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Abstract
Graph neural networks (GNNs) are the dominant
approach to solving machine learning problems
defined over graphs. Despite much theoretical
and empirical work in recent years, our under-
standing of finer-grained aspects of architectural
design for GNNs remains impoverished. In this
paper, we consider the benefits of architectures
that maintain and update edge embeddings. On
the theoretical front, under a suitable computa-
tional abstraction for a layer in the model, as
well as memory constraints on the embeddings,
we show that there are natural tasks on graph-
ical models for which architectures leveraging
edge embeddings can be much shallower. Our
techniques are inspired by results on time-space
tradeoffs in theoretical computer science. Empir-
ically, we show architectures that maintain edge
embeddings almost always improve on their node-
based counterparts—frequently significantly so in
topologies that have “hub” nodes.

1. Introduction
Graph neural networks (GNNs) have emerged as the domi-
nant approach for solving machine learning tasks on graphs.
Over the span of the last decade, many different architec-
tures have been proposed, both in order to improve different
notions of efficiency, and to improve performance on a vari-
ety of benchmarks. Nevertheless, theoretical and empirical
understanding of the impact of different architectural design
choices remains elusive.

One previous line of work (Xu et al., 2019) has focused
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on characterizing the representational limitations stemming
from the symmetry-preserving properties of GNNs when the
node features are not informative (also called “anonymous
GNNs”) — in particular, relating GNNs to the Weisfeiler-
Lehman graph isomorphism test (Leman & Weisfeiler,
1968). Another line of work (Oono & Suzuki, 2020) focuses
on the potential pitfalls of the (over)smoothing effect of
deep GNN architectures, with particular choices of weights
and non-linearities, in an effort to explain the difficulties of
training deep GNN models. Yet another (Black et al., 2023)
focuses on training difficulties akin to vanishing introduced
by “bottlenecks” in the graph topology.

In this paper, we focus on the benefits of maintaining and up-
dating edge embeddings over the course of the computation
of the GNN. More concretely, a typical GNN maintains a
node embedding hv at each node v of the underlying graph.
In each layer of the GNN, the embedding at node v is up-
dated based on the embeddings at its neighbors. But an
alternative paradigm is to maintain data at each edge e of
the graph, and to update this edge embedding based on the
embeddings of the edges that share a node with e.

Intuitively, this paradigm seems at least as expressive as
maintaining node embeddings, since in principle each edge
could maintain the embeddings of its incident nodes. Addi-
tionally, there may be tasks where initial features are most
naturally associated with edges (e.g., attributes of the rela-
tionship between two nodes) — or the final predictions of
the network are most naturally associated with edges (e.g.,
in link prediction, where we want to decide which potential
links are true links).

GNNs that fall in the general edge-based paradigm have
been used for various applications – including link pre-
diction (Cai et al., 2021; Liang et al., 2025) as well as
reasoning about relations between objects (Battaglia et al.,
2016), molecular property prediction (Gilmer et al., 2017;
Choudhary & DeCost, 2021), and detecting clusters of com-
munities in graphs (Chen et al., 2019) – with robust empir-
ical benefits. These approaches instantiate the edge-based
paradigm in a plethora of ways. However, it is difficult
to disentangle to what degree performance improvements
come from added information from domain-specific initial
edge embeddings, versus properties of other particular archi-
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tectural choices, versus inherent benefits of the edge-based
paradigm itself (whether representational, or via improved
training dynamics).

We focus on theoretically and empirically quantifying the
added representational benefit from maintaining edge em-
beddings. We find that (1) theoretically, for certain graph
topologies, edge embeddings can have substantial represen-
tational benefits in terms of the depth of the model; and
(2) these benefits can be witnessed empirically, even when
equalizing for all other architectural and data design choices.

2. Overview of results
2.1. Representational benefits from maintaining edge

embeddings.

Our theoretical results elucidate the representational benefits
of maintaining edge embeddings. More precisely, we show
that there are natural tasks on graphs that can be solved by a
shallow model maintaining constant-size edge embeddings,
but can only be solved by a model maintaining constant-size
node embeddings if it is much deeper.

To reason about the impact of depth on the representational
power of edge-embedding-based and node-embedding-
based architectures, we introduce two local computation
models. In the node-embedding case (Definition 1), we as-
sume each node of the graph G supports a processor that
maintains a state with a fixed amount of memory. In one
round of computation, each node receives messages from
the adjacent nodes, which are aggregated by the node into a
new state. In this abstraction, we think of the memory of the
processor as the total bits of information each embedding
can retain, and we think of one round of the protocol as
corresponding to one layer of a GNN. The edge-embedding
case is formalized in a similar fashion, except that the pro-
cessors are placed on the edges of the graph, and two edge
processors are “adjacent” if the edges share a vertex in com-
mon (Definition 2). In both cases, the input is distributed
across the edges of the graph, and is only locally accessible.

With this setup in mind, our first result focuses on proba-
bilistic inference on graphs, specifically, the task of maxi-
mum a-posteriori (MAP) estimation in a pairwise graphical
model on a graph G = (V,E). For this task, given edge
attributes describing the pairwise interactions ϕ{a,b}, the
goal is to compute argmaxx∈{0,1}V pϕ(x), where pϕ(x) ∝
exp
(∑

{a,b}∈E ϕ{a,b}(xa, xb)
)
.

A depth separation between node and edge architectures.
We show that there is a graph with O(n) vertices and
edges, for which MAP estimation with any node message-
passing protocol requires Ω(

√
n) rounds, but MAP estima-

tion with an edge message-passing protocol only requires
O(1) rounds, when both protocols are restricted to O(1)

memory per processor. The lower bound on node message-
passing protocols tracks the “flow of information” in the
graph, reminiscent of graph pebbling techniques used to
prove time-space tradeoffs in theoretical computer science
(Grigor’ev, 1976; Abrahamson, 1991). See Theorem 1. The
crucial Lemma 2 can be viewed as an information-theoretic
formalization of the celebrated phenomenon of oversquash-
ing (Alon & Yahav, 2021).

The view from symmetry. Above, we are not imposing
any symmetry constraints – that is, invariance of the com-
putation at a node or edge to its identity and the identities
of its neighbors. Indeed, the edge message-passing proto-
col constructed above is highly non-symmetric. However,
we show there is a (different, but also natural) task where
even symmetric edge message-passing protocols achieve a
better depth/memory tradeoff than node message-passing
protocols. See Theorem 4.

Importance of the memory lens. The memory con-
straints are crucial for the results above. Without memory
constraints, we can show that the node message-passing
architecture can simulate the edge message-passing archi-
tecture, while only increasing the depth by 1 (Proposition 3).
Moreover, the symmetric node message-passing architecture
can simulate the symmetric edge message-passing architec-
ture, again while only increasing the depth by 1. See The-
orem 5. We view this as evidence that many fine-grained
properties of architectural design for GNNs cannot be ad-
judicated by solely considering them through the classical
lens of invariance (Xu et al., 2019).

2.2. Empirical benefits of edge-based architectures.

The theory, while only characterizing representational
power, suggests that architectures that maintain edge em-
beddings should have strictly better performance compared
to their node embedding counterparts. We test this in both
real-life benchmarks and natural synthetic sandboxes.

Ablation on GNN benchmarks. We consider several
popular GNN benchmarks. Equalizing for all other aspects
of the architecture (e.g., depth, dimensionality of the embed-
dings), we find that the accuracy achieved by edge-based
architectures is always comparable and typically slightly
better than that of their node-based counterparts. This con-
firms that — all else being equal — the representational
advantages of edge-based architectures do not introduce
additional training difficulties. However, it suggests that
standard benchmarks could be too easy to clearly identify
better architectures.1 Details are included in Section 8.1.

1Note, the goal of these experiments is not to propose a new
architecture — there are already a variety of (very computationally
efficient) GNNs that in some manner maintain edge embeddings.
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Synthetic stress-tests. Next, we consider two synthetic
settings to stress test the performance of edge-based archi-
tectures. Inspired by the graph topology that provides a
theoretical separation between edge and node-based pro-
tocols (Theorem 1 and Theorem 4), we consider graphs
in which there is a hub node, and tasks that are “naturally”
solved by an edge-based architecture. Precisely, we consider
a star graph, in which the labels on the leaves are generated
by a “planted” edge-based architecture with randomly cho-
sen weights. The node-based architecture, on the other hand,
has to pass messages between the leaves indirectly through
the center of the star. Empirically, we indeed observe that
the performance of edge-based architectures is significantly
better. Details are included in Section 8.2

Finally, again inspired by the theoretical setting in Theo-
rem 1, we consider probabilistic inference on tree graphs —
precisely, learning a GNN that calculates node marginals for
an Ising model, a pairwise graphical model in which the pair-
wise interactions are just the product of the end points. An
added motivation for this setting is the fact that belief prop-
agation — a natural algorithm to calculate the marginals —
can be written as an edge-based message-passing algorithm.
Again, empirically we see robust benefits of edge-based
architectures over node-based architectures, though we find
that directionality is a more critical architecture choice. De-
tails are included in Section 8.3.

3. Related Works
The symmetry lens on GNNs: The most extensive theoret-
ical work on GNNs has concerned itself with the representa-
tional power of different GNN architectures, while trying to
preserve equivariance (to permuting the neighbors) of each
layer. (Xu et al., 2019) connected the expressive power of
such architectures to the Weisfeiler-Lehman (WL) test for
graph isomorphism. Subsequent works (Maron et al., 2019;
Zhao et al., 2022) focused on strengthening the represen-
tational power of the standard GNN architectures from the
perspective of symmetries—more precisely, to simulate the
k-WL test, which for k as large as the size of the graph be-
comes as powerful as testing graph isomorphism. Our work
suggests this perspective is insufficient to fully understand
the representational power of different architectures.

GNNs as a computational machine: Two recent papers
(Loukas, 2020a;b) considered properties of GNNs when
viewed as “local computation” machines, in which a layer
of computation allows a node to aggregate the current values
of the neighbors (in an arbitrary fashion, without necessar-
ily considering symmetries). Using reductions from the
CONGEST model, they provide lower bounds on width
and depth for the standard node-embedding based architec-
ture. However, they do not consider architectures with edge
embeddings, which is a focus of our work.

Communication complexity methods to prove repre-
sentational separations: Tools from distributed compu-
tation and communication complexity have recently been
applied not only to understand the representational power
of GNNs (Loukas, 2020a;b), but also the representational
power of other architectures like transformers (Sanford et al.,
2024b;a). In particular, (Sanford et al., 2024a) draws a con-
nection between number of rounds for a MPC (Massively
Parallel Computation) protocol, and the depth of attention-
based architectures.

GNNs for inference and graphical models: (Xu & Zou,
2023) consider the approximation power of GNNs for calcu-
lating marginals for pairwise graphical models, if the family
of potentials satisfies strong symmetry constraints. They do
not consider the role of edge embeddings or memory.

4. Setup
We denote the graph associated with the GNN as G =
(V,E), denoting the vertex set as V and the edge set as E.
The graph induces adjacency relations on both edges and
nodes. For v, v′ ∈ V and e, e′ ∈ E, we have: v ∼ v′ if
{v, v′} ∈ E; v ∼ e if e = {u, v} for some u ∈ V ; and
e ∼ e′ if e, e′ share at least one vertex. For all graphs
considered in this paper, we assume that {v, v} ∈ E for
all v ∈ V , so that adjacency is reflexive. We then define
adjacency functions N = NG : V ∪ E → V and M =
MG : V ∪ E → E as NG(a) := {v ∈ V : a ∼ v} and
MG(a) := {e ∈ E : a ∼ e}.2

Graph Neural Networks. A typical way to parametrize
a layer l of a GNN (Xu et al., 2019) is to maintain, for
each node v in the graph, a node embedding h

(l)
v , which is

calculated in terms of its neighbor set N (v) as

a(l+1)
v = AGGREGATE

(
h(l)
u : u ∈ N (v)

)
h(l+1)
v = COMBINE

(
a(l+1)
v , h(l)

v

)
, (1)

for parametrized functions AGGREGATE and COMBINE.
These updates can be viewed as implementing a (trained)
message-passing algorithm, in which nodes pass messages
to their neighbors, which are then aggregated and combined
with the current state (i.e., embedding) of a node. The initial
node embeddings h(0)

v are frequently part of the task specifi-
cation (e.g., a vector of fixed features that can be associated
with each node). When this is not the case, they can be set
to fixed values (e.g., the all-ones vector) or random values.

But an alternative way to parametrize a layer of computation
is to maintain, for each edge e, an edge embedding h

(l)
e

2The graph is assumed to be undirected, as is most common in
the GNN literature. Dependence of the adjacency functions on G
is omitted when clear from context.
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which is calculated as:

a(l+1)
e = AGGREGATE

(
h(l)
a : a ∈M(e)

)
h(l+1)
e = COMBINE

(
a(l+1)
e , h(l)

e

)
. (2)

Recall thatM(e) denotes the “neighborhood” of edge e, i.e.
all edges a that share a vertex with e.

Local memory-constrained computation. In order to
reason about the required depth with different architectures,
we will define a mathematical abstraction for one layer of
computation in the GNN. We will define two models for
local computation, one for each of the edge-embedding
and node-embedding architecture. Unlike much prior work
on GNNs and distributed computation, we will also have
memory constraints — more precisely, we will constrain
the bit complexity of the node and edge embeddings being
maintained.

In both models, there is an underlying graph G = (V,E),
and the goal is to compute a function g : ΦE → {0, 1}V ,
where Φ is the fixed-size input alphabet,via several rounds
of message-passing on the graph G. This domain of g is ΦE

because in both models, the inputs are given on the edges
of the graph — the node model will just be unable to store
any additional information on the edges. As we will see in
Section 5, this is a natural setup for probabilistic inference
on graphs.

In both models, a protocol is parametrized by the number of
rounds T required, and the amount of memory B required
per local processor. For notational convenience, for B ∈ N
we define XB := {0, 1}B , i.e. the length-B binary strings.
Recall that N (v),M(v) denote the sets of vertices and
edges adjacent to vertex v in graph G, respectively.

Definition 1 (Node message-passing protocol). Let T,B ∈
N and let G = (V,E) be a graph. A node message-
passing protocol P on graph G with T rounds and B bits of
memory is a collection of functions (ft,v)t∈[T ],v∈V where
ft,v : XN (v)

B × ΦM(v) → XB for all t, v. For an input
I ∈ ΦE , the computation of P at a round t ∈ [T ] is the
map Pt(·; I) : V → XB defined inductively by Pt(v; I) :=
ft,v((Pt−1(v

′; I))v′∈N (v), (I(e))e∈M(v)) where P0 ≡ 0.
We say that P computes a function g : ΦE → {0, 1}V on
inputs I ⊆ ΦE if PT (v; I)1 = g(I)v for all v ∈ V and all
I ∈ I.

In words, the value computed by vertex v at round t is
some function of the previous values stored at the neighbors
v′ ∈ N (v), as well as possibly the problem inputs on the
edges adjacent to v (i.e. (I(e))e∈M(v))). Note that Pt(v; I)
may indeed depend on Pt−1(v; I), due to our convention
that v ∈ N (v). We can define the edge message-passing
protocol analogously:

Definition 2 (Edge message-passing protocol). Let T,B ∈
N and let G = (V,E) be a graph. An edge message-passing
protocol P on graph G with T rounds and B bits of mem-
ory is a collection of functions (ft,e)t∈[T ],e∈E where ft,e :

XM(e)
B × Φ → XB for all t, e, together with a collection

of functions (f̃v)v∈[V ] where f̃v : XM(v)
B → {0, 1}. For an

input I ∈ ΦE , the computation of P at a timestep t ∈ [T ]
is the map Pt(·; I) : E → XB defined inductively by:
Pt(e; I) := ft,e((Pt−1(e

′; I))e′∈M(e), I(e)) where P0 ≡ 0.
We say that P computes a function g : ΦE → {0, 1}V on
inputs I ⊆ ΦE if f̃v((PT (e; I))e∈M(v)) = g(I)v for all
v ∈ V and all I ∈ I.

Remark 3 (Relation to distributed computation literature).
These models are very related to classical models in dis-
tributed computation like LOCAL (Linial, 1992) and CON-
GEST (Peleg, 2000). However, the latter models ignore
memory constraints, so we cannot usefully port lower and
upper bounds from this literature.

Remark 4 (Computational efficiency). In the definitions
above, we allow the update rules ft,v, ft,e to be arbitrary
functions. In particular, a priori they may not be efficiently
computable. However, our results showing a function can
be implemented by an edge message-passing protocol (The-
orem 1, Part 2 and Theorem 4, Part 2) in fact use simple
functions (computable in linear time in the size of the neigh-
borhood), implying the protocol can be implemented in par-
allel (with one processor per node/edge respectively) with
parallel time complexity O(TB · maxv |M(v)|). On the
other hand, for the results showing a function cannot be im-
plemented by a node message-passing protocol (Theorem 1,
Part 1 and Theorem 4, Part 1), we prove an impossibility
result for a stronger model (one in which the computational
complexity of ft,v is unrestricted) — which makes our re-
sults only stronger.

Symmetry-constrained protocols. Typically, GNNs are
architecturally constrained to respect the symmetries of the
underlying graph. Below we formalize the most natural no-
tion of symmetry in our models of computation. Note, our
abstraction of a round in the message-passing protocol gen-
eralizes the notion of a layer in a graph neural network—and
the abstraction defined below correspondingly generalizes
the standard definition of permutation equivariance (Xu
et al., 2019). We use the notation {{}} to denote a multiset.

Definition 5 (Symmetric node message-passing protocol).
A node message-passing protocol P = (ft,v)t∈[T ],v∈V

on graph G = (V,E) is symmetric if there are functions
(f sym

t )t∈[T ] so that for every t ∈ [T ] and v ∈ V , the function
ft,v can be written as:

ft,v((c(v
′))v′∈N (v), (I(e))e∈M(v))

= f sym
t (c(v), {{(c(v′), I({v, v′})) : v′ ∈ N (v)}}).
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Our definition of a symmetric edge message-passing proto-
col is analogous; we defer it to Appendix A due to space
constraints.

Additional notation. For a set K contained in universe
U , we let K := K \ U denote the complement of K in U
(where U will be clear from context). We let ∆(S) denote
the family of distributions over set S.

5. Depth separation between edge and node
message passing protocols under memory
constraints

We now consider a common task in probabilistic inference
on a pairwise graphical model: calculating the MAP (maxi-
mum a-posterior) configuration.

Definition 6 (Pairwise graphical model). For any graph
G = (V,E), the pairwise graphical model on G
with potential functions ϕ{a,b} : {0, 1}2 → R is
the distribution pϕ ∈ ∆({0, 1}V ) defined as pϕ(x) ∝
exp
(
−
∑

{a,b}∈E ϕ{a,b}(xa, xb)
)
.

Definition 7 (MAP evaluation). Let Φ ⊆ {ϕ : {0, 1}2 →
R} be a finite set of potential functions. A MAP (maximum
a-posteriori) evaluator for G (with potential function class
Φ) is any function g : ΦE → {0, 1}V that satisfies g(ϕ) ∈
argmaxx∈{0,1}V pϕ(x) for all ϕ ∈ ΦE .

With this setup in mind, we will show that there exists a
pairwise graphical model, and a local function class Φ, such
that an edge message passing protocol can implement MAP
evaluation with a constant number of rounds and a constant
amount of memory, while any node message protocol with
T rounds and B bits of memory requires TB = Ω(

√
|V |).

Precisely, we show:

Theorem 1 (Main, separation between node and edge mes-
sage-passing protocols). Fix n ∈ N. There is a graph G
with O(n) vertices and O(n) edges, and a function class Φ
of size O(1), so that:

1. Let g be any MAP evaluator for G with potential function
class Φ. Any node message-passing protocol on G with
T rounds and B bits of memory that computes g requires
TB ≥

√
n− 1.

2. There is an edge message-passing protocol (ft,e)t,e on
G with O(1) rounds and O(1) bits of memory that com-
putes a MAP evaluator for G with potential function
class Φ. Additionally, for all t, e, the update rule ft,e
can be evaluated in O(|M(e)|) time.

The construction for the above result also implies a separa-
tion between the parallel time complexity of node and edge
message-passing protocols (with one processor per node or

Figure 1. The graph G for which Theorem 1 exhibits a separation
between edge message-passing and node message-passing. The
graph consists of

√
n paths of length

√
n, as well as a single “hub

vertex” connected to all other vertices.

edge, respectively), assuming that each processor reads its
entire input in each round. The graph G has a node with
Ω(n) neighbors, so in any node message-passing protocol
its processor must perform Ω(nB) computation per round,
for overall time complexity of Ω(nBT ) = Ω(n3/2). In
contrast, the constructed edge message-passing protocol is
implementable in time O(n) per round, and hence O(n)
time overall.

We provide a proof sketch of the main techniques here,
and relegate the full proofs to Appendix B. The graph G
that exhibits the claimed separation is a disjoint union of√
n path graphs, with an additional “hub vertex” that is

connected to all other vertices in the graph (Fig. 1). The
intuition for the separation is that MAP estimation requires
information to disseminate from one end of each path to the
other, and the hub node is a bottleneck for node message-
passing but not edge message-passing. We expand upon
both aspects of this intuition below.

Lower bound for node message-passing protocols: Our
main technical lemma for the first half of the theorem is
Lemma 2. It gives a generic framework for lower bounding
the complexity of any node message-passing protocol that
computes some function g, by exhibiting a set of nodes
S ⊂ V where computing g requires large “information flow”
from distant nodes. More precisely, for any fixed set of
“bottleneck nodes” K, consider the radius-T neighborhood
of S when K is removed from the graph. In any T -round
protocol, input data from outside this neighborhood can only
reach S by passing through K. But the total number of bits
of information computed by K throughout the protocol is
only TB|K|. This gives a bound on the number of values
achievable by g on S. We formalize this argument below
(proof in Appendix B):

Lemma 2. Let G = (V,E) be a graph. Let P be a node
message-passing protocol on G with T rounds and B bits
of memory, which computes a function g : ΦE → {0, 1}V .
Pick any disjoint sets K,S ⊆ V . Define H := G[K̄], F :=
M(N T−1

H (S)), where N T−1
H (S) is the (T − 1)-hop neigh-
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borhood of S in H .

Then: TB ≥ 1
|K| logmaxIF∈ΦF

∣∣∣{gS (IF , IF ) : IF ∈ ΦF
}∣∣∣ .

Remark 8. The proof technique is inspired by and related
to classic techniques (specifically, Grigoriev’s method) for
proving time-space tradeoffs for restricted models of com-
putation like branching programs ((Grigor’ev, 1976), see
Chapter 10 in (Savage, 1998) for a survey). There, one de-
fines the “flow” of a function, which quantifies the existence
of subsets of coordinates, such that setting them to some
value, and varying the remaining variables results in many
possible outputs. In our case, the choice of subsets is inher-
ently tied to the topology of the graph G. Our technique
is also inspired by and closely related to the “light cone”
technique for proving round lower bounds in the LOCAL
computation model (Linial, 1992). However, our technique
takes advantage of bottlenecks in the graph to prove stronger
lower bounds (which would be impossible in the LOCAL
model where memory constraints are ignored).

Remark 9 (Relation to oversquashing and virtual nodes).
The above lemma can be seen as an information-theoretic
formalization and explanation of the commonly observed
phenomenon of “oversquashing” (Alon & Yahav, 2021),
wherein GNNs on graphs with a hub node that needs to
“pass information” between two large sets of nodes seem to
perform poorly. It also demonstrates a difficulty for memory-
constrained virtual nodes — which are hub nodes that are of-
ten artificially added to graphs in practice (Cai et al., 2023).

The proof of Part 1 of Theorem 1 now follows from an
application of Lemma 2 with a particular choice of K and
S. Specifically, we choose K to be the “hub” node (i.e.
K = {0}) and S to be the set of left endpoints of each path.
To show that any MAP evaluator has large information flow
to S (in the quantitative sense of Lemma 2), it suffices to
observe that in a pairwise graphical model on G where
a different external field is applied to the right endpoint
of each path, and all pairwise interactions along paths are
positive, the MAP estimate on each vertex in S must match
the external field on the corresponding right endpoint.

Upper bound for edge message-passing protocols: The
key observation for constructing a constant-round edge
message-passing protocol for MAP estimation on G is that
all of the input data can be collected on the edges adjacent to
the hub vertex. At this point, every such edge has access to
all of the input data, and hence can evaluate the function. If
G were an arbitrary graph, this final step would potentially
be NP-hard. However, since the induced subgraph after
removing the hub vertex is a disjoint union of paths, in fact
there is a linear-time dynamic programming algorithm for
MAP estimation on G (Lemma 6). This completes the proof
overview for Theorem 1.

The separation discussed above crucially relies on the ex-
istence of a high-degree vertex in G. When the maximum
degree of G is bounded by some parameter ∆, it turns out
that any edge message-passing protocol can be simulated
by a node message-passing protocol with roughly the same
number of rounds and only a ∆ factor more memory per
processor. The idea is for each node to simulate the compu-
tation that would have been performed (in the edge message-
passing protocol) on the adjacent edges. The following
proposition formalizes this idea (proof in Appendix B):

Proposition 3. Let T,B ≥ 1. Let G = (V,E) be a graph
with maximum degree D. Let P be an edge message-passing
protocol on G with T rounds and B bits of memory. Then
there is a node message-passing protocol P ′ on G that
computes P with T + 1 rounds and O(DB) bits of memory.

6. Depth separation under memory and
symmetry constraints

One drawback of the separation in the previous section
is that the constructed edge protocol was highly non-
symmetric, whereas in practice GNN protocols are typically
architecturally constrained to respect the symmetries of the
underlying graph. In this section we prove that there is a
separation between the memory/round trade-offs for node
and edge message-passing protocols even under additional
symmetry constraints.

Theorem 4. Let n ∈ N. There is a graph G = (V,E)
with O(n) vertices and O(n) edges, and a function g :
{0, 1}E → {0, 1}V , so that:

1. Any node message-passing protocol on G with T rounds
and B bits of memory that computes g requires TB ≥
Ω(
√
n).

2. There is a symmetric edge message-passing protocol on
G with O(1) rounds and O(log n) bits of memory that
computes g.

For intuition, we sketch the proof of a relaxed version of the
theorem where the input alphabet is [n]. It is conceptually
straightforward to adapt the construction to binary alpha-
bet (essentially, by adding new vertices and using a unary
encoding). We defer the full proof to Appendix C.

Let G = (V,E) be a star graph with root node 0 and leaves
{1, . . . , n}. We define a function g : [n]E → {0, 1}V by
g(I)v = 1 if and only if there is some edge e ̸= {0, v}
such that I(e) = I({0, v}), i.e. the input on edge {0, v}
equals the input on some other edge. Since g is defined
to be equivariant to relabelling the edges, and all edges are
incident to each other, it is straightforward to see that there is
a symmetric one-round edge message-passing protocol that
computes g with O(log n) memory (in contrast, the edge
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message-passing protocol constructed in Section 5 was not
symmetric, as it required that the edges incident to the high-
degree vertex were labelled by which path they belonged to).
However, there is no low-memory, low-round node message-
passing algorithm. Informally, this is because vertex 0 is an
information bottleneck, and Ω(n) bits of information need
to pass through it. Similar to in Section 5, this intuition can
be made formal using Lemma 2.

7. Symmetry alone provides no separation
In the previous sections we saw that examining memory
constraints yields a separation between different GNN ar-
chitectures (whether or not we take symmetry into consid-
eration). In this section, we consider what happens if we
solely consider symmetry constraints (that is, constraints
imposed by requiring that the computation in a round of
the protocol is invariant to permutations of the order of
the neighbors). This viewpoint was initiated by (Xu et al.,
2019), who showed that when the initial node features are
uninformative (that is, the same for each node), a standard
GNN necessarily outputs the same answer for two graphs
that are 1-Weisfeiler-Lehman equivalent (that is, graphs that
cannot be distinguished by the Weisfeiler-Lehman test, even
though they may not be isomorphic).

To be precise, we revisit the representational power of sym-
metric GNN architectures in the setting where the input fea-
tures may be distinct and informative. We show that if we
remove the memory constraints from Section 5, but impose
permutation invariance for the computation in each round,
any function that is computable by a T -layer edge message-
passing protocol can be computed by a (T + 1)-layer node
message-passing protocol. Note that this statement is in-
comparable to Proposition 3 because we impose constraints
on symmetry, but remove constraints on memory.

Theorem 5 (No separation under symmetry constraints).
Let T ≥ 1. Let P be a symmetric edge message-passing pro-
tocol (Definition 11) on graph G = (V,E) with T rounds.
Then there is a (T + 1)-round symmetric node message-
passing protocol (Definition 5) P ′ on G that computes the
same function as P .

Remark 10. Theorem 5 and its proof are closely related
to the fact that the 1-Weisfeiler-Lehman test is equivalent
to the 2-Weisfeiler-Lehman test, which was reintroduced in
the context of higher-order GNNs (Huang & Villar, 2021).
The main difference is conceptual rather than technical.
Prior works on expressivity of GNNs (with respect to the
Weisfeiler-Lehman test) measure expressivity by asking
“for a given input, what are the possible outputs” (Xu et al.,
2019). In contrast, particularly for computation on graphs
with informative input labels, it is natural to ask what func-
tions a GNN can represent, i.e. “what are the possible
mappings from inputs to outputs”. In the above result (and

throughout the paper) we take this functional perspective,
analogous to the classical representational theory for neural
networks (Telgarsky, 2016). Theorem 5 shows that even
with arbitrary input features on the edges, the computation
of a GNN with edge embeddings and symmetric updates
can be simulated by a GNN with only node embeddings,
without losing symmetry.

To prove Theorem 5, note that it suffices to simulate the
protocol P for which the update rules f sym, f̃ sym in Defini-
tion 11 are identity functions on the appropriate domains.
In order to simulate P , we construct a symmetric node
message-passing protocol P ′ for which the computation
at time t + 1 and node v on input I is the multiset of
features computed by P at time t at edges adjacent to v:
Qt(v; I) := {{Pt(e; I) : e ∈M(v)}}. This is possible since
the computation of P at time t and edge e = (u, v) is
Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}}).
The node message-passing protocol is tracking Qt−1(·; I);
moreover, it can recursively compute Pt−1(e; I) using the
same formula. See Appendix D for the formal proof.

8. Empirical benefits of edge-based
architectures

In this section we demonstrate that the representational ad-
vantages the theory suggests are borne out by experimental
evaluations, both on real-life benchmarks and two natural
synthetic tasks we provide. Note that all the experiments
were done on a machine with 8 Nvidia A6000 GPUs.

8.1. Performance on common benchmarks

First we compare the performance of the most basic GNN ar-
chitecture (Graph Convolutional Network, (Kipf & Welling,
2017)) with node versus edge embeddings. In the notation
of (1) and (2), the AGGREGATE and COMBINE operations
are integrated together, giving either (3) or (4):3

h(l+1)
v = h(l)

v + σ
(
W (l)AVG

(
h(l)
w :w ∈ N (v) \ {v}

))
(3)

h(l+1)
e = h(l)

e + σ
(
W (l)AVG

(
h
(l)
f :f ∈M(e) \ {e}

))
(4)

for trained matrices W (l) and a choice of non-linearity σ.
The only difference between these architectures is that in
the latter case, the message passing happens over the line
graph of the original graph (i.e. the neighborhood of an
edge is given by the other edges that share a vertex with
it) — thus, this can be viewed as an ablation experiment in
which the only salient difference is the type of embeddings
being maintained. To also equalize the information in the
input embeddings, we only use the node embeddings in the
benchmarks we consider: for the edge-based architecture

3This is the “residual” parametrization, which we use in experi-
ments unless otherwise stated.
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Table 1. Comparison of node-based (3) and edge-based (4) GCN architectures across various graph benchmarks. The performance of the
edge-based architecture robustly matches or improves the node-based architecture.

Model
ZINC MNIST CIFAR-10 Peptides-Func Peptides-Struct

MAE (↓) ACCURACY (↑) ACCURACY (↑) AP (↑) MAE (↓)

GCN 0.3430± 0.034 95.29± 0.163 55.71± 0.381 0.6816± 0.007 0.2453± 0.0001
Edge-GCN (Ours) 0.3297± 0.011 94.37± 0.065 57.44± 0.387 0.6867± 0.004 0.2437± 0.0005

(2), we initialize the edge embeddings by the concatenation
of the node embeddings of the endpoints.

In Table 1, we show that this single change (without any
other architectural modifications) uniformly results in the
edge-based architecture at least matching the performance
of the node-based architecture, sometimes improving upon
it. Note, the purpose of this table is not to advocate a
new GNN architecture4— but to confirm that the increased
representational power of the edge-based architecture indi-
cated by the theory also translates to improved performance
when the model is trained. For each benchmark, we follow
the best performing training configuration as delineated in
(Dwivedi et al., 2023).

8.2. A synthetic task for topologies with node
bottlenecks

The topologies of the graphs in Theorem 1 and Theorem 4
both involve a “hub” node, which is connected to all other
nodes in the graph. Intuitively, in node-embedding architec-
tures, such nodes have to mediate messages between many
pairs of other nodes, which is difficult when the node is con-
strained by memory. To empirically stress test this intuition,
we produce a synthetic dataset and train a GNN to solve a
regression task on a graph with a fixed star-graph topology—
a simpler topology than the constructions in Theorem 1 and
Theorem 4—but capturing the core aspect of both. A star
graph is a graph with a center node v0, a set of n leaf nodes
{vi}i∈[n], and edge set {{v0, vi}i∈[n]}. A training point in
the dataset is a list (xi, yi)

n
i=1 where xi is the input feature

and yi is the label for leaf node vi.

The input features are in R10, and sampled from a standard
Gaussian. The labels yi are produced as outputs of a planted
edge-based architecture. Namely, for a standard edge-based
GCN as in (4), we randomly choose values for the matrices
{Wi}i∈[k] for some number of layers k, and set the labels
to be the output of this edge-based GCN, when the initial
edge features to the GCN are set as h(0)

{v0,vi} := xi, i.e. the
input feature xi at the corresponding leaf i. In Table 2,
we show the performance of edge-based and node-based
architectures on this dataset, varying the number of leaves n

4In particular, the edge-based architecture is often much more
computationally costly to evaluate.

in the star graph and the depth k of the planted edge-based
model. In each case, the numbers indicate RMSE of the
best-performing edge-based and node-based architecture,
sweeping over depths up to 10 (2× the planted model),
widths ∈ {16, 32, 64}, and a range of learning rates.

Since the planted edge-based model satisfies both invari-
ance constraints (by design of the GCN architecture) and
memory constraints (since the planted model maintains 10-
dimensional embeddings), we view these results as em-
pirical corroboration of Theorem 4—and even for simpler
topologies than the proof construction.

8.3. A synthetic task for inference in Ising models

Finally, motivated by the probabilistic inference setting in
Theorem 1, we consider a synthetic sandbox of using GNNs
to predict the values of marginals in an Ising model (Ising,
1924; Onsager, 1944) – a natural type of pairwise graphical
model where each node takes a value in {±1}, and each
edge potential is a weighted product of the edge endpoint
values. Concretely, the probability distribution of an Ising
model over graph G = (V,E) has the form: ∀x ∈ {±1}n :

pJ,h(x) ∝ exp
(∑

{i,j}∈E J{i,j}xixj +
∑

i∈V hixi

)
.

Similar to in Section 8.2, we construct a training set where
the graph G and and edge potentials stay fixed (precisely,
Ji,j = 1 for all {i, j} ∈ E). A training data-point con-
sists of a vector of node potentials {hi}i∈[n], and labels
{E[xi]}i∈[n] consisting of the marginals from the resulting
Ising model pJ,h. The node potentials are sampled from a
standard Gaussian distribution.

Table 2. Performance (in RMSE ↓) of edge-based and node-based
architectures on a star-graph topology. The first number is the
performance of the best edge-based model, and the second is the
best node-based model, across a range of depths up to 10, widths
∈ {16, 32, 64}, and a range of learning rates.

Depth of Planted Model (RMSE)

# of
Leaves

5 3 1

Edge Node Edge Node Edge Node

64 0.004 0.379 0.011 0.360 0.008 0.375
32 0.003 0.366 0.005 0.363 0.003 0.361
16 0.007 0.334 0.002 0.210 0.002 0.285

8
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There is a natural connection between GNNs and calculating
marginals: a classical way to calculate {E[xi]} when G is a
tree is to iterate a message passing algorithm called belief
propagation (7), in which for each edge {i, j} and direc-
tion i→ j, a message ν

(t+1)
i→j is calculated that depends on

messages {ν(t)k→i}{k,i}∈E . The belief-propagation updates
(7) naturally fit the general edge-message passing paradigm
from (2). In fact, they fit even more closely a “directed” ver-
sion of the paradigm, in which each edge {i, j} maintains
two embeddings hi→j , hj→i, such that the embedding for
direction hi→j depends on the embeddings {hk→i}{k,i}∈E

— and it is possible to derive a similar “directed” node-based
architecture (See Appendix F.2). For both the undirected
and directed version of the architecture, we see that main-
taining edge embeddings gives robust benefits over main-
taining node embeddings—for a variety of tree topologies
including complete binary trees, path graphs, and uniformly
randomly sampled trees of a fixed size. Details are included
in Appendix F.

9. Conclusions and future work
Graph neural networks are the best-performing machine
learning method for many tasks over graphs. There is a
wide variety of GNN architectures, which frequently make
opaque design choices and whose causal influence on the
final performance is difficult to understand and estimate.
In this paper, we focused on understanding the impact of
maintaining edge embeddings on the representational power,
as well as the subtleties of considering constraints like mem-
ory and invariance. We highlight two notable directions for
future work:

1. One significant downside of maintaining edge embed-
dings is the computational overhead on dense graphs.
Hence, a fruitful direction for future research would
be to explore more computationally efficient variants
of edge-based architectures that preserve their repre-
sentational power and performance. While there are a
variety of interesting heuristics aimed at improving the
performance of GNNs (for example, graph rewiring
(Topping et al., 2022)), understanding for which graphs
and tasks these heuristics can improve representational
tradeoffs is largely an open question.

2. The empirical results on common graph benchmarks
(Table 1) suggest much weaker benefits of edge embed-
dings than the synthetic (Table 2) and theoretical re-
sults. These benchmarks also largely have less skewed
degree statistics. Experimenting with a wider range of
benchmarks and understanding the impact of degree on
performance could yield valuable additional insights.
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Figure 2. A visualization of the information bottleneck induced
by “hub nodes”, which is the key intuition behind Theorems 1
and 4. Here, G is a star graph with n = 8 leaves. Left: The star
graph G itself, which describes the connectivity of the processors
in a node-based message-passing protocol on G. Any message
between two leaves must pass through the hub node (as depicted
by the red arrows). Since the hub node has only constant memory,
if all nodes need to pass information then intuitively Ω(n) rounds
are necessary. Right: The line graph L(G), which describes the
connectivity of the processors in an edge-based message-passing
protocol on G. Each box corresponds to an edge of the original
graph. Messages can be passed directly between boxes (as depicted
by the red arrows), so there is no bottleneck.

Appendix

A. Omitted definitions
Definition 11 (Symmetric edge message-passing pro-
tocol). An edge message-passing protocol P =
((ft,e)t∈[T ],e∈E , (f̃v)v∈V ) on graph G = (V,E) is sym-
metric if there are functions (f sym

t )t∈[T ] and f̃ sym so that for
every t ∈ [T ] and e = {u, v} ∈ E, the function ft,e can be
written as:

ft,e((c(e
′))e′∈M(e), I(e))

= f sym
t (I(e), c(e), {{{{c(e′) : e′ ∈M(u)}},

{{c(e′) : e′ ∈M(v)}}}}),

and for every v ∈ V , f̃v can be written as
f̃v((c(e))e∈M(v)) = f̃ sym({{c(e) : e ∈M(v)}}).

B. Omitted Proofs from Section 5
In this section we give the omitted proofs from Section 5.
In particular we give the formal proof of Theorem 1, which
states that there is a depth separation between edge message-
passing protocols and node message-passing protocols for a
natural MAP estimation problem on the underlying graph
G. Additionally, see Fig. 2 for a visualization of the key in-
sight behind the proofs of Theorems 1 and 4: the “hub node”
information bottleneck. Finally, we remark that a quanti-
tatively stronger (and in fact tight) separation is possible
if one considers general tasks rather than MAP estimation
tasks – see Appendix E.

Proof of Lemma 2. First, we argue by induction that for
each t ∈ [T ] and v ∈ V \ K, Pt(v; I) is determined by

IM(Nt−1
H (v)) and (Pℓ(k; I))ℓ∈[t],k∈K . Indeed, by definition,

P1(v; I) is determined by IM1(v) for any v ∈ V \ K.
For any t > 1 and v ∈ V \ K, Pt(v; I) is determined
by (Pt−1(v

′; I))v′∈N (v) and (I(e))e∈M(v). Note that
N (v) ⊆ NH(v) ∪K. Thus, using the induction hypothesis
for each v′ ∈ NH(v), we get that (Pt−1(v

′; I))v′∈N (v)

is determined by
⋃

v′∈NH(v) IM(Nt−2
H (v′)) and

(Pℓ(k; I))ℓ∈[t],k∈K . So Pt(v; I) is determined by
IM(Nt−1

H (v)) and (Pℓ(k; I))ℓ∈[t],k∈K , completing the
induction.

Since P computes g and S ⊆ V \K, we get that gS(I) is
determined by IM(NT−1

H (S)) = IF and (Pℓ(k; I))ℓ∈[T ],k∈K .
Thus, for any fixed IF ∈ ΦF , we have∣∣∣{gS (IF , IF ) : IF ∈ ΦF

}∣∣∣
≤
∣∣∣{(Pℓ(k; (IF , IF )))ℓ∈[T ],k∈K) : IF ∈ ΦF

}∣∣∣
≤ |XB |T |K|

= 2TB|K|.

The lemma follows.

Proof of Theorem 1. Let G be the graph on vertex set V :=
{0} ∪ [

√
n] × [

√
n] with edge set defined below (see also

Fig. 1):

E := {{0, (i, j)} : i, j ∈ [
√
n]}

∪ {{(i, j), (i+ 1, j)} : 2 ≤ i ≤
√
n, 1 ≤ j ≤

√
n}.

Let Φ be the following set of four potential functions:

Φ := {(xa, xb) 7→ 1[xa ̸= xb],

(xa, xb) 7→ 1[xa ̸= 1 ∨ xb ̸= 1],

(xa, xb) 7→ 1[xa ̸= 0 ∨ xb ̸= 0],

(xa, xb) 7→ 0}.

Lower bound. We start by proving the lower bound
against node message-passing protocols, using Lemma 2.
Let g : ΦE → {0, 1}V be any MAP evaluator for G with
potential function class Φ, and consider any node message-
passing protocol on G with T rounds and B bits of memory
that computes g. Let K = {0} (the “hub node” of graph
G) and S = {(1, j) : j ∈ [

√
n]} (the set of left-hand end-

points of the paths in G). Suppose that T ≤
√
n − 2. Let

F := M(NT−1
H (S)). By assumption on T , we have that

{(
√
n− 1, j), (

√
n, j)} ̸∈ F for all j ∈ [

√
n].

Let IF : F → Φ be the mapping that assigns the function
(xa, xb) 7→ 0 to each edge {0, (i, j)} ∈ F and (xa, xb) 7→
1[xa ̸= xb] to each edge {(i, j), (i+1, j)} ∈ F . Intuitively,
this means that we are focusing on the graphical models
where the hub node has no interactions with the rest of the
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graph, and every non-hub-node is incentivized to match its
neighbors.

We claim that even after fixing the potentials on F , the
number of restrictions of a possible MAP assignment to the
set S is still exponentially large:∣∣∣{gS(IF , IF ) : IF ∈ ΦF

}∣∣∣ ≥ 2
√
n. (5)

Indeed, for any string y ∈ {0, 1}
√
n, consider the mapping

IF : F → Φ that assigns the function (xa, xb) 7→ 1[xa ̸=
yj ∨ xb ̸= yj ] to each edge {(

√
n − 1, j), (

√
n, j)} ∈ F ,

assigns (xa, xb) 7→ 0 to each edge {0, (i, j)} ∈ E \ F , and
assigns (xa, xb) 7→ 1[xa ̸= xb] to all remaining edges in
E \ F . Then every minimizer of

min
x∈{0,1}V

∑
{a,b}∈E

I{a,b}(xa, xb)

satisfies x(1,j) = · · · = x(
√
n,j) = yj for all j ∈ [

√
n],

since IF incentivizes x(
√
n,j) = yj and there are positive

interactions along each path. Hence, gS(IF , IF ) = y. Since
y was chosen arbitrarily, this proves the claim (5). But now
Lemma 2 implies that TB ≥

√
n.

We now construct an edge message-passing protocol P on
G with T = 3 and B = 4. We (arbitrarily) identify Φ with
{0, 1}2. Intuitively, the three steps of the protocol do the
following:

1. First, each edge not adjacent to the hub node “reads”
its own input.

2. Second, each edge {0, (i, j)} adjacent to the hub node
0 “reads” its own input and the input of the adjacent
edge {(i, j), (i+ 1, j)}.

3. Third, each edge {0, (i, j)} adjacent to the hub node
computes the MAP estimate of the graphical model
specified by the input, using the fact that all of the data
is now stored on edges incident to {0, (i, j)}. It then
stores the indices of this MAP estimate corresponding
to node 0 and node (i, j).

We proceed to make this idea formal, which requires defin-
ing a collection of update functions (ft,e)t,e. For all
i, j ∈

√
n, define update functions

f1,{(i,j),(i+1,j)}(x, y) := y if i <
√
n

f2,{0,(i,j)}(x, y) := (x{(i,j),(i+1,j)}, x{0,(i,j)}) if i <
√
n

f3,{0,(i,j)}(x, y) := (g0(J(x)), g(i,j)(J(x)))

where the second line is well-defined since edge {0, (i, j)}
is adjacent to both itself and edge {(i, j), (i+ 1, j)}; and in

the third line the function is computing g0 and g(i,j) on the
input J(x) ∈ ΦE defined as

J(x)e :=

{
(x{0,(k,ℓ)})1:2 if e = {(k, ℓ), (k + 1, ℓ)}
(x{0,(k,ℓ)})3:4 if e = {0, (k, ℓ)}

,

where we use the notation va:b for a vector v and indices
a, b ∈ N to denote (va, va+1, . . . , vb). Note that J(x) is
a well-defined function of x for every edge {0, (i, j)}, be-
cause {0, (i, j)} ∼ {0, (k, ℓ)} for all i, j, k, ℓ ∈ [n]. Finally,
define all other functions ft,e to compute the all-zero func-
tion, and define

f̃v(x) :=

{
(x{0,(1,1)})1:2 if v = 0

(x{0,v})3:4 otherwise
.

This function is well-defined since v = 0 is adjacent to edge
{0, (1, 1)} and any vertex v ∈ V \ {0} is adjacent to edge
{0, v}.

Fix any I ∈ ΦE . From the definition, it’s clear that
P2({0, (i, j)}; I) = (I{(i,j),(i+1,j)}, I{0,(i,j)}) for all I and
(i, j) ∈ [

√
n−1]× [

√
n]. Hence J((P2(e

′; I))e′∈M(e))e =
I for all edges e of the form (0, {i, j}), and so
P3({0, (i, j)}; I) = (g0(I), g(i,j)(I)) for all (i, j) ∈
[
√
n] × [

√
n]. This means that f̃v((P3(e; I))e∈M(v)) =

g(I)v for all v ∈ V , so the protocol indeed computes g.

It remains to argue about the computational complexity
of the updates ft,e. It’s clear that for all e ∈ E and t ∈
{1, 2}, the function ft,e can be evaluated in input-linear
time. The only case that requires proof is when t = 3 and
e = {0, (i, j)} for some i, j ∈

√
n. In this case |M(e)| =

Θ(n), so it suffices to give an algorithm for evaluating the
function g : ΦE → {0, 1}V on an explicit input J in O(n)
time. This can be accomplished via dynamic programming
(Lemma 6).

Lemma 6. Fix n ∈ N. Let G, Φ be as defined in Theorem 1.
Then there is an O(n)-time algorithm that computes a MAP
evaluator for G with potential function class Φ.

Proof. Intuitively, this is possible since we can iterate over
possible values for the hub node 0, and once the hub node
is fixed, the graphical model reduces to

√
n independent

Markov chains, for which MAP estimation is tractable via
dynamic programming. We proceed to the formal proof.

Fix any J ∈ ΦE . As preliminary notation, for each c, c0 ∈
{0, 1} and i, j ∈

√
n, let V (i, j) := {0} ∪ {(k, j) : 1 ≤

k ≤ i}, and let E(i, j) be the edge set of the induced
subgraph G[V (i, j)]. For all indices i, j ∈

√
n and values

12
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c, c0 ∈ {0, 1}, let X (c0, c; i, j) denote the set of all partial
configurations x ∈ {0, 1}V (i,j) satisfying the “boundary
conditions” x0 = c0 and x(i,j) = c. With this notation,
define

x̂i,j(c, c0; J) := argmin
x∈X (c0,c;i,j)

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb),

Ĉi,j(c, c0; J) := min
x∈X (c0,c;i,j)

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb).

For each j ∈ [
√
n], let

x̂j(c0; J) := x̂√
n,j

((
argmin
c∈{0,1}

Ĉ√
n,j(c, c0; J)

)
, c0; J

)
.

Finally, let x̂(c0; J) ∈ {0, 1}V be the vector which takes
value c0 on vertex 0, and value x̂j(c0; J)i on vertex (i, j)
for all i, j ∈

√
n. Let

x̂(J) := argmax
c0∈{0,1}

pJ(x̂(c0; J)).

We claim that x̂(J) is a maximizer of pJ(x). Indeed, for any
fixed c0 ∈ {0, 1}, x̂(c0; J) is a maximizer of pJ(x) subject
to x0 = c0, because under this constraint the maximization
problem decomposes into

√
n independent maximization

problems, one for each path in G, which by definition are
solved by x̂1(c0; J), . . . , x̂√

n(c0; J).

Moreover, it’s straightforward to see that for any fixed
j, Ĉj(c0; J) can be computed in O(

√
n) time by dy-

namic programming. Indeed for any i, j, Ĉi,j(c, c0; J)

can be computed in O(1) time from Ĉi−1,j(0, c0; J) and
Ĉi−1,j(1, c0; J) as well as J{0,(i,j)} and J{(i−1,j),(i,j)}.
Once the values Ĉi,j(c, c0; J) have been computed for all
i ∈ [
√
n] and c ∈ {0, 1}, the vector x̂j(c0; J) can be com-

puted in O(
√
n) time via a reverse scan over i =

√
n, . . . , 1.

It follows that x̂(J) can be computed in O(n) time.

Proof of Proposition 3. We claim that there is a node
message-passing protocol P ′ on G with T + 1 rounds that
at each time t ∈ [T + 1] has computed

P ′
t (v; I) = (Pt−1(e; I))e∈M(v).

That is, each node “simulates” the computation of all inci-
dent edges. The key point is that for any edge e = (u, v) ∈
E, the neighborhoodM(e) is equal toM(u) ∪M(v), so
node v can simulate the computation at e using its own data
and appropriate data from node u.

We make this idea formal by arguing inductively. Since
P0 ≡ 0, it’s clear that this can be achieved for t = 1. Fix any
t > 1 and suppose that P ′

t−1(u; I) = (Pt−2(e; I))e∈M(u)

for all u ∈ V and inputs I . For each v ∈ V , we define a
function f ′

t,v by

f ′
t,v((c(v

′))v′∈N (v), (I(e))e∈M(v))e⋆

:= ft−1,e⋆((c(v)e)e∈M(v), (c(v
⋆)e)e∈M(v⋆), I(e

⋆))

for each e⋆ = (v, v⋆) ∈M(v). Then by definition and the
inductive hypothesis, we have

P ′
t (v; I)e⋆

= f ′
t,v((P

′
t−1(v

′; I))v′∈N (v), (I(e))e∈M(v))e⋆

= ft−1,e⋆((P
′
t−1(v; I)e)e∈M(v),

(P ′
t−1(v

⋆; I)e)e∈M(v⋆), I(e
⋆))

= ft−1,e⋆((Pt−2(e; I))e∈M(v),

(Pt−2(e; I)e)e∈M(v⋆), I(e
⋆))

= Pt−1(e
⋆; I)

for any edge e⋆ = (v, v⋆) ∈ E, since M(e) = M(v) ∪
M(v⋆). This completes the induction and shows that
P ′
T+1(v; I) = (PT (e; I))e∈M(v) for all v, I . Replacing

f ′
T+1,v by f̃T,v ◦ f ′

T+1,v completes the proof.

C. Omitted Proofs from Section 6
In this section we provide a formal proof of Theorem 4.
For notational convenience, define m = ⌊

√
n⌋. We define

a graph G = (V,E) that is a perfect n-ary tree of depth
two. Formally, the graph G has vertex set V = {0} ∪ [m]∪
([m]× [m]). Vertex 0 is adjacent to each i ∈ [m], and each
i ∈ [m] is additionally adjacent to (i, j) for all j ∈ [m]. We
define a function g : {0, 1}E → {0, 1}V as follows. On
input I ∈ {0, 1}E , for each edge e ∈ E, define the input
summation at e to be

C(I)e :=
∑

e′∈M(e)

I(e′).

Intuitively, one may think of C(I)e as simulating the in-
put on e in the “large alphabet” construction described in
Section 6. Next, define

g(I)(u,j) := 0.

g(I)u := 1[#|e ∈M({0, u}) :
C(I)e = C(I){0,u}| > m+ 1].

g(I)0 := 1[∃u ∈ [m] : g(I)u = 1].

In words, g(I)u is the indicator for the event that, among the
2m+1 edges adjacent to {0, u} (which include {0, u} itself),
more than m+ 1 edges have the same input summation as
{0, u}. At a high level, this definition of g was designed

13
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to satisfy three criteria. First, g(I)u depends on the input
values on other branches of the tree: in particular, if I{0,v} =
0 for all v ∈ [n], then C(I)e = C(I){0,u} for all edges e in
the subtree of u, so g(I)u exactly measures the event that
there is at least one edge e outside the subtree of u for which
C(I)e = C(I){0,u}. Second, there is no concise “summary”
of I such that g(I)u can be determined from this summary
in conjunction with the inputs on the subtree of u. Third,
g(I) is equivariant to re-labelings of the tree.

The first two criteria, together with the fact that the root
vertex 0 is an “information bottleneck” for G, can be used
to show that any node message-passing algorithm that com-
putes g on G requires either large memory or many rounds.
The third criterion enables construction of a symmetric edge
message-passing protocol for g. The arguments are formal-
ized in the claims below.

Claim 7. For graph G and function g as defined above, any
node message-passing protocol on G that computes g with
T rounds and B bits of memory requires TB ≥ Ω(m).

Proof. Consider any input I ∈ {0, 1}E with I({0, u}) = 0
for all u ∈ [m]. Then for any u, j ∈ [m], we have

C(I){u,(u,j)} = C(I){0,u} =

m∑
i=1

I({u, (u, i)}).

Thus g(I)u = 1 if and only if there exists some v ∈
[m] \ {u} with C(I){0,u} = C(I){0,v}, or equivalently∑m

i=1 I({u, (u, i)}) =
∑m

i=1 I({v, (v, i)}).

Fix T,B and suppose that P is a node message-passing
protocol on G that computes g with T rounds and B bits
of memory. Define sets of vertices K := {0} and S :=
{1, . . . ,m/2}. Let H := G[K] and F :=M(NT−1

H (S)).
Then for any T , we have that

F = {{0, u} : 1 ≤ u ≤ m/2}
∪ {{u, (u, j)} : 1 ≤ u ≤ m/2, 1 ≤ j ≤ m}.

Define a vector IF ∈ ΦF by

I{0,u} = 0 for 1 ≤ u ≤ m/2

I{u,(u,j)} = 1[j ≤ u] for 1 ≤ u ≤ m/2, 1 ≤ j ≤ m.

Now fix any x ∈ {0, 1}S . We claim that there is some
IF ∈ ΦF such that gS(IF , IF ) = x. Indeed, let us define
IF by:

I{0,v} = 0 for m/2 < v ≤ m

I{v,(v,j)} = xv−m/21[j ≤ v −m/2]

for m/2 < v ≤ m, 1 ≤ j ≤ m.

Then C(I){0,u} = u for all 1 ≤ u ≤ m/2, and
C(I){0,v} = (v − m/2)xv−m/2 for all m/2 < v ≤ m.
It follows that for any 1 ≤ u ≤ n/2, xu = 1 if and only if
there exists some v ∈ [m] \ u with C(I){0,u} = C(I){0,v},
and hence xu = g(I)u. We conclude that∣∣∣{gS(IF , IF ) : IF ∈ ΦF

}∣∣∣ ≥ 2m/2.

Applying Lemma 2 we conclude that TB ≥ Ω(m) as
claimed.

Claim 8. For graph G and function g as defined above,
there is a symmetric edge message-passing protocol on G
that computes g with O(1) rounds and O(logm) bits of
memory.

Proof. In the first round, each edge processor reads its input
value. In the second round, each edge processor sums the
values computed by all neighboring edges (including itself).
In the third round, each edge processor computes the indica-
tor for the event that strictly more than m+ 1 neighboring
edges (including itself) have the same value as itself. In
the final aggregation round, the output of a vertex is the
indicator for the event that any neighbor has value 1.

By construction, the value computed by any edge e after the
second round is exactly C(I)e. Thus, after the third round,
the value computed by any edge {0, u} is exactly g(I)u.
Moreover, the value computed by any edge {u, (u, j)} is
0 after the third round, since such edges only have m + 1
neighbors. It follows by construction of the final aggregation
step that the protocol computes g.

Proof of Theorem 4. Immediate from Claims 7 and 8.

D. Omitted Proofs from Section 7

Proof of Theorem 5. Without loss of generality, we may as-
sume that the functions (f sym

t )t∈[T ] and f̃ sym are all the
identity function (on the appropriate domains). The reason
is that any symmetric edge message-passing protocol P̃ on
T rounds may be simulated by running P and then applying
a universal function (depending only on P̃ ) to each node’s
output value – see Lemma 9.
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We argue by induction that for each t ∈ [T ], there is a
(t + 1)-round symmetric node message-passing protocol
that, on any input I , computes the function Qt(u; I) :=
{{Pt(e; I) : e ∈M(u)}} for every node u ∈ V . That is, the
protocol at node u simulates the multiset of computations
performed by edges incident to u. This is similar to the
idea for Proposition 3 but requires significant care to ensure
symmetry of the protocol is preserved.

Consider t = 1. For any e = (u, v) ∈ E, we have by
symmetry and the initial assumption that

P1(e; I) = (I(e), 0, {{{{0 : v′ ∈ N (u)}}, {{0 : u′ ∈ N (v)}}}}).
(6)

We define a two-round node message-passing protocol on
G where the first update at node u computes

P ′
1(u; I) = {{I(e) : e ∈M(u)}}.

For the second update at node u, the node
is required to compute a function of the data
(P ′

1(u; I), {{(P ′
1(v; I), I({u, v})) : v ∈ N (u)}}). It

does so by applying the following transformation to this
data:

(P ′
1(u; I), {{(P ′

1(v; I), I({u, v})) : v ∈ N (u)}})
7→ {{(I({u, v}), 0, |N (u)|, |P ′

1(v; I)|) : v ∈ N (u)}}
7→ {{(I({u, v}), 0, {{|N (u)|, |P ′

1(v; I)|}}) : v ∈ N (u)}}
= {{P1({u, v}; I) : v ∈ N (u)}} =: P ′

2(u; I),

where the first step drops the term P ′
1(u; I), inserts the

constant |N (u)| into each element of the multiset, and re-
places each set P ′

1(v; I) by its cardinality; the second step
symmetrizes the tuple (|N (u)|, |P ′

1(v; I)|); and the equality
uses the fact that |P ′

1(v; I)| = |N (v)| together with Eq. (6).
By construction, this protocol is symmetric, and we can see
that P ′

2(u; I) = Qt(u; I), which proves the induction for
step t = 1.

Now pick any t > 1. For any e = {u, v} ∈ E, we know
that the original protocol’s computation at e can be written
as:

Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}}).

By the induction hypothesis, there is a t-round symmetric
node message-passing protocol P ′ that, at node v on input
I , computes

P ′
t (v; I) = {{Pt−1(e; I) : e ∈M(v)}} = Qt−1(v; I).

Note that since Pt−1(e; I) is an element of the tuple
Pt(e; I), for each 1 ≤ s ≤ t − 1 there is a fixed func-
tion γs such that γs(Qt−1(v; I)) = Qs(v; I) for all v, I .
Using this fact, we extend P ′ to t+1 rounds. The update at
round t + 1 and node u is required to be a function of

the data (P ′
t (u; I), {{(P ′

t (v; I), I({u, v})) : v ∈ N (u)}}).
By the induction hypothesis, this is equal to the data
(Qt−1(u; I), {{(Qt−1(v; I), I({u, v})) : v ∈ N (u)}}). For
notational convenience, write

St−1,u := {{(Qt−1(v; I), I({u, v})) : v ∈ N (u)}}

and

S1:t−1,u := {{(Q1:t−1(v; I), I({u, v})) : v ∈ N (u)}}

where Q1:t−1(u; I) refers to the tuple
(Q1(u; I), . . . , Qt−1(u; I)). Observe that Q1:t−1(v; I) can
be determined from Qt−1(v; I) (for any v) due to the exis-
tence of the functions γ1, . . . , γt−1; hence, S1:t−1,u can be
computed from St−1,u. Using these observations, defining
P ′
t+1(u; I) via the following sequence of transformations

to the data (Qt−1(u; I), St−1,u) is well-defined:

(Qt−1(u; I), St−1,u)

7→ (Q1:t−1(u; I), S1:t−1,u)

7→ {{(I({u, v}),
{{Q1:t−1(u; I), Q1:t−1(v; I)}}) : v ∈ N (u)}}

7→ {{(I({u, v}), Pt−1({u, v}; I),
{{Qt−1(u; I), Qt−1(v; I)}}) : v ∈ N (u)}}

= {{Pt({u, v}; I) : v ∈ N (u)}}
= Qt(u; I) =: P ′

t+1(u; I)

The second transformation inserts Q1:t−1(u; I) into each
element of the multiset S1:t−1(u; I) and symmetrizes with
Q1:t−1(v; I). The final transformation drops Q1:t−2(u; I)
and Q1:t−2(v; I) and inserts Pt−1({u, v}; I). This insertion
is well-defined because the definition of Pt−1({u, v}; I) can
be iteratively unpacked, and it is ultimately a function of the
existing data

(I({u, v}), {{Q1:t−1(u; I), Q1:t−1(v; I)}}).

To conclude, we have shown that P ′ computes Qt(v; I)
at node u on input I , and that this can be achieved while
satisfying symmetry. This completes the induction. Since
QT (u; I) is precisely the output of P at node u on input
I (after the node aggregation step), this shows that P can
be simulated by a (T + 1)-round symmetric node message-
passing protocol on G.

Lemma 9. Let T ≥ 1, and let P =
((ft,e)t∈[T ],e∈E , (f̃v)v∈V ) be a symmetric edge message-
passing protocol on G = (V,E) with T rounds.
Consider the T -round edge message-passing protocol
P ◦ = ((f◦

t,e)t∈[T ],e∈E , (f̃
◦
v )v∈V ) where for all t, e,

f◦
t,e((c(e

′))e′∈M(e), I(e))

:= (I(e), c(e), {{c(e′) : e′ ∈M(u)}},
{{c(e′) : e′ ∈M(v)}}),
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and for every v ∈ V ,

f̃◦
v ((c(e))e∈M(v)) := {{c(e) : e ∈M(v)}}.

Then there is a function h such that
f̃v((PT (e; I))e∈M(v)) = h(f̃◦

v ((P
◦
T (e; I))e∈M(v)))

for all v, I .

Proof. We prove by induction that for each t ∈ {0, . . . , T}
there is a function ht such that Pt(e; I) = ht(P

◦
t (e; I)) for

all e, I . For t = 0 this is immediate from the convention
that P0 ≡ P ◦

0 ≡ 0. Fix any t ∈ {1, . . . , T}. Since P
is symmetric, there is a function f sym

t so that for all e =
(u, v) ∈ E and inputs I ,

Pt(e; I) = f sym
t (I(e), Pt−1(e; I), {{Pt−1(e

′; I) : e′ ∈M(u)}},
{{Pt−1(e

′; I) : e′ ∈M(v)}})
= f sym

t (I(e), ht−1(P
◦
t−1(e; I)),

{{ht−1(P
◦
t−1(e

′; I)) : e′ ∈M(u)}},
{{ht−1(P

◦
t−1(e

′; I)) : e′ ∈M(v)}})

which is indeed a well-defined function (independent of
e, I) of

P ◦
t (e; I) = (I(e), P ◦

t−1(e; I), {{P ◦
t−1(e

′; I) : e′ ∈M(u)}},
{{P ◦

t−1(e
′; I) : e′ ∈M(v)}}).

This completes the induction. Finally, since P is symmetric,
there is a function f̃ sym such that f̃v((PT (e; I))e∈M(v)) =

f̃ sym({{PT (e; I) : e ∈M(v)}}) for all v, I . Hence we can
write

f̃v((PT (e; I))e∈M(v)) = f̃ sym({{PT (e; I) : e ∈M(v)}})
= f̃ sym({{hT (P

◦
T (e; I)) : e ∈M(v)}})

which is a well-defined function (independent of v, I) of
{{P ◦

T (e; I) : e ∈M(v)}} as needed.

E. A quantitatively tight depth/memory
separation

For each n ∈ N, let Kn := ([n], En) be the complete graph
on [n]. In this section we show that there is a function
that can be computed by an edge message-passing protocol
on Kn with constant rounds and constant memory per pro-
cessor, but for which any node message-passing protocol
with T rounds and B bits of memory requires TB ≥ Ω(n).
We remark that this separation is quantitatively tight due to
Proposition 3, although it is possible that a larger (e.g. even
super-polynomial in n) depth separation may be possible if

the node message-passing protocol is restricted to constant
memory per processor.

At a technical level, the lower bound proceeds via a reduc-
tion from the set disjointness problem in communication
complexity, similar to the lower bounds in (Loukas, 2020a).

Definition 12. Fix m ∈ N. The set disjointness function
DISJm : {0, 1}m × {0, 1}m → {0, 1} is defined as

DISJm(A,B) := 1[∀i ∈ [m] : AiBi = 0].

The following fact is well-known; see e.g. discussion in
(Håstad & Wigderson, 2007).

Lemma 10. In the two-party deterministic communica-
tion model, the deterministic communication complexity
of DISJm is at least m.

The main result of this section is the following:

Theorem 11. Fix any even n ∈ N. Define g : {0, 1}En →
{0, 1}n by

g(I)v := 1
[
∃{i, j} ∈ En : i, j ≤ n/2

∧ I({i, j}) = I({n+ 1− i, n+ 1− j}) = 1
]

for all I ∈ {0, 1}En and v ∈ [n]. Then the following
properties hold:

• Any node message-passing protocol on Kn with T
rounds and B bits of memory that computes g requires
TB ≥ Ω(n)

• There is an edge message-passing protocol on Kn with
O(1) rounds and O(1) bits of memory that computes
g.

Proof. Let m :=
(
n/2
2

)
. Let P = (ft,v)t,v be a node

message-passing protocol on Kn that computes g with T
rounds and B bits of memory. We design a two-party
communication protocol for DISJm as follows. Suppose
that Alice holds input X ∈ {0, 1}m and Bob holds in-
put Y ∈ {0, 1}m. Let us index the edges {i, j} ∈ En

with i, j ≤ n/2 by [m], and similarly index the edges
{i, j} ∈ En with i, j > n/2 by [m], in such a way that edge
{i, j} has the same index as edge {n + 1 − i, n + 1 − j}.
Let I ∈ {0, 1}En be defined by

I({i, j}) :=


X{i,j} if i, j ≤ n/2

Y{i,j} if i, j > n/2

0 otherwise
.
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Initially, Alice computes P̂0(v) := 0 for all v ∈
{1, . . . , n/2}, and Bob computes P̂0(v) := 0 for all
v ∈ {n/2 + 1, . . . , n}. The communication proto-
col then proceeds in T rounds. At round t ∈ [T ],
Alice sends (P̂t−1(v))1≤v≤n/2 to Bob, and Bob sends
(P̂t−1(v))n/2+1≤v≤n to Alice. Alice then computes

P̂t(v) := ft,v((P̂t−1(v
′))v′∈[n], (I(e))e∈MKn (v))

for each 1 ≤ v ≤ n/2, and Bob computes the same for
each n/2 < v ≤ n. Note that for any i ≤ n/2 and edge
e ∈ MKn

(i), Alice can compute I(e). Similarly, for any
i > n/2 and edge e ∈ MKn(i), Bob can compute I(e).
Thus, this computation is well-defined. After round T , Alice
and Bob output 1− P̂T (1) and 1− P̂T (n) respectively.

This defines a communication protocol. Since P̂t(v) ∈
{0, 1}B for each v ∈ [n] and t ∈ [T ], the total number
of bits communicated is at most nBT . Moreover, by in-
duction it’s clear that Alice and Bob output 1 − PT (1; I)
and 1− PT (n; I) respectively. By assumption that P com-
putes g and the fact that g(I)v = 1− DISJm(X,Y ) for all
v ∈ [n], we have that 1− PT (1; I) = 1− PT (n; I) = 0 if
DISJm(I) = 0, and 1 − PT (1; I) = 1 − PT (n; I) = 1 if
DISJm(I) = 1. Thus, this communication protocol com-
putes DISJm. By Lemma 10, it follows that nBT ≥ m =
Ω(n2), so BT = Ω(n) as claimed.

Next, we exhibit an edge message-passing protocol on Kn

that computes g with six rounds and one bit of memory.
Intuitively, the protocol proceeds via the following steps:

1. First, each edge “reads” its input.

2. Second, each edge {i, j} swaps its value with the value
at {n + 1 − i, n + 1 − j}; since these two edges are
not adjacent, this takes two steps.

3. Third, each edge {i, j} with i, j ≤ n/2 checks if the
input at {n+ 1− i, n+ 1− j} (which it now knows)
equals its own input.

4. Fourth, an aggregation step is performed across the
entire graph. Since the graph is complete, this can be
done in two steps.

We proceed to make this intuition more formal. For 1 ≤ t ≤
6 and e ∈ En, define ft,e : {0, 1}M(e) × {0, 1} → {0, 1}
as follows:

f1,{i,j}(x, y) := y

f2,{i,j}(x, y) := x{n+1−i,j}

f3,{i,j}(x, y) := x{i,n+1−j}

f4,{i,j}(x, y) := 1[y = x{i,j} ∧ i, j ≤ n/2]

f5,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1]

f6,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1].

Also define f̃v : {0, 1}M(v) → {0, 1} for each v ∈ [n] by
f̃v(x) := x{x,1}. It can be checked that the computation of
P at timestep t = 6 is

P6({i, j}; I)
:= 1[∃k, ℓ ∈ [n/2] : I({k, ℓ}) = I({n+ 1− k, n+ 1− ℓ})]
= g(I).

From the definition of f̃ , it follows that P computes g.

F. Further details on synthetic task over Ising
models

F.1. Background on belief propagation

A classical way to calculate the marginals {E[xi]} of an
Ising model, when the associated graph is a tree, is to iterate
the message passing algorithm:

ν
(t+1)
i→j = tanh

hi +
∑

k∈∂i\j

tanh−1
(
tanh(Jik)ν

(t)
k→i

)
(7)

When the graph is a tree, it is a classical result ((Mezard &
Montanari, 2009), Theorem 14.1) that the above message-
passing algorithm converge to values ν∗ that yield the cor-
rect marginals, namely:

E[xi] = tanh

(
hi +

∑
k∈∂i

tanh−1 (tanh(Jik)ν
∗
k→i)

)
.

The reason the updates converge to the correct values on
a tree topology is that they implicitly simulate a dynamic
program. Namely, we can write down a recursive formula
for the marginal of node i which depends on sums spanning
each of the subtrees of the neighbors of i (i.e., for each
neighbor j, the subgraph containing j that we would get if
we removed edge {i, j}).

If we root the tree at an arbitrary node r, we can see that
after completing a round of message passing from the leaves
to the root, and another from the root to the leaves, each
subtree of i will be (inductively) calculated correctly.

Moreover, even though the updates (7) are written over
edges, the dynamic programming view makes it clear an
equivalent message-passing scheme can be written down
where states are maintained over the nodes in the graph.
Namely, for each node v, we can maintain two values
hv,down and hv,up, which correspond to the values that
will be used when v sends a message upwards (towards the
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root) or downwards (away from the root). Then, for appro-
priately defined functions F,G (depending on the potentials
J and h), one can “simulate” the updates in (7):

h
(t+1)
v,up ← F

(
{h(t)

w,up : w ∈ v ∪ Children(v)}
)

(8)

h
(t+1)

v,down ← G

(
h
(t)

Parent(v),down,
{
h
(t)
w,up

}
w∈Children(v)

)
(9)

Intuitively, hv,up captures the effective external field in-
duced by the subtree rooted at v on Parent(v). After the
upward messages propagate, the root r can compute its cor-
rect marginal. Once hParent(v),down is the correct marginal
for Parent(v) at some step, hv,down will be the correct
marginal for v at all subsequent steps.

F.2. GCN-based architectures to calculate marginals

The belief-propagation updates (7) naturally fit the gen-
eral edge-message passing paradigm from (2). In fact,
they fit even more closely a “directed” version of the
paradigm, in which each edge {i, j} maintains two em-
beddings hi→j , hj→i, such that the embedding for direction
hi→j depends on the embeddings {hk→i}{k,i}∈E . With this
modification to the standard edge GCN architecture Eq. (4),
it is straightforward to implement (7) with one layer, using a
particular choice of activation functions and weight matrices
W (since, in particular, in our dataset all edge potentials
Ji,j are set to 1). Similarly, with a directed version of the
node GCN architecture Eq. (3), where each node maintains
an “up” embedding as well as a “down” embedding, it is
straightforward to implement the “node-based” dynamic
programming solution (8)-(9).

We call the architectures that do not maintain directionality
Node-U and Edge-U (depending on whether they use a node-
based or edge-based GCN). We call the “directed” architec-
tures Node-D and Edge-D respectively. Since there are only
initial node features (input as node potentials {hi}i∈), for
the edge based architectures we initialize the edge features
as a concatenation of the node features of the endpoints of
the edge. The results we report for each architecture are
the best over a sweep of depth ∈ {5, 10, 15, 20, 25, 30} and
width ∈ {10, 32, 64}.

F.3. Edge-based models improve over node-based
models

In Figure 3 we show the results for several tree topologies:
a complete binary tree (of size 31), a path graph (of size
30), and uniformly randomly chosen trees of size 30 (the
results in Figure 3 are averaged over 3 samples of tree).

The architectures in the legend (Node-U, Edge-U, Node-
D, Edge-D) are based on a standard GCN, and detailed in
Section F.2

We can see that for both the undirected and directed ver-
sions, adding edge embeddings improves performance. The
improved performance of all directed versions compared
to their undirected counterpart is not very surprising: the
standard, undirected GCN architecture treats all neighbors
symmetrically — hence, the directed versions can more
easily simulate something akin to the belief propagation up-
dates (7) as well as the node-based dynamic programming
(8)-(9).
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Figure 3. Comparison of four architectures for calculating node marginals in an Ising model. The architectures considered are node-
embedding (3) and edge-embedding (4) versions of a GCN (correspondingly labeled Node-U and Edge-U), as well as their “directed”
counterparts, as described in Section F.2, correspondingly labeled Node-D and Edge-D. The x-axis groups results according to the
topology of the graph, the y-axis is MSE (lower is better). The mean and variances are reported over 3 runs for the best choice of depth
and width over the sweep described in Section F.2.
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