Under review as a conference paper at ICLR 2026

VARIABLE COUPLING-ENHANCED LARGE
NEIGHBORHOOD SEARCH FOR SOLVING IN-
TEGER LINEAR PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Neighborhood Search (LNS) is a heuristic for integer programming that it-
eratively destroys part of an incumbent solution and repairs it using an ILP solver
to efficiently explore large solution spaces. Recent advances in neural LNS have
shown strong performance on Integer Linear Programs (ILPs), where graph neural
networks (GNNs) learn neighborhood-selection policies under an independence
assumption. However, through an example, we identify that the independence
assumption ignores variable coupling and assigns equal probability to neighbor-
hoods with vastly different optimization potential. To overcome this limitation, we
propose a coupling-enhanced neural LNS (CE-LNS). CE-LNS augments GNN-
based neighborhood prediction with graph decomposition to explicitly capture
variable coupling, enabling coupling-aware calibration of neighborhood selection.
Theoretically, CE-LNS can (i) predict whether constraints are effective or redun-
dant and (ii) refine neighborhood predictions to approximate optimal neighbor-
hoods. Empirically, CE-LNS achieves stronger performance than existing neural
LNS frameworks across diverse ILP benchmarks, demonstrating its effectiveness
in escaping local optima.

1 INTRODUCTION

Combinatorial optimization has a wide spectrum of real-world applications in logistics (Tordecilla
et al.,[2023;|Vadseth et al., 2021} |Tordecilla et al.;,[2023)), scheduling (Adams et al.||1988; Dell’ Amico
& Trubian [1993} Lenstra et al., |[1990), resource allocation (Gavish & Pirkul, |1991}; Regaieg et al.,
20215 Mystakidis et al., 2024), and network design (Magnanti & Wongl, |1984; (Gendron et al., | 1999;
Grotschel et al., [1995), where many problems admit natural formulations as Integer Linear Pro-
grams (ILPs). Exact branch-and-bound (B&B) solvers such as SCIP, CPLEX, and Gurobi have seen
decades of engineering, yet their exhaustive search can make closing the primal-dual gap imprac-
tical on large instances. Large Neighborhood Search (LNS), an effective paradigm for large ILPs,
starts from a feasible incumbent and alternates (i) a destroy step that selects a subset of variables to
free and (ii) a repair step that re-optimizes only those variables via an off-the-shelf ILP solver.

Designing the destroy policy is pivotal to LNS. Classical heuristics range from fast but weak ran-
dom selection to informative yet costly Local Branching. Recent learning-based approaches—CL-
LNS (Huang et al., 2023), RL-LNS (Wu et al., 2021), and IL-LNS (Sonnerat et al., |2021)—Ilearn
destroy policies (via LB imitation, per-variable RL factorization, or contrastive curation) and deliver
strong anytime performance across ILP benchmarks. Within the LNS framework for integer pro-
gramming, whether under reinforcement learning or contrastive learning, the decision space grows
exponentially with the problem size. Therefore, most neural LNS frameworks (Huang et al.| 2023
Wu et al., 2021; |Sonnerat et al.l [2021)) factorize neighborhood selection into binary choices for
each variable—whether the variable is selected for destruction—rather than treating the entire vari-
able subset as a single action. In Section [4} we provide an example to substantiate our theory:
two neighborhoods have identical products of per-variable selection probabilities; consequently, any
framework based on the independence assumption would assign equal probability to selecting these
two neighborhoods. However, one neighborhood admits only a single feasible solution—the current
solution—whereas the other contains a strictly better feasible solution.

Under review as a conference paper at ICLR 2026

Neural LNS frameworks represent ILPs as bipartite graphs and employ GNN-based representation
learning to output neighborhood selections. However, the expressive power of GNNSs is bounded by
the 1-Weisfeiler—-Lehman (1-WL) test (Xu et al.,|2019), which implies that GNNs cannot distinguish
between neighborhoods that are equivalent under 1-WL. Since LNS requires rapid decision-making,
even though 2-FWL has been shown to approximate strong branching scores (Chen et al., 2024c),
its higher-order complexity O(n?) and substantially larger parameter/data requirements make it un-
suitable for LNS. In this paper, we propose CE-LNS. First, a GNN predicts an initial neighborhood.
Then, using graph decomposition, CE-LNS refines bag-level representations to model variable cou-
pling. Finally, CE-LNS calibrates the initial neighborhood prediction using the refined outputs. We
prove that CE-LNS (1) predicts whether a constraint is active or redundant and (2) effectively cali-
brates the first-stage prediction to approximate the optimal neighborhood. Experiments show clear
improvements over existing neural LNS baselines on both synthetic benchmarks (MVC, MIS, CA,
SC) and real-world datasets (WA, IP). Ablations confirm that both the alignment and calibration
components are necessary.

2 BACKGROUND

Integer Linear Program. An integer linear program (ILP) instance Z = (A, b, c) is defined as

min c¢'x st Ax<b, @))
xe{0,1}"
where x = (21,...,2,) denotes the n binary decision variables, ¢ € R" is the vector of objective

coefficients, and A € R™*™ and b € R™ specify the m linear constraints.

Bipartite Graph Representation. As shown in Figure [3] representing an ILP as a bipartite graph
Gnm = (V UU, E) is a mainstream approach for ILP representation learning. The variable nodes
V = {v; };.’:1 correspond to decision variables {z; };":1, and the constraint nodes U = {u;}™,
correspond to constraints. An edge (v, u;) € F exists if and only if A; ; # 0, and it carries A; ; as
an edge feature.

Large Neighborhood Search (LNS) for ILP. LNS is a heuristic that starts from an initial solution
and iteratively destroys and re-optimizes a part of the solution until a time limit or a stopping con-
dition is met. Let Z be the input ILP and let x° be the initial solution (e.g., obtained by running
B&B briefly). At iteration t > 0, given the incumbent x* (the best solution found so far), a destroy
heuristic selects a subset of k! variables

Xt = {a?jl,. ’xjkf}
Re-optimization is performed by solving a sub-ILP in which the variables in X' are free while all
xj ¢ X" are fixed to their values in x’. The solution to the sub-ILP becomes the new incumbent
xt*1, and LNS proceeds to iteration ¢ + 1. Compared to B&B, LNS often improves ¢ ' x more ef-
fectively on difficult instances Song et al.[(2020); Sonnerat et al.[(2021); Wu et al.|(2021)); compared

to other local-search schemes, it explores larger neighborhoods per step, helping avoid poor local
minima while balancing exploration and tractability.

Following |Huang et al.[(2023), if iteration ¢ finds an improved solution, we set the adaptive neigh-
borhood size k' = min{y - k', 8- n}, where v > 1 and 3 € (0, 1) are constants.

Local Branching (LB) Heuristic. Given the incumbent x?, LB seeks a subset of variables to destroy
that yields an optimal x‘*! differing from x’ on at most k! variables. Let h € {0,1}" be the
neighborhood indicator, where h; = 1 means the j-th variable is destroyed (i.e., :1:3+1 may differ
from xﬁ-), and h; = 0 otherwise.

Neighborhood Search Space. Given an ILP Z, an incumbent x?, and an indicator h, define the
neighborhood search space as

M(Z,x' h) = {x €{0,1}": Ax <b, z; = 2 whenever h; = O}. (2)
If there exists x’ € M(Z,x*, h) with ¢"x’ < ¢ x!, we say that M(Z, x*, h) is effective.

Effective / Redundant Constraint. Let the i-th constraint be Y7, A; jz; < b;. For a given
neighborhood M(Z, x*, h):

Under review as a conference paper at ICLR 2026

* The i-th constraint is called eﬁectzve for M(Z, x", h) if there exists x’ € M(Z,x h) such
that Z A;]acj < b;and ¢'x’ < c"x?. The effectiveness indicator is R(Z,x*,h) €
0,1,

e Let 7’ be the ILP obtained by deleting the i-th constraint. If there exists x’ € M(Z',x%, h)
with x’ ¢ M(Z,x*, h) and ¢"x’ < ¢ x for all x € M(Z,x*, h), then the i-th constraint
is redundant for M(Z,x", h). The redundancy indicator is 7 (Z,x*, h) € {0,1}™.

3 INDEPENDENCE ASSUMPTION OF THE PROBABILITY DISTRIBUTION

Inspired by |Han et al.| (2023)), which constructs a probability distribution over solution predictions
via an energy function, our goal is to construct a distribution over neighborhood indicators that
assigns higher conditional probability to neighborhoods whose induced search space M (Z,x?, h)
contains solutions closer to optimality.

Given an ILP instance Z and the current incumbent x* = (zt, ..., 2!), the destroy heuristic selects
k" variables to free. Let h € {0,1}" be the neighborhood indicator with h;j = 1 iff variable x; is
destroyed (free) and h; = 0 otherwise; we also write ||h]|; = k'. We define the (unnormalized)
energy of a neighborhood by the best achievable improvement within its search space:
AX(Z,x",h) = max (cht — CTX/) >0, 3)
x' € M(Z,xt,h)
and set

1
. AYZ,x'h) >0,
E(T,x'h) = { A (T, xE,h) (Z,x,h) @)

+o0, A*(Z,x' h) = 0.
Let LB(k) = {h € {0,1}™ : ||h|[s = k} be the local-branching neighborhood family of size k. A
Boltzmann distribution over neighborhoods of size k? is then

exp(— E(Z,x',h))

P(Z, xt,h) = . (@)
Z exp(- B(Z,x', h’))
h'€LB(kt)
Because x' € M(Z,x!, h) for any h, we have A*(Z,x*, h) > 0. If a neighborhood is ineffective
(no improvement over x¢), then A* = 0, hence E = -+oo and P(Z, xt, h) = 0. Conversely,

neighborhoods admitting larger improvements have smaller energy and thus higher probability.

Independent (factorized) modeling. Prior work (Han et al.| 2023} [Huang et al., 2023} /Wu et al.,
2021; |Nair et al., 2020b) typically avoids modeling the full joint distribution over h due to the
prohibitive sampling cost in high dimensions, and instead assumes conditional independence across
variables. Concretely, a message-passing GNN (MP-GNN) outputs

F@(Iaxt):(ﬁl7"'7ﬁn)7 ﬁ]%P(h]:1|I7Xt)a

and the joint is factorized as
P(Z,x' h) H (1 —py)tha (6)

Under this independence assumption, the max1mum—probab1hty neighborhood of size k! is obtained
by selecting the k" variables with the largest p; (i.e., a top-k® rule), which explicitly biases the search
toward variables with high marginal destruction probability while ignoring inter-variable coupling.

4 INDEPENDENCE ASSUMPTION FAILS IN REPRESENTING THE
PROBABILITY DISTRIBUTION

The number of neighborhoods of size k! is (]:‘t), which grows combinatorially (and exponentially
in n when k* = ©(n)). To keep LNS applicable on large-scale problems, most methods factorize
neighborhood selection into independent per-variable decisions. In this subsection, we present a
counterexample showing that the independence assumption can assign equal estimated probability
to two neighborhoods whose true utilities (and thus probabilities under equation [5) differ.

Under review as a conference paper at ICLR 2026

Theorem 4.1 There exists an ILP instance I with incumbent solution x*, and two neighborhoods
with indicators 'Y and h®), such that for any MP-GNN producing per-variable marginals pj ~
P(h; =1|Z,x"), the factorized estimate

P(Z,x' h) ﬁ (1 —py)

satisfies P(I, xt, b)) = P(I, xt, h(?), while the true probability defined in equation |5 satisfies
P(T,x*,h(Y) # P(Z,xt, h?).

Proof of theorem ' Consider n = 8 and incumbent x* = (1,0, 1,0,1,0,1,0). Assume the ILP is
represented as a bipartite graph whose 1-WL refinement yields two equivalence classes by parity, so
that variables with the same parity share the same WL label (denote the label by x): x(z;) = x(z;)
iff (i — j) mod 2 = 0. By standard results on MP-GNN expressivity (cf. Theorem , a 1-WL-
bounded MP-GNN must output identical scores within each class; hence, for some «, 8 € (0, 1),

P1 = P3 = Ps = pr = q, P2 = Py = Ps = Pg = B.
Let k' = 4 and define
rY =(1,1,1,1,0,0,0,0), r? =(1,1,1,0,0,0,0,1).

Both neighborhoods free two odd-parity variables and two even-parity variables, so their factorized
estimates coincide:

P(T,x",hY) = o8 (1 —)?(1 - B)* = P(Z,x",).

Now construct Z so that an improvement is possible only when a specific coupled subset of variables
is freed together (e.g., a pairwise-coupling constraint allowing a simultaneous flip of (1, x3) but not
individually, with additional tying constraints involving x4). Choose the couplings so that freeing
the set indicated by h(1) enables a strictly better feasible solution x’ € M(Z,x*, h()) withc"x’ <

c"x!, whereas M(Z, x*, h(?)) contains no improvement (i.e., it is ineffective and only contains x?).
Then
AY(Z,xt, M) >0 but A*(Z,x',hP) =0

which, by equation | and equation 5} implies
P(Z,x' hM) >0 and P(Z,x' h?)=0,
hence P(Z,x!, h)) # P(Z,x*, h(?)) while the factorized estimates are equal.

The mismatch arises because the independence assumption collapses neighborhood quality to a
product of marginal scores and is blind to feasibility/optimality effects that are triggered only by
Jjointly freeing a coupled set of variables. Consequently, two neighborhoods that look identical
under factorized estimates can have sharply different true utilities.

min 2z + z2 + 223 + 24 + 225 + 26 + 227 + T8,

st. zi4+z2=1, xot+ax3=1, z3+x4 =1, Za+721 =1,
stz =1, 26 +axr =1, zr+axs =1, 28+ x5 =1,
z; € {0,1}, Vj € {1,2,...,8}.

Figure 1: An ILP instance where two WL- Figure 2: Decomposition graph.
equivalent neighborhoods lead to different effects.

For the instance above, ML-based LNS under the independence assumption may struggle to predict
an effective neighborhood. Each variable is judged only by its own marginal probability, ignoring
inter-variable coupling that is critical for constructing effective neighborhoods. This shows that
neglecting coupling can yield indistinguishable neighborhood estimates with markedly different true
utilities, undermining LNS guided by such factorized models.

Under review as a conference paper at ICLR 2026

5 VARIABLE COUPLING ENHANCEMENT FOR LARGE NEIGHBORHOOD
SEARCH

In the previous section, we reveal that ML-based LNS under the independence assumption might
fail to account for variable coupling, leading to indistinguishable neighborhood predictions and re-
duced effectiveness. The current approaches include: adding random features as variable extra
feature(Chen et al., [2023) and 2-FGNN framework(Chen et al., [2024c)). However, as it has been val-
idated in subsequent experiments, although adding random features can improve the GNN’s fitting
ability during the training phase, since random features do not contain meaningful ILP information,
therefore they cannot effectively improve the GNN’s generalization performance on the test set, po-
tentially leading to overfitting. Since 2-FGNNs operate on each variable-constraint pair rather than
on single variables, causing their message-passing state space to grow quadratically and their up-
dates to involve cubic-time aggregation, which makes both memory O(n?) and compute O(n?) far
more expensive. Therefore, for LNS that requires making rapid decisions on neighborhood selec-
tion, such expensive complexity is unacceptable for LNS on large-scale ILPs.

It is worth noting that the limitations of representing ILP as a bipartite graph arise from the in-
sufficient expressive power of GNNs on bipartite graphs. No information is lost in the process of
representing an ILP as a bipartite graph.

5.1 DECOMPOSITION GRAPH FOR VARIABLES

Given an ILP instances Z, the variable graph of Z as G,, = (V, E), where its vertices set V' is the set
of variables, two variables vertices v;, , v;, are considered adjacent if the two variables appear in the
same constraint. Graph decomposition refers to the process of breaking a graph G = (V, E) into
smaller subgraphs or vertex subsets as “bags” or “components”, and optionally imposing a structure
on these subgraphs. Formally, a graph decomposition is defined as follow, :

Definition 5.1 A graph decomposition of a graph G = (V, E), denoted as Dec(G) = (X,E), is a
collection of subgraphs or vertex subsets X = {X1, Xo, - X }(X; C V) (called bags or compo-
nents) which serve as the vertices of the decomposition graph, subject to the following conditions,
and :(1) Vertex coverage: Every vertex of G appears in at least one bag: Ule X; = V.(2) Edge
coverage: Each edge (vi,vs) € E is included in at least one bag X; C V .(3) Structural relation-

ship: In Dec(G) = (X, E), two bags X;, X are considered adjacent if they share common variable
nodes (X; N X; #0 — (X;,X;) € E).

Introducing graph decomposition into LNS aims to address the issudd} Destroy strategies based
solely on variable independence tend to select strongly coupled variables that are split across the
boundary, leading to uncoordinated updates. Moreover, if the destroy set severs strong couplings,
the repair subproblem behaves as if it were trapped behind hard constraint walls, making improve-
ments unlikely and time-consuming. As for graph decomposition, strongly coupled variables tend
to cohabit the same bag (or neighboring bags) after chordal completion. In this LNS is able to Align
destroy sets with bags keeps strongly coupled variables co-updated.

Theorem 5.2 Given an ILP instances Z, G,, = (V, E) is I’s variable graph and m denotes the
number of constrains in Z, if the i — th bag X; of vertex subsets X = {X1, Xa, - X HX; CV)is
formed by all the variable nodes involved in the i — th corresponding constraint in L, then it yields
a graph decomposition of a graph G, = (V, E).

Theorem provides a perspective: Since the set of constraints forms a graph decomposition,
the representation of constraint nodes in the bipartite graph can be exploited to capture features
characterizing the couplings among variables. In this way, the representation learning of the bipartite
graph and the decomposition graph can be organically integrated to avoid extra computational for
additional construction of a decomposition graph.

5.2 COUPLING-ENHANCED LARGE NEIGHBORHOOD SEARCH

As Figure [3] demonstrated, the process of coupling-enhanced large neighborhood search comprises
following three stages:

Under review as a conference paper at ICLR 2026

Variale Parameter Neighbor bag of variables

Feature Prediction
. v 08 uprix @

Large 'scale ILP

09 5 uprix

Bipartite Representation
Graph Decomposition

| fixed(non-trainable) Effective/ Effective/ fixed(non-trainable) Prediction of Calibration of

Parameter Redundant Redundant Etectivey Parameter Calibration of Neighborhood
Variale Neighbor Constrain Constrain Constrain gedundant Neighborhood o, e be fixed
Feature Feature ‘l’ o TECHCMIOD - Feature Feature Copstrain J Variale but relaxed
Nodes' Feature Nodes*
1 Embedding Embedding 0.9 0.1 1 (4
False
— —

. . > 0.2 0.1 o 0
oo W
T Semi-Lower

Convoluton
ool should be

concatenation ~ relaxed but fixed
Binary Cross

additional(trainable) ~ Entropy Loss — ()
Parameter

1)
. > | —
Tvue.
.

) Binary Cross
concatenation ~ EntropyLoss — ()

additional(trainable)
‘Parameter

Backpropagation Backpropagation

Figure 3: Framework of Coupling-Enhanced Large Neighborhood Search

Contrastive Learning for LNS via GNN: Following prior work on learning for ILPs(Huang et al.,
2023} |Gasse et al.,2019; Sonnerat et al.| [2021;Wu et al.| |2021)), the policy network adopts a bipartite
graph representation of the ILP. Each node and edge is enriched with features, including those from
Gasse et al.[(2019); Huang et al.| (2023); |[Sonnerat et al.| (2021) to provide a richer representation.
The LNS policy is implemented as a GNN with learnable parameters, which first maps features into
a latent space via embedding layers and then performs two rounds of message passing:(1) constraint
nodes attend to their neighboring variables (2) variable nodes attend to their neighboring constraints.
The resulting variable embeddings are passed through a multilayer perceptron followed by a acti-
vation function to produce variable-wise selection scores ht € [0, 1]™. Training is conducted using
a supervised contrastive loss(InfoNCE), which encourages the predicted actions to align closely
with positive samples and diverge from negative ones. At inference time, the learned policy is
integrated into the LNS framework: in each iteration, the k; variables with the highest scores are
greedily selected for reoptimization to generated the neighborhood selection, the indicator is denoted

as ht € {0,1}™.

Alignment for Bags of Variables: Due to the convenience of regarding constraint as variable bag
by theorem [5.2] we align the features of variables’ bag with the constraint features obtained after
the neighborhood selection, discrepancy between the predicted and real-world features can be re-
garded as the predictive loss caused by the independence assumption in the first-stage LNS that
ignores variable couplings to feedback the coupling effects among variables. It refers to fine-tuning
the first layer of message passing in the GNN that has already been trained during the first stage.
Specifically, the neighborhood selection indicator ht € {0,1}" is added as variable’s extra feature,
meanwhile trainable parameter connected in parallel with the originally learned weights is added
into the first-layer message passing in corresponding to the feature vector ht e {0,1}", and the
learned weights are fixed during the training. After the first message passing, the embeddings of the
constraints are further processed by two additional MLPs in order to output probabilistic predictions
e [0, 1]de(d refers the feature dimension of constraints) over the constraint features obtained
after the neighborhood selection, which includes constraint’s effectiveness and redundancy.

Calibration of Neighborhood Selection: In the second stage, the discrepancy between the pre-
dicted and real-world features of the bags(constraints) is incorporated as an additional input fea-
ture for the second-layer message passing. The features of training samples ni:, € {0,1}™ and
ht: fiz € {0, 1} for stage III are generated by the prediction indicator h and real-world neighbor-

hood indicator h', where hl: _ refers to whether variables are relaxed but should be destroyed, and
ht: fiz Tefers to whether Varlables are fixed but should be relaxed. Similar to the second stage, we

Under review as a conference paper at ICLR 2026

apply fine-tuning to the second layer of message passing, as adding trainable parameter connected
in parallel with the originally learned weights in corresponding to the extra feature and fixed the
learned weights during the training. After through a two additional MLPs, the framework outputs

calibration scores (A, il?m) € [0,1]™ as the prediction of (A, h%;,). The framework Greedily

selects 31 -kt -ny(n; denotes the proportion ht and ht=1 overlaps, parameter 57 < 1) highest-scoring

of both A, _ and A, variables with equal number to transform their states(relaxed/fixed).

Remark: (1)The samples in the stage III are generated by combining the predictions ht e {0,1}"
from the first stage with the samples, and therefore, compared to [Huang et al.| (2023), our frame-
work does not require additional samples. (2) Stage III encourages neighborhood to be different

than previous, since the higher proportion At and h!~! overlaps, the more states of variables will be
transformed. In Appendix [E] we provide the full details of fine-tuning two graph network architec-
ture:graph convolutional network(GCN) and graph attention network(GAT).

Denote the collection of all GNNs under our coupling-enhanced framework as F¢ g, v, then we
have the following theorem:

Theorem 5.3 Given any ILP instance I, x' € {0,1}" is the incumbent solution, h* € {0,1}"
as neighborhood selection indicator generated from first stage and M(Z,x,ht) as the neighbors
searching space, then Ve, ¢ > 0, there is I' € Fcop, NN such that the following holds:

e For effective and redundant indicator R(Z,xt, h), T(Z,xt, h), we have
P(IR = R(Z,x',)| > ¢) < e P(IT = T(Z,x",h)l| > ¢) <e

where 7@, T are probabilistic predictions for effective and redundant indicator generated
from the second stage.

* Denote h' [0, 1]™ as the output from F after calibration, if the scale of neighborhood
k' < %, then we have

P(|IR* — hol| > ¢) < e

where hg is optimal neighborhood selection indicator-maxycrp(kt) (E (Z, x!, h))
(E(Z,x',h), LB(k) is defined in equation ??)

6 EMPIRICAL EVALUATION

In this section, we introduce our evaluation setup and then present the results.

Benchmark Dataset(1).Generated Instance: We evaluate on four NP-hard problem benchmarks
that are widely used in existing studies|Zhang & Others|(2024));|Wu et al.|(2021));|Song et al.|(2020);
Scavuzzo et al.[(2022): the minimum vertex cover (MVC), maximum independent set (MIS) prob-
lems, combinatorial auction(CA) and set covering(SC) problems. 100 instances for each problem
are generated as a test set. We first generate a test set of 100 instances for each problem, namely
MVC-S, MIS-S, CA-S and SC-S. For each test set, Table |2 shows its average numbers of vari-
ables and constraints. (2)Real-World: We evaluate on two benchmarks, IP and WA, come from two
challenging real-world problem families used in NeurI[PS ML4CO 2021 competition (Gasse et al.,
2022). We use 240 training, 60 validation, and 100 testing instances, following the settings in|Han
et al.| (2023). Please refer to Appendix || for more details on the benchmarks.

Baselines: (1) BnB using SCIP (v8.0.1), the state-of-the-art open-source ILP solver;(2)Random:
LNS which selects the neighborhood by uniformly sampling k° variables without
replacement;(3)GCN-CL LNS: Graph Convolutional Network with Contrastive Learning (Huang
et al., |2023; [Kipf & Welling), 2017) (4)GCN-CE LNS:Graph Convolutional Network with our
framework (Kipf & Welling| 2017) (5)GAT-CL LNS: Graph Attention Network with Contrastive
Learning (Huang et al., 2023 Brody et al.l|2021) (6)Graph Attention Network with our framework
(Brody et al.l 2021)). Further details of instance generation are included in Appendix.

Metrics: We use the following metrics to evaluate all baselines approaches:(1) The primal gap
Berthold, (2006) is the normalized difference between the primal bound v and a precomputed best

Under review as a conference paper at ICLR 2026

Table 1: Primal gap (PG) (in percent), primal integral (PI) at 60 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations for generated instances. “]|” means the lower
the better.

PG (%) | PIJ PG (%) | PI] | PGB PI] PG (%) | PIJ

MVC-S MIS-S CA-S SC-S

BnB 1.41£0.25 61.1£17.2 | 4.87£1.29 199.7£78.6 | 2.311+0.66 144.84+33.7 1.21+0.75 81.1£39.1
RANDOM | 1.2040.95 51.1£36.1 | 0.31£0.12 23.1+£7.8 6.1£1.31 267.7+£44.1 | 2.71£1.33 137.1£33.1
CL-GCN 0.31£0.26 15.52+11.90 | 0.27+£0.15 22.04+£9.65 1.16£0.90 89.15+£40.81 | 0.50£1.03 46.15£21.92
CE-GCN 0.20+0.19 12.06+9.50 | 0.18+0.12 14.95+6.79 | 0.86+£0.70 69.16+£28.33 | 0.40+£0.74 26.80+18.56
CL-GAN 0.19£0.11 10.46£7.85 | 0.1940.19 16.50+£6.30 | 0.784+0.36 63.324+26.59 | 0.43+0.66 30.93£17.70
CE-GAN 0.14+0.13 6.24+5.18 | 0.13£0.08 10.44+4.43 | 047+042 39.85+21.69 | 0.50+0.32 46.994+10.69

MVC-L MIS-L CA-L SC-L
BnB 2.63+0.40 133.6+11.5 6.16+1.74 275.84+19.6 2.62+1.98 344.3490.5 1.69+0.97 111.14+42.9
RANDOM 0.37£0.25 23.448.6 0.1940.11 19.7+£7.2 5.3240.81 237.04+24.2 3.18+1.82 179.1£58.4
CL-GCN 0.2540.08 21.7£7.6 0.2740.24 29.2413.5 0.2140.09 262.3439.1 1.27+1.01 81.9450.8
CE-GCN 0.21£0.17 17.9413.6 0.2340.15 24.84+7.7 0.2040.15 256.9464.0 1.2940.46 82.0422.7
CL-GAN 0.08+0.05 10.3+4.3 0.1540.14 16.448.5 0.1240.08 148.54+32.8 0.7240.27 47.84+7.1
CE-GAN 0.07+0.09 8.8+8.7 0.1310.07 16.2+5.3 0.10+£0.05 116.3+19.6 0.63+0.47 41.24+27.0
[lv—v*|

known objective value v*, defined as 3 if v exists and v - v* > 0, or 1 otherwise. We use

max(v,v* €
€ = 1078 to avoid division by zero;(2) The primal integral Achterberg et al.[(2012) at time q is the
integral on [0,] of the primal gap as a function of runtime. It captures the quality of and the speed
at which solutions are found;

= BnB = RANDOM == CL-GCN = CE-GCN == CL-GAT == CE-GAT

(c) CA-S (left) and CA-L (right). (d) SC-S (left) and SC-L (right).

Figure 4: Primal gap (PG) (in percent), primal integral of Generated Instance.

6.1 RESULTS

Figure [4] shows the primal gap as a function of runtime. Table [5] presents the average primal gap
and primal integral at 60 minutes runtime cutoff on small and large instances, respectively. (Ap-
pendix [G] provides the results at, 30 and 45 minutes runtime cutoff). The result shows significantly
better anytime performance than the original contrastive learning baselines(Huang et al., 2023)) on
all problems, achieving the smallest average primal gap and primal integral. Figure 5] shows that
our framework demonstrates significant advantages over the baseline models not only on generated
instances but also on real-world instances. In Appendix, we present strong results in comparison
with two more baselines and on one more performance metric.

6.2 ABLATION STUDY

We evaluate how alignment for bags of variables in stage II and calibration of neighborhood selection
in stage III contribute to our framework’s performance. (1) For the alignment, we replace the second-
stage constraint features with the random features from |Chen et al.[(2024b). and (2) We changed the

Under review as a conference paper at ICLR 2026

PG (%) 1 PI PG (%) | PI
WA P

BnB 0475011 341 £081 | 30.6E35 7355057
RANDOM | 0.3540.09 2914072 | 37.1445 8.91-£0.72
CL-GCN | 041£0.16 3.15£1.13 | 27.3£3.1 6.8140.51
CE-GCN | 0.17+£0.07 1434043 | 22.1442 52940.67
CL-GAN | 02640.19 2.124151 | 281422 6972035
CE-GAN | 01240.09 1.074+0.61 | 21.5+3.7 5.1420.72

Figure 5: Primal gap (PG) (in percent), primal integral (PI) at 60 minutes runtime cutoff for real-
world instances

value of the coefficient 3; from 0.2(denoted as CE-GCN/GAT-0.2) to 0.4(denoted as CE-GCN/GAT-
0.4) to test its impact on the experiments. Figure [6]shows the primal gap for the first ablation study.
The difference in the primal gap between the random method and our method demonstrates the
necessity of alignment for bags of variables. Figure[7]presents the primal gap for the second ablation
study. The result shows if /31 is set too large, it will affect the performance in the early stage, whereas
if it is too small, there will be limited room for optimization in the subsequent iterations.

=== CL-GCN == CE-GCN =+=+- CE-GCN-RANDOM =~ = == CL-GAT == CE-GAT =r==- CE-GAT-RANDOM

Figure 6: The primal gap for first ablation and the dataset, from left to right are (1)MVC-S (2)MIS-S
(3)CA-S (4)WA, respectively

= CE-GCN-0.2 = = = CE-GCN-0.4 == CE-GAT-0.2 = = = CE-GAT-0.4

Figure 7: The primal gap for second ablation and the dataset, from left to right are (1)MVC-L
(2)MIS-L (3)CA-L (4)SC-L, respectively

7 CONCLUSION

This paper introduces Coupling-Enhanced Neural Large Neighborhood Search (CE-LNS) for solv-
ing integer linear programs (ILPs). Neural LNS frameworks assume variable independence, which
overlooks coupling, leading to indistinguishable predictions. To address this, CE-LNS augments
GNN-based neighborhood prediction with graph decomposition. This refinement allows the model
to capture coupling relationships between variables and calibrate neighborhood selection accord-
ingly. Theoretically, CE-LNS can identify effective vs. redundant constraints and approximate op-
timal neighborhoods. Empirically, it consistently outperforms existing neural LNS methods across
synthetic and real-world ILP benchmarks, achieving smaller primal gaps, better anytime perfor-
mance, and stronger generalization.

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

We acknowledge the ICLR Code of Ethics and confirm that our work adheres to its principles. Our
research prioritizes societal benefit, avoids harm, and respects privacy and intellectual property. All
data used in this study comply with ethical guidelines and relevant licenses.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made substantial efforts to provide comprehen-
sive details and resources across our main paper, appendix, and supplementary materials.

Code and Resources. We have developed a reproducible codebase MTG, extended to support
our message tuning. Our code is available at https://anonymous.4open.science/r/CE-LNS-3stage-
05EA/. Anonymous, downloadable source code also includes scripts for pre-training, adaptation,
and evaluation on all datasets used in our experiments.

Theoretical Proofs. All theoretical claims are rigorously proven in Appendix [C|and [D]

We believe these efforts collectively ensure the reproducibility of our work and encourage the com-
munity to build upon our findings.

REFERENCES

Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics for
mixed integer programming. In Operations research proceedings 2011, pp. 71-76. Springer,
2012.

Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop
scheduling. Management science, 34(3):391-401, 1988.

Réka Albert and Albert-Laszl6 Barabdsi. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(Z1B), 2006.

Timo Berthold. Rens. Mathematical Programming Computation, 6(1):33-54, 2014.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong Luo,
and Tsung-Hui Chang. Symilo: A symmetry-aware learning framework for integer linear opti-
mization. Advances in Neural Information Processing Systems, 37:24411-24434, 2024a.

Qian Chen, Lei Li, Qian Li, Jianghua Wu, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-Hui
Chang, and Qingjiang Shi. When gnns meet symmetry in ilps: an orbit-based feature augmenta-
tion approach. arXiv preprint arXiv:2501.14211, 2025.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing mixed-integer linear
programs by graph neural networks. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=4gc3MGzrald.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of
graph neural networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938,
2024b.

Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity of
graph neural networks for branching strategy. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024c. URL https://openreview.net/forum?id=
FEmagOszWo.

10

https://openreview.net/forum?id=4gc3MGZra1d
https://openreview.net/forum?id=FEmag0szWo
https://openreview.net/forum?id=FEmag0szWo

Under review as a conference paper at ICLR 2026

Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighborhoods
to improve mip solutions. Mathematical Programming, 102(1):71-90, 2005.

Mauro Dell’ Amico and Marco Trubian. Applying tabu search to the job-shop scheduling problem.
Annals of Operations research, 41(3):231-252, 1993.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17-60, 1960.

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical programming, 98(1):23-47,
2003.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chete-
lat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias
Khalil, Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dim-
itri J. Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo,
Giulia Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan
Huang, Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu,
Zhewei Huang, Shuchang Zhou, Binbin Chen, Minggui He, Hao Hao, Zhiyu Zhang, Zhiwu
An, and Kun Mao. The machine learning for combinatorial optimization competition (ml4co):
Results and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIlPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220-231. PMLR, December 2022. URL |https:
//proceedings.mlr.press/v176/gasse22a.html.

Bezalel Gavish and Hasan Pirkul. Algorithms for the multi-resource generalized assignment prob-
lem. Management science, 37(6):695-713, 1991.

Bernard Gendron, Teodor Gabriel Crainic, and Antonio Frangioni. Multicommodity capacitated
network design. In Telecommunications network planning, pp. 1-19. Springer, 1999.

Shubhashis Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer
Programming and Combinatorial Optimization, pp. 310-323. Springer, 2007.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443-490, 2021.

Martin Grotschel, Clyde L Monma, and Mechthild Stoer. Design of survivable networks. Handbooks
in operations research and management science, 7:617-672, 1995.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087-18097, 2020.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. arXiv preprint arXiv:1911.09539, 2019.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning, pp. 13869-13890. PMLR, 2023.

Syu-Ning Johnn, Victor-Alexandru Darvariu, Julia Handl, and Jorg Kalcsics. A graph reinforcement
learning framework for neural adaptive large neighbourhood search. Computers & Operations
Research, 172:106791, 2024.

11

https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html

Under review as a conference paper at ICLR 2026

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. Update, 2:x3, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017. URL https:
//arxiv.orqg/abs/1609.02907.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. Advances in neural information processing systems, 35:
32000-32010, 2022.

Jan Karel Lenstra, David B Shmoys, and Eva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming, 46(1):259-271, 1990.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-

natorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce,
pp. 6676, 2000.

Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye Hao, and Feng
Wu. Apollo-milp: An alternating prediction-correction neural solving framework for mixed-
integer linear programming. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR), 2025. URL https://arxiv.org/abs/2503.01129.

Thomas L Magnanti and Richard T Wong. Network design and transportation planning: Models
and algorithms. Transportation science, 18(1):1-55, 1984.

Stephen J Mabher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco Liibbecke, Matthias Miltenberger, et al. The
scip optimization suite 4.0. 2017.

Aristeidis Mystakidis, Christos Koukaras, Paraskevas Koukaras, Konstantinos Kaparis, Stavros G
Stavrinides, and Christos Tjortjis. Optimizing nurse rostering: A case study using integer pro-
gramming to enhance operational efficiency and care quality. In Healthcare, volume 12, pp. 2545,
2024.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks.
ArXiv, abs/2012.13349, 2020b.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International Conference
on Machine Learning, pp. 17584-17600. PMLR, 2022.

Rym Regaieg, Mohamed Koubaa, Zacharie Ales, and Taoufik Aguili. Multi-objective optimiza-
tion for vm placement in homogeneous and heterogeneous cloud service provider data centers.
Computing, 103(6):1255-1279, 2021.

Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534-541, 2007.

Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree mdps. arXiv preprint arXiv:2205.11107, 2022.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework

for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012-20023, 2020.

12

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2503.01129

Under review as a conference paper at ICLR 2026

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Rafael D Tordecilla, Jairo R Montoya-Torres, Carlos L. Quintero-Araujo, Javier Panadero, and An-
gel A Juan. The location routing problem with facility sizing decisions. International Transac-
tions in Operational Research, 30(2):915-945, 2023.

Simen T Vadseth, Henrik Andersson, and Magnus Stalhane. An iterative matheuristic for the inven-
tory routing problem. Computers & Operations Research, 131:105262, 2021.

Haoyu Peter Wang, Jialin Liu, Xiaohan Chen, Xinshang Wang, Pan Li, and Wotao Yin. DIG-
MILP: a deep instance generator for mixed-integer linear programming with feasibility guar-
antee. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=MywlrEaFgR.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075-30087,
2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Y. Zhang and Others. Edge matters: A predict-and-search framework for milp based on edge fea-
tures. In OpenReview Forum, 2024.

13

https://openreview.net/forum?id=MywlrEaFqR
https://openreview.net/forum?id=MywlrEaFqR

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we employed large language models (LLMs) solely for the pur-
pose of language polishing and refinement. Specifically, LLM-assisted editing was used to improve
grammatical accuracy, sentence fluency, and terminological consistency across the paper, particu-
larly in sections where non-native expressions might affect readability. All substantive intellectual
contributions—including the formulation of research ideas, theoretical analysis, algorithm design,
experimental setup, result interpretation, and conclusions—remain entirely our own.

A ADDITIONAL RELATED WORK

Large Neighborhood Search (LNS) has a long history as a primal heuristic inside branch-and-bound
(BnB) solvers. In that setting, LNS-based primal heuristics are invoked periodically at selected
nodes of the search tree, and their activation schedule is dynamic because LNS calls are typically
more expensive than many other primal heuristics. Compared with an external (stand-alone) LNS for
ILPs-whose goal is likewise to improve the incumbent but operates outside the BnB control flow-
two differences are central: (i) BnB LNS is interleaved with tree search and triggered at varying
depths and times; (ii) its destroy (neighborhood-defining) mechanisms often leverage node-local
information such as the node’s LP relaxation and dual bound, which are not directly available or
portable in a stand-alone LNS setting.

LNS Heuristics for ILPs: The Crossover heuristic (Rothberg), 2007) destroys variables whose val-
ues differ across a small set of selected solutions (typically two), whereas the Mutation heuristic
(Rothberg), 2007)) destroys a random subset of variables. The RINS heuristic (Danna et al., 2005)
destroys variables whose values differ between the node’s LP-relaxation solution and the incumbent
solution. Relaxation Enforced Neighborhood Search (RENS) (Berthold, 2014) restricts the neigh-
borhood to be the feasible roundings of the LP relaxation at the current search tree node. Local
Branching (LB)(Fischetti & Lodi, |2003) restricts the neighborhood to a ball around the current in-
cumbent solution. Distance Induced Neighborhood Search (DINS) (Ghoshi 2007)) takes the intersec-
tion of the neighborhoods of the Crossover, Local Branching and Relaxation Induced Neighborhood
Search heuristics.Graph-Induced Neighborhood Search (GINS) (Maher et al., 2017) destroys the
breadth-first-search neighborhood of a variable in the bipartite graph representation of the ILP.

Neural Method for LNS: |Wu et al.| (2021) train a Neural Diving model and an imitation-learned
neighborhood selector to drive LNS on mixed-integer programs with a MIP solver in the loop.
Sonnerat et al.| (2021) use deep reinforcement learning to learn which variables to destroy/repair,
turning LNS for integer programming into an effective learned policy. [Huang et al.| (2023) propose
that CL-LNS learns a contrastive destroy heuristic on ILP bipartite graphs, yielding strong anytime
performance on standard ILP benchmarks. [Hottung & Tierney| (2019) propose a neural repair op-
erator with attention inside an LNS for CVRP/SDVRP, markedly improving over handcrafted LNS.
Johnn et al.| (2024) propose Graph-RL framework picks ALNS operators conditioned on the current
solution state to outperform classic adaptive layers;Wu et al.| (2021) formulates large neighborhood
search as a reinforcement learning problem where a policy network learns to select which variables
to destroy and repair, achieving better anytime performance on integer programming than classical
heuristics. [Nair et al.| (2020a) implement for the Neural Neighborhood Selection approach used
in learning-based LNS for MIPs. |Liu et al.| (2025) proposes APOLLO-ILP, an alternating predic-
tion—correction neural framework that integrates learnable heuristics with exact solvers to improve
both efficiency and solution quality for ILP. ? proposes a hybrid framework that leverages Graph
Neural Networks (GNNs) and Gradient Boosted Decision Trees (GBDTs) to accelerate large-scale
integer programming optimization. ? introduces a lightweight optimizer that achieves efficient so-
lutions for large-scale ILPs using only a small-scale training dataset.

Graph-Based Expressive power of GNNs for ILPs : |Xu et al.|(2019)) proves that message-passing
GNNs are at most as expressive as the 1-Weisfeiler—Lehman test and introduces the Graph Iso-
morphism Network (GIN), which matches 1-WL’s power and empirically achieves state-of-the-art
performance on graph classification tasks. [Chen et al.| (2023)) formalizes ILPs in GNN terms and
shows 1-WL-bounded MPNNSs have intrinsic limits (foldable cases) while still approximating key
properties for non-foldable instances. (Chen et al.|(2022) proves GNNs (and the 1-WL test) have suf-
ficient separation power to distinguish LPs under a principled encoding, clarifying when message

14

Under review as a conference paper at ICLR 2026

passing suffices. |Chen et al.| (2024b) characterizes when MPNNs can represent feasibility/optima
for QPs and MIQPs, pinpointing WL-style expressivity boundaries and practically testable crite-
ria. |Chen et al| (2024c)) studies whether MPNNs can emulate strong branching, revealing struc-
tural/expressivity hurdles and conditions under which approximation is viable. |Chen et al.| (2025)
shows permutation symmetries in ILPs confound 1-WL-level GNNs and proposes orbit-based aug-
mentation to break WL-indistinguishability among symmetric variables. [Chen et al.| (2024a) intro-
duces a symmetry-aware ILP learning pipeline that mitigates the WL/MPNN inability to separate
symmetric variables in standard encodings. |Gasse et al.[(2019) pioneers the variable—constraint bi-
partite ILP encoding for GNN-guided branching, implicitly operating at 1-WL expressivity and mo-
tivating later expressivity analyses. |Gupta et al.|(2020) combines a GNN root-encoding with light
node-specific models, illustrating practical gains while reflecting 1-WL—-bounded representation on
ILP graphs. [Paulus et al.|(2022) uses (tri/bipartite) graph encodings for cut selection, highlighting
how representational choices interact with WL-style expressivity in ILP states. [Khalil et al.| (2022)
General bipartite-graph GNN framework for ILP guidance, exemplifying strengths and 1-WL~type
limits on variable—constraint interaction encoding. |Labassi et al.| (2022) Siamese GNNs compare
B&B nodes via bipartite encodings, implicitly constrained by WL equivalence classes of solver
states.

B PRELIMINARIES

B.1 WEISFEILER—-LEHMAN TEST FOR ILPSs

The 1-dimensional Weisfeiler—Lehman algorithm (1-WL), also known as color refinement, itera-
tively computes a color map x¢ for a graph G = (V, E), assigning each vertex v € V a color
xa(v) € C. We apply 1-WL to the weighted bipartite ILP graph described below. At initialization,
vertices receive colors derived from node features (e.g., ¢; on variables and b; on constraints). At
each iteration, the color of a vertex is updated by hashing its previous color together with a multi-
set of its neighbors’ colors paired with incident edge weights A; ;. This refinement repeats for L
iterations or until stabilization.

Algorithm 1 1-WL on a weighted bipartite ILP graph

1: Input: ILPZ = (A, b, ¢); bipartite graph G = (V' UU, E) with constraint nodes V' = {v;}7* |,
variable nodes U = {u;}"_,; iterations L.
Init: x°(v;) < hash(b;), x°(u;) + hash(c;).
for / =1to L do
for each v; € V do
¥ (i) - hash(x* 1 (v3), {0 uy), Asg) g € N(w))
end for
for each u; € U do
X (u;) < hash(x* ! (), {(x"(vi), Aij) = vi € N(uy)}})
end for
end for
Output: stabilized labels x (v;), x(u;).

TRV daunkhwd

—

Each iteration refines the partition induced by colors on V U U. Since V U U is finite, the process
stabilizes in at most |V'| + |U]| refinements. The 1-WL procedure is a powerful heuristic for graph
isomorphism: if the stabilized color multisets differ, the graphs are not isomorphic; if they coin-
cide, the graphs may still be non-isomorphic (1-WL is a necessary but not sufficient test). These
limitations motivate higher-order WL tests with stronger expressivity.

Lemma B.1 Letn be the number of variables and m the number of constraints. For an ILP instance
7, incumbent xt, and neighborhood indicator h:

o If the neighborhood M(Z,x!, h) is effective (i.e., admits an improving feasible solution),
then at least one constraint is effective for this neighborhood.

15

Under review as a conference paper at ICLR 2026

e There exist ILP instances for which, relative to a given neighborhood, no constraint is re-
dundant (i.e., removing any single constraint changes the feasible set or the best achievable
objective within the neighborhood).

Theorem B.2 (Weighted isomorphism preserves ILP solutions) Ler Z; = (Aq,by,c¢q) and
T, = (Ag,bo,cy) be ILPs with weighted bipartite graphs G' and G*. If there exists a weight-
preserving bipartite isomorphism that simultaneously permutes constraint/variable indices and car-
ries (A1,by,¢1) 10 (Ag, bo, o), then T) and Iy have the same optimal objective value and isomor-
phic sets of optimal solutions.

Following |Xu et al.| (2019), the separation power of message-passing GNNs (MP-GNN:s) is upper-
bounded by 1-WL: nodes indistinguishable by 1-WL will receive identical MP-GNN embeddings.
Consequently, under the factorized action model equation|[6] the MP-GNN-predicted marginal prob-
abilities preserve inherent graph symmetries.

Theorem B.3 (Xu et al.|(2019)) Let Z be an ILP and consider its bipartite graph. For any MP-
GNN and any two variable nodes u;, ,w;, with identical 1-WL labels, if p(Z,x;, h; = 1) in equa-
tion@ is represented by the MP-GNN output p;, then p;, = pj,.

B.2 INVARIANCE AND EQUIVARIANCE FOR BIPARTITE ILP GRAPHS

An integer linear program

min c'x st Ax<b

xe{0,1}"

admits a weighted bipartite representation G = (V U U, E)) with constraint nodes V' = {v;}7,,
variable nodes U = {u;}_,, and edges only across V" and U. Node features are b; on v; and c; on
u;; edge weights store coefficients A, ;. Let Sy, and .S,, be permutation groups acting on V and U,
respectively. For (o, 0p) € Sy, X Sy, define (o, oy)G as the graph obtained by jointly permuting
constraint/variable indices, their features, and rows/columns of A accordingly; this action leaves the
optimization problem invariant.

We consider three canonical mappings of G:
1. Feasibility ®r..s(G) € {0,1}.
2. Optimal objective ®o1;(G) € RU {£o0}.

3. An optimal solution P, (G) € {0,1}™ (when a canonical choice is fixed).

Definition B.4 (Invariance and equivariance) A graph-level map ¥ (G) is invariant to (oy, o)
ifU((ov,ov)-G) = Y(G) for all (ov,oyu). A variable-level map f(G) € R™ is equivariant if
f((ov,ou)-G) =ou(f(G)), i.e., the output permutes in the same way as variables.

The following is standard (e.g., (Chen et al.| (2022)):

Theorem B.5 (Symmetry properties of ILP quantities) For any (ov,oy) € Spm X Sy,
(I)feas((OV7 UU) G) = q)feas(G); (I)obj((o'Va UU) G) = (I)obj (G),
and
(I)solu((UVy UU) : G) =0y ((I)solu (G)) .

Thus, feasibility and optimal value are invariant, while an optimal solution is equivariant under
variable permutations.

B.3 UNIVERSAL APPROXIMATION FOR PERMUTATION-INVARIANT SET FUNCTIONS

Let X C R be compact and X=M := U%:o X" denote multisets of size at most M. A function
F on finite sets S C X is permutation-invariant if F(S) = F(nS) for any permutation 7 of
the elements of S. We write S = {x1,...,2y,} (order arbitrary), and) _o denotes multiset
summation.

16

Under review as a conference paper at ICLR 2026

Definition B.6 (Deep Sets) A map F has Deep-Set form if there exist p : RP — R¥ and ¢ : X —

RP such that
F(S) = p<z ¢<x>> .

€S
Chen et al.| (2024b) prove a universal approximation theorem for invariant set functions:

Theorem B.7 (Universal approximation of invariant set functions) Fix M € N. Ler F
XM R¥ be continuous (with the topology that pads sets of size m < M by a fixed dummy
element). Then for every € > 0 there exist continuous ¢ : X — RP and p : R? — R¥ such that

sup HF(S) —n(Z ¢(x))H <e.

<
Sexs=m zeS

Moreover, if p and ¢ are implemented by MLPs, the same guarantee holds.

If the encoder S —) ¢ ¢(x) is not injective over X <M distinct sets may collapse to the same
code, preventing any p from separating them. Thus, universal approximation in practice requires
sufficiently expressive ¢ (dimension p and nonlinearity) so that the induced embedding is injective
on the relevant family. By classical approximation results (e.g., Stone—Weierstrass), MLP families
are dense in C'(K) on compact K, yielding the stated universality.

C PROOF OF THEOREM

Theorem C.1 Given an ILP instances I, G,, = (V, E) is Z’s variable graph and m denotes the
number of constrains in Z, if the i — th bag X; of vertex subsets X = {X1, Xa, - X HX; CV)is
formed by all the variable nodes involved in the i — th corresponding constraint in L, then it yields
a graph decomposition of a graph G, = (V, E).

Recall the definition a graph decomposition, we will prove that regard the constrain node as the bag
of variable yields a graph decomposition. We verify the three requirements:

Vertex coverage. We first assume that every variable node appears in at least one constraint, then
by assumption, v € V' appears in at least one constraint, hence v; € X; for some j € [m]. There-
fore U;”:l X, = V. If there is variable x; does not appear in any constraint, we can handle it in
the following equivalent ways: Eliminate the variable from the ILP: Optimize z; independently
according to the objective coefficient ¢; (set 27 = 0if ¢; < 0, 27 = 1if ¢; > 0), fix z; = 27, and
remove x; from the ILP. This yields an equivalent ILP that no longer contains x;, after which the
preceding vertex-coverage argument applies unchanged.

Edge coverage. Take any edge (v;,,v;,) € E. By the definition of the variable graph, there exists a
constraint j in which v;, and v;, co-occur. By construction, both v;, and v;, belong to the bag X,
so {u,v} C X,.

Structural relation. By definition of =, two bags are adjacent exactly when they intersect, i.e., if
X; N X; # (then (7,7) € E. This matches the stated structural condition.

All three conditions in the definition are satisfied, so (X, Z) is a graph decomposition of G,,.

D PROOF OF THEOREM [3.3]

Theorem D.1 Given any ILP instance I, x' € {0,1}" is the incumbent solution, h* € {0,1}"
as neighborhood selection indicator generated from first stage and M(Z,x,ht) as the neighbors
searching space, then Ve, ¢ > 0, there is F' € Fcop, NN such that the following holds:

e For effective and redundant indicator R(Z,xt, h), T(Z,xt, h), we have
P(|R - R(Z,x",h)| > ¢) <&, P(|T = T(Z,x"h)| > ¢) <e

where 7@, T are probabilistic predictions for effective and redundant indicator generated
from the second stage.

17

Under review as a conference paper at ICLR 2026

* Denote h' [0,1]™ as the output from F after calibration, if the scale of neighborhood
k' < %, then we have

P(||R* — kgl > ¢) < e

where hf is optimal neighborhood selection indicator:maxycy, B(kt) (E(I ,xt, h))
(E(Z,x!, h), LB(k) is defined in equation ??)

D.1 PROOF OF PART I OF THE THEOREM

In this section, we prove the results in Section , i.e., our framework is able to approximate the pre-
dictions of effectiveness of constraint and optimal neighbor on finite datasets of ILPs with arbitrarily
small error. We consider more general results on finite-measure subset of which involves the infinite
elements. In our settings, the predictions of effectiveness of constraint only depends on the ILP
instance Z, current solution #° and prediction of optimal neighbor h € {0, 1}", while the optimal
neighbor only depends on the ILP instance Z and current solution 2°. Therefore, we are able to
define the mapping for predictions of local-effectiveness of constraint as follow:

DProeex : R™™ x R™ x R™ x {0,1}"* x {0,1}" = {0,1}": Zxa" xh —r (7
and the mapping for optimal neighbor as follow:
Dopri : R™™ x R™ x R™ x {0,1}" — {0,1}" : Z x 2° — {0,1}" (8)

Where Z refers to (A4,b,¢) € R™™ x R™ x R™, 2% € {0,1}". Without loss of generality, the
effectiveness of a constraint is permutation-invariant with respect to the ordering of the variables.
Reorder the variables such that the first n; variables are relaxed and the remaining n; = n — ng
variables are fixed. Denote A, ; € R™*™ as the induced submatrix by selecting the columns of A
whose corresponding entry in h equals 1, and Ay o € R™*™ as equals 1. Also denote ¢j,; € R™
as the induced subvector by selecting the elements of ¢ whose corresponding entry in h equals 1.
Thus, the original problem is reformulated as a reduced-scale ILP problem:

min czlx)

e ,
st. Apix <b-— Ahpx?l’(), (10)
x € {0,1}™. (11

Under the relaxation condition specified by h, the ILP subproblem(denoted as Z,o ;) corresponding
to ILP problem Z is unique, hence we are able to define a measurable mapping ®,,:

PBinducur(Z,2°,h) = Tpop : R X R™ x R® X R" x R" — R™X™ x R™ x R™ (12)

To prove ®., and ®,,; is measurable, we first define the mapping of optimal-feasibility Preys:
Dopti_feas(Z, %) : R™™ x R™ x R™ — {0,1} (13)

That equals to 1 if it has a better feasible solution than z° and 0 otherwise, then we have the following
lemma.

D.1.1 PROOF OF LEMMA[D.2 AND[D.J]

Lemma D.2 The optimal-feasibility mapping P, defined in|13|is measurable, i.e., the preimages
o) (1) and @} (0) are both measurable subsets of .

opti_-feas opti_-feas

Proof of lemmlaw Since (b;plmp feas(1)U (I)o_plti, feas(0) refers to every ILP, hence we only need to

prove that CI)Optiifws

(1) is measurable. Hence we define the following measurable set:
Xopti_feas = {Z,2°0 €ER™™ x R™ x R™ x R™ : Iz € {0,1}",s.t. Az < b,c'z < c'2°} (14)

Therefore the feasibility mapping ®,¢;_feqs defined in is measurable.

18

Under review as a conference paper at ICLR 2026

Now we can prove that the mapping ®;,._., is measurable: For j € [m], consider the following
ILP instance, which is denoted as Ifo:

min ¢, @ (15)
s.t. A{l’lx <b; — A{“Ox%_’o, (16)
e {0,1}™. (17)

where A;m and A;L,o refers to the ;' constrain. By lemma the Dfeys (Ifo) is measurable. In

other way, since the I}»"O is induced from ILP Z*"

min Cha (18)
st Apix <b-— Ah70x270, (19)
z € {0,1}™. (20)
therefore the mapping
Binducon(T*,§) =T : R x R™ x R™ — R™ x R x R™ 1)
is measurable. In summary, denote
Biran(Z, 2", h, 5) = Popti_feas(Pindu_con(®indu_cur (T,2°, h), 5)) (22)
the mapping
Ptran(Z, 2, hy 1) ® Ppran (Z,2°, 7, 2) & -+ ® Pprgn (Z,2°, hym) (23)

is same as P;,._¢, therefore we have proved the following lemma:

Lemma D.3 The local-effectiveness of constraint mapping ®joc—c, defined in[i)is measurable.

D.1.2 STONE-WEIERSTRASS THEOREM

Stone-Weierstrass theorem describes that any continuous function defined on a closed interval can
be uniformly approximated by polynomial functions. Its formal statement is as follow:

Theorem D.4 (Stone-Weierstrass Theorem) Let X be a compact Hausdorff space and let A C
C(X,R) be a subalgebra of the algebra of continuous real-valued functions on X. Suppose that:

1. A separates points, i.e., for any x,y € X with x # vy, there exists f € A such that

f(@) # f(y);

2. A contains the constant functions.

Then A is dense in C(X,R) with respect to the uniform norm. In other words, for every f €
C(X,R) and every € > 0, there exists g € A such that

sup |f(z) — g(z)| <e.
zeX

To establishing universal approximation for ®;,._.,, there are two main lemma remaining to be
proved.

* ®;,._e, 1S a graph-invariant function.

» The Weisfeiler—Lehman (WL) test possesses sufficient discriminative capability to recog-
nize local-effective constraints.

19

Under review as a conference paper at ICLR 2026

D.1.3 PROOF OF LEMMA [D.5]

Lemma D.5 Let x(b;,) and x(b;,) be the output label of constraint nodes by and by in the WL
test after adding the features of variable relaxation/fixation, if x(b;,) = x(b;,) then their local
effectivity is consistent.

Proof of lemma [D.5}Recall of the process of WL-test, since x(b;,) = x(b;,), then we have
(x(bs0)s {x(a)s ei i)l € N(bj)3 = (x(bj,), {x (@), €3, wi € N(bj)}) - (24)

where N (b;) denotes the neighbor of node b;, since the WL test take the features of variable relax-
ation/fixation into consideration, therefore NV (b;) can be partitioned into two parts based on the fea-
tures of variables relaxation/fixation: Ny—1(b;) refers to the variables that is relaxed while Np,—o(b;)
refers to the variables that is fixed. Also we have

Vi, € Np=1(b;), zi, € Nn=o(b;), x(wi,) # x(xi,) (25)
Take equation [25]into equation [24] then we have
{x(@i), eigi)lwi € Nn=o(bj,) }} = {(x (i), €35,)|wi € Nu—o(bj,) }} (26)

According to the WL process, x(x;,) = x(24,)(x(zi,) € Np=0(bj,), zi,) € Np=0(bj,)) suggests
the equivalence between the input features of variables x;, and x;,: (1) the current solution value of
x;, and x;, (2) the coefficient of (z;,,b;,) : a4, j, and (z4,,bj,) : a4y, j, in the constraint matrix A.
Therefore, A} gz o = A7’02? -

Suppose constrain b;, is local-effective then ILP Iﬁo:

min ¢,z (27
st Ao <bj, — Al g2 g, (28)
z e {0,1}m. (29)

has a better solution, denoted as 27! , than current solution. Note that

{x(@i), eiji)lei € Na=1(bj) 1} = {(x(@:), €5)|wi € Nn=a(b5) 1} (30)
therefore for ILP I]“?QO:
mzin cz,lx (31)
s.t. Afilsc <bj, — Aﬁox%o, (32)
x € {0,1}™. (33)

the better solution is assigned based on the following strategy:
« Rearrange the variables in Nj,—; (b;,) and Nj—1(bj,) as (z3', 23", -~) and (2>, 23, --)
that x(z7') = x(27*). The implementation is feasible according to Equation

* Assign the value of solution 272 to z}* same as z7*.

Similar to Np=o, x(i,) = Xx(@i,)(X(xi,) € Np=1(bj,), xi,) € Np=1(bj,)) suggests the equiva-
lence between the input features of variables x;, and x;,: (1) the coefficient of (z;,, b;,) : a;, ;, and
(@iy,bj,) * a4y, j, in the constraint matrix A. Therefore, Ail,ozz,o = A{f,om(}i,o- (2) objective coeffi-
cient vector: ¢;, = ¢;,. Due to (1) Aﬁlxj 1= Aff’lxj?, therefore 272 is feasible for ILP I;?;. Due
to (2) cTalz = ¢Tait < ¢Tx0, 292 is a better solution, hence constrain bj, is also local-effective.

Now we have proved that if x(b;,) = x(bj,) then their local effectivity is consistent. Now we are
proving the other lemma for establishing universal approximation for ®;,c—c,.

20

Under review as a conference paper at ICLR 2026

D.1.4 PROOF OF LEMMA [D.6]

Lemma D.6 ®;,._., is a graph-invariant function with respect to variable permutation and
graph-equivariant function with respect to constrain permutation. In other word, denote
7(Z),n(2°),7(h) as Z,2° h after applying permutation T,if permutation ™ acts on variable
then ®pe_cr(7(T), m(2°), () = Ploc—ea(Z, 2%, h), if permutation T acts on constrain then
(I)loc—ez (’/T(I),’/T(CEO), ’/T(h)) = 71—(q)loc—er(za xoa h))

Proof of lemmal[D.6l Given an ILP instance Z:

min c¢'x (34)
st. Ax <b, (35)
x € {0,1}". (36)

For bipartite graphs, we will show the invariance with respect to variable nodes and the equivariance
with respect to constraint nodes for ®;,._.,. We first discuss the invariance with respect to variable
nodes.

For 7, € Sy, let P, € {0,1}™*" be its permutation matrix, then under the action of the permutation
that reorders the variable nodes, the new coefficient adjacency matrix is APy, the new constraint
coefficient vector is b and the new objective coefficient vector is ¢ ' Py, and the corresponding current
solution P 2°. If the constraint b; before permutation is effective in the neighborhood determined
by h, then it has a better solution, denote z? as it associated with the variables being fixed, then

P xf is also a better solution for the ILP after variable permutation.

As for the equivariance with respect to constraint nodes, for 7, € Sy, let P, € {0,1}"*™ be its
permutation matrix, if constraint b; has a better solution, denote x? then mfr) is a better solution

for constraint by (j), therefore ®ipc—ey (7(Z,2°, p)) = 7(Pioc—ex(Z, 2°, p)). Now we have proved
the lemma|[D.6]

In summary, we now can prove there is a model F € F- can universally approximate ®;,._.,: By
lemma D;c—er 18 measurable, while by lemma we have that if the label of two constrain
in WL test are same then their local effectiveness is consistent and the invariance/equivariance by
[D.6] Therefore by Stone-Weierstrass theorem there is a model F € F can universally approximate
Dioe—ca-

D.2 PROOF OF PART II OF THE THEOREM
(2)The proof of the second part of the theorem can be summarized in the following three points.

* First, similar to foldable-ILP, we given the definition for foldable-ILP, and prove that for
the unfoldable case, the WL test will eventually produce a unique discrete coloring, and
therefore if two graphs cannot be distinguished by the WL test, they must be isomorphic.

» By applying Lusin’s theorem: any measurable function on a set of finite measure can be ap-
proximated by a continuous function on almost all points. By using the Stone—Weierstrass
type theorem: on a compact set, GNNs can uniformly approximate all continuous mappings
whose separation power does not exceed that of the WL test.

* In our framework, the mechanism that makes neighborhood selection decisions based on
the GNN output probabilities in the third stage further differentiates the nodes with identical
labels in the WL test.

Similar to foldable-ILP, we give the definition of foldable-ILP:

Definition D.7 (Foldable ILP) Given any ILP instance I, we say that I is foldable if, by running
the WL test on its corresponding bipartite graph, there exist two variate nodes, their labels are for
any choice of hash functions in the WL test. The unfoldable ILP is the rest ILP that is not foldable.

The collection of foldable ILP instances are denoted as l¢o1q C Gy X HY x HZV .

m

21

Under review as a conference paper at ICLR 2026

To establish that our framework is capable of approximating the output optimal neighborhood. We
need to prove that the separation power of the WL test is stronger than that of the function ®,,,; for
unfoldable ILP instances. Therefore we have the following lemma:

D.2.1 PROOF OF LEMMA [D_§

Lemma D.8 For any two unfoldable ILP instances with current solution as variable nodes’ extra
feature, then if their corresponding bipartite graphs (G1, G2) are isomorphic if and only if the WL
test determines that (G, G2) are isomorphic.

Proof of lemma It’s trivial that the isomorphism of (G, G2) implies the isomorphism in WL
test.

To prove the isomorphism of (G1,G2) in WL test implies the isomorphism. Since G, G2 are
unfoldable, then any label of nodes in G, G5 is unique and WL test determines that (G, G2) are
isomorphic, it yeild a bijection mapping f : Vi — Va, that Vol € Vi, x(v!) = x(f(v1)). We will
prove that f is a isomorphic mapping, as for every pair of nodes (v, , v}) in Gy, if (v} ,v},) € Ex,
then (f(vill),f(vilQ)) € FEy:

Since (G171, G2) are isomorphic in WL test. By WL test condition, there’s a corresponding pair of
node (v ,v3) in Gy that x(vj,) = x(v2) and x(v},) = x(v?). Suppose (v, v) ¢ Es, then
since x(vj,) = x(v7,), recall of the process of WL test:

Oc(o) (), e unlut € N(vi)B) = (i), {{0x(u®), ez uzlu® € N7 G7)
Since Gy, G, are unfoldable, x(vj,) and x(v7,) are unique. On other hand, x(vi,) € N(v}),
therefore if (v ,v2) ¢ Ey, then

117 Yig

{0 e unlut € Nl # {x(W?), ez uz)lu® € N(v])}} (38)
therefore (v} ,v}) ¢ E,. Hence we have (v, ,v},) € Ej if and only if (f(v}), f(v],)) € Ea,
which proves lemma[D.§]

D.2.2 PROOF OF MEASURABILITY FOR OPTIMAL NEIGHBOR MAPPING

Optimal Neighbor Mapping. For any unfoldable ILP instance Z with current solution z°, the
associated ILP problem has a finite optimal objective value. Although an ILP may admit multiple
optimal neighbors, it is guaranteed that there exists a unique optimal neighbor with the smallest
{5-norm. Formally, we define the mapping

DPpeign(Z,2%) = p: (R™™ x R™ x R™\I101q) x {0,1}" — {0,1}",

which maps (Z,2°) to the p indicator vector that decide the variable is fixed or relaxed with the
smallest >-norm. ®,,.;,, maps an ILP with current solution to exactly one of its optimal neighbor
and we choose the h the smallest {5-norm as unique, otherwise ILP instance Z is not unfoldable.

Lemma D.9 The optimal neighbor mapping ®,,¢;n(Z, 2°) is measurable.

Proof of lemma[D.9} In|Chen et al|(2023), chen has proved that the optimal solution and value map-
ping for mixed-integer linear programs(ILP) is measurable, since ILP is the subset of ILP therefore
the optimal solution mapping for integer linear programs for unfoldable ILP

(I)opti,solu(I) : (Rnxm x R™ x Rm\ﬂfold) — {Oa 1}717

and value
(Dopti,value(l-) : (Rnxm x R™ x Rm\]lfold) — R)

are measurable. Since the mapping ®;, 4, cur 1S also measurable, we can define the mapping
®indu_cur_opti_solu that output the optimal solution and ®;,,qy_cur_opti_value that output the optimal
value for the sub-ILP induced by p

(I)indu,cu'r:opti,solu (Iv $O, p) = (I)opti,solu ((I)indu,cur,opti,solu (I7 z° , p)) (39)

22

Under review as a conference paper at ICLR 2026

and
CI)indu,cur,opti:Ualue (I, xoz p) = (I)opti,value(q)indu,cur,opti,solu (I, JZO, p)) (40)

Since the composition of measurable functions is also measurable, therefore ®;y,qy_cur_opti_solu and
Dindu_cur-optivalue are also measurable. Denote c as

Cc= mzf)iX(cbindu,cur,opti,value (I, wO’p)) (41)

then
-1
indu_cur_opti-value (C) {Z,z0} (42)

outputs indicator p of optimal neighbor with the smallest /5-norm. Hence The optimal neighbor
mapping ®r,cign(Z, 20) is measurable. To enable GNN to approximate the function, Chen et al.
(2023) has shown the measurability for invariant and equivariant mapping, the theorem is as follow:

Theorem D.10 (Theorem A.10 in[Chen et al.| (2023)) Let X C R™*™ x H™ x H™ be a compact
subset that is closed under the action of Sy, X S,,. Suppose that ® € C(X,R"™) satisfies:

e Forany oy € Sy, ow € Sy, and G € X,
@((Jv,o’w)G) = Uw(q)(G))

« &(Q) = (Q) forall G, G € X with

a " a.

* Givenany G € X and any i,i' € {1,2,...,n}, if x(v;) = x(vi) holds for any choices of
hash functions (i.e., the WL colors of node v; and v;r coincide at every iteration), then

D(G): = D(G)y.

Then for any & > 0, there exists Fyy € F¥y y such that

sup || ®(G) — Fw (G)|| < e.
(@)ex

Since the current solution 2° can regarded as a extra feature for Z in H", therefore theorem [D.10
can also be applied for ®,,;,, when X is within the unfoldable ILP instance. By lemmas D.9
and theorem we have proved that for any unfoldable ILP instances can be approximated by
MP-GNN.

D.3 FOLDABLE ILP INSTANCES APPROXIMATED BY CE-FRAMEWORK

Now we can prove that our framework is also suitable for foldable ILP instances: Consider a foldable
ILP Z, there are two following conditions:

* the foldable ILP only refers to constrains nodes. then there are no variable node v;, and v;,
that x(vi,) = X(viy).
* there are two variable nodes v;, and v;, that x(v;,) = x(vi,)-

Condition 1: By definition of 1-WL on a weighted bipartite graph, at the stable coloring we have,
for each constraint u,

x(u) = Hash(x(u;), {{(x(@i), Aig) s 2 € N(uy)}H}).

Because x is injective on V,, the multiset {{(x(z;),4;;)}} can be canonically reindexed by
(unique) variable colors. Thus the WL signature of u; is exactly the full incident coefficient pro-
file to individually identified variables. If two constraints u;, , u;, satisfy x(u;,) = x(uj,), then
their profiles coincide entrywise across all variables, i.e.,

Aij, = A, , foreveryux; € V.

23

Under review as a conference paper at ICLR 2026

Consequently, swapping u;, and u;, is an automorphism that fixes all variable nodes pointwise and
preserves all edge weights. Any graph function ®(G) € R" that is invariant to constraint relabeling
(and equivariant to constraint permutations), as is the case for ®yign, is therefore insensitive to such
swaps.

Now consider two ILP with incumbent solution instances graphs G, G that are WL-equivalent with
the same variable-injective stable coloring. The color-preserving correspondence fixes variables
one-to-one. On the constraint side, it may include permutations among color-tied constraints, but as
argued-those permutations do not affect any constraint—equivariant variable-output ®. Hence WL-
equivalence under variable-injective coloring implies equivalence for ®.in’s input-output behavior.
For variables-unfoldable instance, if x(u;,) = x(uj,) then the ji" and ji" serve have exactly the
same constraint power over the variables. Specially, denote the original ILP instance as

min c¢'x 43)
sit. > Aijxi <bj, j€[m]j# o (44)
i€[n]
Z Ai,jll'i S bjl (45)
i€[n]
Z Ai,jQZEi S ij (46)
i€[n]
x; € {0,1} (C))
then ILP instance
min c¢'x (48)
st > Aijxi <bj, j€[m]j# o (49)
i€[n]
Z Ai,jll'i S bjl (50)
i€[n]
x; € {0,1} (1))

has same solution as original ILP, while in this way the constrain which shares the same label in WL
test can be cut off until the ILP is unfoldable.

Therefore, the only symmetry that could degrade separability relevant to ®ign Would be a tie on
variable colors. Since (G is variable—unfoldable, no such tie exists, and the instance behaves (for our
theory and approximation guarantees) exactly like an unfoldable ILP. If G is variable-unfoldable,
then any equality of WL colors on the constraint side (i.e., x(u;) = x(b;)) does not reduce the
distinguishability of variables for any constraint-equivariant target ® : G — {0, 1}". In particular,
G can be treated as unfoldable for the purposes of approximating ®pcign.

Condition 2: We first will prove that: if foldable-on-variables(variable nodes share the same label
in WL test) is under p-consistency. In other word, if
X(Uh) = X(Uiz) — Piy = Piy-

Denote the label for WL test in the third stage as X, since the extra added feature p in WL test is
consistent with label Y, therefore we have

X(Uil) = X(Uiz) — X(’Uh) = X(viz)
and if Y (v;;) = x(vi,). Denote the set of color of label ¥ (v) get as C. Since V¢; € C, if the
neighborhood selection pick a node v;, as x(v;,) = ¢, then the neighborhood selection will pick
every variable node v that X(v) = ¢;. In this way the neighborhood selection degenerates from
multiset
{x(v)lveV}}

to set
{Ct‘Ct S C}

24

Under review as a conference paper at ICLR 2026

unlike multiset, all elements in the set are unique, therefore the neighborhood selection is unique.
Therefore if foldable-on-variables is under p-consistency then it can be treated as unfoldable ILP.

Now we consider the condition that there are a pair of foldable-variables is not under p-consistency:
First, we assume the bipartite graph is a connected graph(else the ILP can be divided into r inde-
pendent ILPs if the graph has r disconnected components). To prove the condition we have to prove
that for (finite, simple) trees, the 1-dimensional Weisfeiler—Lehman (WL) color refinement test dis-
tinguishes non-isomorphic graphs; equivalently, two trees are WL-equivalent if and only if they are
isomorphic. The theorem is as follow

D.3.1 PROOF OF THEOREM [D.1]]
Theorem D.11 Let 11,75 be trees. Then the following are equivalent:
o Ty =2 T5 (graph isomorphism).
o T1 =w1 15 (the stable 1-WL colorings agree up to color renaming).

In particular, 1-WL decides isomorphism on trees.

The direction 7} = T, = 11 =wr, 15 is immediate, since 1-WL is isomorphism-invariant.

For the converse, we show that on any tree, the stable 1-WL color of a vertex encodes exactly the
isomorphism type of its rooted subtree. Root a tree 7" at an arbitrary vertex r and orient edges away
from r. Define the height ht(v) of a vertex v as the distance to the farthest descendant; leaves have
height 0.

We prove by induction on & = ht(v) that after h rounds of 1-WL refinement, the color of v is a
complete invariant of its rooted subtree (7', v):

Claim. After round h, two vertices v, w have the same color if and only if the rooted trees (7', v)
and (T, w) are isomorphic.

Base h = 0. Leaves all have the same multiset of neighbor colors (just their parent, if any). Their
color is determined uniformly, and the rooted subtree at a leaf is a single node. Thus color equality
coincides with rooted-subtree isomorphism.

Induction step. Assume the claim holds for all heights < h. Let v satisfy ht(v) = h with children
U1, ..., u (all of height < h). In round h, the new color of v is computed from its current color
together with the multiset of the children’s colors from round & — 1. By the induction hypothesis,
each child’s color at round & — 1 uniquely represents the rooted isomorphism type of its subtree
(T, u;). Therefore, the multiset of child colors at round ~ — 1 encodes exactly the multiset of rooted
subtree types attached to v. Since a rooted tree is determined (by the standard AHU decomposition)
by the multiset of its children’s rooted types, the new color of v at round A uniquely encodes the
rooted isomorphism type of (7, v). Conversely, if two rooted subtrees are isomorphic, they induce
the same multiset of children’s types and hence the same color. This proves the claim at height h.

Thus, after H := max, ht(v) rounds (at most the radius/diameter of T'), the stable color of each
vertex identifies the isomorphism type of its rooted subtree. In particular, the (multi)set of stable
colors of neighbors of any vertex encodes the branch structure around that vertex. To compare
two unrooted trees 11,15, pick any vertex r; € T7 and ro € Ts. If T1 =w1, 15, then there is a
bijection between the stable colors in 7} and 75 preserving adjacency color multisets. Choosing
and ro with the same stable color and proceeding level by level, the above characterization yields an
isomorphism between the rooted trees (77,71) and (T2, 72), hence an unrooted graph isomorphism
Ty = T5. Therefore, WL-equivalence implies isomorphism on trees. Now we have proved theorem

D.3.2 SEPARATING WL TEST LABELS VIA ADDITIONAL FEATURES

Denote the set of color of label x(v) get as C after adding indicator h as features, and C as original.

Therefore, we can divide the color of C based on the value of h: C = Co U Cq where Cy refers the
color when h = 0, and C refers the color when A = 1. It is obvious that Co N C; = (. Since the

25

Under review as a conference paper at ICLR 2026

neighborhood size is less than half of the total number of nodes:k? < 5. Then we have
{vilhi = 0} > [{vi[hi = 1}| (52)

which is equivalent to

{vilx(vi) € Co}| > Huilx(vi) € Cr}| (53)
We divide the condition into two cases:(1) The foldable variables are under h-consistency when they
are all in cycle. In this case, foldable variables are not under p-consistency iff they are in the tree.
By theorem[D.T1|and[B.2] trees are WL-equivalent if and only if they are isomorphic, therefore WL
have enough expressive power to distinguish non-isomorphic graph.

(2)There are foldable variables in cycle that are not under h-consistency. Then divide the variable
node as V' = CY U TR, where C) denote the set of the variable nodes in cycle, 7R denote the set
of the variable nodes in tree. If

Hvilx(vi) € Co,vi € TR}| > [{vilx(vi) € C1,v; € TR}| (54
then it yields as cases (1). If
Hoilx(vi) € Co,vs € TRY| < {wix(vi) € C1,v; € TRY| (55)
then since
[{vilx(vi) € Co}| > [{vilx(vi) € C1 }] (56)
we have
{vilx(vi) € Co,vi € CY} > [{vilx(vi) € C1,v; € CY}] (57)
Hence at least one color ¢ € C that
Hvilx(vi) = ¢, pi = 0,v; € CY}| > [{vilx(vi) = ¢,pi = 1,v; € CY}| (58)

Hence Yv;,, v, € CY, X(vi;) = X(vi,) <= i1 = i, and by theorem|[D.11|and [B.2] trees are WL-
equivalent if and only if they are isomorphic, therefore despite there might be node v;,,v;, € TR,
X(vi,) = X(vi,) WL still have enough expressive power to distinguish non-isomorphic graph. In
summary, the condition of theorem the neighborhood size is less than half of the total number
of nodes:k! < 5, breaks the symmetry of nodes sharing the same label under the WL test, thus
enabling 1-WL to distinguish them. By lemmas [D.8] [D.9] and theorem [D.10] any unfoldable ILP
instances can be approximated by MP-GNN. Now that we the second part of theorem [5.3}Denote
h' € [0,1]™ as the output from I after calibration, if the scale of neighborhood k' < Z, then we
have ~
P(|[n" = holl > ¢) < e

where hf is optimal neighborhood selection indicator:maxyer gty (E(Z, %, h))
(E(Z,x', h), LB(k) is defined in equation ??)

E DETAILS OF NETWORK ARCHITECTURE
We give full details of the GAT and GCN architecture described in the following:

E.1 GRAPH ATTENTION NETWORK
E.1.1 STAGEI

The Network takes as input the state s* and output a score vector Fy(s') € [0, 1]", one score per
variable. We use 2-layer MLPs with 64 hidden units per layer and ReLLU as the activation function
to map each node feature and edge feature to R? where d = 64.

LetX;, B, E; ; € R? be the embeddings of the j-th variable, i-th constraint and the edge connecting
them output by the embedding layers. We perform two rounds of message passing through the GAT.
In the first round, each constraint node B, attends to its neighbors N; using an attention stucture
with H = 8 attention heads:

H
1 R) p(h R) p(h
B == > | o Bi+ Y ah0i; (59)
h=1 FEN;

26

Under review as a conference paper at ICLR 2026

where 91(:1) € R?¥9 and G;hl) € R¥*9 are learnable weights. The updated constraint embeddings B;
are averaged across [attention heads using attention weights Brody et al.|(2021)

h h h
exp(w] p((0y)B;, 0%, 0V E; ;)))
h h h
S wen, exp(w] p([6y") By, 07X, 07V, 1))

(r) _
i1 =

(60)

where the attention coefficients w; € R3¢ and Géhl) € R4 are both learnable weights and p(-)
refers to the LeakyReLU activation function with negative slope 0.2. In the second round, similary,
each variable node attends to its neighbors to get updated variable node embeddings

H
1 1 1
K= 3 (o, + Y ool @
h=1 iEN;
with attention weights
h h h
w exp(w]p(0y5 B}, 019%;,000E, ;]))
iy = (62)

h h h
S ren, exp(w] p((0y By, 099X, 0By ;1))

where wy € R3¢ and nghg), 07(172), 0£h2) € R4*4 are learnable weights. After the two rounds of message
passing, the final representations of variables X; are passed through a 2-layer MLP with 64 hidden
units per layer to obtain a scalar value for each variable. Finally, we apply the sigmoid function to

get a score between 0 and 1.

E.1.2 STAGEII

After yields a neighborhood selection indicator h* € {0,1}", the Network use 2-layer MLPs with
16 hidden units per layer and ReLU as the activation function to map k' to X; € R where d’ = 16.

Then network regard X as a extra feature and concatenate it with the original input: [X;]|X;]. We
perform a round of message passing through the fine-tuned GAT’s first round in stage I as:

H
! 1 h) g(h) rp(h)y5(h S

B = 2 Y | b B+ Y ol 1081001 1%) 63)

h=1 JEN;
where weights 01()?1) and Hr(vhl) are fixed and éihl) € R4 Jearnable weights.
~ h h h G(h)
o _ _ expllwn o8, B, 1%, 00 B, 0511 X])) o
g1 =

- h h h A(h)
Swen, exp(fwy, @1]Tp([0") Be, 00 X, 00V E; 1,6 K4]))

where the attention coefficients w; € R? and other weights are both fixed. The embedding B;’
goes a 2-layer MLPs with 64 hidden units per layer and ReLU as the activation function to obtain
two scalar values for each constrain to predict the feauture of effective/redundant constraint. The
newly introduced learnable parameters are updated by calibrating against the constraint features
during training.

E.1.3 STAGE III

Denote constrain feature as r* € {0,1}2%™, the Network use 2-layer MLPs with 16 hidden units
per layer and ReL U as the activation function to map rt to B; € RY where d’ = 16. Then network

regard B; as a extra feature and concatenate it with the original input: [B';||B;]. We perform a round
of message passing through the fine-tuned GAT’s second round in stage I as:

1

H
4 h)1a(h & h)1a(h ™
X1 = 2 37 | OISR + D 16,7116 1B |Bd] (65)
h=1 iEN;

27

Under review as a conference paper at ICLR 2026

where weights GZ(,hQ) and 9;’12) are fixed and éi’}g, 9~£h2) € R¥? learnable weights with attention

weights:
~ h h h ~(h) < ~(h)H
exp([wa||d2) T p([69 B, 09X, 00 5, 89K, 05 Bi]))

1V x,2

= h h h OO
Sen, exp(w] p([05s By, 09X, 0008, 1., 001X, 01" By))

o)

9,2

(66)

where the attention coefficients w,] € R24" and other weights are both fixed. After the two rounds
of message passing, the final representations of variables X; are passed through a 2-layer MLP with
64 hidden units per layer to obtain a scalar value for each variable. Finally, we apply the sigmoid
function to get a calibration score between 0 and 1.

E.2 GRAPH CONVOLUTIONAL NETWORK
E.2.1 STAGEI

The Network takes as input the state s* and outputs a score vector Fy(s') € [0, 1]™, one score per
variable. We use 2-layer MLPs with 64 hidden units per layer and ReLU as the activation function
to map each node feature and edge feature to R? where d = 64.

LetX;,B;, E; ; € R? be the embeddings of the j-th variable, i-th constraint and the edge connecting
them output by the embedding layers. We perform two rounds of message passing through a bipartite

GCN. Denote by A=D= (A+1)ﬁ’% the symmetrically normalized adjacency (with self-loops),

and by a;; = Aij its (i, j)-entry. In the first round (constraint update), each constraint node B;
aggregates its neighbors N;:

IB%; =o0|61B; + Z &ij(aw,lxj + eeﬁl]EiJ) ’ 67
JEN;

where 01,051,601 € R%*4 are learnable weights and o(+) denotes ReLU. In the second round
(variable update), each variable node aggregates updated constraints:

X; = 0o 93;72 Xj =+ Z CAlji (91)72 B; + 06,2]Ei,j) R (68)
i€N;

where 0, 2,0, 2,02 € R%%? are learnable. After the two rounds of message passing, the final

representations of variables X; are passed through a 2-layer MLP with 64 hidden units per layer to

obtain a scalar value for each variable. Finally, we apply the sigmoid function to get a score between

Oand 1.

E.2.2 STAGEII

After yielding a neighborhood selection indicator h* € {0,1}", the Network uses 2-layer MLPs
with 16 hidden units per layer and ReLU to map h' to X; € R? where d’ = 16. We regard X; asan

extra feature and concatenate it with the original input: [XJHXJ] We perform one round of message
passing reusing the first GCN direction (constraint update), with the original weights frozen on the
original channels and new learnable adapters on the new channels:

B,’in = 0 01)71 Bi + Z dij(e%l Xj + é;c71 Xj + 9671 Ei,j) s (69)
JEN: f learnabl
ToZEn carnable

where 0 1,01, 0,1 are fixed (copied from Stage I) and éLl € R¥*4" is learnable. The embedding
B! is then fed to a 2-layer MLP with 64 hidden units and ReLU to obtain two scalar values per
constraint for predicting effective/redundant constraint features. The newly introduced learnable
parameters are updated by calibrating against the constraint features during training.

28

Under review as a conference paper at ICLR 2026

E.2.3 STAGEIII

Denote the constraint feature as 7' € {0, 1}?*™. The Network uses 2-layer MLPs with 16 hidden
units per layer and ReLLU to map ! to B; € R? where d’ = 16. We regard B; as an extra feature and

concatenate it with the original input: [IB%;HIE%Z] We perform one round of message passing reusing
the second GCN direction (variable update), again freezing the original channels and learning the
adapters:

111 0 N ~ N m
X; =0 91;72 X]’ + 01’2 Xj + Z Qi (91,’2 B; + Hb’g B; + 96’2 Ei’j) R (70)
—— —— ; —— ——
frozen learnable iEN; frozen learnable

where 6y, 2, 0 2, 0. 2 are fixed (from Stage I), and 5172, §b72 € R¥*4" are learnable. After this round,
the final variable representations X! are passed through a 2-layer MLP with 64 hidden units per
layer to obtain a scalar value for each variable. Finally, we apply the sigmoid function to get a
calibration score between 0 and 1.

F DETAILS OF INSTANCE GENERATION

We present the ILP formulations for the minimum vertex cover (MVC), maximum independent set
(MIS), set covering (SC) and combinatorial auction (CA) problems. MVC-S instances are generated
according to the Barabasi-Albert random graph model Albert & Barabasi| (2002), with 1,000 nodes
and average degree 70 following [Song et al. (2020). MIS-S instances are generated according to
the Erdos-Renyi random graph model [Erdos et al.| (1960), with 6,000 nodes and average degree
5 following [Song et al.| (2020). CA-S instances are generated with 2,000 items and 4,000 bids
according to the arbitrary relations in [Leyton-Brown et al.| (2000). SC-S instances are generated
with 4,000 variables and 5,000 constraints following|[Wu et al.|(2021)). We then generate another test
set of 100 large instances for each problem by doubling the number of variables, namely MVC-L,
MIS-L, CA-L and SC-L. For each test set, Table ?? shows its average numbers of variables and
constraints. More details of instance generation are included in Appendix. For data collection and
training, we generate another set of 1,024 small instances for each problem. We split these instances
into training and validation sets, each consisting of 896 and 128 instances, respectively.

Table 2: Names and the average numbers of variables and constraints of the test instances.

Name MVC-S MIS-S CA-S SC-S MVC-L MIS-L CA-L SC-L
#Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000
#Constraints 65,100 23,861 2,422 5,000 135,100 48,031 5,221 5,000

F.1 MINIMUM VERTEX COVER(MVC)

In an MVC instance, we are given an undirected graph G = (V, E'). The goal is to select the smallest
subset of nodes such that at least one end point of every edge in the graph is selected:

min) oy T
st Ty +xy > 1, V(u,v) € E,
x, € {0,1}, Vo € V.

F.2 MAXIMUM INDEPENDENT SET(MIS)

In an MIS instance, we are given an undirected graph G = (V, E). The goal is to select the largest
subset of nodes such that no two nodes in the subsets are connected by an edge in G:

min -3y o,
st xy+x, <1, V(u,v) € E,
x, € {0,1}, Vo € V.

29

Under review as a conference paper at ICLR 2026

F.3 SET COVERING(SC)

In an SC instance, we are given m elements and a collection S of n sets whose union is the set of all
elements. The goal is to select a minimum number of sets from S such that the union of the selected
set is still the set of all elements:

min) o
St Y ecgics Ts > 1, Vi € [m],
zs € {0,1}, Vs € S.

F.4 COMBINATORIAL AUCTION(CA)

In a CA instance, we are given n bids {(B;,p;) : i € [n]} for m items, where B; is a subset of items
and p; is its associated bidding price. The objective is to allocate items to bids such that the total
revenue is maximized:

min — Eze[n] Pil;
St Xijen, Ti S 1, Vj € [m],
x; € {0,1}, Vi € [n].

F.5 SUBSET oF MIPLIB

We construct a subset of MIPLIB (Gleixner et al., [2021) to evaluate the solvers’ ability to handle
challenging real-world instances. Specifically, we select instances based on their similarity, which is
measured by 100 human-designed features (Gleixner et al., 2021)). Instances with presolving times
exceeding 300 seconds or those that exceed GPU memory limits during the inference process are
discarded. Inspired by the IIS dataset used in |Wang et al.| (2024), we develop a refined IIS dataset
containing eleven instances. We divide this dataset into training and testing sets, comprising eight
training instances and three testing instances (ramos3, scpj4scip, and scpl4). Detailed information
on the IIS dataset can be found in Table 3

Table 3: Statistical information of the instances in the constructed IIS dataset.

Instance Name Constraint Number Variable Number Nonzero Coefficient Number
ex1010-pi 1468 25200 102114
fast0507 507 63009 409349
glass-sc 6119 214 63918
iis-glass-cov 5375 214 56133
iis-hc-cov 9727 297 142971
ramos3 2187 2187 32805
scpjdscip 1000 99947 999893
scpk4 2000 100000 1000000
scpl4 2000 200000 2000000
seymour 4944 1372 33549
v150d30-2hopcds 7822 150 103991

G ADDITIONAL EXPERIMENTAL RESULTS

30

Under review as a conference paper at ICLR 2026

Table 4: Primal gap (PG) (in percent), primal integral (PI) at 45 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations for generated instances. “|” means the lower

the better.
PG (%) | PIJ PG (%) | PIJ [PG (%4 PIJ PG (%) | PIJ

MVC-S MIS-S CA-S SC-S
BnB 1475026 683E199 | 5.60L137 200.6L87.2 | 2.64+10.77 158.31394 | 1.38L0538 89.2L4338
RANDOM | 1.4241.05 552439.5 | 0.3520.14 233481 | 624157 300.1+473 | 281146 160.0439.0
CL-GCN | 0344029 16.54=+13.11 | 0314+0.17 255141009 | 1244097 89.2444833 | 0.56:1.18 46.70+23.86
CE-GCN | 0224023 12.9249.66 | 0214+0.14 15574697 | 0904075 82.36+28.71 | 0.45+-0.88 31.34+20.75
CL-GAN | 02040.12 11.78+8.94 | 020022 19.69+6.83 | 0.89+0.42 66.5426.62 | 0.504+0.76 32.87+18.74
CE-GAN | 0.1520.14 6.33+£6.18 | 0152009 11.69+4.55 | 0502048 46.4312555 | 0.58+0.34 54.03+£12.38

MVCL MISL CAL SCL
BnB 2751048 151.4L129 | 6.77E£193 314.6E£200 | 3.14£2.19 3885E1073 | 2.02£1.00 117.0£47.8
RANDOM | 0.4140.25 27549.1 | 02140.13 21.148.1 | 570086 280.54264 | 3274217 193.1466.0
CL-GCN | 0.26:£0.09 234477 | 0.2940.28 2944153 | 0224011 27044463 | 1.4841.08 86.9459.1
CE-GCN | 0.2240.19 20.5+14.4 | 0.26+0.16 27949.1 | 023+0.15 282.54+66.1 | 1.42+0.52 85.9426.1
CL-GAN | 0.09+0.05 109445 | 0.1740.15 1844100 | 0.144£0.08 160.0+34.1 | 0.80+0.31 52.9+7.8
CE-GAN | 0.07+0.10 10.1+103 | 0.15:0.07 194458 | 010005 12824233 | 0.73+0.55 45.1+£28.2

Table 5: Primal gap (PG) (in percent), primal integral (PI) at 30 minutes runtime cutoff, averaged
over 100 test instances and their standard deviations for generated instances. “]” means the lower

the better.
PG (%) | PI] PG (%) | PI] [PG (%1 PI] PG (%) 1 PIJ

MVC-S MIS-S CA-S SC-S
BnB 2.0020.40 9141243 | 7.09£1.88 300.8E110.6 | 3.52E1.00 22271495 | 1.92E1.15 120.5£55.0
RANDOM | 1.90+1.44 7534527 | 0.44+0.19 36.6+11.0 | 8.742.01 39424654 | 4114£2.12 208.7450.5
CL-GCN | 045+037 229441845 | 0414022 34.62+14.69 | 1.83+1.35 1343546420 | 0.74+1.52 69.08+31.31
CE-GCN | 0324030 18.04+1331 | 0274+0.19 23.85+£9.74 | 1.2040.91 99.834+41.41 | 0.59+1.04 39.22426.64
CL-GAN | 027+0.15 15361107 | 0284027 258748.81 | 1.14+£0.51 9327+37.08 | 0.6740.92 46.92+25.42
CE-GAN | 0.20+0.19 8.84+7.71 | 0.20+£0.11 15.10+6.53 | 0.68+0.59 57.90+30.62 | 0.66£043 68.15+£14.25

MVC-L MIS-L CAL SC-L
BnB 37310.60 2048E166 | 9261253 414.0L288 | 3.8612.88 515.6E135.7 | 2.63E132 152.31£66.0
RANDOM | 0.55+0.39 34.1£12.7 | 0.2840.16 28.14+10.8 | 7.62£1.23 34704350 | 4.64+272 267.04+85.9
CL-GCN | 0.37+£0.12 30.5+11.7 | 0414035 42.0+19.3 | 0.3240.14 393.5+54.1 | 1.8841.43 119.3£71.0
CE-GCN | 0.31£0.25 25.8+19.1 | 0.3440.21 37.9+11.9 | 0.3140.20 376.2+94.7 | 1.9740.68 118.2+32.6
CL-GAN | 0.11+0.07 143463 | 0.2140.21 2504125 | 0.18+0.12 226.14+47.1 | 1.06:£0.39 70.010.4
CE-GAN | 0.10+0.14 12.5+13.0 | 0.1940.10 255477 | 0.15+0.07 164.0+28.8 | 0.94+0.65 60.0+:37.5

Table 6: Primal gap (PG) (in percent), primal integral (PI) at 45 minutes runtime cutoff. “|” means

the lower the better.

PG (%) | PI] PG (%) | P

WA P
BnB 049+0.12 3.81 £0.94 | 35.743.7 7.38+0.63
RANDOM | 0.40+£0.10 3.18 +0.84 | 42.4+53 9.80+0.81
CL-GCN | 0.48+0.18 3.40+1.24 | 30.6+£3.5 6.87+0.53
CE-GCN | 0.1740.08 1.604+0.46 | 22.9+4.6 6.17+0.79
CL-GAN | 0294021 226+1.66 | 32.242.5 8.0740.37
CE-GAN | 0.13£0.10 1.07+0.72 | 23.944.2 5.20+0.78

Table 7: Primal gap (PG) (in percent), primal integral (PI) at 30 minutes runtime cutoff. “|” means

the lower the better.

PG (%) | PI] PG (%) | PI]
WA P

BnB 0.68£0.16 5.18 £1.26 | 48.045.1 10.3210.86
RANDOM | 0.54:£0.14 435 £1.13 | 57.3£7.1 13.37+1.09
CL-GCN | 0.65+£024 4.66+1.69 | 41.544.7 9.59+0.73
CE-GCN | 0.24+0.11 2.1840.63 | 31.846.3 8.29+1.06
CL-GAN | 0394029 3.1142.27 | 434434 10.86£0.51
CE-GAN | 0.18£0.13 1.504+0.97 | 32.5+5.7 7.26:1.07

31

	Introduction
	Background
	Independence Assumption of the Probability Distribution
	Independence Assumption Fails in Representing the Probability Distribution
	Variable Coupling Enhancement for Large Neighborhood Search
	Decomposition Graph for Variables
	Coupling-Enhanced Large Neighborhood Search

	Empirical Evaluation
	Results
	Ablation Study

	Conclusion
	ETHICS STATEMENT
	REPRODUCIBILITY STATEMENT
	Additional Related Work
	Preliminaries
	Weisfeiler–Lehman Test for ILPs
	Invariance and Equivariance for Bipartite ILP Graphs
	Universal Approximation for Permutation-Invariant Set Functions

	Proof of theorem 5.2
	Proof of theorem 5.3
	Proof of Part I of the theorem
	Proof of Lemma D.2 and D.3
	Stone-Weierstrass Theorem
	Proof of lemma D.5
	Proof of lemma D.6

	Proof of Part II of the theorem
	Proof of lemma D.8
	Proof of Measurability for Optimal Neighbor Mapping

	Foldable ILP Instances Approximated by CE-framework
	Proof of theorem D.11
	Separating WL Test Labels via Additional Features

	Details of Network Architecture
	Graph Attention Network
	Stage I
	Stage II
	Stage III

	Graph Convolutional Network
	Stage I
	Stage II
	Stage III

	Details of Instance Generation
	Minimum vertex cover(MVC)
	Maximum independent set(MIS)
	Set covering(SC)
	Combinatorial auction(CA)
	Subset of MIPLIB

	Additional Experimental Results

