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SUMMARY
Reinforcement learning models of the basal ganglia map the phasic dopamine signal to reward prediction
errors (RPEs). Conventional models assert that, when a stimulus predicts a reward with fixed delay,
dopamine activity during the delay should converge to baseline through learning. However, recent
studies have found that dopamine ramps up before reward in certain conditions even after learning,
thus challenging the conventional models. In this work, we show that sensory feedback causes an unbi-
ased learner to produce RPE ramps. Our model predicts that when feedback gradually decreases during
a trial, dopamine activity should resemble a ‘‘bump,’’ whose ramp-up phase should, furthermore, be
greater than that of conditions where the feedback stays high. We trained mice on a virtual navigation
task with varying brightness, and both predictions were empirically observed. In sum, our theoretical
and experimental results reconcile the seemingly conflicting data on dopamine behaviors under the
RPE hypothesis.
INTRODUCTION

Perhaps the most successful convergence of reinforcement

learning theory with neuroscience has been the insight that the

phasic activity of midbrain dopamine (DA) neurons tracks

‘‘reward prediction errors’’ (RPEs) or the difference between

received and expected reward.1–3 In reinforcement learning al-

gorithms, RPEs serve as teaching signals that update an agent’s

estimate of rewards until those rewards are well predicted. In a

seminal experiment, Schultz et al.1 recorded from midbrain DA

neurons in primates and found that the neurons responded

with a burst of activity when an unexpected reward was deliv-

ered. However, if a reward-predicting cue was available, the

DA neurons eventually stopped responding to the (now ex-

pected) reward and instead, began to respond to the cue,

much like an RPE (results). This finding formed the basis for

the RPE hypothesis of DA.

Over the past two decades, a large and compelling body of

work has supported the view that phasic DA functions as a

teaching signal.1,3–6 In particular, phasic DA activity has been

shown to track the RPE term of temporal difference (TD)

learning models, which we review below remarkably well.2

However, recent results have called this model of DA into ques-

tion. Using fast-scan cyclic voltammetry in the rat striatum dur-

ing a goal-directed spatial navigation task, Howe et al.7

observed a ramping phenomenon—a steady increase in DA
Current
over the course of a single trial—that persisted even after

extensive training. Since then, DA ramping has been observed

during a two-armed bandit task,8 during the execution of self-

initiated action sequences,9 and in the timing of movement initi-

ation.10 At first glance, these findings appear to contradict the

RPE hypothesis of DA. Indeed, why would error signals persist

(and ramp) after a task has been well learned? Perhaps, then,

instead of reporting an RPE, DA should be reinterpreted

as reflecting the value of the animal’s current state, such as

its position during reward approach.8 Alternatively, perhaps

DA signals different quantities in different tasks, e.g., value in

operant tasks, in which the animal must act to receive reward,

and RPE in classical conditioning tasks, in which the animal

need not act to receive reward.

To distinguish among these possibilities, we recently

devised an experimental paradigm that dissociates the value

and RPE interpretations of DA.11 We began with the insight

that, in the experiments considered above, RPEs can be

approximated as the derivative of the value under the TD

learning framework12 (STAR Methods). This implies that, to

effectively arbitrate between the value and RPE interpreta-

tions, one only needs to devise experiments where the value

and its derivative are expected to behave very differently.

Indeed, by training mice on a virtual reality environment and

manipulating various properties of the task—namely, the

speed of scene movement and the presence of forward
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teleportations and temporary pauses—we could make precise

predictions about how the value should change versus how its

derivative (RPE) should change. We found that the changes in

DA behaviors were consistent with the RPE hypothesis and

not with the value interpretation. The virtual reality task further

allowed us to dissociate spatial navigation from locomotion

(running), as one view of ramps had been that they are spe-

cific to operant tasks and that DA conveys qualitatively

different information in operant versus classical conditioning

tasks. However, we found that mice continued to display

ramping DA signals during the task even without locomotion

(i.e., when the mice did not run for reward). We confirmed

these key results at the levels of somatic spiking of DA neu-

rons, axonal calcium signals, and DA concentrations at

neuronal terminals in the striatum. Taken together, these find-

ings strongly support the RPE hypothesis of DA.

The body of experimental studies outlined above produces a

number of unanswered questions regarding the function of DA.

First, why would an error signal persist once an association is

well learned? Second, why would it ramp over the duration of

the trial? Third, why would this ramp occur in some tasks but

not others? Does value (and thus RPE) take different functional

forms in different tasks, and if so, what determines which forms

result in a ramp andwhich do not? Here, we address these ques-

tions from normative principles.

We begin this work by examining the influence of sensory

feedback in guiding value estimation. Because of the irreduc-

ible temporal uncertainty, animals not receiving sensory feed-

back (and therefore, relying only on internal timekeeping

mechanisms) will have corrupted value estimates regardless

of how well a task is learned. In this case, value functions

will be ‘‘blurred’’ in proportion to the uncertainty at each point.

Sensory feedback, however, reduces this blurring as each new

time point is approached. Beginning with the normative princi-

ple that animals seek to best learn the value of each state, we

show that unbiased learning, in the presence of feedback, re-

quires RPEs that ramp. These ramps scale with the informa-

tiveness of the feedback (i.e., the reduction in uncertainty),

and at the extreme, absence of feedback leads to flat RPEs.

Thus, we show that the differences in a task’s feedback profile

explain the puzzling collection of DA behaviors described

above. To experimentally verify our hypothesis, we trained

mice on a virtual navigation task in which the brightness of

the virtual track was varied. As predicted by our framework,

when the scene was darkened over the course of the trial (pu-

tatively decreasing the sensory feedback), DA exhibited a

‘‘bump’’ or a ramp up followed by a ramp down. Furthermore,

the magnitude of signals during the ramp-up phase was glob-

ally greater than that of the corresponding ramp in conditions

when the scene brightness remained high, as predicted by the

theory.

We will begin the next section with a review of the TD learning

algorithm and then examine the effect of state uncertainty on

value learning. We will then show how, by reducing state uncer-

tainty without biasing learning, sensory feedback causes the

RPE to reproduce the experimentally observed behaviors of

DA. Finally, we will specifically control the sensory feedback by

manipulating the brightness of the track in a virtual navigation

task, thereby uncovering DA bumps.
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RESULTS

Temporal difference learning
In TD learning, an agent transitions through a sequence of states

according to a Markov process.13 The value associated with

each state is defined as the expected discounted future return:

Vt = E

"XN
k = 0

gkrt + k

#
; (Equation 1)

where t denotes time and indexes states, rt denotes the reward

delivered at time t, and g˛ð0; 1Þ is a discount factor. In the exper-

imentswewill examine, a single reward is presented at the end of

each trial. For these cases, Equation 1 can be written simply as:

Vt = gT�tr; (Equation 2)

for all t˛½0; T �, where r is the magnitude of reward delivered at

time T. In other words, value increases exponentially as reward

time T is approached, peaking at a value of r at T (Figures 1D

and 1F). Additionally, note that exponential functions are convex;

the convex shape of the value function will be important in sub-

sequent sections (see Kim et al.11 for an experimental test of this

property).

How does the agent learn this value function? Under the Mar-

kov property, the value at any time t, defined in Equation 1, can

be rewritten as a sum of the reward received at t and the dis-

counted value at the next time step:

Vt = rt +gVt + 1; (Equation 3)

which is referred to as the Bellman equation.14 In other words,

the value at time t is the sum of rewards received at t and the

promise of future rewards. To learn Vt, the agent approximates

it with bV t, which is updated in the event of a mismatch between

the estimated value and the reward actually received. By analogy

with Equation 3, this mismatch (the RPE) can be written as:

dt = rt +g bV t + 1 � bV t: (Equation 4)

When dt is zero, Equation 3 has been well approximated. How-

ever, when dt is positive or negative, bV t must be increased or

decreased, respectively:

bV ðn+ 1Þ
t = bV ðnÞ

t +ad
ðnÞ
t ; (Equation 5)

where a˛ð0;1Þ denotes the learning rate, and the superscript de-

notes the learning step. Learning will progress until dt = 0 on

average. After this point, bV t =gT�tr on average, which is pre-

cisely the true value (see STAR Methods for a more general

description of TD learning and its neural implementation).

Model overview
Having described TD learning in the simplified case where the

agent has a perfect internal clock and thus no state uncertainty,

let us now examine how state uncertainty and sensory feedback

affect learning. Our extension of the TDmodel to account for this

case will involve three key ingredients:

(1) First, state uncertainty results in value overestimation.

Intuitively, uncertainty about the state results in uncer-

tainty about the value. However, the convexity of the value



Figure 1. Sensory feedback biases value learning

(A) In the absence of state uncertainty, each state (red dot on maze) is mapped to its value (red dot on value function).

(B) On the other hand, when some state uncertainty is present (red ellipse on maze), the animal overestimates the value (red dot above value function). This is

because convex functions are shallower to the left (green) and steeper to the right (blue), and the estimated value is a weighted average of the points on the green

and blue segments.

(C) Illustration of state uncertainty in the absence of sensory feedback. Each row includes the uncertainty kernels at the current state and the next state (solid

curves). Lighter gray curves represent uncertainty kernels for later states. Thus, similarly colored kernels on different rows represent uncertainty kernels for the

same state but evaluated at different timepoints (e.g., dashed box). In the absence of feedback, state uncertainty for a single state does not acutely change across

time; compare with (E).

(D) Without feedback, value is unbiased on average. Red curves illustrate the overestimated predicted increase in value between the current state and the next

state (red curves; three examples extending over 10 states each for illustration only, as all 50 states are experienced on every trial). After learning, this roughly

equals an increase by g�1 on average.

(E) Sensory feedback reduces state uncertainty. Three instances of partial feedback (incomplete reduction in kernel widths) are shown for illustration (S.F.;

arrows). Note here that the kernels used to estimate value at the same state have different widths depending on whether they were evaluated before or after

feedback. This results in different value estimates being used to compute the RPE at the current state and at the next state (Equations 8 and 9).

(F) As a result of sensory feedback, value at each state will be estimated based on an inflated version of value at the next state. Hence, after learning (when RPE is

zero on average), estimated value will be systematically larger than the true value. Red curves illustrate the overestimated value prediction. After learning, this

roughly equals an increase by g�1 on average. The illustration corresponds to a near-complete reduction in state uncertainty (lower kernel in the dashed box with

near-zero width). See STAR Methods for simulation details.
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function creates a bias, as early portions of the function

are shallower than later portions (Figures 1A and 1B).

This overestimation is greater with (a) greater uncertainty

and (b) proximity to the reward.

(2) Second, sensory feedback that reduces this uncertainty

biases learning. According to the TD algorithm, the agent

takes a difference between two value estimates: one of

the current state andanother of the next state (Equation 4).

If the agent systematically receives new information (in

the form of sensory feedback) to reduce the uncertainty

about the next state upon transitioning to it, then the

learned value will be systematically biased.

(3) Third, the agent can correct this bias in the estimated value.

In the TDalgorithm, this can bewritten as a decay term that

depends on the reduction in uncertainty due to sensory

feedback and results in a persistent, positive RPE. This

RPE is greater with (a) a greater reduction in uncertainty

and (b) proximity to the reward. In other words, the RPE

ramps. For the special case of tasks without feedback,

the correction is null, and no ramps are observed.
Value learning under state uncertainty
Because animals do not have perfect internal clocks, they do

not have complete access to the true time t.15–17 Instead, t is

a latent state corrupted by timing noise, often modeled as

follows:

t � N �t; s2
t

�
; (Equation 6)

where t is subjective time, drawn from a distribution centered on

objective time t, with some standard deviation st. We take this

distribution to beGaussian for simplicity (an assumptionwe relax

in STARMethods). Thus, the subjective estimate of value bV t is an

average over the estimated values bV t of each state t:

bV t =
X
t

pðtjtÞ bV t; (Equation 7)

where pðtjtÞ denotes the probability that t is the true state, given

the subjective measurement t and thus, represents state uncer-

tainty. We refer to this quantity as the uncertainty kernel

(Figures 1C and 1E). Intuitively, bV t is the result of blurring bV t pro-

portionally to the uncertainty kernel (STAR Methods).
Current Biology 32, 1077–1087, March 14, 2022 1079
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Figure 2. Unbiased learning in the presence of feedback leads to
RPE ramps

(A) In a hypothetical task with sensory feedback, but in which correction does

not occur, the value at each state is learned according to an overestimated

version of value at the next state. Thus, a biased (suboptimal) value function is

learned (see Figure 1F).

(B) After learning, the RPE converges to zero.

(C) With a correction term, the correct value function is learned instead.

(D) The cost of forcing an unbiased learning of value is a persistent RPE. Intui-

tively, the value at the current state is not influenced by the overestimated

version of the value at the next state (comparewith A andB). By Equation 13, this

results in RPEs that ramp. See STAR Methods for simulation details.

ll
Article
After learning (i.e., when the RPE is zero on average), the esti-

mated value at every state will be roughly the estimated value at

the next state, discounted by g, on average (black curve in Fig-

ure 1D). A key requirement for this unbiased learning can be

discovered by writing the RPE equations for two successive

states:

dt = rt +g bV t + 1 � bV t (Equation 8)

dt + 1 = rt +1 +g bV t + 2 � bV t + 1: (Equation 9)

Notice here that bV t + 1 is represented in both equations. In

other words, bV t +1 must be computed at two separate time

points: at t (where it represents the value of the next state) and

at t + 1 (where it represents the value of the new, current state).

The TD equations, in their standard form, require that bV t +1

remain the same regardless of when it is computed to achieve

unbiased value learning. Said differently, for a value to be well

learned, a requirement is that bV t +1 should not acutely change

during the interval after computing dt and before computing

dt + 1. This requirement extends to changes in the uncertainty ker-

nels. By Equation 7, if the kernel pðtjt + 1Þwere to be acutely up-

dated due to information available at t + 1 but not at t, then bV t +1

will acutely change as well. This means that bV t will be dis-

counted based on bV t + 1 before feedback (i.e., as estimated at

t; red curves in Figure 1F) rather than bV t + 1 after feedback (i.e.,

as estimated at t + 1; black curve). In the next section, we will

examine this effect more precisely, and we will show that any

such acute change (here, due to sensory feedback) will cause

an unbiased agent to produce ramping RPEs.

Value learning in the presence of sensory feedback
How is value learning affected by sensory feedback? As each

time t is approached, state uncertainty is reduced due to sen-

sory feedback (arrows in Figure 1E). This is because at time

points preceding t, the estimate of what the value will be at t is

corrupted by both temporal noise and the lower resolution stim-

uli associated with t. Approaching t in the presence of sensory

feedback reduces this corruption. This, however, means thatbV t + 1 will be estimated differently while computing dt and dt +1

(Equations 8 and 9; compare widths of similarly shaded kernels

beneath each arrow in Figure 1E)—a violation of the requirement

mentioned above, which in turn results in biased value learning.

To examine the nature of this bias, we note that averaging over

a convex value function results in overestimation of values

(Figures 1A and 1B). Intuitively, convex functions are steeper

on the right (larger values; blue segment in Figure 1B) and shal-

lower on the left (smaller values; green segment in Figure 1B); so,

averaging results in a bias toward larger values. Furthermore,

wider kernels result in greater overestimation (STAR Methods).

Thus, upon entering each new state, the reduction of uncertainty

via sensory feedback will acutely mitigate this overestimation,

resulting in different estimates bV t +1 being used for dt and dt +1.

Left uncorrected, the value estimate will be systematically

biased, and in particular, the value will be overestimated at every

point (Figure 2A; STARMethods). An intuitive way to see this is as

follows: The objective of the TD algorithm (in this simplified task

setting) is for the value at each state t to be g times smaller than

the value at t + 1 by the time the RPE converges to zero
1080 Current Biology 32, 1077–1087, March 14, 2022
(Equation 2). If an animal systematically overestimates the value

at the next state, then it will overestimate the value at the current

state as well (even if sensory feedback subsequently diminishes

the next state’s overestimation). Thus, the ‘‘wrong’’ value func-

tion is learned (Figures 2A and 2B).

To overcome this bias, an optimal agent must correct the just

computed RPE as sensory feedback becomes available. In

STAR Methods, we show that this correction can simply be writ-

ten as follows:

bV ðn+ 1Þ
t = bV ðnÞ

t +adðnÞt pðtjtÞ � b bV ðnÞ
t pðtjtÞ (Equation 10)

x bV ðnÞ
t +adðnÞt pðtjtÞ � b bV ðnÞ

t ; (Equation 11)

where the approximate equality holds for sufficient reductions in

state uncertainty due to feedback, and

b=a

 
exp

"
ðlngÞ2�l2 � s2

�
2

#
� 1

!
: (Equation 12)

Here, the uncertainty kernel of bV t +1 has some standard devia-

tion l at tanda smaller standarddeviation s at t + 1. Inotherwords,

as the animal gains an improved estimate of bV t +1, it corrects the

previously computed dt with a feedback term to ensure unbiased

learning of the value (Figure 2C). Notice here that the correction

term is a function of the reduction in variance ðl2 �s2Þ due to sen-

sory feedback. In the absence of feedback, the reduction in vari-

ance iszero (theuncertaintykernel for t + 1cannotbe reduceddur-

ing the transition from t to t + 1), which means b = 0.

How does this correction affect the RPE? With enough

learning, the RPE converges when the estimated value no longer
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Figure 3. Differences in feedback result in

different RPE behaviors

(A) Schultz et al.1 have found that after learning,

phasic DA responses to a predicted reward

(R) diminish and instead begin to appear at the

earliest reward-predicting cue (conditioned stim-

ulus; CS). Figure from Schultz et al.1

(B) Our derivations recapitulate this result. In the

absence of sensory feedback, RPEs converge to

zero. Note here the absence of an RPE at reward

time in the experimental data. This is predicted by

the model because the CS-R duration is very small

(under 1.5 s) in the experimental paradigm, so tem-

poral uncertainty is also small. Longer durations are

predicted to result in an irreducible RPE response,

as has been experimentally observed,18 a point we

return to in the discussion.

(C) Howe et al.7 found that the DA signal ramps dur-

ing a well-learned navigation task over the course of

a single trial. Figure from Howe et al.7

(D) Our derivations recapitulate this result. In the

presence of sensory feedback, RPEs track the

shape of the estimated value function. See STAR

Methods for simulation details.
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changes on average, i.e., E½ bV ðn+ 1Þ
t � = E½ bV ðnÞ

t �. By Equation 10, the
RPE will therefore converge to the following:

dt =
b

a
bV t : (Equation 13)

Therefore, with sensory feedback, the RPE ramps and tracksbV t in shape (Figure 2D). In the absence of feedback, b = 0;

thus, there is no ramp. Note here that the RPE is not a function

of the learning rate a, as b itself is directly proportional to a

(Equation 12).

In summary, when feedback is provided with new states, value

learning becomes miscalibrated, as each value point will be

learned according to an overestimated version of the next (Fig-

ure 2A). With a subsequent correction of this bias, the agent

will continue to overestimate the RPEs at each point (RPEs will

ramp; Figure 2D) in exchange for learning the correct value func-

tion (Figure 2C).

Relationship with experimental data
In classical conditioning tasks without sensory feedback, DA

ramping is not observed (Figure 3A).1,6,18–25 On the other hand,

in goal-directed navigation tasks, characterized by sensory

feedback in the form of salient visual cues, as well as locomotive

cues (e.g., joint movement), DA ramping is present (Figure 3C).7

DA ramping is also present in classical conditioning tasks that do

not involve locomotion but that include either spatial or non-

spatial feedback,11 as well as in two-armed bandit tasks,8 in

the timing of movement initiation,10 and when executing self-

initiated action sequences.9,26

As described in the previous section, sensory feedback—due

to external cues or to the animal’s own movement—can recon-

cile both types of DA behaviors with the RPE hypothesis: In the

absence of feedback, there is no reduction in state uncertainty

upon entering each new state ðb = 0Þ, and therefore, there are

no ramps (Equation 13; Figure 3B). On the other hand, when

state uncertainty is reduced as each state is entered, ramps

will occur (Figure 3D). Intuitively, information received after an
RPE has already been computed (and hence, after a DA

response has already occurred) biases the learning of value.

To offset this bias, the RPE converges to be non-zero at the equi-

librium state (when the value is well learned). Furthermore,

because of the convexity of the value function, this non-zero

RPE must increase as the reward is approached.

In a direct test of the competing views of DA, we recently

devised a series of experiments to disentangle the value and

RPE interpretations (Figure 4, top panels).11 We trained mice on

a virtual reality paradigm, in which the animals experience virtual

spatial navigation toward a reward. Visual stimuli on the (virtual)

walls on either side of the path afforded the animals information

about their location at any given moment. We then introduced a

number of experimental manipulations—changing the speed of

virtual motion, introducing a forward ‘‘teleportation’’ at various

start and end points along the path, and pausing the navigation

for 5 s before resuming virtual motion. We showed that the value

interpretation of DA made starkly different predictions from the

RPE hypothesis and then demonstrated that DA behavior was

consistent with RPEs and not values.

To show this difference, we noted that RPEs can be approxi-

mated as the derivative of value (Equation 4, where rt = 0 leading

up to reward time, and g is close to 1; note that this view ignores

any contribution of state uncertainty). We then assumed that value

is ‘‘sufficiently convex’’ (STAR Methods) to produce a derivative

that increases monotonically. The task, then, was to simply

examine the expected effect of each experimental manipulation

on the value versus its derivative.

This view is limited in a number of ways. Perhaps most impor-

tantly, the presented model—that RPEs are the approximate de-

rivative of the value—fails to capture the recursive effect of RPEs

on the value: not only does a value estimate generate an RPE but

also the RPE modifies the value estimate. If RPEs ramp, then

they are always positive. But how, then, can the agent settle

on a single value estimate if the RPE is always causing the esti-

mate to increase? A second limitation of this model is that it had

to assume a sufficiently convex value function to achieve a
Current Biology 32, 1077–1087, March 14, 2022 1081
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Figure 4. RPE behaviors match DA re-

sponses under various task manipulations

We trained head-fixed mice on a visual virtual reality

task, in which they virtually navigated a scene with a

reward at the end.11 We then manipulated various

aspects of the task.

(A) When the mice were teleported from different

locations to the same end point, a large DA

response resulted and scaled with the size of the

teleport. When the navigation was paused for 5 s,

the DA response dropped to baseline, with a large

response occurring upon resuming navigation.

(B) Our derivations recapitulate this result. With an

instantaneous jump toward the reward, the RPE is

very large and increases with larger jumps. During a

pause, the RPE drops to zero but rapidly increases

when navigation resumes.

(C) When the mice were teleported from different

locations but with the same magnitude, large DA

responses resulted and increased in size closer to

the reward.

(D) Our derivations recapitulate this result. Because

of the convexity of the value function, an instanta-

neous teleportation of fixed magnitude will result in

a larger RPE when it occurs closer to the reward.

(E) When the scene was navigated through more

quickly, the ramp was steeper.

(F) Our derivations recapitulate this result. Faster

navigation results in denser visual feedback per time

point, i.e., the uncertainty kernels, defined by visual

landmarks, become tighter with respect to true time.

By Equations 12 and 13, this results in a greater

reduction in uncertainty and thus a steeper ramp.

(A), (C), and (E) are from Kim et al.11 See STAR

Methods for simulation details.
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monotonically increasing derivative (and hence a ramping RPE),

leaving open the question of where this convexity originates

from. Finally, this view cannot accommodate experiments where

ramps are not observed. Instead, the model would seemingly

predict ramping in all tasks, even though, as amply discussed

above, this is not the case (e.g., Schultz et al.1 and Kobayashi

and Schultz18). In Figure 4, we show that our uncertainty-based

model, which is not subject to these limitations, predicts the

entire range of experimental results in Kim et al.11

Manipulation of sensory feedback and DA bumps
We have shown that our framework captures an array of DA be-

haviors. However, the manipulations considered above do not

isolate sensory feedback as the key contributor to ramping.

We, therefore, sought to develop an experimental paradigm

that can distinguish our uncertainty-based model from the con-

ventional models.

By describing a relationship between sensory feedback and

DA ramps, our model predicts that a wide variety of DA re-

sponses can be elicited under the appropriate uncertainty pro-

files. In particular, our model makes an interesting prediction

about a third type of behavior that to the best of our knowledge

has not been previously observed: if state uncertainty

rapidly increases over the course of a trial, then rather than a

ramp, DA responses should exhibit a bump (Figure 5D). To see

this intuitively, we can examine the RPE behaviors early and

late in a trial in which the visual scene is gradually darkened,
1082 Current Biology 32, 1077–1087, March 14, 2022
putatively decreasing the sensory feedback over the course of

the trial. Initially, when the brightness is still high, the RPE should

behave as in the constant brightness condition (i.e., ramps). As

the scene darkens, wider uncertainty kernels ‘‘blur’’ the convex

value function more. Thus, the early ramp in the darkening con-

dition will be higher than that of the constant condition. However,

later in the trial, as the animal approaches the reward, wider un-

certainty kernels serve to flatten the estimated value function

(near the maximum value, averaging over a larger window de-

creases the value estimate). Thus, the RPE will begin to

decrease. Taken together, this results in an RPE bump that in-

creases early on and decreases later. Furthermore, because of

the lack of feedback near the reward time, the flatter estimated

value function will result in a larger reward response than in the

constant condition.

To test these predictions explicitly, we dynamically modulated

the reliability of sensory evidence by changing the brightness of

the visual scene over the course of a single trial (‘‘darkening’’

condition; Figures 5 and S3; Video S1). The darkening condition

(25%of trials) was randomly interleavedwith the constant bright-

ness condition (75% of trials). We independently interleaved the

standard speed and fast conditions (on 25% of trials, the scene

moved 1.7 times faster than the standard speed condition).

Including a small portion of fast conditions appeared to help an-

imals pay attention to the task. We monitored DA activity in the

ventral striatum using fiber fluorometry (Figures 5B and 5C).

Note that animals showed anticipatory licking in the darkening
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Figure 5. The state uncertainty model predicts DA responses in the darkening experiments
(A) Images of the visual scene captured at four different locations. The floor patterns were intact to prevent animals from inferring that the trial was aborted.

(B) Experimental design for fiber fluorometry. Adeno-associated virus (AAV) expressing a DA sensor ðGRABDA2mÞ was injected into the ventral striatum (VS). DA

signals were monitored through an optical fiber implanted into the VS.

(C) Recording locations. A coronal section of the brain at bregma, 1.10 mm.

(D) Model predictions. Note the three properties of the DA response in the darkening condition: the DA bump, the greater initial ramp compared with the constant

condition, and the stronger reward response compared with the constant condition. Black, constant condition with standard speed; gray, darkening condition

with standard speed; red, constant condition with fast speed (x1.7); yellow, darkening condition with fast speed.

(E) DA responses. Shaded areas at the bottom depict time windows for the three epochs used in (F) and (G).

(F) Average DA responses in the standard conditions. Three dots connected with lines represent individual animals (n = 11 mice).

(G) Average DA responses in the fast conditions (n = 11 mice). Shadings and error bars represent standard errors of the mean.

*p < 0.05, **p < 0.01, ***p < 0.001, t test. See also Figure S3.
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conditions (Figure S3B), suggesting that the animals did not think

that the trials were aborted.

As predicted, our manipulations of scene brightness—puta-

tively, manipulations of the sensory feedback—caused a DA

bump, a signal that increases early on and decreases later (Fig-

ure 5E, gray and yellow curves). When the scene moved at
standard speed, DA activity modestly ramped up in the constant

condition (Figure 5F, left), whereas DA activity displayed a bump

in the darkening condition (Figure 5F, right). The average re-

sponses in the middle epoch were significantly greater than

those of either the start or end epoch (p < 0.01, t test, n = 11

mice). Ramping in the constant condition became more evident
Current Biology 32, 1077–1087, March 14, 2022 1083
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when the scene moved fast (Figure 5G, left). Nevertheless, we

still observed a bump in the middle when the visual scene was

darkened (Figure 5G, right). Furthermore, because of the lack

of feedback near the reward time, our model predicts that the

flatter estimated value function will result in a larger (phasic)

response to the reward, compared with the constant condition,

for both the standard and fast conditions, as indeed observed

(Figure S3C, left and right, respectively; p < 0.01, t test, n = 11

mice).

DISCUSSION

While a large body of work has established phasic DA as an error

signal,1,3–6 more recent work has questioned this view.7–9,26

Indeed, in light of persistent DA ramps occurring in certain tasks

even after extensive learning, some authors have proposed that

DA may instead communicate value itself in these tasks.8 How-

ever, the determinants of DA ramps have remained unclear:

ramps are observed during goal-directed navigation, in which

animals must run to receive reward (operant tasks7), but it can

also be elicited in virtual reality tasks, in which animals do not

need to run for reward (classical conditioning tasks11). Within

classical conditioning, DA ramps can occur in the presence of

navigational or non-navigational stimuli indicating time to

reward.11 Within operant tasks, ramps can be observed in the

period preceding the action,27 as well as during the action itself.7

These ramps are, furthermore, not specific to experimental tech-

niques and measurements and can be observed in cell body ac-

tivities, axonal calcium signals, and DA concentrations.11

We have shown in this work that, under the RPE hypothesis of

DA, sensory feedbackmay control the different observed DA be-

haviors: in the presence of persistent sensory feedback, RPEs

track the estimated value in shape (ramps), but they remain flat

in the absence of feedback (no ramps). Thus, DA ramps and

phasic responses follow from common computational principles

and may be generated by common neurobiological mecha-

nisms. Moreover, a curious lemma of this result is that a

measured DA signal whose shape tracks with the estimated

value need not be evidence against the RPE hypothesis of DA,

contrary to some claims.8,28 Indeed, in the presence of persis-

tent sensory feedback, dt and bV t have the same shape. Thus,

our derivation is conceptually compatible with the value interpre-

tation of DA under certain circumstances, but importantly, this

derivation captures the experimental findings in other circum-

stances in which the value interpretation fails (see below for

further discussion).

Our model implies that a variety of peculiar DA responses can

be attained under the appropriate sensory feedback profiles. In

particular, knowing that the value increases monotonically over

the course of a trial, our results imply that a rapidly decreasing

sensory feedback profile will result in a previously unobserved

DA bump. By testing animals on conditions in which the visual

scenes gradually darkened over the course of a single trial, we

found exactly this result: a DA response that ramps up early on

and ramps down later.

Our work takes inspiration from previous studies that exam-

ined the role of state uncertainty in DA responses.18,29–34 For

instance, temporal uncertainty increases with longer dura-

tions.15–17 This means that in a classical conditioning task, DA
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bursts at reward time will not be completely diminished and

will be larger for longer durations, as Kobayashi and Schultz18

and Fiorillo et al.30 have observed. Similarly, Starkweather

et al.33 have found that in tasks with uncertainty both in whether

reward will be delivered and when it is delivered, DA exhibits a

prolonged dip (i.e., a negative ramp) leading up to reward deliv-

ery. Here, the value initially increases as expected reward time is

approached, but then it begins to slowly decrease as the proba-

bility of reward delivery during the present trial becomes less and

less likely, resulting in persistently negative prediction errors (see

also Babayan et al.25 and Starkweather et al.35). As the authors of

these studies note, both the results are fully predicted by the RPE

hypothesis of DA. Hence, state uncertainty, due to noise either in

the internal circuitry or in the external environment, is reflected in

the DA signal.

Alternative hypotheses
One might argue that state uncertainty is not necessary to

explain the results in the darkening experiments. To address

this issue, we considered the possibilities that the DA responses

can be explained either by the value interpretation of DA or by an

RPE hypothesis that does not account for state uncertainty

(STAR Methods). Briefly, the non-monotonic behavior of the

DA response is incompatible with the value interpretation of

DA, as darkening the visual scene should not decrease the value.

Indeed, the animals’ lick rates continued to increase in both the

constant and darkening conditions (Figure S3). Second, the DA

patterns are incompatible with the conventional, uncertainty-in-

dependent RPE view. To show this, we recovered the value func-

tions from the putative RPE signals and found that the value in

the darkening condition would have to be globally greater than

that in the constant condition. However, under the uncertainty-

free RPE hypothesis, the value in the darkening condition should

either be the same as in the constant condition (value estimates

unaffected by brightness) or smaller (if an inability to see the

reward at the end of the trial leads to an assumed reward prob-

ability that is less than 1). We expand on these points in STAR

Methods.

Finally, we note that our results are based on the assumption

that animals maintain the same value function across experi-

mental conditions. Said differently, we have assumed here that

animals learn the value function in the constant condition and

subsequently apply this previously learned value function to

probe trials in which the scene is gradually darkened. It is

possible, however, that animals learn a separate value function

for the darkening conditions. Because RPEs in our model in-

crease with larger values and decrease with lower feedback, it

remains possible that such an alternative model will still capture

the observed effects (STAR Methods).

While we have derived RPE ramping from normative princi-

ples, it is important to note that a complete correction is not

necessary to produce ramping. Furthermore, biases in value

learning may also produce ramping. For instance, one earlier

proposal by Gershman12 was that the value may take a fixed

convex shape in spatial navigation tasks; the mismatch between

this shape and the exponential shape in Equation 2 produces a

ramp (see STAR Methods for a general derivation of the condi-

tions for a ramp). Morita and Kato,36 on the other hand, posited

that value updating involves a decay term, which is qualitatively
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similar to that in Equation 10, and thus RPE ramping (see also im-

plementations in Mikhael and Bogacz37 and Cinotti et al.38).

Ramping can similarly be explained by assuming temporal or

spatial bias that decreases with approach to the reward, by

modulating the temporal discount term during task execution

or by other mechanisms (STAR Methods). In each of these pro-

posals, ramps emerge as a ‘‘bug’’ in the implementation, rather

than as an optimal strategy for unbiased learning. These pro-

posals, furthermore, do not explain the different DA patterns

that emerge under different paradigms. Finally, it should be

noted that we have not assumed any modality- or task-driven

differences in learning (any differences in the shape of the RPE

follow solely from the sensory feedback profile), although in prin-

ciple, different value functions may certainly be learned in

different types of tasks (STAR Methods).

Alternative accounts of DA ramping that deviate more signifi-

cantly fromour framework have also been proposed. In particular,

Lloyd andDayan39 have provided three compelling theoretical ac-

counts of ramping. In the first account, the authors show that

within an actor-critic framework, uncertainty in the communicated

information between actor and critic regarding the timing of action

executionmay result in amonotonically increasingRPE leading up

to the action. In the second account, ramping modulates gain

control for value accumulation within a drift-diffusion model

(e.g., by modulating neuronal excitability40). Under this frame-

work, fluctuations in tonic and phasic DA produce average ramp-

ing. The third account extends the average reward rate model of

tonic DA proposed by Niv et al.41 In this extended view, ramping

constitutes a ‘‘quasi-tonic’’ signal that reflects discounted vigor.

The authors show that the discounted average reward rate follows

ð1�gÞV and hence takes the shape of the value function in TD

learning models. Ramps may also result from perceived control,

i.e., they may only occur if the animal thinks it can control the

outcome of the task. While the virtual reality experiments of Kim

et al.11 strongly argue against this possibility, as the head-fixed

animals who did not display running behavior during the task still

exhibited ramps, it remains possible that these animals adopted

some other, unmeasured superstitious behavior, thus resulting

in perceived control. Finally, and relatedly, Howe et al.7 have pro-

posed that ramps may be necessary for sustained motivation in

the operant tasks considered. Indeed, the notion that DA may

serve multiple functions beyond the communication of RPEs is

well motivated and deeply ingrained.42–46 Our work does not

necessarily invalidate these alternative interpretations but rather

shows how a single RPE interpretation can embrace a range of

apparently inconsistent phenomena.

Lingering questions
A number of questions arise from our analysis. First, while our

work examines learning with sensory feedback at the normative

and algorithmic levels, how this uncertainty-guided update is im-

plemented neurobiologically remains an open question. Our

model predicts that RPEs depend on both the reduction in un-

certainty and the estimated value. As the latter term develops

with exposure to multiple trials, presumably via strengthening

of synaptic weights,47,48 so too will the ramps. However, how

the signal noise and resulting reduction in uncertainty are en-

coded and how they evolve in parallel during the first few trials

remain a subject of active debate.49
Second, is there any evidence to support the benefits of

learning the ‘‘true’’ value function—as written in Equation 2 (Fig-

ure 2C)—over the biased version of value (Figure 2A)? We note

here that under the normative account, the agent seeks to learn

some value function that maximizes its well-being, whose exact

shape has been the subject of much interest.50–53 Our key result

is that this function—regardless of its exact shape—will not be

learned well if feedback is delivered during learning unless

correction ensues. Beyond learning a suboptimal value function,

the agent will furthermore be biased across options, as two

equally rewarding options will generate different value functions

if one was learned with feedback and the other was not (see

STAR Methods for a similar case in which this bias is costly).

Note also that, while we have chosen the exponential shape in

Equation 2 after the conventional TDmodels, our ramping results

extend to any convex value function.

Third, due to the presumed exponential shape, the ramping

behaviors resulting from our analysis may also at times look

exponential, rather than linear. We nonetheless have chosen to

remain close to conventional TD models and purely exponential

value functions for ease of comparison with the existing theoret-

ical literature. Perhaps equally important, the relationship be-

tween RPE and its neural correlate need only be monotonic

and not necessarily equal. In other words, a measured linear

signal does not necessarily imply a linear RPE, and a convex

neural signal need not communicate convex information. It re-

mains an open question of how to best bring abstract TDmodels

into alignment with biophysically realistic assumptions about the

signal-generating process.
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MATLAB MathWorks https://www.mathworks.

com/

Other

Isosol (Isourane, USP) Vedco N/A

LRS-0473 DPSS Laser

System

LaserGlow Technologies Cat #R471003FX

Mono Fiber-optic Cannulas Doric Lenses MFC 200/245-0.53 5mm

MF1.25 FLT
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, John G.

Mikhael (john_mikhael@hms.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Source code for all simulations can be found at www.github.com/jgmikhael/ramping.

Data for Figures 5 and S3 can be found at and https://doi.org/10.6084/m9.figshare.16706788.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In addition to the fifteen GCaMP mice used in the previous study,11 eleven adult C57/BL6J wild-type male mice were used for the

scene darkening experiments using the DA sensor (DA2m). All mice were backcrossed for more than 5 generations with C57/

BL6J mice. Animals were singly housed on a 12 hr dark/12 hr light cycle (dark from 07:00 to 19:00). All procedures were performed

in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Harvard

Animal Care and Use Committee.

METHOD DETAILS

Temporal difference learning and its neural correlates
Under TD learning, each state is determined by task-relevant contextual cues, referred to as features, that predict future rewards. For

instance, a state might be determined by a subjective estimate of time or perceived distance from a reward. We model the agent as

approximating Vt by taking a linear combination of the features1,54,55:bV t =
X
d

wdxd;t; (Equation 14)

where bV t denotes the estimated value at time t, and xd;t denotes the dth feature at t. The learned relevance of each feature xd is re-

flected in its weightwd, and theweights are updated in the event of amismatch between the estimated value and the rewards actually
e1 Current Biology 32, 1077–1087.e1–e9, March 14, 2022
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received. The update occurs in proportion to each weight’s contribution to the value estimate at t:

w
ðn+1Þ
d = w

ðnÞ
d +ad

ðnÞ
t xd;t; (Equation 15)

where a˛ð0;1Þ denotes the learning rate, and the superscript denotes the learning step. In words, when a feature xd does not

contribute to the value estimate at t ðxd;t = 0Þ, its weight is not updated. On the other hand, weights corresponding to features

that do contribute to bV t will be updated in proportion to their activations at that time. This update rule is referred to as gradient ascent

(xd;t is equal to the gradient of bV t with respect to the weightwd), and it implements a form of credit assignment, in which the features

most activated at t undergo the greatest modification to their weights.

In this formulation, the basal ganglia implements the TD algorithm termwise: Cortical inputs to striatum encode the features xd;t,

corticostriatal synaptic strengths encode the weightswd,
47,48 phasic activity of midbrain DA neurons encodes the error signal dt,

1,3–6

and the output nuclei of the basal ganglia (substantia nigra pars reticulata and internal globus pallidus) encode estimated value bV t.
56

We have implicitly assumed in the Results amaximally flexible feature set, the complete serial compound representation,1,48,57,58 in

which every time step following trial onset is represented as a separate feature. In other words, the feature xd;t is 1 when t = d and

0 otherwise. In this case, value at each timepoint is updated independently of the other timepoints, and each has its own weight. It

follows that bV t = wt, and we can write Equation 15 directly in terms of bV t, as in Equation 5.

Value learning under state uncertainty
The animal has access to subjective time t, fromwhich it forms a belief state pðtjtÞ, or, in Bayesian terms, a posterior distribution over

true time. For simplicity, we have taken this distribution to be Gaussian, and we assume weak priors so that temporal estimates,

though noisy, are accurate. In this case, the subjective time estimate is E½tjt� and is equal to the posterior mean. Note here that

we are only concerned with capturing the noisy property of internal clocks. While a large literature has sought to establish the exact

relationship between internal (‘psychological’) time and true time with varying degrees of success (e.g., linear vs. logarithmic relation-

ship59–63), our work is invariant to this exact relationship, and only depends on animals’ ability to reproduce time veridically on

average, with some noise,15–17 which we take here to be Gaussian. Intuitively, animals only have access to subjective time, and

compute values and RPEs with respect to subjective time. Because the mapping between subjective and objective time is mono-

tonic, a ramp in subjective time will also be a ramp in objective time.

Given the subjective time t, the RPE is then:

dt = rt +g bV t + 1 � bV t; (Equation 16)

and this error signal is used to update the value estimates at each point t in proportion to its posterior probability pðtjtÞ:
bV ðn+ 1Þ
t = bV ðnÞ

t +adðnÞt pðtjtÞ: (Equation 17)

Said differently, the effect of state uncertainty is that when the error signal dt is computed, it updates the value estimate at a number

of timepoints, in proportion to the uncertainty kernel.25,64

Note here that, in the absence of uncertainty, our task structure obeys the Markov property: State transitions and rewards are in-

dependent of the animal’s history given its current state. An appeal of using belief states is that the task remainsMarkovian, but in the

posterior distributions rather than in the signals, and the TD algorithm can be applied directly to our learning problem, as in Equations

16 and 17. This problem is a type of partially observable Markov decision process.65

Acute changes in state uncertainty result in biased value learning
Averaging over a convex value function results in overestimation of value. For an exponential value function, we can derive this

result analytically in the continuous time domain by computing the convolution of an exponential value function with a Gaussian

kernel:

Z
t

gT�tN �t; t;s2
t

�
dt =

Z
t

gT�texp
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��

t

; (Equation 19)

where st is the standard deviation of the uncertainty kernel at t. The integral is evaluated over the entire temporal interval (i.e., the

duration of a trial leading up to reward), but the contribution of distant timepoints is negligible when the Gaussian kernel width is small

compared to the total temporal interval. Thus we can evaluate the integral from �N to +N for analytical convenience, representing

points that far precede and far exceed t relative to the kernel width, respectively:
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#
: (Equation 22)

The second term on the right-hand side is greater than one, so value is overestimated. Intuitively, because the function is steeper on

the right side and shallower on the left side, the average will be overestimated. Importantly, however, the estimate will be amultiple of

the true value, with a scaling factor that depends on the width of the kernel (second term on right-hand side of Equation 22; note also

that while we have assumed a Gaussian distribution, our qualitative results hold for any distribution that results in overestimation of

value). Thus, with sensory feedback that modifies the width of the kernel upon transitioning from one state (t) to the next ðt + 1Þ, there
will be a mismatch in the value estimate when computing each RPE. More precisely, at t, the learning rules are:bV t =

X
t

pðtjt; st = sÞ bV t (Equation 23)
bV t + 1 =
X
t

pðtjt + 1; st + 1 = lÞ bV t (Equation 24)
dt = rt +g bV t + 1 � bV t (Equation 25)
bV ðn+1Þ
t = bV ðnÞ

t +adðnÞt pðtjt;st = sÞ: (Equation 26)

Notice that bV t +1 takes different values depending on the state: At t, the agent computes bV t +1 according to Equation 25, whereas

at t + 1, it computes bV t + 1 as: bV t + 1 =
X
t

pðtjt + 1; st +1 = sÞ bV t: (Equation 27)

How does this mismatch affect the learned value estimate? If averaging with kernels of different standard deviations can be written

as multiples of true value, then they can be written as multiples of each other. The RPE is then

dt = rt +gða bV t + 1;sÞ � bV t;s; (Equation 28)

wherewe use the comma notation in the subscripts to denote that the two value estimates are evaluatedwith the same kernel width s,

and a is a constant. By analogy with Equations 2 and 4, estimated value converges to bV t = ðagÞT�tr. Here, a>1, so value is system-

atically overestimated. By the learning rules in Equations 23, 24, 25, and 26, this is because dt is inflated by

X
t

pðtjt + 1;st + 1 = lÞ bV t �
X
t

pðtjt + 1; st +1 = sÞ bV t = exp

"
ðlngÞ2l2

2

# bV t � exp

"
ðlngÞ2s2

2

# bV t (Equation 29)
=

 
exp

"
ðlngÞ2�l2 � s2

�
2

#
� 1

! bV t (Equation 30)
=
b

a
bV t: (Equation 31)

where b is defined in Equation 12.
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An optimal agent will use the available sensory feedback to overcome this biased learning. Because averaging with a kernel of

width l is simply a multiple of that with width s, it follows that a simple subtraction can achieve this correction (Equations 10 and

11). Hence, sensory feedback can improve value learning with a correction term. It should be noted that with a complete correc-

tion to s as derived above, the bias is fully extinguished. For corrections to intermediate widths between s and l, the bias will be

partially corrected but not eliminated. In both cases, because b>0, ramps will occur.

Inextensionof theTemporaldifference learningand itsneuralcorrelatessection,wecanposit an implementationofuncertaintykernels

in which sensory information is relayed from cortical areas47,48 and the uncertainty due to Weber’s law is based in fronto-striatal

circuitry.66

RPEs are approximately the derivative of value
Consider the formula for RPEs in Equation 4. In tasks where a single reward is delivered at T, rt = 0 for all t<T (no rewards delivered

before T). Because gx1, the RPE can be approximated as

dtx
bV t + 1 � bV t

ðt + 1Þ � t
; (Equation 32)

which is the slope of the estimated value. To examine the relationship between value and RPEs more precisely, we can extend our

analysis to the continuous domain:

dðtÞ = lim
Dt/0

gDt bV ðt +DtÞ � bV ðtÞ
Dt
= lim
Dt/0

gDt bV ðt +DtÞ � gDt bV ðtÞ+ ðgDt � 1Þ bV ðtÞ
Dt

(Equation 33)
= lim
Dt/0

bV ðt +DtÞ � bV ðtÞ
Dt

lim
Dt/0

gDt + lim
Dt/0

ðgDt � 1Þ bV ðtÞ
Dt

(Equation 34)
=
_bV ðtÞ lim

Dt/0
gDt + bV ðtÞ lim

Dt/0

gDt � 1

Dt
=
_bV ðtÞ lim

Dt/0
gDt + bV ðtÞ lim

Dt/0

gDt lng

1
(Equation 35)
=
_bV ðtÞ lim

Dt/0
gDt + bV ðtÞðlngÞ lim

Dt/0
gDt
=
_bV ðtÞ+ bV ðtÞlng; (Equation 36)

where
_bV ðtÞ is the time derivative of bV ðtÞ, and the fifth equality follows from L’Hôpital’s Rule. Here, ln g has units of inverse time.

Because ln gx0, RPE is approximately the derivative of value.

Sensory feedback in continuous time
In the complete absence of sensory feedback, st is not constant, but rather increases linearly with time, a phenomenon referred to as

scalar variability, a manifestation of Weber’s law in the domain of timing.15–17 In this case, we can write the standard deviation as st =

wt, where w is the Weber fraction, which is constant over the duration of the trial.

Set l =wðt +DtÞ and s = wt. Following the steps in the previous section

Hence, as derived for the discrete case, RPEs are inflated, and value is systematically overestimated.

dðtÞ = lim
Dt/0

gDte
ðln gÞ2

2
w2ððt +DtÞ2�t2Þ bV ðt +DtÞ � bV ðtÞ

Dt

=
_bV ðtÞ + bV ðtÞln g + bV ðtÞðln gÞ2w2t

>
_bV ðtÞ + bV ðtÞln g:

(Equation 37)
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RPE ramps result from sufficiently convex value functions
By Equation 36, the condition for ramping is _dðtÞ>0, i.e., the estimated shape of the value function at any given point, before feedback,

must obey

€bV ðtÞ+ _bV ðtÞln g>0; (Equation 38)

where
€bV ðtÞ is the second derivative of bV ðtÞwith respect to time. For an intuition of this relation, note that when gx1, the inequality can

be approximated as
€bV ðtÞ>0, which denotes any convex function. The exact inequality, however, has a tighter requirement on bV ðtÞ:

Since
_bV ðtÞln g<0 for all t, ramping will only be observed if the contribution from

€bV ðtÞ (i.e., the convexity) outweighs the quantity
_bV ðtÞln g (the scaled slope). For example, the function in Equation 2 does not satisfy the strict inequality even though it is convex,

and therefore with this choice of bV ðtÞ, the RPE does not ramp. In other words, to produce an RPE ramp, bV ðtÞ has to be ‘sufficiently’

convex.

Biased value estimates and reward forfeiture
Let us illustrate here how a biased value function can lead to suboptimal choices. Imagine a two-armed bandit task in which the an-

imal chooses between two options, A and B, yielding rewards rA and rB, respectively, after a fixed delay T.

Assume rA = 1 is learned under conditions with rich sensory feedback, and rB = 1:5 is learned without feedback. Assume, also, that

the animal learns according to the TD algorithmwithout a correction term. Using the simulation parameters for Figure 2A, with a delay

of T = 20, it follows that the values at the time of choice are bVAð0Þ= 0:2 (Figure 2A, black curve at t = 28) andbVBð0Þ= rBg
T = ð1:5Þð0:920Þ= 0:18 (Figure 2A, approximated as blue curve at t = 28, scaled by rBÞ. After learning, the animal will be

more likely to select A. (Furthermore, a greedy animal will asymptotically only select A.) With each selection of A, the animal forfeits

an additional rB�rA
rA

= 50% of reward potential.

Alternative hypotheses and DA bumps
We have argued in the main text that DA bumps can be captured by an uncertainty-driven view of RPEs but not by the value inter-

pretation or the standard, uncertainty-free RPE hypothesis. To rule out the alternative hypotheses, we begin by deconvolving the

DA2m response, yielding a signal that we interpret as either pure value or uncertainty-free RPE.

The deconvolved signal is monotonic in the constant condition but non-monotonic in the darkening condition (Figure S1B). On the

other hand, the licking data—putatively reflecting the animal’s estimate of value—increases monotonically in both conditions (Fig-

ure S3B, top panel). Taken together, these findings rule out the value interpretation of DA.

Next, we show that this signal is incompatible with an uncertainty-free RPE. To do so, we infer the value from the computed RPE

(Figure S1C, using the derivation below). There is one free parameter, g. We find that value is greater in the darkening condition than in

the constant condition, even though under the uncertainty-free RPE hypothesis, it should either be the same (value estimate unaf-

fected by brightness) or smaller (if an inability to see the reward location suggests a probability of receiving reward that is no longer

equal to 1). Although g is a free parameter, this result does not depend on g, as Vt +1 = dt +Vt

g
, so g simply amplifies or reduces existing

differences, but does not reverse them.

To derive value from RPEs and g, we use the relation:

Vt =
Xt�1

t0 = 0

dt0

gt�t0 for t>0: (Equation 39)

To show that Equation 39 solves for Vt using Equation 4 leading up to reward (i.e., when rt = 0), we use proof by induction. First, for

t = 1,

V1 =
X0
t0 = 0

dt0

gt�t0 =
d0

g
: (Equation 40)

Thus Equation 39 holds for t = 1. Now assume it holds for t; let us show it also holds for t + 1: as required.

Vt + 1 =
dt

g
+
Vt

g

=
dt

g
+
1

g

Xt 1
t0 = 0

dt0

gt�t0

=
1

g

 
dt +

Xt 1
t0 = 0

dt0

gt�t0

!

=
1

g

Xt

t0 = 0

dt0

gt�t0 ;

(Equation 41)
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DA bumps as a consequence of learning
In modeling the darkening manipulation, we have assumed that animals do not learn a separate value function for the probe trials in

the darkening condition. We noted, however, that because of the opposite effects of the uncertainty profile and value on the RPE

signal, bumps should still be observed when the manipulation occurs during learning (rather than only during performance). We

show this analytically here.

Consider amanipulation in which the scene is gradually darkened, transitioning from perfect brightness to complete darkness over

the course of a single trial. Using the terminology in the main text, the reduction in standard deviation ðl�sÞ decreases monotonically

over the course of the trial (less sensory feedback), eventually reaching zero. But value increases monotonically over the trial, starting

at zero. By Equation 13, the RPE reflects a product of bV and b, which itself depends on ðl2 � s2Þ = ðl � sÞðl + sÞ. This means that the

RPE should be zero at the beginning of the task and the end, but be positive in the middle. Because both V and b are continuous and

differentiable, so is their product. Thus we predict that the RPE will gradually increase, reach some maximum, and subsequently

decrease back to zero within a single trial (Figure S2).

Alternative causes of ramping
We have argued that ramping follows from normative principles. Here we illustrate that various types of biases (‘bugs’ in the imple-

mentation) may also lead to RPE ramps.

Ramping due to bias in state estimation

Assume the animal persistently overestimates the amount of time or distance remaining to reach its reward (or, equivalently, that it

underestimates the time elapsed or the distance traversed so far), and that this overestimation decreases as the animal approaches

the reward. For instance, since the receptive fields of place cells decrease as the animal approaches reward,67 the contribution of

place cells immediately behind the approaching animal in its estimate of value may outweigh that from the place cells in front of

it. It will simplify our analysis to set T = 0 without loss of generality, and allow time to progress from the negative domain ðt <0Þ toward

T = 0. In the continuous domain and for the simple case of linear overestimation, we can write this asbV ðtÞ = g�htr; (Equation 42)

where h>1 is our overestimation factor. Therefore, by Equation 36,

dðtÞ = _bV ðtÞ + bV ðtÞln g

= ðln gÞð1� hÞg�htr;
(Equation 43)

which is monotonically increasing. Hence, the RPE should ramp. Equivalently, in the discrete domain:

dt = g bV t + 1 � bV t

=gg�hðt + 1Þr�g�htr
=g�ht

�
g1�h � 1

�
r:

(Equation 44)

Here, dt + 1>dt. Hence, the RPE should ramp.

Ramping due to state-dependent discounting of estimated value

Assume the animal underestimates bV ðtÞ by directly decreasing the temporal discount term g. Then if bV ðtÞ = ðhgÞT�tr, with h˛ ð0;1Þ,
we can write in the continuous domain:

dðtÞ = _bV ðtÞ + bV ðtÞln g

= ð�ln hÞðhgÞT�t
r;

(Equation 45)

which is monotonically increasing. Hence, the RPE should ramp. Equivalently, in the discrete domain, if bV t = ðhgÞT�tr with h˛ ð0; 1Þ,
we can write

dt = ðhgÞT�t

�
1

h
� 1

�
r; (Equation 46)

and

dt + 1 = ðhgÞ�1
dt: (Equation 47)

Here, dt + 1>dt. Hence, the RPE should ramp.

Simulation details
In all simulations, the agent updated its estimate of a value function according to the TD algorithm, implemented by Equations 7, 8, 10,

and 12. Task-specific details and choices of parameters are described below.

Impulse response function

Tomodel experiments involving Ca2+ andDA2m signals, we used theGCaMP impulse response function obtained in Kim et al.,11 and

the DA2m impulse response function was obtained in the same manner, by averaging responses to unexpected reward. These
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functions were convolved with the computed RPEs to obtain simulated Ca2+ signals (Figure 4) and DA2m signals (Figures 5D, S1, and

S2D).

Value learning under state uncertainty

Figure 1: For our TD learning model, we have chosen g = 0:9, a = 0:1, n= 50 states, and T = 48. In the absence of feedback, un-

certainty kernels are determined by the Weber fraction, set to w = 0:15.68 In the presence of feedback, uncertainty kernels have

a standard deviation of l = 3 before feedback and s= 0:1 after feedback. For the purposes of averaging with uncertainty kernels, value

peaks at T and remains at its peak value after T, and the standard deviation at the last 4 states in the presence of feedback is fixed to

0.1. Intuitively, the agent expects reward to be delivered, and attributes any lack of reward delivery at t =T to noise in its timingmech-

anism (uncertainty kernels have nonzero width) rather than to a reward omission. The agent iterated through all 50 states on every trial

(three red curves on figure only to visually illustrate value overestimation). The agent experienced 1000 successive trials.

Value learning in the presence of sensory feedback

Figure 2: For our TD learning model, we have chosen g = 0:9, a = 0:1, n= 50 states, and T = 48. The agent experienced 1000 suc-

cessive trials.

Relationship with experimental data (Figures 3 and 4)

For convolutions over negative RPEs, it is important to account for the low baseline firing rates of DA neurons, i.e., that negative RPEs

cannot elicit phasic responses that equal those elicited by positive RPEs of similar magnitude. Thus, following previous experi-

mental69–71 and theoretical72–74 work, we account for an asymmetry between positive and negative RPEs in the DA signal. We do

so by scaling the RPEs by themaximum change in spiking activity in either the positive or negative direction. After Kim et al.,11 resting

state spiking activity is approximately 5 spikes/second, the maximum spiking is 30 spikes/second, and the minimum spiking is

0 spikes/second. Thus one unit of positive RPE influences the DA response 30�5
5�0 = 5 times as strongly as one unit of negative RPE.

Figure 3: For our TD learning model, we have chosen g = 0:98, a = 0:1, andWeber fractionw = 0:15. For the navigation task, ker-

nels have standard deviation l = 3 before feedback and s= 0:1 after feedback. For (B) and (D), we have set n= 10 and 70 states,

respectively, between trial start and reward. RPEs were convolved with the GCaMP kernel, as described above, to produce simu-

lated DA behaviors. The agent experienced 2000 successive trials.

Figure 4: For our TD learning model, we have chosen g = 0:93, a = 0:1, and w = 0:15. The locomotion manipulations in the

pause, teleport, and speed conditions all matched those in the experiments of Kim et al.11 In particular, standard trials had length

7.6s from the CS to reward, and we set 10 states per second in our simulations. The agent was trained on the standard task and

subsequently experienced either an unexpected pause, an unexpected teleport, or an unexpected change in navigation speed. In

the pause condition, the agent experienced a 5-s pause at the 53rd state (i.e., after navigating 70% of states between the CS and

reward). In the short and long teleport conditions, states 59-62 and 40-62 were omitted, respectively, corresponding to 5% and

30% of states between the CS and reward. In the teleport conditions of equal magnitude, 25 states (30% of states between the CS

and reward) were omitted, beginning at state 5, 25, or 45. Kernels have standard deviation l = 1 before feedback and s= 0:5 after

feedback for the teleport and pause manipulations. In the speed conditions, the task was experienced at either 20 (fast), 10

(normal), or 5 (slow) states per second. Kernels have standard deviation l = 3 before feedback and s= 1 after feedback for the stan-

dard-speed manipulation. Experiencing the trial twice as fast corresponds to the kernels being stretched by a factor of 2, resulting

in a greater reduction in uncertainty and a steeper ramp. Intuitively, navigating a track very quickly leads to lower precision about

one’s exact location at any given moment. Similarly, experiencing the trial in the slow condition corresponds to a smaller reduction

in uncertainty and a shallower ramp. In our simulation, the reduction in uncertainty is sufficiently weak that the shape of the value

function dominates the RPE (see black curve in Figure 1D, corresponding to estimated value without feedback). Near reward time,

the estimated value function may not be sufficiently convex (and may even be concave) with weak or absent feedback, so the RPE

becomes negative. RPEs were convolved with the GCaMP kernel, as described above, to produce simulated DA behaviors. The

agent experienced 2000 successive trials.

Manipulation of sensory feedback and DA bumps

Figure 5: The TDmodel is identical to that in Figure 4. For both the constant and darkening conditions, we have chosen g = 0:93, a =

0:1,w = 0:15, and n= 200 states. For the constant condition, the small kernel width is a constant, s = a. For the darkening condition,

the width resembles that of the constant condition early on and resembles one without feedback later, ðs � aÞðs �wt � bÞ = c. The

shape of this function is controlled by two parameters, c and b. The first determines how smoothly s transitions from resembling that

of the constant condition to behaving according to Weber’s law, and the second determines when this occurs. The large uncertainty

kernel width is l = s+ z, where z is a constant in the constant condition, and z decreases smoothly to zero over the course of the trial in

the darkening condition, which we model as z = d
1+expðetÞ. We set a = 8, b = 0:3, c = 3, d = 1, and e = 1. Because the reduction in

uncertainty ðl2 �s2Þ is constant in the constant condition and decreases in the darkening condition, it follows that b is constant in the

constant condition and decreases in the darkening condition, as well. RPEs were convolved with the DA2m kernel, as described

above, to produce simulated DA behaviors. The agent experienced 2000 successive trials.

Surgery and virus injections. Surgery for fiber fluorometry of DA sensor signals. To prepare animals for recording, we performed

a single surgery with three key components: (1) injection of a DA sensor into the ventral striatum, (2) head-plate installation, and (3)

implantation of an optical fiber into the striatum.24,25 At the time of surgery, all mice were 2–4 months old. All surgeries were per-

formed under aseptic conditions with animals anesthetized with isoflurane (1-2% at 0.5-1.0 L/min). Analgesia (ketoprofen for

post-surgery treatment, 5 mg/kg I.P.; buprenorphine for pre-operative treatment, 0.1 mg/kg, I.P.) was administered for 3 days

following each surgery. We removed the skin above the surface of the brain and dried the skull using air. We injected 400 nL of
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AAV9-hSyn-DA2m (Vigene Biosciences) into the ventral striatum (bregma 1.0, lateral 1.1, depths 4.2 and 4.1 mm). Virus injection

lasted several minutes, and then the injection pipette was slowly removed over the course of several minutes.

We then installed a head-plate for head-fixation by gluing a head-plate onto the top of the skull (C&B Metabond, Parkell). We used

ring-shaped head-plates to ensure that the skull above the striatum would be accessible for fiber implants. Finally, during the same

surgery, we also implanted optical fibers into the ventral striatum. To do this, we first slowly lowered optical fibers (200 mm diameter,

Doric Lenses) into the striatum using a fiber holder (SCH_1.25, Doric Lenses). The coordinates we used for targeting were bregma

1.0, lateral 1.1, depth 4.1 mm. Once fibers were lowered, we first attached them to the skull with UV-curing epoxy (Thorlabs, NOA81),

and then a layer of black Ortho-Jet dental adhesive (Lang Dental, IL). After waiting for fifteen minutes for this glue to dry, we applied a

small amount of rapid-curing epoxy (A00254, Devcon) to attach the fiber cannulas to the underlying glue and head-plate. After waiting

for fifteen minutes for the epoxy to cure, the surgery was completed.

Surgery for fiber fluorometry of GCaMP signals in the ventral striatum. To examine axonal calcium signals of dopaminergic neu-

rons in the ventral striatum, we injected AAV-FLEX-GCaMP into the midbrain of DAT-Cre mice.11 Surgical procedures up to virus in-

jection were the same as the DA sensor injections described above. We unilaterally injected 250 nL of AAV5-CAG-FLEX-GCaMP6m

(13 1012 particles/mL, Penn Vector Core) into both the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (500

nL total). To target the VTA, we made a small craniotomy and injected the virus at bregma 3.1, lateral 0.6, depths 4.4 and 4.1 mm. To

target SNc, we injected the virus at bregma 3.3, lateral 1.6, depths 3.8 and 3.6 mm.

Virtual reality setup. Virtual environments were displayed on three liquid crystal display (LCD) monitors with thin frames.11 VirMEn

software75 was used to generate virtual objects and render visual images using perspective projection. Mice were head-restrained at

the center of three monitors. Mice were placed on a cylindrical styrofoam treadmill (diameter 20.3 cm, width 10.4 cm). The rotational

velocity of the treadmill was encoded using a rotary encoder. The output pulses of the encoder were converted into continuous

voltage signals using a customized Arduino program running on a microprocessor (Teensy 3.2). Water reward was given through

a water spout located in front of the animal’s mouth. Licking tongue movements were monitored using an infrared sensor

(OPB819Z, TT Electronics). Voltage signals from the rotary encoder and the lick sensor were digitized into a PCI-based data-acqui-

sition system (PCIe-6323, National Instruments) installed on the visual stimulation computer. Timing and amount of water were

controlled through a micro-solenoid valve (LHDA 1221111H, The Lee Company) and switch (2N7000, On Semiconductor). Analog

output TTL pulse was generated from the visual stimulation computer to deliver reward to the animals.

Virtual linear track experiments. Animals were trained in a virtual linear track (see Kim et al.11 for details). Themazewas composed of

a starting platform and a corridor with walls on both sides. We first trained animals on the standard approach-to-target task to learn

the association between target location and reward. Once the animals learned the task, we ran a series of tasks with test trials to

examine the nature of DA signals. In this paper, we simulated three main experiments in the previous study (Figure 4).11 We typically

ran each task for two consecutive days (with a zero- or one-day break). Unless otherwise noted, unexpected reward (5 mL) was given

during the inter-trial interval on 3-6% of trials.

Scene darkening manipulation. We dynamically modulated the reliability of sensory evidence by changing the brightness of the

visual scene (Video S1). The brightness of the visual scene at each time point was determined by multiplying the original RGB color

values with a time-varying multiplier. The multiplier kðtÞ is a function of the animal’s position as defined below (Figure S3A).

PnormðtÞ = PðtÞ
91

; if PðtÞ%91 (Equation 48)
PnormðtÞ = 1; if PðtÞ>91 (Equation 49)
kðPnormðtÞÞ = kstart + ðkend � kstartÞð1� PnormðtÞÞ3; (Equation 50)

where kstart = 1:0;kend = 0:05, and PðtÞ is animal’s position at time t. The brightness of the floor pattern was intact to provide the an-

imals a clue that trials were not aborted.We randomly interleaved four experimental conditions. On 25%of trials, the visual scenewas

darkened as described above. Brightness was kept constant (kðtÞ = 1) for the rest of the trials. Independent of the brightness manip-

ulation, the speed of visual scene progression was increased by 1.7 times on 25% of trials. Since the darkening depends on the po-

sition of the animal, for each darkening condition, the brightness of the scene at the reward location is identical between the standard

and fast conditions.

Fiber fluorometry (photometry). Fluorescent signals from the brain were recorded using a custom-made fiber fluorometry (photom-

etry) system as described in our previous studies.11,24,25 The blue light (473 nm) from a diode-pumped solid-state laser (DPSSL; 80–

500 mW; Opto Engine LLC, UT, USA) was attenuated through a neutral density filter (4.0 optical density, Thorlabs, NJ, USA) and

coupled into an optical fiber patchcord (400 mm, Doric Lenses) using a 0.65 NAmicroscope objective (Olympus). The patchcord con-

nected to the implanted fiber was used to deliver excitation light to the brain and to collect the fluorescence emission signals from the

brain. The fluorescent signal from the brain was spectrally separated from the excitation light using a dichroic mirror (T556lpxr,

Chroma), passed through a bandpass filter (ET500/50, Chroma), focused onto a photodetector (FDS100, Thorlabs), and amplified

using a current preamplifier (SR570, Stanford Research Systems). Acquisition from the red fluorophore (tdTomato) was
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simultaneously acquired (bandpass filter ET605/70 nm, Chroma) but was not used for further analyses. The voltage signal from the

preamplifier was digitized through a data acquisition board (PCI-e6321, National Instruments) at 1 kHz and stored in a computer us-

ing a custom software written in LabVIEW (National Instruments).

Histology. Micewere perfusedwith phosphate buffered saline (PBS) followed by 4%paraformaldehyde in PBS. The brains were cut

in 100-mmcoronal sections using a vibratome (Leica). Brain sections were loaded on glass slides and stainedwith DAPI (Vectashield).

The locations of fiber and tetrode tips were determined using the standard mouse brain atlas.76

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
We used a t-test to compare between conditions (Figures 5 and S1). Kolmogorov-Smirnov test was used to check the normality

assumption.

Fluorometry (photometry)
Power line noise in the raw voltage signals was removed by notch filter (MATLAB, Natick, MA, USA). A baseline of the voltage signal

was defined by the lowest 10% of signals using a 2-min window. The baseline was subtracted from the raw signal, and the results

were z-scored by a session-wide mean and standard deviation.

Licking and locomotion
Lick timing was defined as deflection points (peaks) of the output signals above a threshold. To plot the time course of licks, instan-

taneous lick rate was computed by a moving average using a 200-ms window.

Session-averaged time course
Licks, locomotion speed, and z-scored DA responses for individual trials were aligned by external events (e.g., trial start or teleport

onset), and then smoothed using a moving average method. We did not smooth locomotion speed and fluorometry signals. The re-

sults were then averaged across trials for each experimental condition to generate a session-averaged time course.

Population-averaged time course
For calcium recording experiments, we computed the mean of session-averaged time courses from the second session dataset (as

the average of all session averages) along with the standard error (the total number of sessions being the sample size) for each exper-

imental condition. Population-average time courses are used to summarize behavior and DA responses.

Quantification for the darkening experiments
We quantified the z-scored DA sensor responses in the darkening experiment using three time windows (Figure 5E, shaded areas at

the bottom). For the standard conditions, we used [0 s 0.4 s] from the trial start, [3.8 s 4.2 s] from the trial start, and [-0.4 s 0 s] from the

reward onset. For the fast conditions, we used [0 s 0.4 s] from the trial start, [2.8 s 3.2 s] from the trial start, and [-0.4 s 0 s] from the

reward onset.
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Current Biology, Volume 32
Supplemental Information
The role of state uncertainty

in the dynamics of dopamine

John G. Mikhael, HyungGoo R. Kim, Naoshige Uchida, and Samuel J. Gershman



-2 0 2 4 6 8 10 12
Time (s)

Va
lu

e

A

B

C

-2 0 2 4 6 8 10 12

D
A

-2 0 2 4 6 8 10 12

RP
E

Figure S1: DA bumps are incompatible with the value or uncertainty-free RPE views. Related
to STAR Methods. (A) DA2m responses. (B) Smoothed deconvolution of DA2m responses, using an
arbitrary smoothing window of approximately 0.25 seconds. (C) Under the assumption that the deconvolved
signal represents RPE, we can derive the value. Value in the darkening condition is globally greater than
value in the constant condition. For each animal, value is normalized in the fast and standard conditions
separately. Gray horizontal bars represent statistically significant difference between the two conditions after
the start of the scene movement (top: fast; bottom: standard). p < 0.05, t-test.
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Figure S2: Illustration of the learning model for the darkening condition. Related to STAR
Methods. (A) Temporal profiles of the difference in the widths of the two uncertainty kernels. In the
constant condition, correction due to sensory feedback is constant throughout the trial. In the darkening
condition, the correction decreases with time. (B) Temporal profiles of β, which is proportional to (l2−s2) =
(l− s)(l+ s). (C) Temporal profiles of the RPE, which is proportional to the product of V̂ and β. (D) RPEs
convolved with DA2m impulse response function.
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Figure S3: Experimental details and behaviors in the darkening condition. Related to Figure
5. (A) Brightness multiplier as a function of the animal’s normalized position. (B) Average lick rate (top)
and locomotion speed (bottom) (n = 11 mice). (C) Reward response magnitudes (average response 0-2
s from reward onset). DA activity at the time of reward delivery was subtracted from reward responses.
Shadings and error bars represent standard errors of the mean. ∗∗p < 0.01, ∗∗∗p < 0.001, t-test.
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