
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIMECAPSULE: SOLVING THE JIGSAW PUZZLE OF
LONG-TERM TIME SERIES FORECASTING WITH COM-
PRESSED PREDICTIVE REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent deep learning models for Long-term Time Series Forecasting (LTSF) of-
ten emphasize complex, handcrafted designs and traditional methodologies, while
simpler architectures like linear models or MLPs have occasionally outperformed
these intricate solutions. In this paper, we revisit and organize the core ideas be-
hind several key techniques, such as redundancy reduction and multi-scale mod-
eling, which are frequently employed in advanced LTSF models. Our goal is to
streamline these ideas for more efficient deep learning utilization. To this end, we
introduce TimeCapsule, a model built around the principle of high-dimensional
information compression that unifies these key ideas in a generalized yet simpli-
fied framework. Specifically, we model time series as a 3D tensor, incorporating
temporal, variate, and level dimensions, and leverage mode production to capture
multi-mode dependencies while achieving dimensionality compression. We pro-
pose an internal forecast within the compressed representation domain, supported
by the Joint-Embedding Predictive Architecture (JEPA) to monitor the learning
of predictive representations. Extensive experiments on challenging benchmarks
demonstrate the versatility of our method, showing that TimeCapsule can achieve
performance comparable to state-of-the-art models. More importantly, the struc-
ture of our model yields intriguing empirical findings, prompting a rethinking of
approaches in this area.

1 INTRODUCTION

Multi-Level

…
Time

Capsule

Crossformer

iTransformer

Informer

FEDformer

PatchTST

Crossformer

TSMixer

DLinear

…

Generalized
Linear Projection

Various
Attention Tokens

Information
compression

TimeMixer

Pyraformer

…

N-BEATS

N-HiTS

…

…

Figure 1: Categorization of advanced LTSF models into four groups based on their core techniques.

Multivariate Time Series (MvTS) data is one of the most ubiquitous forms of naturally generated
data in the temporal physical world. Forecasting future events, whether short-term or long-term,
based on these collected historical data, can support critical human activities, including finance
(Sezer et al., 2020), traffic (Guo et al., 2020), and weather prediction (Karevan & Suykens, 2020).
Moreover, it enables us to fundamentally explore the mechanisms underlying the world’s operations
(Bradley, 1999).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

With the rapid advancement of deep learning models, Long-term Time Series Forecasting (LTSF)
has recently gained prominence. Unlike short-term forecasting, LTSF has traditionally posed sig-
nificant challenges for classical statistical and machine learning methods, such as VAR, ARIMA,
and random forests (Toda & Phillips, 1994; Box & Pierce, 1970; Kane et al., 2014). A series of
groundbreaking works (Zhou et al., 2021; Zeng et al., 2023; Nie et al., 2023; Liu et al., 2023) have
been proposed to push the boundaries of this field, addressing limitations and advancing the com-
munity. Nevertheless, key questions remain about how best to improve existing models, leaving
room for highlighting potential synergies among existing methods and combining their strengths.
For instance, Informer suggests that the learned attention map of transformers should be sparse and
can be distilled into smaller representations. Models like FiLM (Zhou et al., 2022a) and FEDformer
(Zhou et al., 2022b) manipulate time series in compact frequency bases to capture key temporal cor-
relations. These advancements raise a series of compelling questions: Can such enhancements be
conveniently extended to other dimensions and more generalized transform domains? Is time series
data, or the information it contains, inherently compressible? What’s more, PatchTST applies the
idea of patching to LTSF, enabling larger local receptive fields and greater efficiency. However, its
reliance on predefined patch lengths introduces a rigidity that can be inflexible when dealing with
varying input sequence lengths, thereby limiting its range of application. Additionally, this opera-
tion is not differentiable. Unlike image or text data, which contain explicit semantic information,
splitting a time sequence into small chunks outside the training process may lead to unrecoverable
information loss. While these methods individually have provided promising directions, they may
overlook the combination of other critical principles in time series modeling and underestimate the
capabilities of pure deep learning modules to represent these features.

Recent discussions in the community have also drawn attention to the surprisingly strong perfor-
mance of linear models when compared to transformer-based architectures in LTSF tasks (Zeng
et al., 2023). While transformers (Vaswani, 2017) have set milestones across domains like Natural
Language Processing (NLP) (Wang et al., 2022) and Computer Vision (CV) (Yuan et al., 2021),
their effectiveness in LTSF remains inconsistent, often falling short of simpler linear models (Zeng
et al., 2023). In addressing this issue, iTransformer (Liu et al., 2023) offers valuable insights and
experiments that transformers can excel when applied in the variate dimensions, but the ongoing
debate over the performance of transformer-based versus linear-based models in LTSF is unresolved
and whether transformers or linear models are more appropriate for LTSF remains open.

In this work, we argue that a deep learning framework for improving time series forecasting need not
exclusively depend on either transformers or linear models. Instead, we propose that an effective
architecture for LTSF should simply consist of two stages: predictive representation learning and
generalized linear projection, in which the latter serves as an accurate predictor to learn generalized
linear dependencies for the forecasting, while the former extracts abstract and informative repre-
sentation from distinct data information to improve forecasters’ generality. Therefore, we propose
TimeCapsule, a novel model employing a Chaining Bits Back with Asymmetric Numeral Systems
(BB-ANS) (Townsend et al., 2019) like-architecture, which adopts weak transformer-based blocks
as the encoder, while MLP-based blocks as the decoder, striking a balance between powerful rep-
resentation learning and computational simplicity. Technically, our model is driven by three key
principles:

Multi-level Modeling: Multi-scale modeling stands out as an effective paradigm for improving
LSTF performance (Ferreira et al., 2006). Existing methods incorporate multiresolution analysis
by up/downsampling through moving average and convolutional pooling layers (Challu et al., 2023;
Wang et al., 2024), or designing hierarchical structures (Liu et al., 2021; Zhang & Yan, 2023) to ag-
gregate multi-scale features. Besides, time series decomposition is also a traditional and commonly
used strategy to improve LTSF performance (Oreshkin et al., 2019; Zhou et al., 2022b; Wu et al.,
2021). In avoidance of complexity, we propose adding an extra dimension called level to the original
time series, allowing the model to learn multi-level features within the representation space. This
approach generalizes multi-scale learning and time series decomposition, in the meanwhile, making
the learning process model-independent.

Multi-mode Dependency: iTransformer has shown the benefits of leveraging correlations across
dimensions other than time. However, focusing too heavily on non-temporal dimensions can risk
neglecting important temporal dependencies, potentially degrading forecasting accuracy. To address
this, we introduce a Mode-specific Multi-head Self-Attention (MoMSA) mechanism, leveraging

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tensor-based mode product techniques to capture dependencies along and across multiple dimen-
sions including temporal, variate, and level.

Compressed Representation Forecasting: To enable efficient information utilization, fast multi-
mode attention computations, and better long-range history processing, we conclude that compres-
sion is all we need. To be specific, rather than focusing exclusively on sparse attention and re-
dundancy reduction, we employ low-rank transforms to replace patching, reducing dimensionality
ahead of the attention computation, thus leading to an economic way to employ transformers. This
strategy compresses the representation space, enabling efficient computation and robust long-range
forecasting. The compressed space can serve as the intermediate stage for learning forecasts, allow-
ing us to map the representation into the future landscape and recover it back into the real temporal
domain.

Our contributions can be summarized as follows:

• We propose simple yet effective generalizations to existing LTSF techniques, including a
model-independent multi-level modeling strategy and a Mode-Specific Multi-head Self-
Attention (MoMSA) mechanism, resulting in a versatile forecasting model capable of han-
dling diverse data characteristics.

• We introduce JEPA into time series forecasting, making it a useful tool for monitoring and
analyzing the process of predictive representation learning.

• Extensive experiments on real-world datasets demonstrate the superiority of our approach,
identifying areas for further exploration.

2 RELATED WORK

Recent Advancements in Long-term Time Series modeling Given the advantage of capturing
long-term dependencies in long sequence data, researchers have increasingly applied transformers
to LTSF tasks (Wen et al., 2022). Most recently, several significant works have been proposed, either
to improve the forecasting performance of transformers or to reduce their computational complexity.
Additionally, some models that diverge from transformer architectures have also exhibited consider-
able promise in this area. Based on the strategies by which they achieve success, we can categorize
these models into four groups, with potential overlaps, as presented in Fig. 1. The first group
(e.g., Autoformer (Wu et al., 2021), N-BEATs (Oreshkin et al., 2019), Pyraformer (Liu et al., 2021),
N-Hits (Challu et al., 2023), Crossformer (Zhang & Yan, 2023), TimeMixer (Wang et al., 2024))
focuses on multi-level modeling, which incorporates multiresolution/multi-scale analysis and series
decomposition within the model. These techniques enable the model to learn both coarse and fine-
grained features within time series, facilitating the capture of hierarchical temporal patterns. The
second group (e.g., Informer (Zhou et al., 2021), FEDformer (Zhou et al., 2022b), PatchTST (Nie
et al., 2023)), leverages information redundancy to filter and extract high-energy temporal correla-
tions, or models time series in the form of temporal patches, avoiding the inclusion of finer, noisier
information in the forecasting process, improving the model’s robustness and prediction accuracy.,
These advancements lead to progressive improvements in both effectiveness and efficiency. The
third group (e.g., Crossformer, iTransformer (Liu et al., 2023)) explores the impact of attention
applied across various dimensions of time series, offering novel perspectives for time series cor-
relation extraction. This group demonstrates that capturing dependencies across different modes
can significantly enhance forecasting performance, by providing a richer understanding of temporal
and variable relationships. The fourth group (e.g., DLinear (Zeng et al., 2023), N-BEATs, N-Hits,
TsMixer (Chen et al., 2023), TimeMixer) emphasizes the importance of generalized linear depen-
dency modeling and capitalizes on linear or MLP-based architectures to establish highly effective
forecasters. This validates the crucial role of learning the appropriate coefficients to combine the
captured base components of time series and the dependencies they contain.

These four groups highlight four key factors in answering how to model and forecast time series
effectively from different aspects. However, each model typically focuses on constructing com-
plex modules that address only parts of these factors. In contrast, our model integrates all of these
interesting factors into a comprehensive yet streamlined design.

Joint-Embedding Predictive Architecture JEPA (LeCun, 2022) realizes representation learning
by optimizing an energy function between predicted representations of inputs and targets. It doesn’t

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

rely on explicit contrastive losses (Khosla et al., 2020) but instead creates compatible embeddings
through prediction, enhancing the flexibility and efficiency of representation learning. While JEPA
has demonstrated success in learning predictable representations in vision (Assran et al., 2023) and
video tasks (Bardes et al., 2024), these domains often benefit from spatial locality and semantic
coherence, which are different from the temporal dependencies and complex long-range patterns
present in time series data. Such distinctions pose unique challenges when applying JEPA to LTSF.
Although some recent works like LaT-PFN (Verdenius et al., 2024) and TS-JEPA (Girgis et al.,
2024) have explored JEPA in time series tasks, their focus differs significantly from the predic-
tive demands of LTSF. Specifically, the former employs JEPA to construct a time series foundation
model, demonstrating that JEPA can reinforce the latent embedding space of time series learning
and result in a superior zero-shot performance. In contrast, the latter, TS-JEPA, harnesses JEPA to
facilitate the realization and enhancement of the effectiveness of semantic communication systems.

3 TIMECAPSULE

…

Time

Va
ri

at
e

X xv t×∈

1xv t× ×∈ 

MoMSA

Projection
 (+ Noise)

Mode Folding

Norm

Add & Norm

FFN

TUNNEL N×

L-TRANS BLOCK

1
1cv t× ×∈ 

… 1cv t× ×


3 L LE C× Level
Expansion

L-MSA

…… … …

Mode
Unfolding

cv t l× ×


ct lv×


v v v

ReVIn_Norm

R
epresentation
Predictor

(),Loss X Yr r

Y yv t×∈

1xv t× ×∈ 

ReVIn_Norm

Pre-process

MLP

MLP

MLP

Linear
Projection

1
1cv t× ×∈ 

2
cv t l× ×∈ 

3
c cv t l× ×∈ 

0
c cv t l× ×∈ 

1
cv t l× ×∈ 

2
1cv t× ×∈ 

3
1yv t× ×∈ 

Y yv t×∈ 

ReVIn_Denorm

(),Loss Y Y

Stop Gradient

Mode Unfolding

Noise

Figure 2: Overview of the TimeCapsule model. The original time series is transformed into a
3D representation by adding a level dimension, traverses through TransBlocks and tunnels (vanilla
transformer blocks), and is then projected into the predictive space using JEPA. The compressed
capsule is gradually recovered back into the real temporal domain.

Following the convention of Multivariate Time Series (MvTS) forecasting, we aim to predict the next
Ty steps of the time sequence, denoted as Y = {ytx+1, ytx+2, · · · , ytx+ty} ∈ Rv×ty , based on the
observed sequence X = {x1, x2, · · · , xtx} ∈ Rv×tx , where v represents the number of variates and
tx denotes the length of the input sequence. The key distinction in this work is that we treat MvTS
as 3D tensor data, allowing the data itself to handle multi-scale modeling and series decomposition
by introducing an additional dimension. Specifically, we extend the input from X ∈ Rv×tx to
X ∈ Rv×tx×1. Throughout this paper, we use T, V, and L to represent the temporal dimension,
variate dimension, and level dimension, respectively, with t, v, and l indicating their corresponding
lengths. We define 1 ≤ tc ≪ t, 1 ≤ vc ≪ v, and lc ≥ 1 as the compressed lengths of the respective
dimensions. Additionally, d denotes the size of the embedding space.

3.1 FEED FORWARD PROCESS

Generally, as depicted in Fig.2, TimeCapsule follows an asymmetric two-stage learning process:
deep representation encoding and compressed information-based prediction. Internally, the encoder
consists of three distinct stacks, each containing a transformer block followed by a series of tunnels.
We place the time dimension T as the first block because it has a relatively long length, which should
be compressed first to reduce the overall computational cost. The level expansion is placed second to
enable multi-level learning in the representation space as efficiently as possible. Finally, we process
the variable dimension. In contrast, the decoder is simpler, comprising just three MLP blocks. We

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

will first present an overview of the forward process, then go over a detailed explanation of how
each of the key components is built and operates within this framework.

The encoding part can be formulized as

X ← X ∈ Rv×tx , X0 = RevIn(X) ∈ Rv×tx×1 (1)

X1 = Tunnel(T-TransBlock(X0)) ∈ Rv×tc×1 (2)

X2 = Tunnel(L-TransBlock(X1)) ∈ Rv×tc×l (3)

X3 = Tunnel(V-TransBlock(X2)) ∈ Rvc×tc×l (4)

where RevIn(·) denotes the reversible instance normalization proposed by (Kim et al., 2021), and
Tunnels and TransBlocks are all transformer-based blocks. The prefix of TransBlock indicates the
dimension along which the blocks are applied (T for temporal, L for level, and V for variate).

Next, the decoder operates in a reversed order of encoding process:

Y0 = Repre Predictor(X3) ∈ Rvc×tc×l (5)

Y1 = MLP(Cat(Y0,B3)) ∈ Rv×tc×l (6)

Y2 = MLP(Cat(Y1,B2)) ∈ Rv×tc×1 (7)

Y3 = MLP(Cat(Y2,B1)) ∈ Rv×tx×1 (8)

where Repre-Predictor(·) is a single linear layer that projects the deep representation into the future
landscape, and Cat(·, ·) represents concatenation. B1, B2, B3 denote the residual information, which
will be explained in detail later. The MLP block contains three linear layers with an intermediate
GELU activation. Finally, we obtain the prediction result by another linear projection Rty → Rty

and the inverse instance normalization.

Y = Proj(Y3) ∈ Rv×ty×1, Y → Ỹ ∈ Rv×ty (9)

Y = RevIn(Ỹ) ∈ Rv×ty (10)

3.2 MAIN COMPONENTS

Mode Specific Multi-head Self-Attention (MoMSA). The MoMSA is designed to achieve two
primary objectives: (a) to extend the ideas of crossformer (Zhang & Yan, 2023) and iTransformer
(Liu et al., 2023) by forming MvTS tokens from a multi-mode view and abstracting dependencies
along each mode; and (b) to maintain the same volume of information while shortening the length
of each dimension, thereby reducing the overall computational cost of multi-mode self-attention.

To accomplish this, we introduce the mode-k product (see Appendix B for the definition). For
instance, given an MvTS tensor A ∈ Rva×ta×la and a transform factor M ∈ Rm×ta , MoMSA
regarding to the temporal dimension operates as follows:

Â = A×2 M, A1 = T-MSA(Â(2)) ∈ Rm×vala (11)

where ×2 denotes the mode-2 product, which represents a matrix multiplication along the second
dimension of a 3D tensor. T-MSA denotes the vanilla multi-head self-attention (Vaswani, 2017)
applied to the T (temporal) dimention, and Â(2) is the mode-2 folding of Â (See Appendix B). It
is notable that with the setting of m ≤ va, the dimension can be compressed to an arbitrary length,
resulting in a distilled attention map.

When applying this procedure to the real case, we shall obtain X1 ∈ Rv×tc×1 from the first pipe as
shown in the Fig.2. However, it is risky to make such a compression on the original MvTS informa-
tion. To address this, we take a number of protective measures within our TransBlock. In particular,
before applying MoMSA, we project the information into the embedding space Rtx×d and introduce
Gaussian noise at the start of the block, which may improve robustness during compression (channel
coding). Furthermore, we set the transform factor as the product of two matrices

MT = CTET

where ET ∈ Rte×tx extends the dimension and CT ∈ Rtc×te does the compression, with te ≥
tx ≫ tc. By doing so, we enhance the information before compression, akin to the strategy used in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

FEDformer, but within a generalized tranform domain. It is noteworthy that the transform factor is
not necessarily invertible, as we allow lossy compression to help reduce information redundancy. In
a nutshell, the deriviation of the temporal MoMSA can be formulized as

MoMSA(X0) = T-MSA((Proj(X0) +N (0, 1))×2 CTET) (12)

where T is selected from the mode set {T,L,V} to represent the T-TransBlock. Subsequently, ad-
ditional transforms shall be applied in a sequential manner, whereby the symbol T shall be replaced
with an alternative mode and the corresponding mode product shall be engaged. This process shall
ultimately result in the generation of a compressed 3D representation, i.e., ’time capsule’, at the end
of the encoder.

Interestingly, our MoMSA can be viewed as a folded patch-wise self-attention mechanism that ab-
stracts inter-correlations across different representation spaces. As illustrated in the leftmost ex-
ample of Fig. 2, the two-dimensional information is obtained by folding the 3D tensor along the
temporal dimension. This results in the formation of l distinct groups, each representing a unique
level, and containing v variables. The attention token within the L-TransBlock is constituted by
a combination of variables from different levels at each compressed timestamp. In this manner,
traversing three TransBlocks with respect to various dimensions allows for the thorough capture of
multi-mode dependencies. A comprehensive visual analysis can be found in the Appendix E.

Residual Information Back. One crucial aspect of our model to ensure more accurate predictions
lies in leveraging complete but filtered history information. Thus it is required to compensate for
the lost information during the decoding process. We transfer to the decoder the information cal-
culated via residual subtractions instead of using the original X , which may provide a shortcut for
information retrieval.

B1 = (X0 −X1 ×2 CTET) ∈ Rv×tx×1 (13)

B2 = (X1 −X2 ×3 CLEL) ∈ Rv×tc×1 (14)

B3 = (X2 −X3 ×1 CVEV) ∈ Rv×tc×l (15)

these residuals are subsequently used as outlined in Eq.6 to Eq.8.

Representation Prediction with JEPA Loss. In addition to the time-domain prediction, we intro-
duce a predictor for the compressed representation, since we hypothesize a potential gap between
the historical information (from the encoder) and future data (handled by the decoder). As described
in Eq.5, we deploy a linear layer to make this projection. However, how to validate and ensure the
meaningfulness of this inner prediction poses a question. For this reason, we employ the JEPA,
which can not only introduce inductive bias into the time-variant process; but also allow an efficient
contrastive loss between two representations outside of Euclidean space.

To implement JEPA, another encoder is required to convert the target into the same representation
space as the input. In line with the strategies used in I-JEPA and V-JEPA, we continue to obtain the
target encoder by applying the Exponential Moving Average (EMA) of the input encoder. However,
due to the nature of LTSF, how to deal with the inconsistency of the sequence length between the
input and output is problematic. we disentangle this problem by preprocessing the target sequence
to match the input length as follows,

Y =

{
Zero Padding(Y, tx − ty) if ty < tx

EMA({Y(k−1)tx+1:ktx}
⌈ty//tx⌉
k=1) if ty > tx

(16)

i.e., in cases where ty < tx, we pad Y with zeros; and when ty is larger, we can reasonably consider
the whole series as a carrier of information, and that the correlations between nearby timestamps
are stronger. Under this assumption, we split the sequence Y into sub-sequences with length tx
then applying EMA to these chunks to form integrated time information. This enables an efficient
computation of the predictive representation loss:

Loss(Encx(X), sg(Ency(Y))

where sg(·) denotes the stop gradient operator. By incorporating this loss, we can quantify the
distance between the learned representation and the target representation in the prediction space,
and by default, we try adding this value to the final loss.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

To evaluate the performance and versatility of TimeCapsule, we conduct extensive experiments
on ten diverse public datasets and compare the forecasting results against eight widely recognized
forecasting models. More details on the datasets are provided in Appendix A.

4.1 FORECASTING RESULTS

Datasets and Baselines. We utilize datasets from various domains, including electricity (ETTh1,
ETTh2, ETTm1, ETTm2, ECL), environment (Weather), energy (Solar-Energy), transportation
(PEMS04, Traffic) and health (ILI). The forecasting methods we compare against include iTrans-
former(Liu et al., 2023), TimeMixer(Wang et al., 2024), PatchTST(Nie et al., 2023), Cross-
former(Zhang & Yan, 2023), DLinear(Zeng et al., 2023), TimesNet(Wu et al., 2022), FED-
former(Zhou et al., 2022b), and Informer(Zhou et al., 2021).

Main Configurations. All experiments are conducted on four NVIDIA 4090 GPUs with 24GB
memory each. To align with JEPA, we use AdamW (Loshchilov, 2017) as the optimizer and Huber
loss (Meyer, 2021) as the default loss function. Results are obtained using the random seed 2021.
The batch size for each case is selected within the range of 32 to 128, and the learning rate is
determined through a grid search between 1e-4 and 2e-3. TimeCapsule consists of 0 to 2 blocks of
tunnels, with the compression dimension length chosen from the set {4, 8, 32}. To test the model’s
ability to utilize long-range historical data, we use a look back window of 512 for most datasets.

Main Results. Given the numerous benchmarks proposed in this area and a recent hidden bug
discovered in the testing phase codes, making fair and trustworthy comparisons under a unified
setting has proven challenging.

Table 1: Multivariate forecasting results. For TimeCapsule, the lookback length T = 96 and pre-
diction lengths S ∈ {24, 36, 48, 60} for ILI, S ∈ {96, 192, 336, 720} and fixed lookback length
T = 512 for others; For other models, lookback lengths are searched for the best performance as
has been done by TFB (Qiu et al., 2024).

Models TimeCapsule iTransformer (2023) TimeMixer (2024) PatchTST (2023) Crossformer (2023) DLinear (2023) TimesNet (2022) FEDformer (2022b) Informer (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PEMS04

96 0.099 0.202 0.164 0.280 0.122 0.229 0.161 0.280 0.112 0.224 0.196 0.296 0.159 0.266 0.573 0.565 0.189 0.304
192 0.117 0.222 0.216 0.316 0.141 0.239 0.178 0.290 0.134 0.236 0.213 0.310 0.179 0.282 0.655 0.624 0.229 0.335
336 0.126 0.229 0.189 0.288 0.153 0.254 0.193 0.302 0.190 0.286 0.235 0.327 0.169 0.269 1.365 0.920 0.217 0.323
720 0.137 0.239 0.251 0.351 0.174 0.276 0.233 0.338 0.235 0.331 0.327 0.395 0.187 0.286 0.873 0.728 0.310 0.391

Weather

96 0.141 0.186 0.159 0.208 0.147 0.198 0.149 0.196 0.146 0.212 0.170 0.230 0.170 0.219 0.223 0.292 0.218 0.255
192 0.187 0.232 0.200 0.248 0.192 0.243 0.193 0.240 0.195 0.261 0.212 0.267 0.222 0.264 0.252 0.322 0.269 0.306
336 0.239 0.272 0.253 0.289 0.247 0.284 0.244 0.281 0.268 0.325 0.257 0.305 0.293 0.310 0.327 0.371 0.320 0.340
720 0.309 0.323 0.321 0.338 0.318 0.330 0.314 0.332 0.330 0.380 0.318 0.356 0.360 0.355 0.424 0.419 0.392 0.390

Traffic

96 0.361 0.246 0.363 0.265 0.466 0.294 0.379 0.270 0.514 0.282 0.410 0.282 0.600 0.313 0.593 0.365 0.664 0.371
192 0.383 0.257 0.385 0.273 0.508 0.299 0.394 0.277 0.501 0.273 0.423 0.288 0.619 0.328 0.614 0.375 0.724 0.396
336 0.393 0.262 0.396 0.277 0.526 0.309 0.402 0.280 0.507 0.278 0.436 0.296 0.627 0.330 0.609 0.373 0.796 0.435
720 0.430 0.282 0.445 0.312 0.554 0.322 0.442 0.302 0.571 0.301 0.466 0.315 0.659 0.342 0.646 0.394 0.823 0.453

Electricity

96 0.125 0.218 0.138 0.237 0.131 0.224 0.133 0.233 0.135 0.237 0.140 0.237 0.164 0.267 0.186 0.302 0.214 0.321
192 0.146 0.238 0.157 0.256 0.151 0.242 0.150 0.248 0.160 0.262 0.154 0.250 0.180 0.280 0.201 0.315 0.245 0.350
336 0.161 0.254 0.167 0.264 0.169 0.260 0.168 0.267 0.182 0.282 0.169 0.268 0.190 0.292 0.218 0.330 0.294 0.393
720 0.194 0.285 0.194 0.286 0.227 0.312 0.202 0.295 0.246 0.337 0.204 0.301 0.209 0.307 0.241 0.350 0.306 0.393

ILI

24 1.675 0.793 1.783 0.846 1.807 0.820 1.840 0.835 2.981 1.096 2.208 1.031 2.009 0.926 2.400 1.020 2.738 1.151
36 1.725 0.831 1.746 0.860 1.896 0.927 1.724 0.845 3.295 1.162 2.032 0.981 2.552 0.997 2.410 1.005 2.890 1.145
48 1.690 0.839 1.716 0.898 1.753 0.866 1.762 0.863 3.586 1.230 2.209 1.063 1.956 0.919 2.592 1.033 2.742 1.136
60 1.775 0.863 1.960 0.977 1.828 0.930 1.752 0.894 3.693 1.256 2.292 1.086 2.178 0.962 2.539 1.070 2.825 1.139

Solar

96 0.173 0.229 0.188 0.242 0.178 0.231 0.190 0.273 0.166 0.230 0.216 0.287 0.285 0.330 0.509 0.530 0.338 0.373
192 0.188 0.242 0.193 0.258 0.209 0.273 0.204 0.302 0.214 0.251 0.244 0.305 0.309 0.342 0.474 0.500 0.375 0.391
336 0.194 0.248 0.195 0.259 0.209 0.259 0.212 0.293 0.203 0.260 0.263 0.319 0.335 0.365 0.338 0.439 0.417 0.416
720 0.204 0.254 0.223 0.281 0.246 0.284 0.221 0.310 0.735 0.721 0.264 0.324 0.346 0.355 0.365 0.459 0.390 0.407

ETTm2

96 0.161 0.249 0.175 0.266 0.172 0.265 0.165 0.254 0.263 0.359 0.164 0.255 0.190 0.266 0.219 0.306 0.216 0.302
192 0.216 0.289 0.242 0.312 0.236 0.304 0.221 0.292 0.361 0.425 0.224 0.304 0.251 0.308 0.294 0.357 0.324 0.367
336 0.269 0.324 0.282 0.340 0.273 0.329 0.275 0.325 0.469 0.496 0.277 0.337 0.322 0.350 0.362 0.401 0.424 0.429
720 0.344 0.373 0.378 0.398 0.366 0.393 0.360 0.380 1.263 0.857 0.371 0.401 0.414 0.403 0.459 0.450 0.581 0.500

ETTm1

96 0.284 0.340 0.300 0.353 0.336 0.371 0.290 0.343 0.310 0.361 0.299 0.343 0.377 0.398 0.467 0.465 0.430 0.424
192 0.327 0.367 0.345 0.382 0.370 0.389 0.329 0.368 0.363 0.402 0.334 0.364 0.405 0.411 0.610 0.524 0.550 0.479
336 0.355 0.382 0.374 0.398 0.397 0.410 0.360 0.390 0.408 0.430 0.365 0.384 0.443 0.437 0.618 0.544 0.654 0.529
720 0.415 0.415 0.429 0.430 0.463 0.446 0.416 0.422 0.777 0.637 0.418 0.415 0.495 0.464 0.615 0.551 0.714 0.578

ETTh2

96 0.272 0.338 0.297 0.348 0.280 0.350 0.277 0.339 0.611 0.557 0.302 0.368 0.319 0.363 0.338 0.380 0.378 0.402
192 0.334 0.379 0.371 0.403 0.351 0.390 0.345 0.381 0.810 0.651 0.405 0.433 0.411 0.416 0.415 0.428 0.462 0.449
336 0.367 0.409 0.404 0.428 0.366 0.414 0.368 0.404 0.928 0.698 0.496 0.490 0.415 0.443 0.378 0.451 0.426 0.449
720 0.381 0.421 0.424 0.444 0.433 0.455 0.397 0.432 1.094 0.775 0.766 0.622 0.429 0.445 0.479 0.485 0.401 0.449

ETTh1

96 0.362 0.394 0.386 0.405 0.373 0.401 0.376 0.396 0.405 0.426 0.371 0.392 0.389 0.412 0.379 0.419 0.709 0.563
192 0.401 0.418 0.424 0.440 0.415 0.425 0.399 0.416 0.413 0.442 0.404 0.413 0.440 0.443 0.419 0.443 0.724 0.570
336 0.432 0.440 0.449 0.460 0.454 0.453 0.418 0.432 0.442 0.460 0.434 0.435 0.482 0.465 0.455 0.464 0.732 0.581
720 0.438 0.458 0.495 0.487 0.501 0.481 0.450 0.469 0.550 0.539 0.469 0.489 0.525 0.501 0.474 0.488 0.760 0.616

1st Count 33 35 0 0 1 0 4 3 1 0 0 2 0 0 0 0 0 0

2nd Count 7 4 9 5 5 5 15 15 3 6 2 2 0 0 0 0 0 0

Fortunately, thanks to the contributions from TFB (Qiu et al., 2024), a comprehensive and reliable
benchmark specifically designed for LTSF is now available, with results obtained through meticu-
lous adjustments. To ensure objective comparisons, the experimental results reported in this section

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

are partially derived from their work, and it is noteworthy that our basic settings are consistent with
those adopted in the TFB benchmark.

As shown in Table 4.1, where the best results are highlighted in bold and the second best in un-
derlined, each baseline demonstrates distinct advantages across different scenarios. However, our
model consistently achieves or approaches the best performance across all datasets and forecasting
horizons. While improvements compared to the second-best results are often marginal, TimeCapsule
excels particularly in very long-term forecasting. These observations underscore the effectiveness
and flexibility of our model, which integrates four key techniques in time series modeling. A central
argument we propose is that different strategies may respond to various datasets to differing extents,
revealing unique underlying characteristics. Taking the spatio-temporal dataset PEMS04 for a case
study, TimeCapsule shows considerable progress compared to the second-best models, Crossformer
and TimeMixer, with an average reduction of 15.8% in MAE and 10% in MSE. Notably, aside from
Crossformer and TimeMixer, which emphasize careful multi-scale modeling, the performances of
all other forecasters significantly degrade. This implies that forecasting on PEMS04 heavily relies
on multi-scale modeling, a capability that TimeCapsule successfully possesses. Besides, our model
outperforms PatchTST, particularly on larger datasets, without employing patching techniques. This
indicates that TimeCapsule can also effectively leverage long historical information through dimen-
sion compression and MLP utilization.

4.2 MODEL ANALYSIS

Effects of residual information compensation. Information compensation should be indispens-
able if it is reasonable to construct such a deep representation utilization strategy that adheres to the
principle of lossy compression. To verify its effects, we compare model performance after removing
the compensation and replacing it with the original information. The results, listed in Table 2, reveal
a dramatic drop in performance without paying back the lost information. This phenomenon indi-
cates that the compressed information cannot be independently recovered under our default settings.
However, when comparing our results with those of FEDformer and Informer, which also focus on
redundancy reduction, our model demonstrates competitive results, validating the efficacy of our
compression strategy. Additionally, compared to using the original information, the improvements
observed on datasets like ETTh2 and ETTm2 are marginal. However, as the prediction horizon
increases, the benefits of residual information become more pronounced. This suggests that redun-
dancy reduction plays a more critical role in very long-term forecasting. For shorter forecasting
lengths, the available information is typically sufficient. In contrast, when the forecasting horizon
approaches or exceeds the input length, more compact and precise information is necessary, mak-
ing the forecaster more sensitive to the quality and purity of the information provided. Notably,
some degradations persist even with complete original information since it is sometimes challeng-
ing for our model to retrieve useful parts amid redundancy, which underscores the importance of our
residual information computation.

Table 2: Ablation on the information compensation design. We remove the residual information
connection or replace B by the original information X . The resulting performance variations are
then presented in terms of mean squared error (MSE).

Method
ETTh2 ETTm2 PEMS04

96 192 336 720 96 192 336 720 96 192 336 720

Origin 0.272 0.334 0.367 0.381 0.161 0.216 0.269 0.344 0.099 0.117 0.126 0.137
Replace Info 0.276 0.347 0.374 0.410 0.161 0.219 0.269 0.352 0.114 0.130 0.130 0.163

w/o Info Back 0.371 0.387 0.393 0.462 0.289 0.317 0.352 0.422 0.273 0.247 0.290 0.339

Effects of JEPA and Predictive Representation. As aforementioned, JEPA loss can be employed
to keep track of the learning process of the predictive representation and contributes to the final loss
in our default setting. However, by removing it from backpropagation, we find that the role of JEPA
is subtle and varies by case. For instance, as illustrated in Fig. 4.2, which records the variation
of JEPA loss on the weather and ETTm2 datasets, the curve consistently decreases even without
explicit training. This phenomenon partially confirms the existence of a gap between historical
compression and future forecasting. The difference in converged JEPA loss between models trained

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

ettm2

Horizon = 96
Horizon = 192
Horizon = 336
Horizon = 720

0 5 10 15 20 25

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
weather

0 10 20 30 40 50 60
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

PEMS04

0 10 20 30 40 50
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
electricity

Natural Variations of JEPA Loss

Horizon = 96
Horizon = 192
Horizon = 336
Horizon = 720

Horizon = 96
Horizon = 192
Horizon = 336
Horizon = 720

Horizon = 96
Horizon = 192
Horizon = 336
Horizon = 720

96 192 336 720

0.15

0.20

0.25

0.30

0.35

M
SE

ettm2

 w/o JEPA training

JEPA training

96 192 336 720
0.10

0.15

0.20

0.25

0.30

weather

96 192 336 720
Horizon

0.08

0.10

0.12

0.14

0.16

0.18

M
SE

PEMS04

96 192 336 720
Horizon

0.10

0.12

0.14

0.16

0.18

0.20

0.22
electricity

Performance Variations with or without JEPA training

 w/o JEPA training

JEPA training

 w/o JEPA training

JEPA training

 w/o JEPA training

JEPA training

Figure 3: The left-hand figures illustrate the variation trend of JEPA loss in the absence of back-
propagation, while the right-hand figures demonstrate the impact of incorporating JEPA loss as a
training object on performance.

with and without JEPA roughly reflects the distance between two subsets of the metric space. In
essence, the optimization direction indicated by JEPA loss minimization is promising.

On the other hand, this is completely a different case for PEMS04 and electricity datasets, which
by contrast shows a growing trend in JEPA loss. We compare forecasting accuracy with their origin
values to make it further, as shown on the right of Fig. 4.2, from which we can empirically conclude
that in most cases, regularizing the optimization with the inductive bias introduced by JEPA is un-
likely to cause harm. Incorporating JEPA loss into the training process can encourage the forecaster
to converge to a favorable minimum before stepping into other directions. However, the effect of
attaching such a forcement becomes negligible when the descent directions of two losses align or
when have reached a flat energy plane. This finding may provide greater flexibility in leveraging
JEPA for optimization guidance in predictive representation learning.

Table 3: Investigation on compression dimensions. Dimension set contains lengths of compression
dimension of {T(temporal), V(variate), L(level)}. MSE and MAE are both reported by averaging
those from all prediction horizons, and↙ denotes performance decline while — means that there
are almost no changes in performance.

Dimension Set
PEMS04 Weather Electricity Traffic

MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg)

(4, 8, 4) 0.120 0.223 0.219 0.253 0.157 0.249 0.392 0.262

(4, 1, 4) 0.136 0.236 0.220 0.255 0.158 0.251 0.404 0.277

(1, 1, 1) 0.156 0.257 0.220 0.254 0.159 0.250 0.410 0.285

Average Variation (%) ↙ 21.7 ↙ 10.6 – – – – ↙ 3.9 ↙ 7.2

Analysis of Asymmetric Structure. We investigate the asymmetric structure of TimeCapsule by
varying the compression dimensions to figure out which part—transformer-based encoder or MLP-
based decoder—plays a more crucial role. By default, the compression dimensions are set to {4, 8,
4}. Then we test two alternative configurations: (a) {4, 1, 4}, which removes the level embedding
effect, and (b) {1, 1, 1}, which reduces the entire model to a pure MLP. The results in Table 3 reveal
that for datasets with higher sampling frequencies, such as PEMS04, multi-level modeling and cap-
turing multi-mode dependencies show significant benefits. In contrast, for datasets like Weather and
Electricity, a simpler MLP structure appears to be sufficient for long-term forecasting (see Appendix
D.5 for results of more datasets). These observations, along with the comprehensive results in Ta-
ble 4.1, suggest that designing a universal, efficient model for diverse datasets is challenging, often
leading to inefficient module allocation. Furthermore, a forecaster with strong generalized linear
modeling capacity can manage most cases effectively and is more likely the key principle for LTSF.

4.3 EFFICIENCY STUDY.

Despite TimeCapsule containing multiple transformer blocks along three dimensions, it maintains
a reasonable computational complexity due to the use of dimensionality compression and MLPs.
To confirm this, we conduct efficiency comparisons on two datasets, Weather and Traffic, analyzing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2 4 6 8
FLOPs (GB)

0.12

0.14

0.16

0.18

0.20

0.22

0.24

M
SE

TimeCapsule
2.24M, 0.053G

iTransformer
0.95M, 0.040G

TimeMixer
2.42M, 0.877G

Crossformer
2.79M, 1.636G

FEDformer

10.61M, 4.050G

PatchTST
9.459M, 8.544G

Weather Traffic

0.68M, 1.178

32.24M, 8.372G

14.91M, 5.145G

2.44 77.048

3.16 8 692

11.08 244.741

Figure 4: Efficiency comparisons in terms of FLOPs (GB) and parameter counts (MB) with the
latest advanced models on the weather and traffic datasets. Statistics for each model are obtained
under the default settings with same batch size.

both FLOPs and parameter counts. As shown in Fig. 4, our model demonstrates clear advantages
in computation speed, though memory usage can sometimes be high. Nevertheless, a principal
advantage of TimeCapsule is the effect-efficient balance attained by its asymmetric structure, which
permits a substantial reduction in parameters without much sacrifice in performance.

5 CONCLUSION

We propose and empirically evaluate a generic model called TimeCapsule for long-term multivariate
time series forecasting. We avoid incorporating explicit designs focused on the core characteristics
of time series modeling, but only leverage the learning capacity of generic deep learning modules,
complemented by simple strategies such as 3D tensor modeling and multi-mode transforms. By con-
ceptualizing the forecasting process as an information compression task, we integrate JEPA to both
guide and detect the learning of predictive representations. While our approach offers promising
results, we believe there are even more effective ways to implement this framework. Additionally,
extending this modeling approach to explore time series self-supervised learning, transfer learning,
and other related time series tasks represents a promising step for future research.

REFERENCES

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
A general framework for self-supervised learning in speech, vision and language. In International
Conference on Machine Learning, pp. 1298–1312. PMLR, 2022.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from
video. arXiv preprint arXiv:2404.08471, 2024.

George EP Box and David A Pierce. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American statistical Association,
65(332):1509–1526, 1970.

Elizabeth Bradley. Time-series analysis. Intelligent data analysis: An introduction, pp. 167–194,
1999.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecast-
ing. In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 6989–6997,
2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Marco AR Ferreira, Mike West, Herbert KH Lee, and David M Higdon. Multi-scale and hidden
resolution time series models. Bayesian Analysis, 1(4):947–968, 2006.

Abanoub M Girgis, Alvaro Valcarce, and Mehdi Bennis. Time-series jepa for predictive remote
control under capacity-limited networks. arXiv preprint arXiv:2406.04853, 2024.

Chenjuan Guo, Bin Yang, Jilin Hu, Christian S Jensen, and Lu Chen. Context-aware, preference-
based vehicle routing. The VLDB Journal, 29:1149–1170, 2020.

Michael J Kane, Natalie Price, Matthew Scotch, and Peter Rabinowitz. Comparison of arima and
random forest time series models for prediction of avian influenza h5n1 outbreaks. BMC bioin-
formatics, 15:1–9, 2014.

Zahra Karevan and Johan AK Suykens. Transductive lstm for time-series prediction: An application
to weather forecasting. Neural Networks, 125:1–9, 2020.

Eric Kernfeld, Misha Kilmer, and Shuchin Aeron. Tensor–tensor products with invertible linear
transforms. Linear Algebra and its Applications, 485:545–570, 2015.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816–5828, 2022.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International conference on learning representations, 2021.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Gregory P Meyer. An alternative probabilistic interpretation of the huber loss. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition, pp. 5261–5269, 2021.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2023.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
ing Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair bench-
marking of time series forecasting methods. arXiv preprint arXiv:2403.20150, 2024.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time series fore-
casting with deep learning: A systematic literature review: 2005–2019. Applied soft computing,
90:106181, 2020.

Hiro Y Toda and Peter CB Phillips. Vector autoregression and causality: a theoretical overview and
simulation study. Econometric reviews, 13(2):259–285, 1994.

James Townsend, Tom Bird, and David Barber. Practical lossless compression with latent variables
using bits back coding. arXiv preprint arXiv:1901.04866, 2019.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Stijn Verdenius, Andrea Zerio, and Roy LM Wang. Lat-pfn: A joint embedding predictive architec-
ture for in-context time-series forecasting. arXiv preprint arXiv:2405.10093, 2024.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv
preprint arXiv:2405.14616, 2024.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
works best for zero-shot generalization? In International Conference on Machine Learning, pp.
22964–22984. PMLR, 2022.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
558–567, 2021.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
Frequency improved legendre memory model for long-term time series forecasting. Advances in
neural information processing systems, 35:12677–12690, 2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DATASET DESCRIPTIONS

Ten widely-used public datasets are included in our experiment. ETTh1, ETTh2, ETTm1, and
ETTm2 (Zhou et al., 2021) represent datasets recording hourly and 15-minute intervals of Electric-
ity Transformer Temperature. The Weather dataset (Wu et al., 2021) contains 21 meteorological
features sampled every 10 minutes in Germany, while the Electricity dataset (Wu et al., 2021) tracks
hourly electricity consumption of 321 customers. The ILI dataset (Nie et al., 2023) records weekly
patient counts and influenza-like illness (ILI) ratios. The Solar dataset (Lai et al., 2018) captures
10-minute intervals of solar power production from 137 PV plants in 2006. Traffic (Wu et al., 2021)
dataset records the hourly road occupancy rates from 862 sensors on San Francisco freeways. Ad-
ditionally, we include the PEMS04 dataset (Liu et al., 2022), which contains public traffic network
data from California collected in 5-minute intervals, commonly used in spatio-temporal forecasting.
Detailed features and settings of these datasets are presented in Table 4

Table 4: Descriptions of used multivariate time series datasets. Dim column represents the number
of variate; and Split column specifies the train-validate-test splitting ratio for each dataset.

Dataset Dim Prediction Length Split Frequency domain

ETTh1, ETTh2 7 96, 192, 336, 720 (6, 2, 2) Hourly Electricity

ETTm1, ETTm2 7 96, 192, 336, 720 (6, 2, 2) 15min Electricity

Weather 21 96, 192, 336, 720 (7, 1, 2) 10min Environment

Electricity 321 96, 192, 336, 720 (7, 1, 2) Hourly Electricity

Traffic 862 96, 192, 336, 720 (7, 1, 2) Hourly Transportation

Solar 137 96, 192, 336, 720 (6, 2, 2) 10min Energy

PEMS04 307 96, 192, 336, 720 (6, 2, 2) 5min Transportation

ILI 7 24, 36, 48, 60 (7, 1, 2) Weakly Health

B MODE PRODUCTION

Mode production is a common arithmetic operation in tensor methods (Kernfeld et al., 2015), which
relies on two fundamental concepts: tensor folding and tensor unfolding. For simplicity and easy
understanding, we provide informal definitions through a 3D tensor example.

Given a real 3D tensor X ∈ Rn1×n2×n3 , the result of mode-3 unfolding of X is the matrix X(3) ∈
Rn3×n1n2 , denoted by

Fold(3)(X) = X(3)

and the mode-3 folding operation recovers the matrix back into the tensor, denoted by

Unfold(X(3)) = X
We then define the mode-3 production as

X ×3 M = Unfold(MX(3)) ∈ Rn1×n2×m

where M ∈ Rm×n3 is the transform matrix. The production can be generalized to any mode of any
tensor, leading to the definition of mode-k product.

C ROBUSTNESS

In order to assess the robustness of our method, we report the standard deviation across four different
random seeds. We select four datasets that show marginal improvements in forecasting accuracy
compared to the second-best method. The results, presented in Table C, confirm the reliability of
the performance outcomes listed in Table 4.1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5: Robustness of TimeCapsule performance. The results are obtained from four random seeds.
Dataset traffic weather ETTm2 electricity

Horizon MSE MAE MSE MAE MSE MAE MSE MAE

96 0.363±0.002 0.246±0.001 0.143 ±0.001 0.189±0.002 0.162±0.001 0.250±0.000 0.126±0.001 0.218±0.000
192 0.383±0.000 0.257±0.000 0.189±0.003 0.233±0.002 0.218±0.001 0.289±0.002 0.146±0.001 0.238±0.001
336 0.394±0.004 0.264±0.006 0.241±0.002 0.274±0.002 0.270±0.001 0.324±0.001 0.162±0.001 0.255±0.001
720 0.430±0.000 0.282±0.001 0.310±0.002 0.326±0.002 0.347±0.002 0.376±0.002 0.195±0.001 0.285±0.001

D MORE STUDIES

D.1 LOOKBACK WINDOW

This study examines the impact of varying the lookback window on forecasting performance. As
illustrated in Fig. 5, the accuracy consistently improves with an enlarged lookback window, ranging
from 96 to 512. However, this effect diminishes for small and medium datasets as the window length
increases.

96 192 336 720
Length of Window

0.362

0.364

0.366

0.368

0.370

0.372

0.374

0.376

0.378

M
SE

ETTh1

96 192 336 720
Length of Window

0.1400

0.1425

0.1450

0.1475

0.1500

0.1525

0.1550

0.1575

0.1600
M

SE

Weather

96 192 336 720
Length of Window

0.10

0.11

0.12

0.13

0.14

0.15

0.16

M
SE

PEMS04

96 192 336 720
Length of Window

0.36

0.38

0.40

0.42

0.44

M
SE

Traffic

Figure 5: Study on varying lookback windows. We set the length of window Tx ∈
{96, 192, 336, 720}, and fix the forecasting horizon Ty = 96.

D.2 NOISE IN ENCODING TUNNELS

To enhance the robustness of the encoding process, we introduced Gaussian noise before the trans-
formation step, as illustrated in Fig. 2 and detailed in formula (12). To evaluate the impact of this
added noise, we conducted an ablation study, which is discussed below.

Table 6: Ablations on the noise added in the encoder. The results are obtained by averaging from all
four prediction horizons.

Method
ETTm2 Weather Traffic Electricity

MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg)

Origin 0.247 0.308 0.219 0.253 0.392 0.262 0.157 0.249

w/o noise 0.250 0.310 0.224 0.258 0.392 0.262 0.219 0.265

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

As shown in Table 6, introducing noise generally enhances forecasting performance across the stud-
ied datasets. However, the impact varies significantly. For datasets such as ETTm2 and Weather, the
improvements are marginal. In contrast, for a large-scale dataset like Traffic, the forecasting results
remain unchanged. Notably, for datasets such as Electricity, the improvements are substantial.

D.3 INHERENT ORDER OF TRANSBLOCKS WITHIN THE ENCODER

We have illustrated the rationale behind the order of TransBlocks in the encoder in Section 3.1. To
provide further evidence of its reasonability, we undertake an empirical comparison of the results
obtained by TimeCapsule with different order settings. Furthermore, in order to maintain the ad-
vantage of efficiency, we only demonstrate the performance variations by exchanging the order of
L-Block and V-Block. The results on three large datasets are recorded in the following table, which
demonstrates that TimeCapsule with the current order exhibits a slight superiority over TimeCap-
sule with an exchanged block order. This phenomenon serves to validate our assertions regarding
the advantage of learning multi-level properties in advance.

Table 7: Ablations on the block order within the encoder. The results are obtained by averaging
from all four prediction horizons.

Method
Weather Traffic Electricity

MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg)

Origin 0.219 0.253 0.392 0.262 0.157 0.249

Exchanged V-L order 0.223 0.261 0.407 0.274 0.165 0.260

D.4 POSITIONAL ENCODING

Table 8: Ablations on positional encoding, where w/o PE denotes positional encoding. Performance
values are averaged from all four forecasting horizons. The results show that the model’s perfor-
mance decreases when the positional encoding is removed.

Method
ETTm2 Weather ETTh2 ETTm1

MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg)

Origin 0.247 0.308 0.219 0.253 0.338 0.386 0.345 0.376

w/o PE 0.252 0.312 0.222 0.255 0.346 0.391 0.349 0.379

In our default settings, temporal positional encoding is applied at the head of the T-TransBlock. We
question whether attaching this auxiliary information remains beneficial in the compressed represen-
tation space, as its effect could also be an obscure signal to evidence the efficacy of our information
compression mechanism. The ablation results, presented in Table 8, show that excluding positional
encoding will lead to a slight decline in performance. This suggests that although the impact is
minor due to the reduced dimensionality, positional encoding still contributes valuable temporal
information even in the compressed representation space.

We can speculate that the effectiveness of positional encoding stems from the linear nature of our
compression, which is simply implemented through multiplication by a low-rank transform matrix.
This can be illustrated by the following toy example:

M(X + PE) = M(X) + M(PE)

where M represents the linear operator, and X and PE correspond to the input data and additive
positional encoding, respectively. This demonstrates that the positional encoding is projected into
the same compressed transformation space as the input data.

D.5 COMPRESSION DIMENSION

We provide additional experimental results exploring the Transformer-MLP trade-off by varying
the compression dimensions. As shown in Table 9, for most datasets, a robust MLP architecture

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: Full results of study on compression dimensions. Dimension set contains lengths of com-
pression dimension of {T(temporal), V(variate), L(level)}. MSE and MAE are both reported by
averaging those from all prediction horizons, and↙ denotes performance decline while — means
no significant changes in performance.

Dimension Set origin (-, 1, -) (1, 1, 1)
TrendMetric MSE (avg) MAE (avg) MSE (avg) MAE (avg) MSE (avg) MAE (avg)

PEMS04 0.120 0.223 0.136 0.236 0.156 0.257 ↙
Traffic 0.392 0.262 0.404 0.277 0.410 0.285 ↙

Weather 0.219 0.253 0.220 0.255 0.220 0.254 —

Electricity 0.157 0.249 0.158 0.251 0.159 0.250 —

Solar 0.191 0.243 0.193 0.244 0.191 0.242 —

ETTh1 0.408 0.428 0.413 0.430 0.419 0.433 ↙
ETTm1 0.345 0.376 0.348 0.377 0.348 0.378 —

ETTh2 0.339 0.387 0.356 0.396 0.357 0.398 ↙
ETTm2 0.248 0.309 0.251 0.311 0.250 0.311 —

without explicit dependency capturing is sufficient to achieve relatively strong performance. This
supports our argument that forecasting models often suffer from inefficient resource allocation when
processing diverse datasets. A flexible structure, such as that of TimeCapsule, proves effective in
adapting to different scenarios.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E WHAT HAVE LEARNT BY TIMECAPSULE ?

One of the most exciting aspects of TimeCapsule is its ability to handle time series decomposition
autonomously through neural networks, potentially at the expense of interpretability. In this part,
we explore the decomposition strategy employed by TimeCapsule through visualizations, aiming
to both clarify the inner workings of our model and inspire further investigations into time series
modeling with deep learning.

We choose the ETTm2 and PEMS04 datasets to represent, respectively, simpler and more complex
time series patterns. Our investigation centers on addressing three key questions:

1. Do the transforms retain and differentiate variable and level information ?

2. What do the transform matrices reveal ?

3. What kind of decomposition strategies that TimeCapsule has learnt ?

E.1 DO THESE TRANSFORMS RETAIN AND DISTINGUISH THE INFORMATION OF VARIABLES
AND LEVELS ?

0 10 20 30 40 50
0
1
2
3

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Visualization of Representation in the Middle of the Encoder

Figure 6: Representaion of ETTm2 in the encoder. We select X2 ∈ R4×8×7 at the end of the
L-TransBlock. It has the compressed temporal dimension tc = 4, expanded level dimension lc = 8,
and variable dimension v = 7.

0 10 20 30 40 50
0
1
2
3

-4 -2 0 2 4 6 8 10

0 10 20 30 40 50
0
1
2
3

Visualization of Representations in the Middle of the Decoder

Figure 7: Representaion of ETTm2 in the decoder. We select Y1 ∈ R4×8×7, which also has the
compressed temporal dimension tc = 4, expanded level dimension lc = 8, and variable dimension
v = 7.

Firstly, as shown in Fig. 6, we present the representation obtained after the time compression and
level expansion, denoted as X2 ∈ Rv×Tc×l with v = 4, tc =,4 and l = 8. By folding it into the ma-
trix X ∈ Rtc×lv, we observe that even in the compressed representation space, distinct characteris-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

tics of variables remain. These are organized into seven recognized blocks, each may corresponding
to a variable in the ETTm2 dataset. What’s more, each block contains eight componets, which can
be interpreted as level tokens.

In the decoder stage, we examine the representation Y1 ∈ Rv×Tc×l in the same way. As illustrated
in the bottom half of Fig. 7, though patterns differ from those in X2, there are still seven blocks.
Furthermore, when we swap the dimension of l and Tc in Y1 (top part of Fig. 7), the representation
turns out to have eight blocks with seven components within each, which exactly align with our
layout depicted in the leftmost part of Fig. 2. This finding is intriguing: despite the compression of
the variable dimension, and without explicitly instructing TimeCapsule to learn level and variable
tokens separately, it inherently does so. This suggests that the representation is learned in a predictive
and structured manner, indicating that the mode-specific self-attention mechanism is functioning and
that multi-level dependencies are effectively captured.

Besides, Fig. 7 also reveals that most levels appear redundant, explaining the results in Table. 9,
where multi-level modeling shows minimal benefit for ETTm2.

0 100 200 300 400 500
0

100

200

300

400

500
1.0

0.5

0.0

0.5

1.0

ETTm2

0 100 200 300 400 500
0

100

200

300

400

500

3

2

1

0

1

2

3

4

PEMS04

Figure 8: Visualization of T (temporal)-transform matrices, i.e., MTM
⊤
T . The left part shows the

learned temporal pattern of ETTm2 dataset, while the right part shows that of PEMS04 dataset.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Traffic

0 50 100 150 200 250 300
0

50

100

150

200

250

300

0.10

0.05

0.00

0.05

0.10

PEMS04

Figure 9: Visualization of V (variable)-transform matrices, i.e., MVM
⊤
V . Since the number of

variables contained in ETTm2 are too small to demonstrate a significant pattern, we replace it with
Traffic dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E.2 WHAT DO THESE TRANSFORM MATRICES LOOK LIKE TO ENABLE MULTI-MODE AND
MULTI-LEVEL LEARNING ?

The capacity for information compression reflects the model’s ability to capture and aggregate de-
pendencies. As expected, these matrices should exhibit a certain block structure to capture indepen-
dent and hierarchical features. For clarity, we denote the transform matrices as M and present them
in symmetric form as MM⊤. We omit the level expansion transformation matrix, as its MM⊤

results in a scalar value.

As illustrated clearly in Fig. 8 and Fig. 9, these low-rank transforms exhibit significant patterns,
demonstrating our model’s strategies to capturing temporal and variable dependencies within time
series. These visualizations of learned compression/expansion matrices hold promising potential for
analyzing the unique characteristics of different time series.

E.3 WHAT DECOMPOSITION STRATEGIES HAS TIMECAPSULE LEARNED ?

We have observed that TimeCapsule recognizes the multi-level structure of time series, although
this property resides in the latent representation space. In order to gain insight into it, we visualize
the final representation Y3 ∈ Rv×ty×1 at the neck of the decoder. By applying the learned level
expansion transform denoted as ML ∈ R1×l, we decompose Y3 into l sub-level series by performing
the mode-3 product Y3×3ML, then display each one, fixing on the first variable. As seen in Fig. 11
and Fig. 10, these series generally exhibit different scales, indicating that the multi-level property
contains a multi-scale property within the representation space. Specifically, for the ETTm2 dataset
(see Fig. 11), each level’s series has a unique amplitude, and their frequencies group into different
ranges; whereas for PEMS04 (see Fig. 10), the level patterns appear clearer and simpler.

0 20 40 60 80
4

3

2

1

0

1

2

3

level-0
level-1
level-2
level-3
level-4
level-5
level-6
level-7
origin

Figure 10: Multil-level property of PEMS04 series in the representation space by applying the learnd
level-expansion matrix.

This observation raises another question: is this multi-scale effect a result of the level expansion
transform ML ? To figure out it, we apply the transform again to X0, the original time series in
the time domain, just after the instance normalization. We decompose it into the same number
of sub-level series. As shown in Fig. 12 and Fig. 13, these decomposed sub-series also exhibit
different scales and frequencies. This demonstrates the effectiveness of the learned level expansion
transform and suggests that we could leverage such transforms to generate new kinds of time series
decompositions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600 700

1.0

0.5

0.0

0.5

1.0

1.5
level-0
level-1
level-2
level-3
level-4
level-5
level-6
level-7

Figure 11: Multil-level property of ETTm2 series in the representation space by applying the learnd
level-expansion matrix.

0 100 200 300 400 500

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

level-0
level-1
level-2
level-3
level-4
level-5
level-6
level-7
origin

Figure 12: Multil-level property of ETTm2 series in the normalized time space by applying the
learnd level-expansion matrix.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
level-0
level-1
level-2
level-3
level-4
level-5
level-6
level-7
origin

Figure 13: Multil-level property of PEMS04 series in the normalized time space by applying the
learnd level-expansion matrix.

0 100 200 300 400 500
2

0
origin
synthesis by summation

0 100 200 300 400 500
2.5
0.0
2.5

0 100 200 300 400 500
2

0

0 100 200 300 400 500
2

0

2

0 100 200 300 400 500
2.5

0.0

2.5

0 100 200 300 400 500
2.5

0.0

2.5

0 100 200 300 400 500

0

2

Figure 14: A summation of the sub-level series of the ETTm2 series in the normalized time space
demonstrates that it approaches the original series, indicating that the linear decomposition has been
achieved by the learned level-expansion matrix. Each subfigure represents a distinct variable of the
ETTm2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

0

2
origin
synthesis by summation

0 100 200 300 400 500
2

0

2
origin
synthesis by summation

0 100 200 300 400 500
2

0

2 origin
synthesis by summation

0 100 200 300 400 500

0

2 origin
synthesis by summation

Figure 15: A summation of the sub-level series of the ETTm2 series in the normalized time space
demonstrates that it approaches the original series, indicating that the linear decomposition has been
achieved by the learned level-expansion matrix. The first four variables are demonstrated in the
figure.

Finally, although we refer to the level expansion as a kind of time series decomposition, we need
to check that these sub-level series are indeed the result of a certain decomposition. As a naive
endeavor, we sum all the sub-level series of the decomposed X0 into a single series. Suprisingly,
the summation result nearly reconstructs the original series, as shown in Fig. 14 and Fig. 15.
This validates that our model’s ML achieves a linear decomposition for time series. Moreover, it
also suggests that these levels act as time bases, similar to the basis functions discussed in models
like N-BEATs (Oreshkin et al., 2019) and N-Hits (Challu et al., 2023). Broadly speaking, each
sub-level captures a unique aspect of the series: high-frequency sub-series contribute to the coarse
structure, while low-frequency sub-series refine finer details. This may also help to explain why
linear dependencies play a crucial role in time series modeling.

F LIMITATIONS AND FUTURE WORK

As discussed by current LTSF benchmark works (Qiu et al., 2024), no existing model can emerge as
the best across all cases. While we are are pleased to find that TimeCapsule can consistently achieve
SOTA performance on diverse datasets with competitive computation speeds, its flexibility also
introduces many challenges such as hyperparameter tuning. In the following, we elaborate on several
limitations of our proposed model, which may stimulates further explorations and refinements.

Compression Setting: The model currently relies on fixed, hard-coded compression dimensions as
hyperparameters, meaning that it is enforced to compress information into a predefined representa-
tion size. This constraint might restrict the model’s full potential, especially for datasets that benefit
from adaptive compression. Hence, exploring more mechanisms about time series decomposition
and the compressibility of time series could lead to more flexible and effective architectures.

Component Utilization: TimeCapusle’s modular structure sometimes reveals uneven utilization of
its components. For instance, transformer blocks for compressed representation learning and de-
pendency capture are highly effective in some cases but may go underused in others. Likewise, the
dimension of linear projection within the MLP usually can significantly impact results. This vari-
ability points to a potential waste of computational resources when dealing with different datasets.
Regarding to this issue, we will aim to analyze each component’s role in the model and then distill
the structure into a more compact form for practical applications.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Generality: The current version of TimeCapsule is specifically tailored to address one of the most
important challenges in time series research—long-term time series forecasting (LTSF). Despite the
shown initial classification results (see Appendix G.2), its design and functionality are primarily
centered around optimizing LTSF, which may inherently limit its expressiveness and effectiveness
for other downstream tasks, such as classification and imputation. Exploring TimeCapsule’s adapt-
ability to these broader applications, including investigating structural adjustments to better accom-
modate diverse practical applications, represents an urgent modification direction for the proposed
TimeCapsule.

G A PRELIMINARY INVESTIGATION INTO THE POTENTIAL FOR FURTHER
APPLICATIONS

G.1 TIMECAPSULE PRE-TRAINING USING JEPA

Due to the introduction of JEPA and the explicit division of functionalities within TimeCapsule,
where the encoder learns the predictive representation and the decoder makes predictions based on
the compressed representation, it is natural to explore its forecasting ability under a pre-training
scheme.

Instead of using traditional masked pre-training, we design and test a specialized efficient JEPA-
based pre-training and fine-tuning strategy for TimeCapsule. Specifically, in the pre-training phase,
we decouple the training process of the encoder and decoder: we first train the encoder using the
JEPA loss, and then, with the encoder and representation predictor frozen, train the decoder using
only the final prediction loss. Afterward, we fine-tune the entire model by optimizing the sum of the
two losses.

We evaluate the performance of this training strategy on several large datasets. We set the maximum
pre-training epochs as 10 and 50 for the encoder and decoder, respectively, and fine-tune the entire
model for a maximum of 10 epochs. As shown in the following table, the results indicate that
this pre-training strategy leads to comparable performance, or even worse results, than supervised
learning.

Table 10: Comparison results of TimeCapsule under the mode of JEPA based pre-traning and fine-
tuning.

Models TimeCapsule (fine-tune) TimeCapsule (supervised) iTransformer (2023) TimeMixer (2024) PatchTST (self-supervised 2023) Crossformer (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.142 0.187 0.141 0.186 0.159 0.208 0.147 0.198 0.148 0.196 0.146 0.212
192 0.188 0.233 0.187 0.232 0.200 0.248 0.192 0.243 0.193 0.240 0.195 0.261
336 0.236 0.271 0.239 0.272 0.253 0.289 0.247 0.284 0.244 0.279 0.268 0.325
720 0.310 0.325 0.309 0.323 0.321 0.338 0.318 0.330 0.321 0.334 0.330 0.380

Traffic

96 0.369 0.252 0.361 0.246 0.363 0.265 0.466 0.294 0.382 0.262 0.514 0.282
192 0.388 0.260 0.383 0.257 0.385 0.273 0.508 0.299 0.385 0.261 0.501 0.273
336 0.396 0.265 0.393 0.262 0.396 0.277 0.526 0.309 0.409 0.275 0.507 0.278
720 0.435 0.288 0.430 0.282 0.445 0.312 0.554 0.322 0.438 0.291 0.571 0.301

Electricity

96 0.127 0.221 0.125 0.218 0.138 0.237 0.131 0.224 0.132 0.227 0.135 0.237
192 0.146 0.239 0.146 0.238 0.157 0.256 0.151 242 0.148 0.241 0.160 0.262
336 0.163 0.256 0.161 0.254 0.167 0.264 0.169 0.260 0.167 0.260 0.182 0.282
720 0.198 0.287 0.194 0.285 0.194 0.286 0.227 0.312 0.205 0.292 0.246 0.337

We attribute this unsatisfactory outcome to two main factors. First, in our default training setup,
JEPA is only involved in the training of the encoder. While the prediction loss contributes to pa-
rameter updates across the entire model, the overall training effect does not significantly differ from
the separated training process. Second, the representation involved in the JEPA loss is compressed
into a very small size, which limits its impact on parameter updates and makes it less effective for
pre-training. To address this issue, we propose that increasing the influence of JEPA by incorpo-
rating additional losses computed between representations at different hidden layers could improve
performance, as demonstrated in previous works (e.g., (Baevski et al., 2022)).

G.2 CLASSIFICATION

In this section we take a first look at the potential of TimeCapsule in an alternative key time series
application, classification, which has played a crucial role in many real world scenarios. In order to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

achieve this purpose with a minimal change to the model structure, we turn off the use of JEPA due
to its unclear interpretation in classification.

Table 11: Results for classificatino task. The classification accuracy (%) are recorded as the results
below.

Datasets
Methods Informer (2021) Pyraformer (2021) Autoformer (2021) FEDformer (2022b) iTransformer (2023) Dlinear (2023) TiDE (2023) Timesnet (2022) TimeCapsule

Heartbeat 80.5 75.6 74.6 73.7 75.6 75.1 74.6 78.0 78.5
FaceDetection 67.0 65.7 68.4 66.0 66.3 68.0 65.3 68.6 70.2
Handwriting 32.8 29.4 36.7 28.0 24.2 27.0 23.2 32.1 27.0

SelfRegulationSCP2 53.3 53.3 50.6 54.4 54.4 50.5 53.4 57.2 57.8
EthanolConcentration 31.6 30.8 31.6 28.1 28.1 32.6 27.1 35.7 32.0
UWaveGestureLibrary 85.6 83.4 85.9 85.3 85.9 82.1 84.9 85.3 88.8

Average Accuracy 58.5 56.4 58.0 55.9 55.8 55.9 54.8 59.5 59.1

We select six of the most challenging datasets used in (Wu et al., 2022). The results in Table. G.2
show that although all the modules designed in this paper are primarily dedicated to improving
the generality and performance of the model in LTSF, it can still achieve competitive classification
accuracies compared to other time series models in recent years, which further underscores the
capability of TimeCapsule.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

H VISUALIZATIONS OF FORECASTING

Figure 16: Prediction on the PEMS04 dataset, with lookback window 512 and forecast length 96.

Figure 17: Prediction on the Solar dataset, with lookback window 512 and forecast length 96.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 18: Prediction on the Traffic dataset, with lookback window 512 and forecast length 96.

Figure 19: Prediction on the Electricity dataset, with lookback window 512 and forecast length 96.

26

	Introduction
	RELATED WORK
	TIMECAPSULE
	FEED FORWARD PROCESS
	MAIN COMPONENTS

	Experiment
	Forecasting Results
	Model Analysis
	Efficiency study.

	Conclusion
	Dataset Descriptions
	Mode Production
	Robustness
	More Studies
	Lookback Window
	Noise in Encoding Tunnels
	Inherent order of TransBlocks within the Encoder
	Positional Encoding
	Compression Dimension

	What have learnt by TimeCapsule ?
	Do these transforms retain and distinguish the information of variables and levels ?
	What do these transform matrices look like to enable multi-mode and multi-level learning ?
	What decomposition strategies has TimeCapsule learned ?

	Limitations and Future Work
	A preliminary investigation into the potential for further applications
	TimeCapsule Pre-training using JEPA
	Classification

	Visualizations of Forecasting

