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Abstract—Modulo Analog-to-digital converters (ADCs) extend
the dynamic range of conventional ADCs by folding input signals,
enabling the acquisition of signals beyond traditional limits.
This paper presents two approaches for parameter selection
in conjugate complex-valued 2-channel modulo ADC systems
to improve error tolerance. The first is a closed-form sub-
optimal method, which offers a near-optimal solution, making
it suitable for efficiency-sensitive applications. The second is an
effective search-based method that identifies the exact optimal
solution with relatively low computational cost. Simulations show
that the sub-optimal method provides performance close to the
optimal solution, while the search-based method achieves precise
optimisation with manageable computational requirements.

Index Terms—Modulo samplers, Analog-to-digital converters,
Number theory, Chinese remainder theorem, Gaussian integers.

I. INTRODUCTION

Conventional analog-to-digital converters (ADCs) reach sat-
uration when the input signal exceeds the threshold ∆

2 , con-
straining the output to

[
−∆

2 ,
∆
2

]
, where ∆ > 0 is the peak-

to-peak ADC range. Modulo ADCs mitigate the saturation
issue by folding the input signal back into the range ∆,
mathematically defined for x ∈ R as [1], [2]:
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, JxK def

= x− ⌊x⌋

where ⌊·⌋ denotes the floor operation. The use of a single mod-
ulo ADC for sampling often leads to increased data volumes,
higher storage requirements, and greater computational costs
due to the high sampling rates required [3]–[6]. To mitigate
these challenges, multi-channel modulo-ADC systems have
been proposed [7]–[9], using an L-channel framework with
progressively increasing ADC ranges ∆1 < ∆2 < · · · <
∆L ≤ ∆max, defined as ∆l = ϵτl for 1 ≤ l ≤ L, where
ϵ is a positive real number related to system error tolerance,
and τl represents co-prime integers. Signal reconstruction is
accomplished through the robust Chinese remainder theorem
(RCRT) [10]–[14], which ensures fast and reliable recovery.
Stability is maintained when the maximum remainder error
∥e∥∞ from the samplers stays within the error bound δ,
defined as ∥e∥∞ < δ = ϵ/4.

While modulo ADCs explore many real-world applica-
tions—such as radar, imaging, and communications—these

often involve processing complex-valued signals [15]–[22].
Traditionally, such signals are separated into real and imag-
inary components, g(t) = Real[g(t)] + iImag[g(t)], where
Real[g(t)] and Imag[g(t)] are the real and imaginary compo-
nents, with each part handled using separate thresholds. This
method increases system complexity and hardware require-
ments. To address this, research has begun exploring the direct
processing of complex-valued signals within complex-valued
multi-channel modulo ADC frameworks [8].

While prior research focuses on optimising real-valued
thresholds in modulo ADCs, no work has addressed parameter
selection for complex-valued systems [9]. This paper fills
this gap by proposing sub-optimal and optimal methods for
selecting system parameters in conjugate complex-valued 2-
channel modulo ADCs to maximise error bounds.

The paper is organised as follows: Section II reviews the
2-channel complex-valued modulo ADC system. Section III
presents the random selection, closed-form sub-optimal selec-
tion, and search-based optimal selection methods for complex
moduli. Section IV compares these selection methods, and
Section V discusses results and future research directions.

Notations: In this paper, i =
√
−1 denotes the imaginary

unit. For any complex signal, gmax is the maximum amplitude,
defined as gmax = max{∥Real[g(t)]∥∞, ∥Imag[g(t)]∥∞}. Z
represents the set of integers, and Z[i] the Gaussian integers
(complex numbers with integer real and imaginary parts). For
πn = a + bi, πn = a − bi is the complex conjugate. mod
denotes the standard modulo operation, where the result is
always non-negative (e.g., −1 mod 4 = 3), distinct from the
fold operation in Eq. (1). ⌈·⌉ denotes the ceiling function.

II. LITERATURE REVIEW

In this section, we review the complex-valued 2-channel
modulo ADC sampling system. For a complex number x, its
complex modulo sampler is defined as [23]:

⟨x⟩∆ = ∆
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x

∆
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(1 + i)

2

{
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)
where JxK def

= x − (⌊Real(x)⌋ + i⌊Imag(x)⌋). The threshold
∆ is now extended from real to complex values, defined as
∆ = ϵτ = ϵ(a + bi), where ϵ is a real number representing



Fig. 1. Conjugate complex-valued 2-channel modulo ADC sampling system,
where θ = arctan

(
q
p

)
and ρ = ϵ

√
p2 + q2.

the system’s error bound. In previous sections, τ was real-
valued; here, it is a complex Gaussian integer with components
a and b (a, b ∈ Z). The norm of τ is N(τ) = |τ |2 = τ τ̄ =
a2 + b2 [24]. In a complex-valued 2-channel modulo ADC
system, the complex thresholds are defined as:

∆1 = ϵτ1 = ϵ(p+ qi), ∆2 = ϵτ2 = ϵ(p− qi) (1)

where p, q ∈ Z and |∆1| = |∆2| ≤ ∆max. For RCRT-based
reconstruction [10], the conjugate Gaussian integers τ1 = p+
qi and τ2 = p−qi must be co-prime, satisfying [8], [25], [26]:

gcd(p, q) = 1 and |p− q| mod 2 = 1 (2)

Lemma 1 below provides the method for computing the
maximum recoverable signal range P and the corresponding
error bounds δ for conjugate complex-valued moduli pairs.

Lemma 1. In a complex-valued 2-channel modulo ADC
system, let ∆1 = ϵ(p+ iq) and ∆2 = ϵ(p− iq), where p and
q are integers satisfying the coprimality condition in Eq. (2),
and ϵ is a positive real number. The maximum recoverable
peak-to-peak value P is given by P = ϵ(p2+q2)

2 , with the
corresponding error bound δ = ϵ

4 [8].

Figure 1 illustrates the complex-valued 2-channel modulo
sampling system. The modulo operation applies phase shifts
of −θ and θ, where θ = arctan

(
q
p

)
, to the real and imag-

inary components. The system uses a unified dynamic range
ρ = ϵ

√
p2 + q2, eliminating the need for separate thresholds

for each modulo ADCs. Managing multiple thresholds sig-
nificantly increases hardware complexity and cost due to the
added comparators and control circuits [27]–[29]. By contrast,
the unified range in this complex-valued approach reduces
hardware demands, resulting in a more efficient design [8].
Reconstruction of the complex modulo samples is performed
using the RCRT [10].

III. PARAMETER SELECTION

In this section, we aim to improve the error bound δ by
selecting the optimal threshold parameter, given the maximum
input signal gmax and the maximum ADC range ∆max.

A. Problem Formulation

Consider a 2-channel sampling system with thresholds ∆1

and ∆2, as defined in Eq. (1). The objective is to maximise
ϵ through the appropriate selection of p and q, subject to

Fig. 2. Illustration of parameter selection, focusing on identifying co-prime
integer points outside the circle defined by γ > 2gmax

∆max
.

the constraints imposed by ∆max and gmax. This problem is
governed by the following two conditions:

|∆1| = |∆2| = ϵ
√
p2 + q2 ≤ ∆max

P =
ϵ(p2 + q2)

2
> gmax

(3)

Defining γ =
√
p2 + q2, the first inequality in Eq. (3)

imposes ϵ ≤ ∆max

γ , while the second condition requires
ϵ > 2gmax

γ2 . From these two inequalities, we can determine
that ϵ is bounded by 2gmax

γ2 < ϵ ≤ ∆max

γ . Further simplification
yields ∆max

γ > 2gmax

γ2 , which leads to the condition

γ >
2gmax

∆max
. (4)

To maximise ϵ, the relation ϵ = ∆max

γ suggests that ϵ

increases as γ approaches 2gmax

∆max
. Consequently, the optimal

choice is a co-prime pair (p, q) such that γ is as close as
possible to this value.

As illustrated in Figure 2, the circle defined by p2 + q2 =(
2gmax
∆max

)2

serves as the boundary for selecting p and q. Black
dots represent integer points outside the circle, while red dots
indicate co-prime integer pairs with different parities. The
goal is to identify the nearest red dot to the circle, which
corresponds to the optimal parameter pair, thereby maximising
ϵ within the given constraints.

B. Parameter Selection

Having established the problem formulation, we now ex-
plore several methods for selecting the integer values of p
and q that satisfy the given constraints in Eq. (3). The first
method relies on a random selection process, followed by more
systematic approaches, including an analytical formula and a
simplified search algorithm.

1) Random Selection: To determine integer values for p
and q, we begin with β = 2gmax

∆max
and randomly select an

angle θ ∈ (0, π
2 ] to ensure both p and q are positive. Since

only
√

p2 + q2 is relevant, selecting θ from the first quadrant
suffices. The integer values of p and q are then computed as
p = ⌈β cos(θ)⌉ and q = ⌈β sin(θ)⌉. We then verify whether

2



Algorithm 1 Random Selection
1: Input: gmax, ∆max

2: Output: p, q, and γ
3: Initialize β = 2gmax

∆max

4: repeat
5: Uniformly at random select θ ∈ [0, π

2 ]
6: Compute p = ⌈β cos(θ)⌉, q = ⌈β sin(θ)⌉
7: if gcd(p, q) = 1 and |p− q| mod 2 = 1, then
8: Compute γ =

√
p2 + q2

9: return p, q, and γ
10: end if
11: until p and q meet the condition in Eq. (2)

p and q are co-prime using Eq. (2). If not, the selection
is discarded; otherwise, we compute γ =

√
p2 + q2 and

check how closely γ approximates β. Algorithm 1 outlines
the random selection process.

Note that this random search algorithm may not be efficient.
For example, if β = 7 and θ = 0.6, we calculate p = 6 and
q = 4. Since gcd(6, 4) = 2, the pair is not co-prime and fails
to meet the condition in Eq. (2), illustrating the inefficiency of
random selection, which may require multiple attempts to find
valid pairs. Similarly, for β = 7 and θ = 0.3, we get p = 5
and q = 2. Although this pair satisfies the co-prime condition
(gcd(5, 2) = 1), the value

√
p2 + q2−β ≈ 1.39 shows that it

is not close to optimal.
2) Sub-Optimal Selection: We now turn to a more struc-

tured method for selecting p and q based on theoretical
analysis. Corollary 1 provides the closed-form sub-optimal
selection of p and q, derived to satisfy the constraints in Eq. (3)
and ensure reliable signal reconstruction.

Corollary 1. Given the maximum ADC threshold ∆max and the
maximum input signal gmax, for a complex-valued 2-channel
modulo ADC system with ∆1 = ϵ(p+ iq) and ∆2 = ϵ(p− iq),
the sub-optimal selection is given by:

p =

⌈
2gmax

∆max

⌉
, q =

{
1, if p is even
2, if p is odd

ϵ =
∆max√
p2 + q2

(5)

Proof. To ensure reliable reconstruction and optimal error
tolerance, the recoverable peak-to-peak value P must satisfy

P =
∆max

√
p2+q2

2 ≥ gmax. Given that the error tolerance ϵ is
defined as ϵ = ∆max√

p2+q2
, maximising ϵ requires minimising p

and q. Thus, we set p =
⌈
2gmax
∆max

⌉
. To ensure p and q are co-

prime with differing parity, we choose q = 1 if p is even, and
q = 2 if p is odd. ■

The closed-form sub-optimal selection provides a near-
optimal solution that satisfies system requirements while sim-
plifying the selection process. Although not strictly optimal,
this method effectively balances computational efficiency with

Fig. 3. Optimal parameter selection for complex-valued 2-channel modulo
ADCs.

reliable signal reconstruction, mitigating the inefficiencies of
random selection.

3) Search-Based Optimal Selection: Based on the previous
discussion, the lower bound of p2+q2 is given in Eq. (4), while
Corollary 1 defines a sub-optimal upper bound. By combining
these with number-theoretic methods, we establish an effective
search-based optimal selection approach.

Figure 3 illustrates this optimal selection principle. The
black dots represent integer pairs that do not satisfy Eq. (2),
while the red dots indicate valid pairs between the inner and
outer circles. The goal is to find the red dot closest to the inner
circle, maximising ϵ while ensuring that p2 + q2 lies within
the defined bounds:(

2gmax

∆max

)2

≤ p2 + q2 ≤
(⌈

2gmax

∆max

⌉)2

+M2 (6)

where M = 1 if
⌈
2gmax

∆max

⌉
is even, and M = 2 if it is odd.

To efficiently identify the optimal pair (p, q), we leverage
number-theoretic properties of sums of squares as presented
in the following Corollary 2 [30]. Note that in the explanation
below, “ mod ” refers to the standard modulo operation.

Corollary 2. Let N = p2+q2. Then, p and q satisfy Eq. (2) if
and only if all prime factors of N are congruent to 1 (mod 4).

The proof of the above Corollary follows from Fermat’s
Two Squares Theorem [30]–[32]. Due to space limitations,
the proof is omitted here, but a more detailed explanation will
be provided in a forthcoming journal paper.

Our objective is to find the minimal N = p2+q2 within the

bounds specified in Eq. (6), starting with N =

⌈(
2gmax
∆max

)2
⌉

.

To ensure N can be written as N = p2 + q2, with p and q
having different parity, we adjust it to satisfy N ≡ 1 (mod 4)
by applying N = N + (1 − (N mod 4)) mod 4 Then, to
ensure that p and q are co-prime, we first factor N as N =∏m

n=1 r
kn
n , confirming that all prime factors satisfy rn ≡ 1

(mod 4). Each rn is then decomposed into a Gaussian prime
πn and its conjugate πn, as rn = πnπn. We select one factor

3



Algorithm 2 Search-based Optimal Selection
1: Input: gmax, ∆max

2: Output: Optimal popt and qopt

3: Compute Upper Bound =

(⌈
2gmax

∆max

⌉)2

+M2

4: Initialize N ←

⌈(
2gmax

∆max

)2
⌉

5: Compute N = N + (1− (N mod 4)) mod 4
6: While N ≤ Upper Bound
7: Factorize N as N =

∏m
n=1 r

kn
n , where rn are distinct

primes and kn are natural integers.
8: If rn ≡ 1 (mod 4) for all 1 ≤ n ≤ m
9: Factor rn in Z[i] as rn = πnπn, where πn is a prime

Gauss integer and πn is its conjugate.
10: Compute α =

∏m
n=1 π

kn
n

11: Return popt = Real(α) and qopt = Imag(α).
12: Else
13: N ← N + 4
14: End While

from each conjugate pair to construct α =
∏m

n=1 π
kn
n = p+iq.

This pair of p and q provide the optimal selection. If any rn
does not satisfy rn ≡ 1 (mod 4), we increment N by 4 and
repeat the process. Algorithm 2 provides a detailed description
of search-based optimal selection. Here, all factorizations into
prime (Gauss) integers can be easily obtained using software
packages such as SageMath [33].

IV. SIMULATION RESULTS

In this section, we assess the performance of various param-
eter selection methods, including the random search approach,
the sub-optimal selection derived from Corollary 1, and the
search-based optimal selection.

With ∆max = 25 and gmax set to 160, 225, and 385,
corresponding to β values of 12.8, 18, and 30.8, respectively,
10,000 random trials were conducted. In each trial, θ ∈ (0, π

2 ]
was selected uniformly at random, and p = ⌈γ cos(θ)⌉ and
q = ⌈γ sin(θ)⌉ were computed. The minimum and maximum
recoverable dynamic ranges, Pmin and Pmax, were recorded,
alongside Pavg, denoting the average recoverable dynamic
range across successful trials. Additionally, δavg was calcu-
lated to quantify the average error bound observed in these
trials. The parameter d represents the distance from the lower
boundary, β = 2gmax

∆max
, defined as:

d = |γ − β| =
∣∣∣√p2 + q2 − β

∣∣∣ (7)

Smaller values of d indicate closer proximity to the optimal
design. The average distance is denoted as davg.

As shown in Table I, the success rates for identifying valid
coprime pairs ranged from 33.4% to 57.8%. The low success
rate underscores the inefficiency of the random search method,
with davg indicating that the selected values of p and q in
successful cases are not close to optimal.

TABLE I
RANDOM SEARCH SELECTION

β Success Rate [Pmin, Pmax] Pavg δavg davg

12.8 57.8% [162,173] 168 0.465 0.66

18 33.4% [225,238] 231 0.337 0.54

30.8 33.8% [385,399] 392 0.199 0.62

TABLE II
COMPARISON OF SUB-OPTIMAL SELECTION AND OPTIMAL SELECTION

β Selection Methods p q P δ d

12.8
Sub-optimal Selection 13 2 164.4 0.475 0.35

Optimal Selection 12 5 162.5 0.481 0.2

18
Sub-optimal Selection 18 1 225 0.347 0.02

Optimal Selection 18 1 225 0.347 0.02

30.8
Sub-optimal Selection 31 2 388 0.201 0.26

Optimal Selection 30 7 385 0.203 0.01

We evaluated the performance of the sub-optimal and op-
timal selections under the same parameter settings as in the
random search experiments, with β = 12.8, 18, and 30.8.
For each case, we computed p, q, recoverable dynamic range
P , error bound δ, and deviation d for both methods. For
β = 12.8 and β = 30.8, the optimal method exhibited a
lower deviation (e.g., at β = 12.8, the optimal selection
produced d = 0.2, compared to d = 0.35 for the sub-optimal
selection). However, these differences were relatively minor
when compared to the random selection, which showed a
larger deviation (d = 0.66). Notably, for β = 18, the sub-
optimal and optimal methods resulted in identical parameter
values, yielding the same recoverable dynamic range and
minimal deviation (d = 0.02).

These results demonstrate that the sub-optimal selection
provides solutions that are close to the optimal selection. The
search-based optimal selection efficiently finds the optimal
solution with low computational cost.

V. CONCLUSION AND FUTURE WORK

This paper addresses the challenge of parameter selection
in complex-valued 2-channel modulo ADC systems, exploring
random, sub-optimal, and search-based methods to maximise
error tolerance. Simulation results demonstrate that the random
selection method is likely to choose invalid threshold param-
eters with high probability, while the sub-optimal selection
provides solutions close to the optimal selection. The search-
based optimal selection efficiently finds the optimal solution
with low computational cost.

In future work, we aim to implement these methods in hard-
ware to validate their effectiveness in real-time applications.
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