
GPR: Empowering Generation with Graph-Pretrained Retriever

Anonymous ACL submission

Abstract001

Graph retrieval-augmented generation (GRAG)002
places high demands on graph-specific retriev-003
ers. However, existing retrievers often rely on004
language models pretrained on plain text, limit-005
ing their effectiveness due to domain misalign-006
ment and structure ignorance. To address these007
challenges, we propose GPR, a graph-based re-008
triever pretrained directly on knowledge graphs.009
GPR aligns natural language questions with010
relevant subgraphs through LLM-guided graph011
augmentation and employs a structure-aware012
objective to learn fine-grained retrieval strate-013
gies. Experiments on two datasets, three LLM014
backbones, and five baselines show that GPR015
consistently improves both retrieval quality and016
downstream generation, demonstrating its ef-017
fectiveness as a robust retrieval solution for018
GRAG.019

1 Introduction020

Graph Retrieval-Augmented Generation (GRAG)021

has emerged as an effective paradigm for en-022

hancing the capabilities of large language models023

(LLMs) (Min et al., 2019). By retrieving structured024

and high-quality knowledge from graphs, these025

models are able to acquire comprehensive context026

regarding questions and generate more accurate027

and grounded responses (Zhang et al., 2025).028

The effectiveness of GRAG hinges on the quality029

of the retrieved graph components, placing high de-030

mands on the retriever. To meet this challenge,031

retrievers based on pretrained language models032

(PLMs) (Karpukhin et al., 2020) have emerged033

as a promising solution. These retrievers op-034

erate directly on natural language queries with-035

out relying on handcrafted rules (Mavromatis and036

Karypis, 2024) or task-specific features (Luo et al.,037

2023), offering greater flexibility and generaliz-038

ability compared to traditional approaches such039

as non-parametric or graph neural network-based040

retrievers (Peng et al., 2024; Li et al., 2023). How-041

ever, despite these advantages, existing PLM-based 042

retrievers exhibit the following shortcomings: 043

S1: Domain Misalignment. Most of the cur- 044

rent PLM-based retrievers are built on models pre- 045

trained solely on plain text (He et al., 2024; Li et al., 046

2023). These models are proficient in understand- 047

ing natural language queries, but struggle to inter- 048

pret graph-structured data, which are composed 049

of semi-structured triplets with irregular formats. 050

The misalignment between query representations 051

in text and the structured nature of graph data leads 052

to suboptimal retrieval, constraining the overall ef- 053

fectiveness of GRAG systems. 054

S2: Structure Ignorance. In addition, many 055

approaches directly apply language models to re- 056

trieve individual nodes (He et al., 2024), triplets (Li 057

et al., 2023), or subgraphs (Li et al., 2024; Hu et al., 058

2024), mirroring strategies used in traditional text- 059

based retrieval-augmented generation (Karpukhin 060

et al., 2020). However, this overlooks the funda- 061

mental property of knowledge graphs: connectivity. 062

Encoding graph elements as isolated units fails to 063

capture the relational structure essential for effec- 064

tive graph retrieval. 065

To address these limitations, we propose Graph 066

Pretrained Retriever (GPR), a simple yet effective 067

retriever pretrained directly on knowledge graphs. 068

To resolve S1, GPR leverages LLM-guided graph 069

augmentation to align natural language questions 070

with relevant subgraphs, without relying on addi- 071

tional supervision or schema-specific features. To 072

tackle S2, GPR employs a structure-aware pre- 073

training objective that distinguishes triplets based 074

on their relevance with questions, encouraging the 075

model to selectively capture comprehensive context 076

that could boost the LLMs. 077

We evaluate GPR on two benchmark datasets 078

using three backbone LLMs and five baselines. Re- 079

sults show that GPR consistently retrieves more 080

relevant knowledge from graph and enhances down- 081

stream generation. These findings establish GPR 082
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as a generalizable and effective solution for graph-083

based retrieval, advancing the development of084

knowledge-grounded language models.085

2 Related Work086

Retrieval-augmented generation (RAG) (Gao et al.,087

2023; Guo et al., 2023; Ma et al., 2023) has088

emerged as a promising approach to mitigate in-089

trinsic limitations of large language models, such090

as hallucinations (Zhang et al., 2023; Tonmoy091

et al., 2024). Its specialized variant, Graph RAG092

(GRAG) (Min et al., 2019), extends this paradigm093

by retrieving high-quality knowledge from struc-094

tured knowledge graphs, demonstrating strong po-095

tential in knowledge-intensive tasks (Zhang et al.,096

2025). Pretrained Language Model (PLM)-based097

retrievers (Karpukhin et al., 2020) have been widely098

adopted in GRAG systems, enabling knowledge re-099

trieval at various granularities, including nodes (He100

et al., 2024), triplets (Li et al., 2023), and sub-101

graphs (Li et al., 2024; Hu et al., 2024). In these102

approaches, knowledge is encoded using language103

models pretrained on general plain text, and the re-104

trieved results are either directly fed into the large105

language models for reasoning or processed by ad-106

ditional adaptation modules to enhance the model’s107

ability to interpret the retrieved content. While108

most methods simply leverage pretrained language109

models, some prior work (Dong et al., 2023) has110

explored pretraining these models on knowledge111

graphs using conventional objectives such as In-112

foNCE (Oord et al., 2018) and Masked Language113

Modeling (Devlin et al., 2019). Nevertheless, these114

efforts overlook the alignment between the textual115

query modality and the graph-structured knowl-116

edge, often degrading retrieval effectiveness.117

3 Graph Pretrained Retriever (GPR)118

Problem Formulation. We consider the graph119

retrieval-augmented generation (RAG) setting,120

where a large language model (LLM) generates an-121

swers based on a question q and a retrieved knowl-122

edge subgraph Sq. The model takes the pair (q,Sq)123

as input, where Sq is retrieved from a knowledge124

graph G conditioned on q, i.e., Sq = Q(q,G), and125

Q denotes the retriever. We define Sq as the union126

of triplets τ = (h, r, t), where each τ ∈ G repre-127

sents a factual statement relevant to the question.128

Following prior work (Li et al., 2024), we reduce129

subgraph retrieval to a triplet ranking task, where130

the goal is to learn a retriever Q that assigns higher131

scores to relevant triplets τ given the question q. 132

The retriever is optimized to improve downstream 133

generation quality by supplying more informative 134

context to the LLM. 135

Establishing Question-triplet Alignment via 136

Graph Augmentation. In typical retrieval training, 137

the retriever Q is optimized to align questions with 138

their corresponding documents. In our formula- 139

tion, this translates to learning a mapping between 140

a natural language question q and a relevant set 141

of knowledge triplets Tq ⊆ G. However, under 142

the general RAG framework, only question-answer 143

pairs are available, with no explicit supervision for 144

question-triplet alignment (Peng et al., 2024). This 145

motivates us to establish the question-triplet align- 146

ment by augmenting the knowledge graph. Specifi- 147

cally, we generate synthetic natural language ques- 148

tions from triplets by performing masked triplet 149

prompting. For each triplet τ = (h, r, t) ∈ G, we 150

mask one entity to construct masked triplet τ ′ ∈ 151

{([MASK], r, t), (h, r, [MASK])}, and prompt 152

LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024) 153

with instructions to generate a synthetic question in 154

natural language qτ , corresponding to the original 155

triplet τ . 156

Each synthetic question qτ aligns with its origi- 157

nal triplet τ , as well as neighboring triplets τnb that 158

share at least one entity with τ . We treat both types 159

as positive signals: the original triplet τ is directly 160

relevant to the question qτ , while its neighbors pro- 161

vide contextual support for better understanding. 162

Formally, we construct the positive set: 163

Dpos = {(qτ , τ), (qτ , τnb)}, τnb ∈ G, τnb ∩ τ ̸= ∅.
(1) 164

We further introduce negative set Dneg by ran- 165

domly sampling triplets from G such that they do 166

not overlap with τ , serving as irrelevant distractors 167

τneg: 168

Dneg = {(qτ , τneg)}, τneg ∩ τ = ∅. (2) 169

By integrating these sets, we construct the final 170

pretraining dataset that captures varying levels of 171

alignment between queries and knowledge triplets: 172

D = {(qτ , τ, τnb, τneg)}. (3) 173

Examples of the graph augmentation procedure 174

are available in Appendix A. 175

Mining Question-triplet Alignment with Pre- 176

training. To model the varying level of alignment 177

constructed in dataset D with our retriever Q, we 178
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Table 1: Question answering results (%) on WebQSP and CWQ datasets. The best-performing results are highlighted
in bold.

Methods WebQSP CWQ
Accuracy Precision Recall F1 Accuracy Precision Recall F1

ChatGPT 46.62 65.97 39.48 49.40 37.88 42.19 35.63 38.63
+ G-Retriever 42.70 63.32 36.44 46.26 33.51 39.42 31.84 34.99
+ G-RAG 39.40 57.55 33.63 42.45 31.87 36.44 30.55 33.21
+ Hybrid 50.38 64.25 37.52 47.37 39.55 44.52 37.06 40.47
+ SKP 44.80 62.10 36.98 46.36 33.43 38.71 31.71 34.83

+ Two Tower 39.14 57.30 34.30 42.67 30.85 36.34 29.60 32.64
+ GPR 62.40 73.46 46.31 56.79 43.25 47.59 39.59 43.22

LLaMA2-Chat-7B 40.16 59.82 34.85 43.76 28.23 9.99 28.23 14.70
+ G-Retriever 44.00 66.22 37.68 47.84 30.77 36.51 29.32 32.52
+ G-RAG 20.81 36.43 19.29 25.26 9.53 11.81 9.21 10.31
+ Hybrid 53.40 71.44 42.08 52.79 35.12 40.70 33.25 36.61
+ SKP 43.93 63.02 37.11 46.61 28.54 33.48 27.04 29.86

+ Two Tower 38.51 58.23 33.54 42.44 27.38 32.57 26.12 29.01
+ GPR 61.90 77.57 47.44 58.76 44.27 15.41 44.27 22.93

Flan-T5-xl 10.86 19.16 10.40 13.41 12.22 16.94 12.22 14.21
+ G-Retriever 21.41 39.37 20.49 26.91 17.97 22.51 17.62 19.76
+ G-RAG 19.72 35.20 18.86 24.32 16.89 20.31 16.40 18.17
+ Hybrid 31.37 49.82 27.67 35.54 25.14 29.94 24.24 26.77
+ SKP 21.29 37.04 20.53 26.45 18.82 22.66 18.32 20.26

+ Two Tower 18.00 33.05 17.58 22.83 16.23 20.22 15.90 17.81
+ GPR 39.48 56.94 35.23 43.51 28.20 38.54 28.20 32.47

firstly encode query and triplets with retriever Q,179

then optimize the retriever with a structure-aware180

objective function.181

Encoding. We adopt a two-tower architec-182

ture (Karpukhin et al., 2020), commonly used in183

information retrieval, as the basis for our retriever.184

It consists of separate encoders for natural lan-185

guage queries and knowledge triplets, denoted by186

Eq and Eτ , respectively, i.e., Q = {Eq, Eτ}. For187

question qτ and triplets τ , τnb, τneg, their embed-188

dings are computed as zq = Eq(qτ ), zτ = Eτ (τ),189

znb = Eτ (τnb), and zneg = Eτ (τneg), serving as190

a prerequisite for subsequent structure-aware opti-191

mization.192

Optimization. To effectively answer knowledge-193

intensive questions, the retriever should prioritize194

facts that are directly relevant to the query. In ad-195

dition, supporting knowledge that addresses sec-196

ondary aspects of the queried fact can provide help-197

ful context and improve answer quality. On the198

other hand, retrieving irrelevant knowledge offers199

little benefit and may introduce noise, reducing200

overall performance. Based on this motivation, we201

optimize the retriever using a customized variant of202

triplet loss (Schroff et al., 2015), which is designed 203

to learn from varying levels of preference. Given 204

a query q, a more preferred triplet p, and a less 205

preferred triplet n, the basic triplet loss is defined 206

as: 207

M(p, n, q, γ) = max(0, γ+cos(n, q)−cos(p, q)),
(4) 208

where cos(·, ·) denotes cosine similarity, and γ is 209

the margin hyperparameter. This formulation en- 210

courages the model to assign higher similarity to 211

preferred triplets relative to less preferred ones. 212

We apply and customize this loss by enforcing a 213

soft preference ordering among triplets conditioned 214

on the question qτ : the exact matching triplet τ is 215

preferred over its neighbors qnb, which in turn are 216

preferred over irrelevant triplets qneg. The final 217

pretraining loss is represented as: 218

L = M(zτ , znb, zq, γ1) +M(znb, zneg, zq, γ2),
(5) 219

with separate margins γ1 and γ2 for each preference 220

level. 221

Leveraging Question-triplet Alignment dur- 222

ing Inference. At inference time, the pretrained 223
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Figure 1: Top-ranked triplets retrieved by pretraining-free two tower retriever and GPR, given the query "What does
Jamaican people speak?".

Two Tower
Kemar Bailey-Cole | languages | English Language
The problem of freedom | subjects | Jamaica
The Blue Lagoon | language | English Language
Hansle Parchment | nationality | Jamaica

GPR
Jamaican English | countries_spoken_in | Jamaica
Jamaican Creole English | countries_spoken_in | Jamaica
Jamaica | languages_spoken | Jamaican English
Jamaica | languages_spoken | Jamaican Creole English

retriever Q, optimized with augmented question-224

triplet alignment with structure-awareness (Eq. 5),225

is used to query the knowledge graph G and re-226

trieve top-K triplets to construct the subgraph Sq.227

This subgraph provides knowledge-rich context to228

enhance the LLM’s performance, without requiring229

any additional fine-tuning on the question answer-230

ing task.231

4 Experiments232

Experiment Settings. All experiments settings are233

available in Appendix B.234

Evaluation Results. The experiment results are235

available in Table 1. Key insights we obtain236

through the analysis include:237

Pretrained language models struggle to238

perform effective retrieval over structured graph239

data. Using language models pretrained on plain240

text as retrievers often results in limited and incon-241

sistent gains. While effective for natural language242

understanding, they lack the structural alignment243

and graph-specific inductive biases necessary244

for reasoning over knowledge graphs. Notably,245

the two tower retriever, which shares the same246

architecture as GPR but omits graph pretraining,247

performs poorly, highlighting the limitations of248

relying solely on plain-text pretrained models for249

graph-based retrieval tasks.250

GPR advances graph retrieval by bridging text251

and graph with structure-awareness. Across all252

evaluated settings, GPR consistently outperforms253

retrievers without targeted pretraining, effectively254

aligning textual queries with relevant subgraphs. Its255

improvements on downstream question answering256

tasks reflect the quality of retrieved subgraphs in257

providing accurate and contextually relevant infor-258

mation. Given that the pretraining-free two tower259

variant performs poorly, the strong performance of260

GPR stems not from its structure alone but from261

its carefully designed pretraining strategy. This262

highlights the effectiveness of our question-triplet263

alignment objective and our success in modeling264

structural relations between text and graph through265

pretraining.266

Qualitative Analysis. We conduct a case study267

Figure 2: Performance vs K in the selection of top-
ranked triplets.
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to qualitatively analyze the retrieved facts of GPR, 268

with results shown in Figure 1. Intuitively, meth- 269

ods relying on language models pretrained on gen- 270

eral text struggle to bridge the gap between natu- 271

ral language queries and knowledge graph content, 272

retrieving low-relevance and noisy results. In con- 273

trast, GPR benefits from knowledge graph-based 274

pretraining with a discriminative optimization ob- 275

jective, resulting in retrieved facts that are more 276

relevant and coherent with the input query. 277

Quantitative Analysis. We further conduct a 278

quantitative analysis by varying the top-K value 279

used during triplet retrieval, as shown in Figure 2. 280

All metrics exhibit a consistent upward trend as 281

K increases. These results highlight that GPR 282

consistently benefits from an increasing amount of 283

retrieved content, demonstrating its ability to cap- 284

ture broader context while maintaining robustness 285

to potential noise introduced by retrieval. 286

5 Conclusion 287

We introduced GPR, a simple yet effective re- 288

triever pretrained on knowledge graphs to support 289

retrieval-augmented generation over knowledge 290

graphs. Through LLM-guided graph augmenta- 291

tion and structure-aware pretraining, GPR learns 292

to align questions with informative subgraphs in a 293

flexible and data-agnostic manner. Comprehensive 294

experiments show that GPR consistently enhances 295

both retrieval quality and downstream generation 296

performance. 297
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Limitations298

While GPR demonstrates strong performance in299

graph retrieval, it still has two limitations. First, our300

pretraining currently considers only 1-hop neigh-301

bors due to computational constraints, which may302

limit the model’s effectiveness in capturing larger303

contextual subgraphs or longer reasoning paths. Ex-304

tending the method to incorporate multi-hop struc-305

tures remains feasible and is worth exploring. Sec-306

ond, although the pretraining strategy is broadly307

applicable, we adopt a basic two-tower retriever308

for implementation due to limited bandwidth. In-309

vestigating more expressive retriever architectures310

presents a promising direction for future work.311
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A Example of Graph Augmentation 449

Table 2 presents examples in Freebase (Bollacker 450

et al., 2008) that appear in our augmented dataset, 451

demonstrating how the graph augmentation process 452

operates. 453

B Experiment Details 454

Datasets. Following previous studies(Luo et al., 455

2023), we adopt two prevalent datasets for experi- 456

ments, i.e., WebQSP (Yih et al., 2016), under the 457

CC BY 4.0 License, and CWQ (Talmor and Berant, 458

2018), under the Apache-2.0 License. The We- 459

bQSP test set used for inference contains 1.628 460

question–answer pairs, while the CWQ test set 461

comprises 3.531 pairs. 462

Implementation. We implement our two-tower 463

retriever with two distilbert-base-uncased (Sanh 464

et al., 2019) encoders. We choose the same text en- 465

coder for all retrievers for the fair comparison. For 466

methods requiring pretraining (SKP and GPR), we 467

perform pretraining on a subset of Freebase (Bol- 468

lacker et al., 2008) that includes entities related to 469

the WebQSP and CWQ datasets, which are inde- 470

pendent of the question answering task, eliminating 471

any data leakage concern. Pretraining is conducted 472

for 5 epochs using AdamW (Loshchilov and Hutter, 473

2017), with a batch size of 512 and a learning rate 474

of 2e-5. Margins γ1 and γ2 in Eq. 5 are both set 475

to 0.5. The retrievers are further evaluated in the 476

zero-shot setting. 477

Backbones. Retrieval strategies are evaluated 478

with LLM backbones pretrained in general do- 479

mains, including ChatGPT-3.5 Turbo (Achiam 480

et al., 2023), LLaMA2-7B (Touvron et al., 2023), 481

and Flan-T5-XL (Chung et al., 2024), covering 482

large language models of varying sizes and both 483

open- and closed-source types. The usage of these 484

artifacts aligns with their intended use for research 485

purposes. 486

Computational Devices. All experiments were 487

conducted on four NVIDIA A6000 GPUs with 488

CUDA version 12.0, running on an Ubuntu 20.04.6 489

LTS server. 490

Baselines. We include the following graph- 491

retrieval baselines for comparison: 492

G-Retriever (He et al., 2024) is a retrieval- 493

augmented generation framework designed for 494

question answering over textual graphs. It retrieves 495

relevant nodes and edges based on semantic sim- 496

ilarity and constructs subgraphs using the Prize- 497

Collecting Steiner Tree (PCST) algorithm to form 498
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Original Triplet τ (Attention deficit hyperactivity disorder, treatments, Modafinil)

Generated Questions qτ
What is a treatment for Attention deficit hyperactivity disorder?
What is Modafinil used to treat?

Neighbor Triplets τnb
(Attention deficit hyperactivity disorder, treatments, Zooey Deschanel)
(Cephalon, product, Modafinil)

Negative Triplets τneg
(Prednisone, active_moiety_of_formulation, Prednisone 10 tablet)
(Welcome To The Jungle, written_by, Jonathan Hensleigh)

Table 2: Example of graph augmentation.

concise, query-relevant subgraphs for generation .499

G-RAG (Hu et al., 2024) is a graph retrieval-500

augmented generation method that enhances LLMs501

by retrieving and integrating textual subgraphs. It502

represents subgraphs as pooled embeddings of k-503

hop ego-graphs and retrieves them to incorporate504

both textual and topological information through505

dual prompting, improving performance on multi-506

hop reasoning tasks .507

Hybrid (Li et al., 2023) is a hybrid retrieval508

model that combines sparse retrieval (BM25) and509

dense retrieval (DPR) for coarse retrieval, followed510

by reranking with a cross-encoder to improve re-511

trieval performance.512

SKP (Dong et al., 2023) leverages traditional ap-513

proaches like contrastive learning and masked lan-514

guage prediction on graphs to obtain a more graph-515

concentrated encoder for retrieval, enhancing the516

model’s ability to represent complex subgraphs.517

Two-tower (Karpukhin et al., 2020) is a dense518

passage retrieval approach for open-domain ques-519

tion answering. Utilizing a dual-encoder frame-520

work, it learns dense representations from question-521

passage pairs, outperforming traditional sparse re-522

trieval methods like BM25 in top-20 passage re-523

trieval accuracy.524

All the baselines are required to retrieve knowl-525

edge without prior information about entities in526

question or answer of the question. For approaches527

containing multiple stages such as GNN-tuning (He528

et al., 2024; Hu et al., 2024) or parameter-efficient529

fine-tuning (Hu et al., 2024), we just take their530

PLM-based graph-retrieval module for fair compar-531

ison.532

C Potential Risk533

Although GPR demonstrates strong performance,534

it is still possible for the retrieved results to535

reflect biases. Blind reliance on these re-536

sults—treating them as factual without contextual537

verification—may raise societal concerns. Users 538

of GPR are encouraged to critically assess the re- 539

trieved content within the specific application con- 540

text to mitigate potential ethical risks. 541
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