ).

Introducing graph decomposition into LNS aims to address the issue4: Destroy strategies based
solely on variable independence tend to select strongly coupled variables that are split across the
boundary, leading to uncoordinated updates. Moreover, if the destroy set severs strong couplings,
the repair subproblem behaves as if it were trapped behind hard constraint walls, making improve-
ments unlikely and time-consuming. As for graph decomposition, strongly coupled variables tend
to cohabit the same bag (or neighboring bags) after chordal completion. In this LNS is able to Align
destroy sets with bags keeps strongly coupled variables co-updated.

Theorem 5.2 Given an ILP instances I, Gn = (V,E) is I’s variable graph and m denotes the
number of constrains in I, if the i− th bag Xi of vertex subsets X = {X1, X2, · · ·Xk}(Xi ⊆ V) is
formed by all the variable nodes involved in the i− th corresponding constraint in I, then it yields
a graph decomposition of a graph Gn = (V,E).

Theorem 5.2 provides a perspective: Since the set of constraints forms a graph decomposition,
the representation of constraint nodes in the bipartite graph can be exploited to capture features
characterizing the couplings among variables. In this way, the representation learning of the bipartite
graph and the decomposition graph can be organically integrated to avoid extra computational for
additional construction of a decomposition graph.

5.2 COUPLING-ENHANCED LARGE NEIGHBORHOOD SEARCH

As Figure 3 demonstrated, the process of coupling-enhanced large neighborhood search comprises
following three stages:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Large scale ILP

min ���
s.t. �1,1 �1⋯+ �1,� ��⋯+ �1,� �� ≤ �1

 �� ∈ {0,1}

��,1�1⋯+ ��,���⋯+ ��,��� ≤ ��

⋮

�1

��

��

��

�1

Bipartite Representation
Graph Decomposition��,1, �1,� = 0

Variale
Feature

��

��

��

�
N
�

Parameter

�
Neighbor
Prediction

0.8

0.9

0.2

unfix

unfix

fix

�1 ��

�� ��

Variale
Feature

��

��

��

Neighbor
Feature

1

1

0

⨁

concatenation

�������
���

fixed(non-trainable)
Parameter

�

�
additional(trainable)
Parameter

�1

��

bag of variables

Effective/
Redundant
Constrain
Prediction
�

Effective/
Redundant
Constrain
Feature

0.3

0.9

 Constrain
Nodes’
Embedding

0

1True

False

− �� ���(��)
Binary Cross
Entropy Loss

Backpropagation

Constrain
Feature

Effective/
Redundant
Constrain
Feature

⨁

concatenation

�������
���

fixed(non-trainable)
Parameter

�

�
additional(trainable)
Parameter

Prediction of
Calibration of
Neighborhood

�

Calibration of
Neighborhood

 Variable
Nodes’
Embedding

− �� ���(��)
Binary Cross
Entropy Loss

Backpropagation

0.3

0.9

�1

��

0.9

0.2

0.1

1

0

0
Semi-Upper
Convolution Semi-Lower

Convolution

0

0

1

should be fixed
but relaxed

should be
relaxed but fixed

0.1

0.1

0.9

⨁ ⨁

Figure 3: Framework of Coupling-Enhanced Large Neighborhood Search

Contrastive Learning for LNS via GNN: Following prior work on learning for ILPs(Huang et al.,
2023; Gasse et al., 2019; Sonnerat et al., 2021; Wu et al., 2021), the policy network adopts a bipartite
graph representation of the ILP. Each node and edge is enriched with features, including those from
Gasse et al. (2019); Huang et al. (2023); Sonnerat et al. (2021) to provide a richer representation.
The LNS policy is implemented as a GNN with learnable parameters, which first maps features into
a latent space via embedding layers and then performs two rounds of message passing:(1) constraint
nodes attend to their neighboring variables (2) variable nodes attend to their neighboring constraints.
The resulting variable embeddings are passed through a multilayer perceptron followed by a acti-
vation function to produce variable-wise selection scores ĥt ∈ [0, 1]n. Training is conducted using
a supervised contrastive loss(InfoNCE), which encourages the predicted actions to align closely
with positive samples and diverge from negative ones. At inference time, the learned policy is
integrated into the LNS framework: in each iteration, the kt variables with the highest scores are
greedily selected for reoptimization to generated the neighborhood selection, the indicator is denoted
as ĥt ∈ {0, 1}n.

Alignment for Bags of Variables: Due to the convenience of regarding constraint as variable bag
by theorem 5.2, we align the features of variables’ bag with the constraint features obtained after
the neighborhood selection, discrepancy between the predicted and real-world features can be re-
garded as the predictive loss caused by the independence assumption in the first-stage LNS that
ignores variable couplings to feedback the coupling effects among variables. It refers to fine-tuning
the first layer of message passing in the GNN that has already been trained during the first stage.
Specifically, the neighborhood selection indicator ĥt ∈ {0, 1}n is added as variable’s extra feature,
meanwhile trainable parameter connected in parallel with the originally learned weights is added
into the first-layer message passing in corresponding to the feature vector ĥt ∈ {0, 1}n, and the
learned weights are fixed during the training. After the first message passing, the embeddings of the
constraints are further processed by two additional MLPs in order to output probabilistic predictions
r̂ ∈ [0, 1]d×m(d refers the feature dimension of constraints) over the constraint features obtained
after the neighborhood selection, which includes constraint’s effectiveness and redundancy.

Calibration of Neighborhood Selection: In the second stage, the discrepancy between the pre-
dicted and real-world features of the bags(constraints) is incorporated as an additional input fea-
ture for the second-layer message passing. The features of training samples ht∗

des ∈ {0, 1}n and
ht∗
fix ∈ {0, 1}n for stage III are generated by the prediction indicator ĥ and real-world neighbor-

hood indicator ht, where ht∗
des refers to whether variables are relaxed but should be destroyed, and

ht∗
fix refers to whether variables are fixed but should be relaxed. Similar to the second stage, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

apply fine-tuning to the second layer of message passing, as adding trainable parameter connected
in parallel with the originally learned weights in corresponding to the extra feature and fixed the
learned weights during the training. After through a two additional MLPs, the framework outputs
calibration scores (ĥt

des, ĥ
t
fix) ∈ [0, 1]n as the prediction of (ht

des, h
t
fix). The framework Greedily

selects β1 ·kt ·nt(nt denotes the proportion ĥt and ht−1 overlaps, parameter β1 < 1) highest-scoring
of both ĥt

des and ĥt
fix variables with equal number to transform their states(relaxed/fixed).

Remark: (1)The samples in the stage III are generated by combining the predictions ĥt ∈ {0, 1}n
from the first stage with the samples, and therefore, compared to Huang et al. (2023), our frame-
work does not require additional samples. (2) Stage III encourages neighborhood to be different
than previous, since the higher proportion ĥt and ht−1 overlaps, the more states of variables will be
transformed. In Appendix E, we provide the full details of fine-tuning two graph network architec-
ture:graph convolutional network(GCN) and graph attention network(GAT).

Denote the collection of all GNNs under our coupling-enhanced framework as FCEGNN , then we
have the following theorem:

Theorem 5.3 Given any ILP instance I, xt ∈ {0, 1}n is the incumbent solution, ht ∈ {0, 1}n
as neighborhood selection indicator generated from first stage and M(I,x, ht) as the neighbors
searching space, then ∀ϵ, ϕ > 0, there is F ∈ FCEGNN such that the following holds:

• For effective and redundant indicatorR(I,xt, h), T (I,xt, h), we have

P (∥R̂ − R(I,xt, h)∥ > ϕ) < ϵ, P (∥T̂ − T (I,xt, h)∥ > ϕ) < ϵ

where R̂, T̂ are probabilistic predictions for effective and redundant indicator generated
from the second stage.

• Denote h̃t ∈ [0, 1]n as the output from F after calibration, if the scale of neighborhood
kt < n

2 , then we have
P (∥h̃t − ht

0∥ > ϕ) < ϵ

where ht
0 is optimal neighborhood selection indicator:maxh∈LB(kt)

(
E(I,xt, h)

)
(E(I,xt, h), LB(k) is defined in equation ??)

6 EMPIRICAL EVALUATION

In this section, we introduce our evaluation setup and then present the results.

Benchmark Dataset(1).Generated Instance: We evaluate on four NP-hard problem benchmarks
that are widely used in existing studies Zhang & Others (2024); Wu et al. (2021); Song et al. (2020);
Scavuzzo et al. (2022): the minimum vertex cover (MVC), maximum independent set (MIS) prob-
lems, combinatorial auction(CA) and set covering(SC) problems. 100 instances for each problem
are generated as a test set. We first generate a test set of 100 instances for each problem, namely
MVC-S, MIS-S, CA-S and SC-S. For each test set, Table 2 shows its average numbers of vari-
ables and constraints. (2)Real-World: We evaluate on two benchmarks, IP and WA, come from two
challenging real-world problem families used in NeurIPS ML4CO 2021 competition (Gasse et al.,
2022). We use 240 training, 60 validation, and 100 testing instances, following the settings in Han
et al. (2023). Please refer to Appendix F for more details on the benchmarks.

Baselines: (1) BnB using SCIP (v8.0.1), the state-of-the-art open-source ILP solver;(2)Random:
LNS which selects the neighborhood by uniformly sampling kt variables without
replacement;(3)GCN-CL LNS: Graph Convolutional Network with Contrastive Learning (Huang
et al., 2023; Kipf & Welling, 2017) (4)GCN-CE LNS:Graph Convolutional Network with our
framework (Kipf & Welling, 2017) (5)GAT-CL LNS: Graph Attention Network with Contrastive
Learning (Huang et al., 2023; Brody et al., 2021) (6)Graph Attention Network with our framework
(Brody et al., 2021). Further details of instance generation are included in Appendix.

Metrics: We use the following metrics to evaluate all baselines approaches:(1) The primal gap
Berthold (2006) is the normalized difference between the primal bound v and a precomputed best

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Primal gap (PG) (in percent), primal integral (PI) at 60 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations for generated instances. “↓” means the lower
the better.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S MIS-S CA-S SC-S

BnB 1.41±0.25 61.1±17.2 4.87±1.29 199.7±78.6 2.31±0.66 144.8±33.7 1.21±0.75 81.1±39.1
RANDOM 1.20±0.95 51.1±36.1 0.31±0.12 23.1±7.8 6.1±1.31 267.7±44.1 2.71±1.33 137.1±33.1
CL-GCN 0.31±0.26 15.52±11.90 0.27±0.15 22.04±9.65 1.16±0.90 89.15±40.81 0.50±1.03 46.15±21.92
CE-GCN 0.20±0.19 12.06±9.50 0.18±0.12 14.95±6.79 0.86±0.70 69.16±28.33 0.40±0.74 26.80±18.56
CL-GAN 0.19±0.11 10.46±7.85 0.19±0.19 16.50±6.30 0.78±0.36 63.32±26.59 0.43±0.66 30.93±17.70
CE-GAN 0.14±0.13 6.24±5.18 0.13±0.08 10.44±4.43 0.47±0.42 39.85±21.69 0.50±0.32 46.99±10.69

MVC-L MIS-L CA-L SC-L
BnB 2.63±0.40 133.6±11.5 6.16±1.74 275.8±19.6 2.62±1.98 344.3±90.5 1.69±0.97 111.1±42.9

RANDOM 0.37±0.25 23.4±8.6 0.19±0.11 19.7±7.2 5.32±0.81 237.0±24.2 3.18±1.82 179.1±58.4
CL-GCN 0.25±0.08 21.7±7.6 0.27±0.24 29.2±13.5 0.21±0.09 262.3±39.1 1.27±1.01 81.9±50.8
CE-GCN 0.21±0.17 17.9±13.6 0.23±0.15 24.8±7.7 0.20±0.15 256.9±64.0 1.29±0.46 82.0±22.7
CL-GAN 0.08±0.05 10.3±4.3 0.15±0.14 16.4±8.5 0.12±0.08 148.5±32.8 0.72±0.27 47.8±7.1
CE-GAN 0.07±0.09 8.8±8.7 0.13±0.07 16.2±5.3 0.10±0.05 116.3±19.6 0.63±0.47 41.2±27.0

known objective value v∗, defined as |v−v∗|
max(v,v∗,ϵ) if v exists and v · v∗ ≥ 0, or 1 otherwise. We use

ϵ = 10−8 to avoid division by zero;(2) The primal integral Achterberg et al. (2012) at time q is the
integral on [0, q] of the primal gap as a function of runtime. It captures the quality of and the speed
at which solutions are found;

(a) MVC-S (left) and MVC-L (right). (b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right). (d) SC-S (left) and SC-L (right).

Figure 4: Primal gap (PG) (in percent), primal integral of Generated Instance.

6.1 RESULTS

Figure 4 shows the primal gap as a function of runtime. Table 5 presents the average primal gap
and primal integral at 60 minutes runtime cutoff on small and large instances, respectively. (Ap-
pendix G provides the results at, 30 and 45 minutes runtime cutoff). The result shows significantly
better anytime performance than the original contrastive learning baselines(Huang et al., 2023) on
all problems, achieving the smallest average primal gap and primal integral. Figure 5 shows that
our framework demonstrates significant advantages over the baseline models not only on generated
instances but also on real-world instances. In Appendix, we present strong results in comparison
with two more baselines and on one more performance metric.

6.2 ABLATION STUDY

We evaluate how alignment for bags of variables in stage II and calibration of neighborhood selection
in stage III contribute to our framework’s performance. (1) For the alignment, we replace the second-
stage constraint features with the random features from Chen et al. (2024b). and (2) We changed the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
WA IP

BnB 0.47±0.11 3.41 ±0.81 30.6±3.5 7.35±0.57
RANDOM 0.35±0.09 2.91 ±0.72 37.1±4.5 8.91±0.72
CL-GCN 0.41±0.16 3.15±1.13 27.3±3.1 6.81±0.51
CE-GCN 0.17±0.07 1.43±0.43 22.1±4.2 5.29±0.67
CL-GAN 0.26±0.19 2.12±1.51 28.1±2.2 6.97±0.35
CE-GAN 0.12±0.09 1.07±0.61 21.5±3.7 5.14±0.72

Figure 5: Primal gap (PG) (in percent), primal integral (PI) at 60 minutes runtime cutoff for real-
world instances

value of the coefficient β1 from 0.2(denoted as CE-GCN/GAT-0.2) to 0.4(denoted as CE-GCN/GAT-
0.4) to test its impact on the experiments. Figure 6 shows the primal gap for the first ablation study.
The difference in the primal gap between the random method and our method demonstrates the
necessity of alignment for bags of variables. Figure 7 presents the primal gap for the second ablation
study. The result shows if β1 is set too large, it will affect the performance in the early stage, whereas
if it is too small, there will be limited room for optimization in the subsequent iterations.

Figure 6: The primal gap for first ablation and the dataset, from left to right are (1)MVC-S (2)MIS-S
(3)CA-S (4)WA, respectively

Figure 7: The primal gap for second ablation and the dataset, from left to right are (1)MVC-L
(2)MIS-L (3)CA-L (4)SC-L, respectively

7 CONCLUSION

This paper introduces Coupling-Enhanced Neural Large Neighborhood Search (CE-LNS) for solv-
ing integer linear programs (ILPs). Neural LNS frameworks assume variable independence, which
overlooks coupling, leading to indistinguishable predictions. To address this, CE-LNS augments
GNN-based neighborhood prediction with graph decomposition. This refinement allows the model
to capture coupling relationships between variables and calibrate neighborhood selection accord-
ingly. Theoretically, CE-LNS can identify effective vs. redundant constraints and approximate op-
timal neighborhoods. Empirically, it consistently outperforms existing neural LNS methods across
synthetic and real-world ILP benchmarks, achieving smaller primal gaps, better anytime perfor-
mance, and stronger generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

We acknowledge the ICLR Code of Ethics and confirm that our work adheres to its principles. Our
research prioritizes societal benefit, avoids harm, and respects privacy and intellectual property. All
data used in this study comply with ethical guidelines and relevant licenses.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made substantial efforts to provide comprehen-
sive details and resources across our main paper, appendix, and supplementary materials.

Code and Resources. We have developed a reproducible codebase MTG, extended to support
our message tuning. Our code is available at https://anonymous.4open.science/r/CE-LNS-3stage-
05EA/. Anonymous, downloadable source code also includes scripts for pre-training, adaptation,
and evaluation on all datasets used in our experiments.

Theoretical Proofs. All theoretical claims are rigorously proven in Appendix C and D.

We believe these efforts collectively ensure the reproducibility of our work and encourage the com-
munity to build upon our findings.

REFERENCES

Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics for
mixed integer programming. In Operations research proceedings 2011, pp. 71–76. Springer,
2012.

Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop
scheduling. Management science, 34(3):391–401, 1988.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006.

Timo Berthold. Rens. Mathematical Programming Computation, 6(1):33–54, 2014.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong Luo,
and Tsung-Hui Chang. Symilo: A symmetry-aware learning framework for integer linear opti-
mization. Advances in Neural Information Processing Systems, 37:24411–24434, 2024a.

Qian Chen, Lei Li, Qian Li, Jianghua Wu, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-Hui
Chang, and Qingjiang Shi. When gnns meet symmetry in ilps: an orbit-based feature augmenta-
tion approach. arXiv preprint arXiv:2501.14211, 2025.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing mixed-integer linear
programs by graph neural networks. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=4gc3MGZra1d.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of
graph neural networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938,
2024b.

Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity of
graph neural networks for branching strategy. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024c. URL https://openreview.net/forum?id=
FEmag0szWo.

10

https://openreview.net/forum?id=4gc3MGZra1d
https://openreview.net/forum?id=FEmag0szWo
https://openreview.net/forum?id=FEmag0szWo

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighborhoods
to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

Mauro Dell’Amico and Marco Trubian. Applying tabu search to the job-shop scheduling problem.
Annals of Operations research, 41(3):231–252, 1993.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical programming, 98(1):23–47,
2003.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chete-
lat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias
Khalil, Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dim-
itri J. Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo,
Giulia Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan
Huang, Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu,
Zhewei Huang, Shuchang Zhou, Binbin Chen, Minggui He, Hao Hao, Zhiyu Zhang, Zhiwu
An, and Kun Mao. The machine learning for combinatorial optimization competition (ml4co):
Results and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220–231. PMLR, December 2022. URL https:
//proceedings.mlr.press/v176/gasse22a.html.

Bezalel Gavish and Hasan Pirkul. Algorithms for the multi-resource generalized assignment prob-
lem. Management science, 37(6):695–713, 1991.

Bernard Gendron, Teodor Gabriel Crainic, and Antonio Frangioni. Multicommodity capacitated
network design. In Telecommunications network planning, pp. 1–19. Springer, 1999.

Shubhashis Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer
Programming and Combinatorial Optimization, pp. 310–323. Springer, 2007.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

Martin Grötschel, Clyde L Monma, and Mechthild Stoer. Design of survivable networks. Handbooks
in operations research and management science, 7:617–672, 1995.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. arXiv preprint arXiv:1911.09539, 2019.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning, pp. 13869–13890. PMLR, 2023.

Syu-Ning Johnn, Victor-Alexandru Darvariu, Julia Handl, and Jörg Kalcsics. A graph reinforcement
learning framework for neural adaptive large neighbourhood search. Computers & Operations
Research, 172:106791, 2024.

11

https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. Update, 2:x3, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017. URL https:
//arxiv.org/abs/1609.02907.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. Advances in neural information processing systems, 35:
32000–32010, 2022.

Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming, 46(1):259–271, 1990.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce,
pp. 66–76, 2000.

Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye Hao, and Feng
Wu. Apollo-milp: An alternating prediction-correction neural solving framework for mixed-
integer linear programming. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR), 2025. URL https://arxiv.org/abs/2503.01129.

Thomas L Magnanti and Richard T Wong. Network design and transportation planning: Models
and algorithms. Transportation science, 18(1):1–55, 1984.

Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco Lübbecke, Matthias Miltenberger, et al. The
scip optimization suite 4.0. 2017.

Aristeidis Mystakidis, Christos Koukaras, Paraskevas Koukaras, Konstantinos Kaparis, Stavros G
Stavrinides, and Christos Tjortjis. Optimizing nurse rostering: A case study using integer pro-
gramming to enhance operational efficiency and care quality. In Healthcare, volume 12, pp. 2545,
2024.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks.
ArXiv, abs/2012.13349, 2020b.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International Conference
on Machine Learning, pp. 17584–17600. PMLR, 2022.

Rym Regaieg, Mohamed Koubàa, Zacharie Ales, and Taoufik Aguili. Multi-objective optimiza-
tion for vm placement in homogeneous and heterogeneous cloud service provider data centers.
Computing, 103(6):1255–1279, 2021.

Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534–541, 2007.

Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree mdps. arXiv preprint arXiv:2205.11107, 2022.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020.

12

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2503.01129

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Rafael D Tordecilla, Jairo R Montoya-Torres, Carlos L Quintero-Araujo, Javier Panadero, and An-
gel A Juan. The location routing problem with facility sizing decisions. International Transac-
tions in Operational Research, 30(2):915–945, 2023.

Simen T Vadseth, Henrik Andersson, and Magnus Stålhane. An iterative matheuristic for the inven-
tory routing problem. Computers & Operations Research, 131:105262, 2021.

Haoyu Peter Wang, Jialin Liu, Xiaohan Chen, Xinshang Wang, Pan Li, and Wotao Yin. DIG-
MILP: a deep instance generator for mixed-integer linear programming with feasibility guar-
antee. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=MywlrEaFqR.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075–30087,
2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Y. Zhang and Others. Edge matters: A predict-and-search framework for milp based on edge fea-
tures. In OpenReview Forum, 2024.

13

https://openreview.net/forum?id=MywlrEaFqR
https://openreview.net/forum?id=MywlrEaFqR

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we employed large language models (LLMs) solely for the pur-
pose of language polishing and refinement. Specifically, LLM-assisted editing was used to improve
grammatical accuracy, sentence fluency, and terminological consistency across the paper, particu-
larly in sections where non-native expressions might affect readability. All substantive intellectual
contributions—including the formulation of research ideas, theoretical analysis, algorithm design,
experimental setup, result interpretation, and conclusions—remain entirely our own.

A ADDITIONAL RELATED WORK

Large Neighborhood Search (LNS) has a long history as a primal heuristic inside branch-and-bound
(BnB) solvers. In that setting, LNS-based primal heuristics are invoked periodically at selected
nodes of the search tree, and their activation schedule is dynamic because LNS calls are typically
more expensive than many other primal heuristics. Compared with an external (stand-alone) LNS for
ILPs-whose goal is likewise to improve the incumbent but operates outside the BnB control flow-
two differences are central: (i) BnB LNS is interleaved with tree search and triggered at varying
depths and times; (ii) its destroy (neighborhood-defining) mechanisms often leverage node-local
information such as the node’s LP relaxation and dual bound, which are not directly available or
portable in a stand-alone LNS setting.

LNS Heuristics for ILPs: The Crossover heuristic (Rothberg, 2007) destroys variables whose val-
ues differ across a small set of selected solutions (typically two), whereas the Mutation heuristic
(Rothberg, 2007) destroys a random subset of variables. The RINS heuristic (Danna et al., 2005)
destroys variables whose values differ between the node’s LP-relaxation solution and the incumbent
solution. Relaxation Enforced Neighborhood Search (RENS) (Berthold, 2014) restricts the neigh-
borhood to be the feasible roundings of the LP relaxation at the current search tree node. Local
Branching (LB)(Fischetti & Lodi, 2003) restricts the neighborhood to a ball around the current in-
cumbent solution. Distance Induced Neighborhood Search (DINS) (Ghosh, 2007) takes the intersec-
tion of the neighborhoods of the Crossover, Local Branching and Relaxation Induced Neighborhood
Search heuristics.Graph-Induced Neighborhood Search (GINS) (Maher et al., 2017) destroys the
breadth-first-search neighborhood of a variable in the bipartite graph representation of the ILP.

Neural Method for LNS: Wu et al. (2021) train a Neural Diving model and an imitation-learned
neighborhood selector to drive LNS on mixed-integer programs with a MIP solver in the loop.
Sonnerat et al. (2021) use deep reinforcement learning to learn which variables to destroy/repair,
turning LNS for integer programming into an effective learned policy. Huang et al. (2023) propose
that CL-LNS learns a contrastive destroy heuristic on ILP bipartite graphs, yielding strong anytime
performance on standard ILP benchmarks. Hottung & Tierney (2019) propose a neural repair op-
erator with attention inside an LNS for CVRP/SDVRP, markedly improving over handcrafted LNS.
Johnn et al. (2024) propose Graph-RL framework picks ALNS operators conditioned on the current
solution state to outperform classic adaptive layers.Wu et al. (2021) formulates large neighborhood
search as a reinforcement learning problem where a policy network learns to select which variables
to destroy and repair, achieving better anytime performance on integer programming than classical
heuristics. Nair et al. (2020a) implement for the Neural Neighborhood Selection approach used
in learning-based LNS for MIPs. Liu et al. (2025) proposes APOLLO-ILP, an alternating predic-
tion–correction neural framework that integrates learnable heuristics with exact solvers to improve
both efficiency and solution quality for ILP. ? proposes a hybrid framework that leverages Graph
Neural Networks (GNNs) and Gradient Boosted Decision Trees (GBDTs) to accelerate large-scale
integer programming optimization. ? introduces a lightweight optimizer that achieves efficient so-
lutions for large-scale ILPs using only a small-scale training dataset.

Graph-Based Expressive power of GNNs for ILPs : Xu et al. (2019) proves that message-passing
GNNs are at most as expressive as the 1-Weisfeiler–Lehman test and introduces the Graph Iso-
morphism Network (GIN), which matches 1-WL’s power and empirically achieves state-of-the-art
performance on graph classification tasks. Chen et al. (2023) formalizes ILPs in GNN terms and
shows 1-WL–bounded MPNNs have intrinsic limits (foldable cases) while still approximating key
properties for non-foldable instances. Chen et al. (2022) proves GNNs (and the 1-WL test) have suf-
ficient separation power to distinguish LPs under a principled encoding, clarifying when message

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

passing suffices. Chen et al. (2024b) characterizes when MPNNs can represent feasibility/optima
for QPs and MIQPs, pinpointing WL-style expressivity boundaries and practically testable crite-
ria. Chen et al. (2024c) studies whether MPNNs can emulate strong branching, revealing struc-
tural/expressivity hurdles and conditions under which approximation is viable. Chen et al. (2025)
shows permutation symmetries in ILPs confound 1-WL–level GNNs and proposes orbit-based aug-
mentation to break WL-indistinguishability among symmetric variables. Chen et al. (2024a) intro-
duces a symmetry-aware ILP learning pipeline that mitigates the WL/MPNN inability to separate
symmetric variables in standard encodings. Gasse et al. (2019) pioneers the variable–constraint bi-
partite ILP encoding for GNN-guided branching, implicitly operating at 1-WL expressivity and mo-
tivating later expressivity analyses. Gupta et al. (2020) combines a GNN root-encoding with light
node-specific models, illustrating practical gains while reflecting 1-WL–bounded representation on
ILP graphs. Paulus et al. (2022) uses (tri/bipartite) graph encodings for cut selection, highlighting
how representational choices interact with WL-style expressivity in ILP states. Khalil et al. (2022)
General bipartite-graph GNN framework for ILP guidance, exemplifying strengths and 1-WL–type
limits on variable–constraint interaction encoding. Labassi et al. (2022) Siamese GNNs compare
B&B nodes via bipartite encodings, implicitly constrained by WL equivalence classes of solver
states.

B PRELIMINARIES

B.1 WEISFEILER–LEHMAN TEST FOR ILPS

The 1-dimensional Weisfeiler–Lehman algorithm (1-WL), also known as color refinement, itera-
tively computes a color map χG for a graph G = (V,E), assigning each vertex v ∈ V a color
χG(v) ∈ C. We apply 1-WL to the weighted bipartite ILP graph described below. At initialization,
vertices receive colors derived from node features (e.g., cj on variables and bi on constraints). At
each iteration, the color of a vertex is updated by hashing its previous color together with a multi-
set of its neighbors’ colors paired with incident edge weights Ai,j . This refinement repeats for L
iterations or until stabilization.

Algorithm 1 1-WL on a weighted bipartite ILP graph

1: Input: ILP I = (A,b, c); bipartite graph G = (V ∪U,E) with constraint nodes V = {vi}mi=1,
variable nodes U = {uj}nj=1; iterations L.

2: Init: χ0(vi)← hash(bi), χ0(uj)← hash(cj).
3: for ℓ = 1 to L do
4: for each vi ∈ V do
5: χℓ(vi)← hash

(
χℓ−1(vi), {{(χℓ−1(uj), Ai,j) : uj ∈ N(vi)}}

)
6: end for
7: for each uj ∈ U do
8: χℓ(uj)← hash

(
χℓ−1(uj), {{(χℓ(vi), Ai,j) : vi ∈ N(uj)}}

)
9: end for

10: end for
11: Output: stabilized labels χ(vi), χ(uj).

Each iteration refines the partition induced by colors on V ∪ U . Since V ∪ U is finite, the process
stabilizes in at most |V | + |U | refinements. The 1-WL procedure is a powerful heuristic for graph
isomorphism: if the stabilized color multisets differ, the graphs are not isomorphic; if they coin-
cide, the graphs may still be non-isomorphic (1-WL is a necessary but not sufficient test). These
limitations motivate higher-order WL tests with stronger expressivity.

Lemma B.1 Let n be the number of variables and m the number of constraints. For an ILP instance
I, incumbent xt, and neighborhood indicator h:

• If the neighborhoodM(I,xt, h) is effective (i.e., admits an improving feasible solution),
then at least one constraint is effective for this neighborhood.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• There exist ILP instances for which, relative to a given neighborhood, no constraint is re-
dundant (i.e., removing any single constraint changes the feasible set or the best achievable
objective within the neighborhood).

Theorem B.2 (Weighted isomorphism preserves ILP solutions) Let I1 = (A1,b1, c1) and
I2 = (A2,b2, c2) be ILPs with weighted bipartite graphs G1 and G2. If there exists a weight-
preserving bipartite isomorphism that simultaneously permutes constraint/variable indices and car-
ries (A1,b1, c1) to (A2,b2, c2), then I1 and I2 have the same optimal objective value and isomor-
phic sets of optimal solutions.

Following Xu et al. (2019), the separation power of message-passing GNNs (MP-GNNs) is upper-
bounded by 1-WL: nodes indistinguishable by 1-WL will receive identical MP-GNN embeddings.
Consequently, under the factorized action model equation 6, the MP-GNN-predicted marginal prob-
abilities preserve inherent graph symmetries.

Theorem B.3 (Xu et al. (2019)) Let I be an ILP and consider its bipartite graph. For any MP-
GNN and any two variable nodes uj1 , uj2 with identical 1-WL labels, if p(I, xj , hj = 1) in equa-
tion 6 is represented by the MP-GNN output p̂j , then p̂j1 = p̂j2 .

B.2 INVARIANCE AND EQUIVARIANCE FOR BIPARTITE ILP GRAPHS

An integer linear program
min

x∈{0,1}n
c⊤x s.t. Ax ≤ b

admits a weighted bipartite representation G = (V ∪ U,E) with constraint nodes V = {vi}mi=1,
variable nodes U = {uj}nj=1, and edges only across V and U . Node features are bi on vi and cj on
uj ; edge weights store coefficients Ai,j . Let Sm and Sn be permutation groups acting on V and U ,
respectively. For (σV , σU) ∈ Sm×Sn, define (σV , σU)·G as the graph obtained by jointly permuting
constraint/variable indices, their features, and rows/columns of A accordingly; this action leaves the
optimization problem invariant.

We consider three canonical mappings of G:

1. Feasibility Φfeas(G) ∈ {0, 1}.
2. Optimal objective Φobj(G) ∈ R ∪ {±∞}.
3. An optimal solution Φsolu(G) ∈ {0, 1}n (when a canonical choice is fixed).

Definition B.4 (Invariance and equivariance) A graph-level map Ψ(G) is invariant to (σV , σU)
if Ψ((σV , σU) ·G) = Ψ(G) for all (σV , σU). A variable-level map f(G) ∈ Rn is equivariant if
f((σV , σU)·G) = σU

(
f(G)

)
, i.e., the output permutes in the same way as variables.

The following is standard (e.g., Chen et al. (2022)):

Theorem B.5 (Symmetry properties of ILP quantities) For any (σV , σU) ∈ Sm × Sn,

Φfeas((σV , σU)·G) = Φfeas(G), Φobj((σV , σU)·G) = Φobj(G),

and
Φsolu((σV , σU)·G) = σU

(
Φsolu(G)

)
.

Thus, feasibility and optimal value are invariant, while an optimal solution is equivariant under
variable permutations.

B.3 UNIVERSAL APPROXIMATION FOR PERMUTATION-INVARIANT SET FUNCTIONS

Let X ⊂ Rd be compact and X≤M :=
⋃M

m=0 Xm denote multisets of size at most M . A function
F on finite sets S ⊂ X is permutation-invariant if F (S) = F (πS) for any permutation π of
the elements of S. We write S = {x1, . . . , xm} (order arbitrary), and

∑
x∈S denotes multiset

summation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Definition B.6 (Deep Sets) A map F has Deep-Set form if there exist ρ : Rp → Rk and ϕ : X →
Rp such that

F (S) = ρ

(∑
x∈S

ϕ(x)

)
.

Chen et al. (2024b) prove a universal approximation theorem for invariant set functions:

Theorem B.7 (Universal approximation of invariant set functions) Fix M ∈ N. Let F :
X≤M → Rk be continuous (with the topology that pads sets of size m < M by a fixed dummy
element). Then for every ε > 0 there exist continuous ϕ : X → Rp and ρ : Rp → Rk such that

sup
S∈X≤M

∥∥F (S)− ρ
(∑
x∈S

ϕ(x)
)∥∥ < ε.

Moreover, if ρ and ϕ are implemented by MLPs, the same guarantee holds.

If the encoder S 7→
∑

x∈S ϕ(x) is not injective over X≤M , distinct sets may collapse to the same
code, preventing any ρ from separating them. Thus, universal approximation in practice requires
sufficiently expressive ϕ (dimension p and nonlinearity) so that the induced embedding is injective
on the relevant family. By classical approximation results (e.g., Stone–Weierstrass), MLP families
are dense in C(K) on compact K, yielding the stated universality.

C PROOF OF THEOREM 5.2

Theorem C.1 Given an ILP instances I, Gn = (V,E) is I’s variable graph and m denotes the
number of constrains in I, if the i− th bag Xi of vertex subsets X = {X1, X2, · · ·Xk}(Xi ⊆ V) is
formed by all the variable nodes involved in the i− th corresponding constraint in I, then it yields
a graph decomposition of a graph Gn = (V,E).

Recall the definition a graph decomposition, we will prove that regard the constrain node as the bag
of variable yields a graph decomposition. We verify the three requirements:

Vertex coverage. We first assume that every variable node appears in at least one constraint, then
by assumption, v ∈ V appears in at least one constraint, hence vi ∈ Xj for some j ∈ [m]. There-
fore

⋃m
j=1 Xr = V . If there is variable xi does not appear in any constraint, we can handle it in

the following equivalent ways: Eliminate the variable from the ILP: Optimize xi independently
according to the objective coefficient ci (set x⋆

i = 0 if ci < 0, x⋆
i = 1 if ci ≥ 0), fix xi = x⋆

i , and
remove xi from the ILP. This yields an equivalent ILP that no longer contains xi, after which the
preceding vertex-coverage argument applies unchanged.

Edge coverage. Take any edge (vi1 , vi2) ∈ E. By the definition of the variable graph, there exists a
constraint j in which vi1 and vi2 co-occur. By construction, both vi1 and vi2 belong to the bag Xj ,
so {u, v} ⊆ Xr.

Structural relation. By definition of Ξ, two bags are adjacent exactly when they intersect, i.e., if
Xi ∩Xj ̸= ∅ then (i, j) ∈ Ξ. This matches the stated structural condition.

All three conditions in the definition are satisfied, so (X,Ξ) is a graph decomposition of Gn.

D PROOF OF THEOREM 5.3

Theorem D.1 Given any ILP instance I, xt ∈ {0, 1}n is the incumbent solution, ht ∈ {0, 1}n
as neighborhood selection indicator generated from first stage and M(I,x, ht) as the neighbors
searching space, then ∀ϵ, ϕ > 0, there is F ∈ FCEGNN such that the following holds:

• For effective and redundant indicatorR(I,xt, h), T (I,xt, h), we have

P (∥R̂ − R(I,xt, h)∥ > ϕ) < ϵ, P (∥T̂ − T (I,xt, h)∥ > ϕ) < ϵ

where R̂, T̂ are probabilistic predictions for effective and redundant indicator generated
from the second stage.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Denote h̃t ∈ [0, 1]n as the output from F after calibration, if the scale of neighborhood
kt < n

2 , then we have
P (∥h̃t − ht

0∥ > ϕ) < ϵ

where ht
0 is optimal neighborhood selection indicator:maxh∈LB(kt)

(
E(I,xt, h)

)
(E(I,xt, h), LB(k) is defined in equation ??)

D.1 PROOF OF PART I OF THE THEOREM

In this section, we prove the results in Section , i.e., our framework is able to approximate the pre-
dictions of effectiveness of constraint and optimal neighbor on finite datasets of ILPs with arbitrarily
small error. We consider more general results on finite-measure subset of which involves the infinite
elements. In our settings, the predictions of effectiveness of constraint only depends on the ILP
instance I, current solution x0 and prediction of optimal neighbor h ∈ {0, 1}n, while the optimal
neighbor only depends on the ILP instance I and current solution x0. Therefore, we are able to
define the mapping for predictions of local-effectiveness of constraint as follow:

Φloc−ex : Rn×m × Rm × Rn × {0, 1}n × {0, 1}n → {0, 1}n : I × x0 × h→ r (7)

and the mapping for optimal neighbor as follow:

Φopti : Rn×m × Rm × Rn × {0, 1}n → {0, 1}n : I × x0 → {0, 1}n (8)

Where I refers to (A, b, c) ∈ Rn×m × Rm × Rn, x0 ∈ {0, 1}n. Without loss of generality, the
effectiveness of a constraint is permutation-invariant with respect to the ordering of the variables.
Reorder the variables such that the first n1 variables are relaxed and the remaining n1 = n − n2

variables are fixed. Denote Ah,1 ∈ Rn1×m as the induced submatrix by selecting the columns of A
whose corresponding entry in h equals 1, and Ah,0 ∈ Rn1×m as equals 1. Also denote ch,1 ∈ Rn1

as the induced subvector by selecting the elements of c whose corresponding entry in h equals 1.
Thus, the original problem is reformulated as a reduced-scale ILP problem:

min
x

c⊤h,1x (9)

s.t. Ah,1x ≤ b−Ah,0x
0
h,0, (10)

x ∈ {0, 1}n1 . (11)

Under the relaxation condition specified by h, the ILP subproblem(denoted as Ix0,h) corresponding
to ILP problem I is unique, hence we are able to define a measurable mapping Φsub:

Φindu cur(I, x0, h) = Ix0,h : Rn×m × Rm × Rn × Rn × Rn → Rn1×m × Rm × Rn1 (12)

To prove Φex and Φopti is measurable, we first define the mapping of optimal-feasibility Φfeas:

Φopti feas(I, x0) : Rn×m × Rm × Rn → {0, 1} (13)

That equals to 1 if it has a better feasible solution than x0 and 0 otherwise, then we have the following
lemma.

D.1.1 PROOF OF LEMMA D.2 AND D.3

Lemma D.2 The optimal-feasibility mapping Φfeas defined in 13 is measurable, i.e., the preimages
Φ−1

opti feas(1) and Φ−1
opti feas(0) are both measurable subsets of I.

Proof of lemma D.2: Since Φ−1
opti feas(1)∪Φ

−1
opti feas(0) refers to every ILP, hence we only need to

prove that Φ−1
opti feas(1) is measurable. Hence we define the following measurable set:

Xopti feas = {I, x0 ∈ Rn×m × Rm × Rn × Rn : ∃x ∈ {0, 1}n, s.t.Ax ≤ b, c⊤x < c⊤x0} (14)

Therefore the feasibility mapping Φopti feas defined in 13 is measurable.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Now we can prove that the mapping Φloc−ex is measurable: For j ∈ [m], consider the following
ILP instance, which is denoted as Ix0

j :

min
x

c⊤h,1x (15)

s.t. Aj
h,1x ≤ bj −Aj

h,0x
0
h,0, (16)

x ∈ {0, 1}n1 . (17)

where Aj
h,1 and Aj

h,0 refers to the jth constrain. By lemma D.2, the Φfeas(Ix
0

j) is measurable. In

other way, since the Ix0

j is induced from ILP Ix0

min
x

c⊤h,1x (18)

s.t. Ah,1x ≤ b−Ah,0x
0
h,0, (19)

x ∈ {0, 1}n1 . (20)

therefore the mapping

Φindu con(Ix
0

, j) = Ix
0

j : Rn1×m × Rm × Rn1 → Rn1 × R× Rn1 (21)

is measurable. In summary, denote

Φtran(I, x0, h, j) = Φopti feas(Φindu con(Φindu cur(I, x0, h), j)) (22)

the mapping

Φtran(I, x0, h, 1)⊕ Φtran (I, x0, h, 2)⊕ · · · ⊕ Φtran (I, x0, h,m) (23)

is same as Φloc−ex therefore we have proved the following lemma:

Lemma D.3 The local-effectiveness of constraint mapping Φloc−ex defined in 7 is measurable.

D.1.2 STONE-WEIERSTRASS THEOREM

Stone-Weierstrass theorem describes that any continuous function defined on a closed interval can
be uniformly approximated by polynomial functions. Its formal statement is as follow:

Theorem D.4 (Stone-Weierstrass Theorem) Let X be a compact Hausdorff space and let A ⊆
C(X,R) be a subalgebra of the algebra of continuous real-valued functions on X . Suppose that:

1. A separates points, i.e., for any x, y ∈ X with x ̸= y, there exists f ∈ A such that
f(x) ̸= f(y);

2. A contains the constant functions.

Then A is dense in C(X,R) with respect to the uniform norm. In other words, for every f ∈
C(X,R) and every ε > 0, there exists g ∈ A such that

sup
x∈X
|f(x)− g(x)| < ε.

To establishing universal approximation for Φloc−ex, there are two main lemma remaining to be
proved.

• Φloc−ex is a graph-invariant function.

• The Weisfeiler–Lehman (WL) test possesses sufficient discriminative capability to recog-
nize local-effective constraints.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.1.3 PROOF OF LEMMA D.5

Lemma D.5 Let χ(bj1) and χ(bj2) be the output label of constraint nodes b1 and b2 in the WL
test after adding the features of variable relaxation/fixation, if χ(bj1) = χ(bj2) then their local
effectivity is consistent.

Proof of lemma D.5:Recall of the process of WL-test, since χ(bj1) = χ(bj2), then we have

(χ(bj1), {{(χ(xi), ei,j1)|xi ∈ N(bj1)}}) = (χ(bj2), {{(χ(xi), ei,j2)|xi ∈ N(bj2)}}) (24)

where N(bj) denotes the neighbor of node bj , since the WL test take the features of variable relax-
ation/fixation into consideration, therefore N(bj) can be partitioned into two parts based on the fea-
tures of variables relaxation/fixation: Nh=1(bj) refers to the variables that is relaxed while Nh=0(bj)
refers to the variables that is fixed. Also we have

∀xi1 ∈ Np=1(bj), xi2 ∈ Nh=0(bj), χ(xi1) ̸= χ(xi2) (25)

Take equation 25 into equation 24, then we have

{{(χ(xi), ei,j1)|xi ∈ Nh=0(bj1)}} = {{(χ(xi), ei,j2)|xi ∈ Nh=0(bj2)}} (26)

According to the WL process, χ(xi1) = χ(xi2)(χ(xi1) ∈ Nh=0(bj1), xi2) ∈ Nh=0(bj2)) suggests
the equivalence between the input features of variables xi1 and xi2 : (1) the current solution value of
xi1 and xi2 (2) the coefficient of (xi1 , bj1) : ai1,j1 and (xi2 , bj2) : ai2,j2 in the constraint matrix A.
Therefore, Aj1

h,0x
0
h,0 = Aj2

h,0x
0
h,0.

Suppose constrain bj1 is local-effective then ILP Ix0

j1
:

min
x

c⊤h,1x (27)

s.t. Aj1
h,1x ≤ bj1 −Aj1

h,0x
0
h,0, (28)

x ∈ {0, 1}n1 . (29)

has a better solution, denoted as xj1 , than current solution. Note that

{{(χ(xi), ei,j1)|xi ∈ Nh=1(bj1)}} = {{(χ(xi), ei,j2)|xi ∈ Nh=1(bj2)}} (30)

therefore for ILP Ix0

j2
:

min
x

c⊤h,1x (31)

s.t. Aj2
h,1x ≤ bj2 −Aj2

h,0x
0
h,0, (32)

x ∈ {0, 1}n1 . (33)

the better solution is assigned based on the following strategy:

• Rearrange the variables in Nh=1(bj1) and Nh=1(bj2) as (xj1
1 , xj1

2 , · · ·) and (xj2
1 , xj2

2 , · · ·)
that χ(xj1

i) = χ(xj2
i). The implementation is feasible according to Equation 30.

• Assign the value of solution xj2 to xj2
i same as xj1

i .

Similar to Nh=0, χ(xi1) = χ(xi2)(χ(xi1) ∈ Nh=1(bj1), xi2) ∈ Nh=1(bj2)) suggests the equiva-
lence between the input features of variables xi1 and xi2 : (1) the coefficient of (xi1 , bj1) : ai1,j1 and
(xi2 , bj2) : ai2,j2 in the constraint matrix A. Therefore, Aj1

h,0x
0
h,0 = Aj2

h,0x
0
h,0. (2) objective coeffi-

cient vector: ci1 = ci2 . Due to (1) Aj1
h,1x

j1 = Aj2
h,1x

j2 , therefore xj2 is feasible for ILP Ix0

j2
. Due

to (2) c⊤xj2 = c⊤xj1 < c⊤x0, xj2 is a better solution, hence constrain bj2 is also local-effective.
Now we have proved that if χ(bj1) = χ(bj2) then their local effectivity is consistent. Now we are
proving the other lemma for establishing universal approximation for Φloc−ex.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.1.4 PROOF OF LEMMA D.6

Lemma D.6 Φloc−ex is a graph-invariant function with respect to variable permutation and
graph-equivariant function with respect to constrain permutation. In other word, denote
π(I), π(x0), π(h) as I, x0, h after applying permutation π,if permutation π acts on variable
then Φloc−ex(π(I), π(x0), π(h)) = Φloc−ex(I, x0, h), if permutation π acts on constrain then
Φloc−ex(π(I), π(x0), π(h)) = π(Φloc−ex(I, x0, h)).

Proof of lemma D.6: Given an ILP instance I:

min
x

c⊤x (34)

s.t. Ax ≤ b, (35)
x ∈ {0, 1}n. (36)

For bipartite graphs, we will show the invariance with respect to variable nodes and the equivariance
with respect to constraint nodes for Φloc−ex. We first discuss the invariance with respect to variable
nodes.

For πn ∈ Sn, let Pπ ∈ {0, 1}n×n be its permutation matrix, then under the action of the permutation
that reorders the variable nodes, the new coefficient adjacency matrix is APπ , the new constraint
coefficient vector is b and the new objective coefficient vector is c⊤Pπ , and the corresponding current
solution P⊤

π x0. If the constraint bj before permutation is effective in the neighborhood determined
by h, then it has a better solution, denote xh

j as it associated with the variables being fixed, then
P⊤
π xp

j is also a better solution for the ILP after variable permutation.

As for the equivariance with respect to constraint nodes, for πm ∈ Sm, let Pπ ∈ {0, 1}n×n be its
permutation matrix, if constraint bj has a better solution, denote xp

j then xh
π(j) is a better solution

for constraint bπ(j), therefore Φloc−ex(π(I, x0, p)) = π(Φloc−ex(I, x0, p)). Now we have proved
the lemma D.6.

In summary, we now can prove there is a model F ∈ FC can universally approximate Φloc−ex: By
lemma D.3 Φloc−ex is measurable, while by lemma D.5 we have that if the label of two constrain
in WL test are same then their local effectiveness is consistent and the invariance/equivariance by
D.6. Therefore by Stone-Weierstrass theorem there is a model F ∈ FC can universally approximate
Φloc−ex.

D.2 PROOF OF PART II OF THE THEOREM

(2)The proof of the second part of the theorem can be summarized in the following three points.

• First, similar to foldable-ILP, we given the definition for foldable-ILP, and prove that for
the unfoldable case, the WL test will eventually produce a unique discrete coloring, and
therefore if two graphs cannot be distinguished by the WL test, they must be isomorphic.

• By applying Lusin’s theorem: any measurable function on a set of finite measure can be ap-
proximated by a continuous function on almost all points. By using the Stone–Weierstrass
type theorem: on a compact set, GNNs can uniformly approximate all continuous mappings
whose separation power does not exceed that of the WL test.

• In our framework, the mechanism that makes neighborhood selection decisions based on
the GNN output probabilities in the third stage further differentiates the nodes with identical
labels in the WL test.

Similar to foldable-ILP, we give the definition of foldable-ILP:

Definition D.7 (Foldable ILP) Given any ILP instance I, we say that I is foldable if, by running
the WL test on its corresponding bipartite graph, there exist two variate nodes, their labels are for
any choice of hash functions in the WL test. The unfoldable ILP is the rest ILP that is not foldable.

The collection of foldable ILP instances are denoted as Ifold ⊂ Gm,n ×HV
m ×HW

n .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To establish that our framework is capable of approximating the output optimal neighborhood. We
need to prove that the separation power of the WL test is stronger than that of the function Φopti for
unfoldable ILP instances. Therefore we have the following lemma:

D.2.1 PROOF OF LEMMA D.8

Lemma D.8 For any two unfoldable ILP instances with current solution as variable nodes’ extra
feature, then if their corresponding bipartite graphs (G1, G2) are isomorphic if and only if the WL
test determines that (G1, G2) are isomorphic.

Proof of lemma D.8: It’s trivial that the isomorphism of (G1, G2) implies the isomorphism in WL
test.

To prove the isomorphism of (G1, G2) in WL test implies the isomorphism. Since G1, G2 are
unfoldable, then any label of nodes in G1, G2 is unique and WL test determines that (G1, G2) are
isomorphic, it yeild a bijection mapping f : V1 → V2, that ∀v1 ∈ V1, χ(v

1) = χ(f(v1)). We will
prove that f is a isomorphic mapping, as for every pair of nodes (v1i1 , v

1
i2
) in G1, if (v1i1 , v

1
i2
) ∈ E1,

then (f(v1i1), f(v
1
i2
)) ∈ E2:

Since (G1, G2) are isomorphic in WL test. By WL test condition, there’s a corresponding pair of
node (v2i1 , v

2
i2
) in G2 that χ(v1i1) = χ(v2i1) and χ(v1i2) = χ(v2i2). Suppose (v2i1 , v

2
i2
) /∈ E2, then

since χ(v1i1) = χ(v2i1), recall of the process of WL test:

(χ(v1i1), {{(χ(u
1), e(v1

i1
,u1)|u1 ∈ N(v1i1)}}) = (χ(v2i1), {{(χ(u

2), e(v2
i1

,u2)|u2 ∈ N(v2i1)}}) (37)

Since G1, G2 are unfoldable, χ(v1i2) and χ(v2i2) are unique. On other hand, χ(v1i2) ∈ N(v1i1),
therefore if (v2i1 , v

2
i2
) /∈ E2, then

{{(χ(u1), e(v1
i1

,u1)|u1 ∈ N(v1i1)}} ̸= {{(χ(u
2), e(v2

i1
,u2)|u2 ∈ N(v2i1)}} (38)

therefore (v2i1 , v
2
i2
) /∈ E2. Hence we have (v1i1 , v

1
i2
) ∈ E1 if and only if (f(v1i1), f(v

1
i2
)) ∈ E2,

which proves lemma D.8.

D.2.2 PROOF OF MEASURABILITY FOR OPTIMAL NEIGHBOR MAPPING

Optimal Neighbor Mapping. For any unfoldable ILP instance I with current solution x0, the
associated ILP problem has a finite optimal objective value. Although an ILP may admit multiple
optimal neighbors, it is guaranteed that there exists a unique optimal neighbor with the smallest
ℓ2-norm. Formally, we define the mapping

Φneigh(I, x0) = p : (Rn×m × Rn × Rm\Ifold)× {0, 1}n → {0, 1}n,

which maps (I, x0) to the p indicator vector that decide the variable is fixed or relaxed with the
smallest ℓ2-norm. Φneigh maps an ILP with current solution to exactly one of its optimal neighbor
and we choose the h the smallest ℓ2-norm as unique, otherwise ILP instance I is not unfoldable.

Lemma D.9 The optimal neighbor mapping Φneigh(I, x0) is measurable.

Proof of lemma D.9: In Chen et al. (2023), chen has proved that the optimal solution and value map-
ping for mixed-integer linear programs(ILP) is measurable, since ILP is the subset of ILP therefore
the optimal solution mapping for integer linear programs for unfoldable ILP

Φopti solu(I) : (Rn×m × Rn × Rm\Ifold)→ {0, 1}n,

and value
Φopti value(I) : (Rn×m × Rn × Rm\Ifold)→ R,

are measurable. Since the mapping Φindu cur is also measurable, we can define the mapping
Φindu cur opti solu that output the optimal solution and Φindu cur opti value that output the optimal
value for the sub-ILP induced by p

Φindu cur opti solu(I, x0, p) = Φopti solu(Φindu cur opti solu(I, x0, p)) (39)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

and
Φindu cur opti value(I, x0, p) = Φopti value(Φindu cur opti solu(I, x0, p)) (40)

Since the composition of measurable functions is also measurable, therefore Φindu cur opti solu and
Φindu cur opti value are also measurable. Denote c as

c = max
p

(Φindu cur opti value(I, x0, p)) (41)

then
Φ−1

indu cur opti value(c){I,x0} (42)

outputs indicator p of optimal neighbor with the smallest ℓ2-norm. Hence The optimal neighbor
mapping Φneigh(I, x0) is measurable. To enable GNN to approximate the function, Chen et al.
(2023) has shown the measurability for invariant and equivariant mapping, the theorem is as follow:

Theorem D.10 (Theorem A.10 in Chen et al. (2023)) Let X ⊂ Rn×m ×Hn ×Hm be a compact
subset that is closed under the action of Sm × Sn. Suppose that Φ ∈ C(X,Rn) satisfies:

• For any σV ∈ Sm, σW ∈ Sn, and G ∈ X ,

Φ
(
(σV , σW)G

)
= σW

(
Φ(G)

)
.

• Φ(G) = Φ(Ĝ) for all G, Ĝ ∈ X with

G
WL∼ Ĝ.

• Given any G ∈ X and any i, i′ ∈ {1, 2, . . . , n}, if χ(vi) = χ(vi′) holds for any choices of
hash functions (i.e., the WL colors of node vi and vi′ coincide at every iteration), then

Φ(G)i = Φ(G)i′ .

Then for any ε > 0, there exists FW ∈ FW
GNN such that

sup
(G)∈X

∥∥Φ(G)− FW (G)
∥∥ < ε.

Since the current solution x0 can regarded as a extra feature for I in Hn, therefore theorem D.10
can also be applied for Φneigh when X is within the unfoldable ILP instance. By lemmas D.8, D.9
and theorem D.10, we have proved that for any unfoldable ILP instances can be approximated by
MP-GNN.

D.3 FOLDABLE ILP INSTANCES APPROXIMATED BY CE-FRAMEWORK

Now we can prove that our framework is also suitable for foldable ILP instances: Consider a foldable
ILP I, there are two following conditions:

• the foldable ILP only refers to constrains nodes. then there are no variable node vi1 and vi2
that χ(vi1) = χ(vi2).

• there are two variable nodes vi1 and vi2 that χ(vi1) = χ(vi2).

Condition 1: By definition of 1-WL on a weighted bipartite graph, at the stable coloring we have,
for each constraint uj ,

χ(uj) = Hash
(
χ(uj), {{(χ(xi), Ai,j) : xi ∈ N(uj)}}

)
.

Because χ is injective on Vx, the multiset {{(χ(xi), Ai,j)}} can be canonically reindexed by
(unique) variable colors. Thus the WL signature of uj is exactly the full incident coefficient pro-
file to individually identified variables. If two constraints uj1 , uj2 satisfy χ(uj1) = χ(uj2), then
their profiles coincide entrywise across all variables, i.e.,

Ai,j1 = Ai,j2 for every xi ∈ Vx.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Consequently, swapping uj1 and uj2 is an automorphism that fixes all variable nodes pointwise and
preserves all edge weights. Any graph function Φ(G) ∈ Rn that is invariant to constraint relabeling
(and equivariant to constraint permutations), as is the case for Φneigh, is therefore insensitive to such
swaps.

Now consider two ILP with incumbent solution instances graphs G, Ĝ that are WL-equivalent with
the same variable-injective stable coloring. The color-preserving correspondence fixes variables
one-to-one. On the constraint side, it may include permutations among color-tied constraints, but as
argued-those permutations do not affect any constraint–equivariant variable-output Φ. Hence WL-
equivalence under variable-injective coloring implies equivalence for Φneigh’s input-output behavior.
For variables-unfoldable instance, if χ(uj1) = χ(uj2) then the jth1 and jth2 serve have exactly the
same constraint power over the variables. Specially, denote the original ILP instance as

min c⊤x (43)

s.t.
∑
i∈[n]

Ai,jxi ≤ bj , j ∈ [m], j ̸= j1, j2 (44)

∑
i∈[n]

Ai,j1xi ≤ bj1 (45)

∑
i∈[n]

Ai,j2xi ≤ bj2 (46)

xi ∈ {0, 1} (47)

then ILP instance

min c⊤x (48)

s.t.
∑
i∈[n]

Ai,jxi ≤ bj , j ∈ [m], j ̸= j1, j2 (49)

∑
i∈[n]

Ai,j1xi ≤ bj1 (50)

xi ∈ {0, 1} (51)

has same solution as original ILP, while in this way the constrain which shares the same label in WL
test can be cut off until the ILP is unfoldable.

Therefore, the only symmetry that could degrade separability relevant to Φneigh would be a tie on
variable colors. Since G is variable–unfoldable, no such tie exists, and the instance behaves (for our
theory and approximation guarantees) exactly like an unfoldable ILP. If G is variable-unfoldable,
then any equality of WL colors on the constraint side (i.e., χ(uj) = χ(bj′)) does not reduce the
distinguishability of variables for any constraint-equivariant target Φ : G → {0, 1}n. In particular,
G can be treated as unfoldable for the purposes of approximating Φneigh.

Condition 2: We first will prove that: if foldable-on-variables(variable nodes share the same label
in WL test) is under p-consistency. In other word, if

χ(vi1) = χ(vi2) → pi1 = pi2 .

Denote the label for WL test in the third stage as χ̂, since the extra added feature p in WL test is
consistent with label χ, therefore we have

χ(vi1) = χ(vi2)←→ χ̂(vi1) = χ̂(vi2)

and if χ̂(vi1) = χ̂(vi2). Denote the set of color of label χ̂(v) get as C. Since ∀ct ∈ C, if the
neighborhood selection pick a node vi1 as χ̂(vi1) = ct, then the neighborhood selection will pick
every variable node v that χ̂(v) = ct. In this way the neighborhood selection degenerates from
multiset

{{χ(v)|v ∈ V }}
to set

{ct|ct ∈ C}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

unlike multiset, all elements in the set are unique, therefore the neighborhood selection is unique.
Therefore if foldable-on-variables is under p-consistency then it can be treated as unfoldable ILP.

Now we consider the condition that there are a pair of foldable-variables is not under p-consistency:
First, we assume the bipartite graph is a connected graph(else the ILP can be divided into r inde-
pendent ILPs if the graph has r disconnected components). To prove the condition we have to prove
that for (finite, simple) trees, the 1-dimensional Weisfeiler–Lehman (WL) color refinement test dis-
tinguishes non-isomorphic graphs; equivalently, two trees are WL-equivalent if and only if they are
isomorphic. The theorem is as follow

D.3.1 PROOF OF THEOREM D.11

Theorem D.11 Let T1, T2 be trees. Then the following are equivalent:

• T1
∼= T2 (graph isomorphism).

• T1 ≡WL T2 (the stable 1-WL colorings agree up to color renaming).

In particular, 1-WL decides isomorphism on trees.

The direction T1
∼= T2 ⇒ T1 ≡WL T2 is immediate, since 1-WL is isomorphism-invariant.

For the converse, we show that on any tree, the stable 1-WL color of a vertex encodes exactly the
isomorphism type of its rooted subtree. Root a tree T at an arbitrary vertex r and orient edges away
from r. Define the height ht(v) of a vertex v as the distance to the farthest descendant; leaves have
height 0.

We prove by induction on h = ht(v) that after h rounds of 1-WL refinement, the color of v is a
complete invariant of its rooted subtree (T, v):

Claim. After round h, two vertices v, w have the same color if and only if the rooted trees (T, v)
and (T,w) are isomorphic.

Base h = 0. Leaves all have the same multiset of neighbor colors (just their parent, if any). Their
color is determined uniformly, and the rooted subtree at a leaf is a single node. Thus color equality
coincides with rooted-subtree isomorphism.

Induction step. Assume the claim holds for all heights < h. Let v satisfy ht(v) = h with children
u1, . . . , uk (all of height < h). In round h, the new color of v is computed from its current color
together with the multiset of the children’s colors from round h − 1. By the induction hypothesis,
each child’s color at round h − 1 uniquely represents the rooted isomorphism type of its subtree
(T, ui). Therefore, the multiset of child colors at round h− 1 encodes exactly the multiset of rooted
subtree types attached to v. Since a rooted tree is determined (by the standard AHU decomposition)
by the multiset of its children’s rooted types, the new color of v at round h uniquely encodes the
rooted isomorphism type of (T, v). Conversely, if two rooted subtrees are isomorphic, they induce
the same multiset of children’s types and hence the same color. This proves the claim at height h.

Thus, after H := maxv ht(v) rounds (at most the radius/diameter of T), the stable color of each
vertex identifies the isomorphism type of its rooted subtree. In particular, the (multi)set of stable
colors of neighbors of any vertex encodes the branch structure around that vertex. To compare
two unrooted trees T1, T2, pick any vertex r1 ∈ T1 and r2 ∈ T2. If T1 ≡WL T2, then there is a
bijection between the stable colors in T1 and T2 preserving adjacency color multisets. Choosing r1
and r2 with the same stable color and proceeding level by level, the above characterization yields an
isomorphism between the rooted trees (T1, r1) and (T2, r2), hence an unrooted graph isomorphism
T1
∼= T2. Therefore, WL-equivalence implies isomorphism on trees. Now we have proved theorem

D.11.

D.3.2 SEPARATING WL TEST LABELS VIA ADDITIONAL FEATURES

Denote the set of color of label χ̂(v) get as Ĉ after adding indicator h as features, and C as original.
Therefore, we can divide the color of Ĉ based on the value of h: Ĉ = C0 ∪ C1 where C0 refers the
color when h = 0, and C0 refers the color when h = 1. It is obvious that C0 ∩ C1 = ∅. Since the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

neighborhood size is less than half of the total number of nodes:kt < n
2 . Then we have

|{vi|hi = 0}| > |{vi|hi = 1}| (52)

which is equivalent to
|{vi|χ(vi) ∈ C0}| > |{vi|χ(vi) ∈ C1}| (53)

We divide the condition into two cases:(1) The foldable variables are under h-consistency when they
are all in cycle. In this case, foldable variables are not under p-consistency iff they are in the tree.
By theorem D.11 and B.2, trees are WL-equivalent if and only if they are isomorphic, therefore WL
have enough expressive power to distinguish non-isomorphic graph.

(2)There are foldable variables in cycle that are not under h-consistency. Then divide the variable
node as V = CY ∪ T R, where CY denote the set of the variable nodes in cycle, T R denote the set
of the variable nodes in tree. If

|{vi|χ(vi) ∈ C0, vi ∈ T R}| > |{vi|χ(vi) ∈ C1, vi ∈ T R}| (54)

then it yields as cases (1). If

|{vi|χ(vi) ∈ C0, vi ∈ T R}| ≤ |{vi|χ(vi) ∈ C1, vi ∈ T R}| (55)

then since
|{vi|χ(vi) ∈ C0}| > |{vi|χ(vi) ∈ C1}| (56)

we have
|{vi|χ(vi) ∈ C0, vi ∈ CY}| > |{vi|χ(vi) ∈ C1, vi ∈ CY}| (57)

Hence at least one color c ∈ C that

|{vi|χ(vi) = c, pi = 0, vi ∈ CY}| > |{vi|χ(vi) = c, pi = 1, vi ∈ CY}| (58)

Hence ∀vi1 , vi2 ∈ CY , χ̂(vi1) = χ̂(vi2)⇐⇒ i1 = i2, and by theorem D.11 and B.2, trees are WL-
equivalent if and only if they are isomorphic, therefore despite there might be node vi1 , vi2 ∈ T R,
χ̂(vi1) = χ̂(vi2) WL still have enough expressive power to distinguish non-isomorphic graph. In
summary, the condition of theorem 5.3, the neighborhood size is less than half of the total number
of nodes:kt < n

2 , breaks the symmetry of nodes sharing the same label under the WL test, thus
enabling 1-WL to distinguish them. By lemmas D.8, D.9 and theorem D.10, any unfoldable ILP
instances can be approximated by MP-GNN. Now that we the second part of theorem 5.3:Denote
h̃t ∈ [0, 1]n as the output from F after calibration, if the scale of neighborhood kt < n

2 , then we
have

P (∥h̃t − ht
0∥ > ϕ) < ϵ

where ht
0 is optimal neighborhood selection indicator:maxh∈LB(kt)

(
E(I,xt, h)

)
(E(I,xt, h), LB(k) is defined in equation ??)

E DETAILS OF NETWORK ARCHITECTURE

We give full details of the GAT and GCN architecture described in the following:

E.1 GRAPH ATTENTION NETWORK

E.1.1 STAGE I

The Network takes as input the state st and output a score vector Fθ(s
t) ∈ [0, 1]n, one score per

variable. We use 2-layer MLPs with 64 hidden units per layer and ReLU as the activation function
to map each node feature and edge feature to Rd where d = 64.

Let Xj ,Bi,Ei,j ∈ Rd be the embeddings of the j-th variable, i-th constraint and the edge connecting
them output by the embedding layers. We perform two rounds of message passing through the GAT.
In the first round, each constraint node Bi attends to its neighbors Ni using an attention stucture
with H = 8 attention heads:

B′
i =

1

H

H∑
h=1

α
(h)
ii,1θ

(h)
b,1Bi +

∑
j∈Ni

α
(h)
ij,1θ

(h)
x,1Xj

 (59)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where θ
(h)
b,1 ∈ Rd×d and θ

(h)
x,1 ∈ Rd×d are learnable weights. The updated constraint embeddings Bi

are averaged across H attention heads using attention weights Brody et al. (2021)

α
(h)
ij,1 =

exp(wT
1 ρ([θ

(h)
b,1Bi, θ

(h)
x,1Xj , θ

(h)
e,1Ei,j]))∑

k∈Ni
exp(wT

1 ρ([θ
(h)
b,1Bi, θ

(h)
x,1Xk, θ

(h)
e,1Ei,k]))

(60)

where the attention coefficients w1 ∈ R3d and θ
(h)
e,1 ∈ Rd×d are both learnable weights and ρ(·)

refers to the LeakyReLU activation function with negative slope 0.2. In the second round, similary,
each variable node attends to its neighbors to get updated variable node embeddings

X′
j =

1

H

H∑
h=1

α
(h)
jj,2θ

(h)
x,2Xj +

∑
i∈Nj

α
(h)
ji,2θ

(h)
b,2B

′
i

 (61)

with attention weights

α
(h)
ji,2 =

exp(wT
2 ρ([θ

(h)
b,2B′

i, θ
(h)
x,2Xj , θ

(h)
e,2Ei,j]))∑

k∈Nj
exp(wT

2 ρ([θ
(h)
b,2B′

k, θ
(h)
x,2Xj , θ

(h)
e,2Ek,j]))

(62)

where w2 ∈ R3d and θ
(h)
b,2 , θ

(h)
v,2 , θ

(h)
e,2 ∈ Rd×d are learnable weights. After the two rounds of message

passing, the final representations of variables Xj are passed through a 2-layer MLP with 64 hidden
units per layer to obtain a scalar value for each variable. Finally, we apply the sigmoid function to
get a score between 0 and 1.

E.1.2 STAGE II

After yields a neighborhood selection indicator ht ∈ {0, 1}n, the Network use 2-layer MLPs with
16 hidden units per layer and ReLU as the activation function to map ht to X̃j ∈ Rd′

where d′ = 16.
Then network regard X̃j as a extra feature and concatenate it with the original input: [Xj ||X̃j]. We
perform a round of message passing through the fine-tuned GAT’s first round in stage I as:

B
′II
i =

1

H

H∑
h=1

α
(h)
ii,1θ

(h)
b,1Bi +

∑
j∈Ni

α
(h)
ij,1[θ

(h)
x,1||θ̃

(h)
x,1][Xj ||X̃j]

 (63)

where weights θ(h)b,1 and θ
(h)
x,1 are fixed and θ̃

(h)
x,1 ∈ Rd×d′

learnable weights.

α
(h)
ij,1 =

exp([w1, w̃1]
Tρ([θ

(h)
b,1Bi, θ

(h)
x,1Xj , θ

(h)
e,1Ei,j , θ̃

(h)
x,1X̃j]))∑

k∈Ni
exp([w1, w̃1]Tρ([θ

(h)
b,1Bi, θ

(h)
x,1Xk, θ

(h)
e,1Ei,kθ̃

(h)
x,1X̃k]))

(64)

where the attention coefficients w̃1 ∈ Rd′
and other weights are both fixed. The embedding B′II

i
goes a 2-layer MLPs with 64 hidden units per layer and ReLU as the activation function to obtain
two scalar values for each constrain to predict the feauture of effective/redundant constraint. The
newly introduced learnable parameters are updated by calibrating against the constraint features
during training.

E.1.3 STAGE III

Denote constrain feature as rt ∈ {0, 1}2×m, the Network use 2-layer MLPs with 16 hidden units
per layer and ReLU as the activation function to map rt to B̃i ∈ Rd′

where d′ = 16. Then network
regard B̃j as a extra feature and concatenate it with the original input: [B′

i||B̃i]. We perform a round
of message passing through the fine-tuned GAT’s second round in stage I as:

XIII′

j =
1

H

H∑
h=1

[θ
(h)
x,2||θ̃

(h)
x,2][Xj ||X̃j] +

∑
i∈Nj

[θ
(h)
b,2 ||θ̃

(h)
b,2][B

′
i||B̃i]

 (65)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where weights θ
(h)
b,2 and θ

(h)
x,2 are fixed and θ̃

(h)
x,2, θ̃

(h)
b,2 ∈ Rd×d′

learnable weights with attention
weights:

α
(h)
ji,2 =

exp([w2||w̃2]
Tρ([θ

(h)
b,2B′

i, θ
(h)
x,2Xj , θ

(h)
e,2Ei,j , θ̃

(h)
x,2X̃j , θ̃

(h)
b,2 B̃i]))∑

k∈Nj
exp(wT

2 ρ([θ
(h)
b,2B′

k, θ
(h)
x,2Xj , θ

(h)
e,2Ej,k, θ̃

(h)
x,2X̃j , θ̃

(h)
b,2 B̃k]))

(66)

where the attention coefficients w̃1] ∈ R2d′
and other weights are both fixed. After the two rounds

of message passing, the final representations of variables Xj are passed through a 2-layer MLP with
64 hidden units per layer to obtain a scalar value for each variable. Finally, we apply the sigmoid
function to get a calibration score between 0 and 1.

E.2 GRAPH CONVOLUTIONAL NETWORK

E.2.1 STAGE I

The Network takes as input the state st and outputs a score vector Fθ(s
t) ∈ [0, 1]n, one score per

variable. We use 2-layer MLPs with 64 hidden units per layer and ReLU as the activation function
to map each node feature and edge feature to Rd where d = 64.

Let Xj ,Bi,Ei,j ∈ Rd be the embeddings of the j-th variable, i-th constraint and the edge connecting
them output by the embedding layers. We perform two rounds of message passing through a bipartite
GCN. Denote by Â = D̂− 1

2 (A+ I)D̂− 1
2 the symmetrically normalized adjacency (with self-loops),

and by âij = Âij its (i, j)-entry. In the first round (constraint update), each constraint node Bi

aggregates its neighbors Ni:

B′
i = σ

θb,1 Bi +
∑
j∈Ni

âij
(
θx,1 Xj + θe,1 Ei,j

) , (67)

where θb,1, θx,1, θe,1 ∈ Rd×d are learnable weights and σ(·) denotes ReLU. In the second round
(variable update), each variable node aggregates updated constraints:

X′
j = σ

θx,2 Xj +
∑
i∈Nj

âji
(
θb,2 B′

i + θe,2 Ei,j

) , (68)

where θb,2, θx,2, θe,2 ∈ Rd×d are learnable. After the two rounds of message passing, the final
representations of variables X′

j are passed through a 2-layer MLP with 64 hidden units per layer to
obtain a scalar value for each variable. Finally, we apply the sigmoid function to get a score between
0 and 1.

E.2.2 STAGE II

After yielding a neighborhood selection indicator ht ∈ {0, 1}n, the Network uses 2-layer MLPs
with 16 hidden units per layer and ReLU to map ht to X̃j ∈ Rd′

where d′ = 16. We regard X̃j as an
extra feature and concatenate it with the original input: [Xj∥X̃j]. We perform one round of message
passing reusing the first GCN direction (constraint update), with the original weights frozen on the
original channels and new learnable adapters on the new channels:

B′II
i = σ

θb,1 Bi +
∑
j∈Ni

âij

(
θx,1 Xj︸ ︷︷ ︸

frozen

+ θ̃x,1 X̃j︸ ︷︷ ︸
learnable

+ θe,1 Ei,j

) , (69)

where θb,1, θx,1, θe,1 are fixed (copied from Stage I) and θ̃x,1 ∈ Rd×d′
is learnable. The embedding

B′II
i is then fed to a 2-layer MLP with 64 hidden units and ReLU to obtain two scalar values per

constraint for predicting effective/redundant constraint features. The newly introduced learnable
parameters are updated by calibrating against the constraint features during training.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.2.3 STAGE III

Denote the constraint feature as rt ∈ {0, 1}2×m. The Network uses 2-layer MLPs with 16 hidden
units per layer and ReLU to map rt to B̃i ∈ Rd′

where d′ = 16. We regard B̃i as an extra feature and
concatenate it with the original input: [B′

i∥̃Bi]. We perform one round of message passing reusing
the second GCN direction (variable update), again freezing the original channels and learning the
adapters:

X′III
j = σ

θx,2 Xj︸ ︷︷ ︸
frozen

+ θ̃x,2 X̃j︸ ︷︷ ︸
learnable

+
∑
i∈Nj

âji

(
θb,2 B′

i︸ ︷︷ ︸
frozen

+ θ̃b,2 B̃i︸ ︷︷ ︸
learnable

+ θe,2 Ei,j

) , (70)

where θb,2, θx,2, θe,2 are fixed (from Stage I), and θ̃x,2, θ̃b,2 ∈ Rd×d′
are learnable. After this round,

the final variable representations X′III
j are passed through a 2-layer MLP with 64 hidden units per

layer to obtain a scalar value for each variable. Finally, we apply the sigmoid function to get a
calibration score between 0 and 1.

F DETAILS OF INSTANCE GENERATION

We present the ILP formulations for the minimum vertex cover (MVC), maximum independent set
(MIS), set covering (SC) and combinatorial auction (CA) problems. MVC-S instances are generated
according to the Barabasi-Albert random graph model Albert & Barabási (2002), with 1,000 nodes
and average degree 70 following Song et al. (2020). MIS-S instances are generated according to
the Erdos-Renyi random graph model Erdos et al. (1960), with 6,000 nodes and average degree
5 following Song et al. (2020). CA-S instances are generated with 2,000 items and 4,000 bids
according to the arbitrary relations in Leyton-Brown et al. (2000). SC-S instances are generated
with 4,000 variables and 5,000 constraints following Wu et al. (2021). We then generate another test
set of 100 large instances for each problem by doubling the number of variables, namely MVC-L,
MIS-L, CA-L and SC-L. For each test set, Table ?? shows its average numbers of variables and
constraints. More details of instance generation are included in Appendix. For data collection and
training, we generate another set of 1,024 small instances for each problem. We split these instances
into training and validation sets, each consisting of 896 and 128 instances, respectively.

Table 2: Names and the average numbers of variables and constraints of the test instances.

Name MVC-S MIS-S CA-S SC-S MVC-L MIS-L CA-L SC-L
#Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000
#Constraints 65,100 23,861 2,422 5,000 135,100 48,031 5,221 5,000

F.1 MINIMUM VERTEX COVER(MVC)

In an MVC instance, we are given an undirected graph G = (V,E). The goal is to select the smallest
subset of nodes such that at least one end point of every edge in the graph is selected:

min
∑

v∈V xv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

F.2 MAXIMUM INDEPENDENT SET(MIS)

In an MIS instance, we are given an undirected graph G = (V,E). The goal is to select the largest
subset of nodes such that no two nodes in the subsets are connected by an edge in G:

min−
∑

v∈V xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F.3 SET COVERING(SC)

In an SC instance, we are given m elements and a collection S of n sets whose union is the set of all
elements. The goal is to select a minimum number of sets from S such that the union of the selected
set is still the set of all elements:

min
∑

s∈S xs

s.t.
∑

s∈S:i∈s xs ≥ 1, ∀i ∈ [m],

xs ∈ {0, 1}, ∀s ∈ S.

F.4 COMBINATORIAL AUCTION(CA)

In a CA instance, we are given n bids {(Bi, pi) : i ∈ [n]} for m items, where Bi is a subset of items
and pi is its associated bidding price. The objective is to allocate items to bids such that the total
revenue is maximized:

min−
∑

i∈[n] pixi

s.t.
∑

i:j∈Bi
xi ≤ 1, ∀j ∈ [m],

xi ∈ {0, 1}, ∀i ∈ [n].

F.5 SUBSET OF MIPLIB

We construct a subset of MIPLIB (Gleixner et al., 2021) to evaluate the solvers’ ability to handle
challenging real-world instances. Specifically, we select instances based on their similarity, which is
measured by 100 human-designed features (Gleixner et al., 2021). Instances with presolving times
exceeding 300 seconds or those that exceed GPU memory limits during the inference process are
discarded. Inspired by the IIS dataset used in Wang et al. (2024), we develop a refined IIS dataset
containing eleven instances. We divide this dataset into training and testing sets, comprising eight
training instances and three testing instances (ramos3, scpj4scip, and scpl4). Detailed information
on the IIS dataset can be found in Table 3.

Table 3: Statistical information of the instances in the constructed IIS dataset.

Instance Name Constraint Number Variable Number Nonzero Coefficient Number

ex1010-pi 1468 25200 102114
fast0507 507 63009 409349
glass-sc 6119 214 63918
iis-glass-cov 5375 214 56133
iis-hc-cov 9727 297 142971
ramos3 2187 2187 32805
scpj4scip 1000 99947 999893
scpk4 2000 100000 1000000
scpl4 2000 200000 2000000
seymour 4944 1372 33549
v150d30-2hopcds 7822 150 103991

G ADDITIONAL EXPERIMENTAL RESULTS

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 4: Primal gap (PG) (in percent), primal integral (PI) at 45 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations for generated instances. “↓” means the lower
the better.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S MIS-S CA-S SC-S

BnB 1.47±0.26 68.3±19.9 5.69±1.37 200.6±87.2 2.64±0.77 158.3±39.4 1.38±0.88 89.2±43.8
RANDOM 1.42±1.05 55.2±39.5 0.35±0.14 23.3±8.1 6.2±1.57 300.1±47.3 2.81±1.46 160.0±39.0
CL-GCN 0.34±0.29 16.54±13.11 0.31±0.17 25.51±10.09 1.24±0.97 89.24±48.33 0.56±1.18 46.70±23.86
CE-GCN 0.22±0.23 12.92±9.66 0.21±0.14 15.57±6.97 0.90±0.75 82.36±28.71 0.45±0.88 31.34±20.75
CL-GAN 0.20±0.12 11.78±8.94 0.20±0.22 19.69±6.83 0.89±0.42 66.54±26.62 0.50±0.76 32.87±18.74
CE-GAN 0.15±0.14 6.33±6.18 0.15±0.09 11.69±4.55 0.50±0.48 46.43±25.55 0.58±0.34 54.03±12.38

MVC-L MIS-L CA-L SC-L
BnB 2.75±0.48 151.4±12.9 6.77±1.93 314.6±20.0 3.14±2.19 388.5±107.3 2.02±1.00 117.0±47.8

RANDOM 0.41±0.25 27.5±9.1 0.21±0.13 21.1±8.1 5.70±0.86 280.5±26.4 3.27±2.17 193.1±66.0
CL-GCN 0.26±0.09 23.4±7.7 0.29±0.28 29.4±15.3 0.22±0.11 270.4±46.3 1.48±1.08 86.9±59.1
CE-GCN 0.22±0.19 20.5±14.4 0.26±0.16 27.9±9.1 0.23±0.15 282.5±66.1 1.42±0.52 85.9±26.1
CL-GAN 0.09±0.05 10.9±4.5 0.17±0.15 18.4±10.0 0.14±0.08 160.0±34.1 0.80±0.31 52.9±7.8
CE-GAN 0.07±0.10 10.1±10.3 0.15±0.07 19.4±5.8 0.10±0.05 128.2±23.3 0.73±0.55 45.1±28.2

Table 5: Primal gap (PG) (in percent), primal integral (PI) at 30 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations for generated instances. “↓” means the lower
the better.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S MIS-S CA-S SC-S

BnB 2.00±0.40 91.4±24.3 7.09±1.88 300.8±110.6 3.52±1.00 222.7±49.5 1.92±1.15 120.5±55.0
RANDOM 1.90±1.44 75.3±52.7 0.44±0.19 36.6±11.0 8.7±2.01 394.2±65.4 4.11±2.12 208.7±50.5
CL-GCN 0.45±0.37 22.94±18.45 0.41±0.22 34.62±14.69 1.83±1.35 134.35±64.20 0.74±1.52 69.08±31.31
CE-GCN 0.32±0.30 18.04±13.31 0.27±0.19 23.85±9.74 1.20±0.91 99.83±41.41 0.59±1.04 39.22±26.64
CL-GAN 0.27±0.15 15.36±11.07 0.28±0.27 25.87±8.81 1.14±0.51 93.27±37.08 0.67±0.92 46.92±25.42
CE-GAN 0.20±0.19 8.84±7.71 0.20±0.11 15.10±6.53 0.68±0.59 57.90±30.62 0.66±0.43 68.15±14.25

MVC-L MIS-L CA-L SC-L
BnB 3.73±0.60 204.8±16.6 9.26±2.53 414.0±28.8 3.86±2.88 515.6±135.7 2.63±1.32 152.3±66.0

RANDOM 0.55±0.39 34.1±12.7 0.28±0.16 28.1±10.8 7.62±1.23 347.0±35.0 4.64±2.72 267.0±85.9
CL-GCN 0.37±0.12 30.5±11.7 0.41±0.35 42.0±19.3 0.32±0.14 393.5±54.1 1.88±1.43 119.3±71.0
CE-GCN 0.31±0.25 25.8±19.1 0.34±0.21 37.9±11.9 0.31±0.20 376.2±94.7 1.97±0.68 118.2±32.6
CL-GAN 0.11±0.07 14.3±6.3 0.21±0.21 25.0±12.5 0.18±0.12 226.1±47.1 1.06±0.39 70.0±10.4
CE-GAN 0.10±0.14 12.5±13.0 0.19±0.10 25.5±7.7 0.15±0.07 164.0±28.8 0.94±0.65 60.0±37.5

Table 6: Primal gap (PG) (in percent), primal integral (PI) at 45 minutes runtime cutoff. “↓” means
the lower the better.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
WA IP

BnB 0.49±0.12 3.81 ±0.94 35.7±3.7 7.38±0.63
RANDOM 0.40±0.10 3.18 ±0.84 42.4±5.3 9.80±0.81
CL-GCN 0.48±0.18 3.40±1.24 30.6±3.5 6.87±0.53
CE-GCN 0.17±0.08 1.60±0.46 22.9±4.6 6.17±0.79
CL-GAN 0.29±0.21 2.26±1.66 32.2±2.5 8.07±0.37
CE-GAN 0.13±0.10 1.07±0.72 23.9±4.2 5.20±0.78

Table 7: Primal gap (PG) (in percent), primal integral (PI) at 30 minutes runtime cutoff. “↓” means
the lower the better.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
WA IP

BnB 0.68±0.16 5.18 ±1.26 48.0±5.1 10.32±0.86
RANDOM 0.54±0.14 4.35 ±1.13 57.3±7.1 13.37±1.09
CL-GCN 0.65±0.24 4.66±1.69 41.5±4.7 9.59±0.73
CE-GCN 0.24±0.11 2.18±0.63 31.8±6.3 8.29±1.06
CL-GAN 0.39±0.29 3.11±2.27 43.4±3.4 10.86±0.51
CE-GAN 0.18±0.13 1.50±0.97 32.5±5.7 7.26±1.07

31

	Introduction
	Background
	Independence Assumption of the Probability Distribution
	Independence Assumption Fails in Representing the Probability Distribution
	Variable Coupling Enhancement for Large Neighborhood Search
	Decomposition Graph for Variables
	Coupling-Enhanced Large Neighborhood Search

	Empirical Evaluation
	Results
	Ablation Study

	Conclusion
	ETHICS STATEMENT
	REPRODUCIBILITY STATEMENT
	Additional Related Work
	Preliminaries
	Weisfeiler–Lehman Test for ILPs
	Invariance and Equivariance for Bipartite ILP Graphs
	Universal Approximation for Permutation-Invariant Set Functions

	Proof of theorem 5.2
	Proof of theorem 5.3
	Proof of Part I of the theorem
	Proof of Lemma D.2 and D.3
	Stone-Weierstrass Theorem
	Proof of lemma D.5
	Proof of lemma D.6

	Proof of Part II of the theorem
	Proof of lemma D.8
	Proof of Measurability for Optimal Neighbor Mapping

	Foldable ILP Instances Approximated by CE-framework
	Proof of theorem D.11
	Separating WL Test Labels via Additional Features

	Details of Network Architecture
	Graph Attention Network
	Stage I
	Stage II
	Stage III

	Graph Convolutional Network
	Stage I
	Stage II
	Stage III

	Details of Instance Generation
	Minimum vertex cover(MVC)
	Maximum independent set(MIS)
	Set covering(SC)
	Combinatorial auction(CA)
	Subset of MIPLIB

	Additional Experimental Results

