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ABSTRACT

The “pre-train, prompt-tuning” paradigm has demonstrated impressive performance
for tuning pre-trained heterogeneous graph neural networks (HGNNs) by mitigat-
ing the gap between pre-trained models and downstream tasks. However, most
prompt-tuning-based works may face at least two limitations: (i) the model may
be insufficient to fit the graph structures well as they are generally ignored in the
prompt-tuning stage, increasing the training error to decrease the generalization
ability; and (ii) the model may suffer from the limited labeled data during the
prompt-tuning stage, leading to a large generalization gap between the training
error and the test error to further affect the model generalization. To alleviate the
above limitations, we first derive the generalization error bound for existing prompt-
tuning-based methods, and then propose a unified framework that combines two
new adapters with potential labeled data extension to improve the generalization of
pre-trained HGNN models. Specifically, we design dual structure-aware adapters to
adaptively fit task-related homogeneous and heterogeneous structural information.
We further design a label-propagated contrastive loss and two self-supervised losses
to optimize dual adapters and incorporate unlabeled nodes as potential labeled
data. Theoretical analysis indicates that the proposed method achieves a lower
generalization error bound than existing methods, thus obtaining superior gener-
alization ability. Comprehensive experiments demonstrate the effectiveness and
generalization of the proposed method on different downstream tasks.

1 INTRODUCTION

Pre-trained heterogeneous graph neural networks (HGNNs) are designed to pre-train models on the
heterogeneous graph data and then effectively generalize to diverse tasks (Fan et al., 2019; Jiang
et al., 2021). To achieve this, current pre-trained HGNNs typically utilize unsupervised techniques
during pre-training to learn fundamental properties, thereby enhancing the generalization ability of
models (Yang et al., 2022; Fan et al., 2024). Consequently, pre-trained HGNNs have demonstrated
promising potential in real applications such as recommendation systems, social network analysis,
and molecular design (Shi et al., 2016; Tian et al., 2023; Wu et al., 2024).

Existing pre-trained HGNNs generally follow two paradigms, i.e., “pre-train, fine-tuning” and “pre-
train, prompt-tuning”. The “pre-train, fine-tuning” paradigm typically first trains the model with
unlabeled data in the pre-training stage, and then updates the pre-trained model with task-related labels
in the fine-tuning stage to adapt it to downstream tasks (Wang et al., 2021; Tian et al., 2023). However,
the two stages in the “pre-train, fine-tuning” paradigm optimize different objectives, resulting in the
gap between pre-trained models and downstream tasks that weakens the model generalization (Liu
et al., 2023a; Yu et al., 2024c). To solve this issue, recent works propose the “pre-train, prompt-tuning”
paradigm to connect pre-trained models with downstream tasks by designing a learnable prompt
that directly appends to (or modifies) the model input (Yu et al., 2024b; Liu et al., 2023b). For
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Ĥ

P

H

mar

rec

Z

Ẑ
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Figure 1: The flowchart of the proposed HG-Adapter. Given the frozen representations H̃ from the
pre-trained model, the homogeneous adapter is designed to generate the adapted representations
F̃ by tuning the homogeneous graph structure A (details in the top right corner). After that, the
homogeneous representations Z̃ are obtained by summing the frozen representations Ẽ after message-
passing and F̃. Similarly, the heterogeneous representations Ẑ are obtained by summing the frozen
representations Ê after message-passing and the adapted representations M̂ from the heterogeneous
adapter (details in the bottom right corner). Furthermore, Z̃ and Ẑ are concatenated to generate Z,
which is then mapped to the prediction matrix P. Finally, HG-Adapter designs a label-propagated
contrastive loss (i.e., Lcon) and two self-supervised losses (i.e., Lrec and Lmar) to optimize dual
adapters and extend potential labeled data to improve the model generalization.

instance, HGPrompt (Yu et al., 2024a) proposes dual-template and dual-prompt to unify pre-training
and downstream tasks for both homogeneous and heterogeneous graphs. Similarly, HetGPT (Ma
et al., 2024) introduces virtual class and heterogeneous feature prompts, and then reformulates the
downstream objective function to align it with pre-training tasks.

However, existing “pre-train, prompt-tuning” methods have at least two limitations. First, the prompt-
tuning in existing methods only focuses on the node features while ignoring the graph structures in
the heterogeneous graph. As a result, the model may not sufficiently fit the task-related information in
graph structures during the prompt-tuning stage, thereby increasing the training error and decreasing
the generalization ability on downstream tasks (Bousquet & Elisseeff, 2002). Second, the pre-trained
models are generally trained in an unsupervised manner, thus their ability to generalize to unlabeled
data may be constrained by the limited labeled data during the prompt-tuning stage. Consequently,
this may result in a large generalization gap between the training error and the test error, leading to
sub-optimal generalization performance (Arora et al., 2018).

To alleviate the above limitations and improve the model generalization, three challenges remain to be
addressed. (i) Existing prompt-tuning-based methods usually rely on heuristically designed prompts
to improve generalization but lack a unified theoretical framework, highlighting the necessity to
formally understand and derive the key factors that affect the generalization of existing methods. (ii)
Based on such theoretical foundation, a new framework needs to be designed to effectively capture the
task-related structural information in the heterogeneous graph, thus decreasing the training error and
improving the model generalization. (iii) Given the difficulty of directly increasing the labeled data,
new alternative solutions are required to mitigate the issue of limited task-related labels in the tuning
stage, thereby decreasing the generalization gap and further improving the model generalization.

In this paper, we address the above challenges by first deriving a generalization error bound for existing
prompt-tuning-based methods and then proposing a novel adapter-tuning-based framework (termed
HG-Adapter) with dual structure-aware adapters and potential labeled data extension, thus improving
the generalization of pre-trained HGNNs, as shown in Figure 1. Specifically, we first theoretically
analyze the generalization error bound for existing methods based on the training error and the
generalization gap, thus building the theoretical foundation for our method and exploring challenge
(i). After that, we design homogeneous and heterogeneous adapters to capture the task-related
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structural information by adaptively tuning both homogeneous and heterogeneous graph structures,
thus decreasing the training error and improving the model generalization to explore challenge
(ii). Moreover, we design a label-propagated contrastive loss and two self-supervised losses on
unlabeled nodes, thus potentially extending the labeled data and decreasing the generalization gap
to further improve the model generalization and explore challenge (iii). Finally, we theoretically
demonstrate that the proposed method achieves a lower generalization error bound than existing
prompt-tuning-based methods, leading to superior performance across different downstream tasks.

Compared to existing works, our main contributions are summarized as follows:

• To our best knowledge, this is the first dedicated attempt to design a unified “pre-train,
adapter-tuning” paradigm to improve different pre-trained HGNN models.

• We design dual structure-aware adapters to capture task-related homogeneous and heteroge-
neous structural information. Moreover, we design a label-propagated contrastive loss and
two self-supervised losses to achieve the potential labeled data extension.

• We theoretically derive a unified generalization error bound for existing methods based on
the training error and the generalization gap. Moreover, we demonstrate that the proposed
method achieves a lower generalization error bound than existing prompt-tuning-based
methods to improve the generalization ability of pre-trained HGNN models.

• We experimentally validate the superior effectiveness and generalization of the proposed HG-
Adapter compared to state-of-the-art fine-tuning-based and prompt-tuning-based methods,
and demonstrating its adaptability to different pre-trained HGNN models.

2 METHOD

2.1 PRELIMINARIES

Definition 2.1. Heterogeneous graph (Sun & Han, 2012) is defined as G = (V, E ,A,R, ϕ, φ),
where V and E indicate the set of nodes and the set of edges, respectively. A and R indicate the set
of node types and the set of edge types, respectively, where |A ∪R| > 2 and the node type relevant to
downstream tasks is referred to as the target node. Moreover, A and R are associated with the node
type mapping function ϕ : V → A and the edge type mapping function φ : E → R, respectively.

Definition 2.2. Pre-trained HGNNs (Wang et al., 2021; Mo et al., 2024) generally include homoge-
neous and heterogeneous branches, which can be divided into two steps: 1) mapping the original
node features X with the Multi-Layer Perceptron (MLP) to obtain low-dimensional representations,
and 2) conducting the message-passing among nodes from the same type and nodes from different
types based on homogeneous and heterogeneous graph structures, respectively, i.e.,

H̃ = MLP(X), Ẽ = Message-Passing(H̃,Ghom),

Ĥ = MLP(X), Ê = Message-Passing(Ĥ,Ghet),
(1)

where Ghom indicates the homogeneous graph structure that connects nodes within the same type,
and Ghet indicates the heterogeneous graph structure that connects nodes from different types. The
homogeneous and heterogeneous graph structures generally come from pre-defined meta-paths and
the given set of edges E in the heterogeneous graph, respectively.

2.2 GENERALIZATION BOUND OF PROMPT-TUNING-BASED METHODS

Given pre-trained HGNN models, existing “pre-train, prompt-tuning” methods typically freeze the
model parameters and design tunable prompts to modify the input and capture task-related information
(Yu et al., 2024a). Despite effectiveness, existing methods generally rely on heuristically designed
prompts and lack a unified theoretical framework to further improve the generalization ability. As a
result, during the prompt-tuning stage, most existing methods ignore graph structures and may suffer
from limited labeled data, leading to inferior model generalization. To address this issue, we derive
the generalization error bound for existing prompt-tuning-based methods (i.e., HGPrompt (Yu et al.,
2024a) and HetGPT (Ma et al., 2024)) based on the classical regime of the generalization bound
theory (Arora et al., 2018; Aghajanyan et al., 2021) (proofs are provided in Appendix C.1).
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Theorem 2.3. (Generalization error bound for prompt-tuning-based methods.) Statistically, the
upper bound U(EM ) of the test error EM of a pre-trained HGNN model with prompt-tuning can be
determined as follows:

U(EM ) = ÊM (DnM
,PM ) +O(

√
|PM | /nM ), (2)

where training data DnM
and prompt-tuning parameters PM are variables of the training error ÊM

of the model in prompt-tuning stage. The number of training samples nM and the size of parameter
space |PM | are variables of the generalization gap bound between training error and test error.
Moreover, when nM is fixed, there exist an optimal |PM | to achieve the lowest upper bound for
prompt-tuning-based methods, i.e.,

min(U(EM )) = ÊM (DnM
,PM ) +O(

√
| PM | /nM ). (3)

Theorem 2.3 indicates that the lowest generalization error bound of existing prompt-tuning-based
methods exists and consists of two parts, i.e., the training error ÊM of the model in the prompt-tuning

stage, and the generalization gap bound O(
√

| PM | /nM ). As a result, we theoretically derive the
generalization error bound of existing prompt-tuning-based methods based on the training error and
the generalization gap, thus solving the challenge (i).

2.3 DUAL STRUCTURE-AWARE ADAPTERS

Intuitively, based on Theorem 2.3, when nM is fixed, encouraging the parameters PM to approach
the optimal parameters PM can enable the model to approach the lowest generalization error bound.
However, most existing prompt-tuning-based methods focus on designing prompts for node features
while ignoring the graph structures that contain task-related information in the heterogeneous graph
(Ma et al., 2024; Yu et al., 2024a). As a result, the parameters in existing prompt-tuning-based
methods may be insufficient to model the input data effectively, leading to the increased training error
ÊM . Therefore, although we cannot directly find the optimal parameters PM , we can better fit the
input data with few parameters to decrease the training error, thus decreasing the upper bound of the
test error and approaching the optimal parameters. To do this, in this paper, we propose to design dual
structure-aware adapters to model both node features as well as homogeneous and heterogeneous
graph structures, thereby making the parameters PM closer to the optimal parameters PM to improve
the generalization ability.

To do this, for the homogeneous branch in pre-trained HGNNs, we design a homogeneous adapter
to capture the task-related homogeneous structural information (i.e., the connections among nodes
within the same type). Specifically, the homogeneous adapter includes two steps (i.e., mapping and
message-passing), which tune node features and the homogeneous graph structure, respectively. In
the mapping step, we first employ the MLP fδ to obtain the mapped representations F for the frozen
representations H̃ before message-passing, i.e.,

F = ReLU(H̃Wδ), (4)

where Wδ ∈ Rd×d′
indicates the trainable parameters of fδ, and ReLU(·) indicates the ReLU

activation function. We further follow the lightweight principle (Hu et al., 2021; Chen et al.,
2022) to decrease the number of parameters by decomposing Wδ into two low-rank matrices,
i.e., Wδ = WdownWup, where Wdown ∈ Rd×t, Wup ∈ Rt×d′

, and t ≪ d, d′.

In the message-passing step, we focus on tuning the homogeneous graph structure to capture the
task-related homogeneous structural information, i.e., assign large weights for node pairs within
the same class while assigning small weights for node pairs from different classes. However, the
homogeneous graph structure is typically not provided in the heterogeneous graph, and previous
methods generally employ meta-paths to build it, which requires expert knowledge and incurs large
computation costs (Jing et al., 2021; Wang et al., 2023). To alleviate this issue, we propose to
tune the homogeneous graph structure adaptively by calculating the similarity weight ãi,j between
representations of nodes vi and vj from the same node type, i.e.,

ãi,j =
(h̃iWϑ) · (h̃jWϑ)

T

∥h̃iWϑ∥∥h̃jWϑ∥
, (5)
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where h̃i and h̃j indicate the frozen representations of nodes vi and vj before message-passing, and
Wϑ ∈ Rd×d′

indicates the trainable parameters that also can be decomposed into low-rank matrices.
To improve the performance and reduce computation costs, we only calculate ãi,j between node vi
and its k nearest neighbors to obtain a sparse graph structure Ã. After that, we can further derive the
positive and symmetric graph structure A ∈ Rn×n by

A =
ReLU(Ã) + ReLU(Ã)T

2
, (6)

where n indicates the number of target nodes from the same node type.

In Eq. (6), a larger value of the element ai,j indicates a stronger correlation between nodes vi
and vj , suggesting that they are more likely to belong to the same class. Based on the mapped
representations F and the adaptively learned homogeneous graph structure A, we conduct the
message-passing among nodes that are likely to belong to the same class and obtain the adapted
representations F̃, i.e., F̃ = AF. As a result, the adapted representations F̃ are expected to capture
the adaptive homogeneous structural information and aggregate information from nodes within
the same class. Subsequently, we can obtain the homogeneous representations Z̃ by summing the
adapted representations F̃ from the homogeneous adapter and the frozen representations Ẽ after
message-passing, i.e.,

Z̃ = Ẽ+ αF̃, (7)
where α is non-negative parameter.

In addition to the homogeneous adapter, we further propose to design a heterogeneous adapter for
the heterogeneous branch to capture the task-related heterogeneous structural information (i.e., the
connections among nodes from different types). Similarly, the heterogeneous adapter also consists of
mapping and message-passing steps. Specifically, in the mapping step, we first employ the MLP fθ to
obtain the mapped representations M for the frozen representations Ĥ before message-passing, i.e.,

M = ReLU(ĤΘdownΘup), (8)

where Θdown ∈ Rd×t′ and Θup ∈ Rt′×d′
indicate the trainable parameters of fθ, and t′ ≪ d, d′.

In the message-passing step, we focus on tuning the heterogeneous graph structure to capture the
task-related structural information, i.e., assign large weights for important neighbors while assigning
small weights for unimportant neighbors. To do this, we propose to calculate the weight si,r for
the r-th type of neighbor of each target node vi with the score function, thereby obtaining the
heterogeneous graph structure S ∈ Rn×|R|, i.e.,

si,r =
exp(Tanh(ĥi,rWϵ))∑|R|

r′=1 exp(Tanh(ĥi,r′Wϵ))
, (9)

where ĥi,r indicates the representation of the r-th type of neighbor for node vi, Wϵ ∈ Rd×1 indicates
the trainable parameters of the score function, Tanh(·) denotes the Tanh activation function, and |R|
denotes the number of edges types.

In Eq. (9), a larger value of the element si,r indicates that the r-th type of neighbor is more important
for node vi. With the mapped representations M and the adaptively learned heterogeneous graph
structure S, we conduct the message-passing among nodes from different types and obtain the adapted
representations M̂, i.e., m̂i =

∑|R|
r=1 si,rmi,r, where mi,r indicates the mapped representation of the

r-th type of neighbor for node vi. As a result, the adapted representations M̂ are expected to capture
the heterogeneous structural information and aggregate information from important heterogeneous
neighbors with large weights. Subsequently, we can obtain the heterogeneous representations
Ẑ by summing the adapted representations M̂ from the heterogeneous adapter and the frozen
representations Ê after message-passing, i.e.,

Ẑ = Ê+ βM̂, (10)

where β is a non-negative parameter.

As a result, the dual structure-aware adapters tune node features as well as homogeneous and hetero-
geneous graph structures simultaneously, thereby capturing more task-related structural information
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than existing prompt-tuning-based methods. We then concatenate homogeneous representations
Z̃ and heterogeneous representations Ẑ to obtain the final node representations Z. Consequently,
the final node representations Z aggregate information from nodes within the same class as well as
important neighbors from other node types. This enables the model to better fit the input data and
get closer to the optimal parameters PM , thus reducing the training error and improving the model’s
generalization ability to solve the challenge (ii) (verified in Appendix E.3).

2.4 POTENTIAL LABELED DATA EXTENSION

Designing the dual structure-aware adapters encourages the parameters PM to approach the optimal
parameters PM , thereby decreasing the training error ÊM and approaching the lowest generaliza-
tion error bound. Actually, based on Theorem 2.3, there is another way to further decrease the
generalization error bound, i.e., increasing the number of labeled data (i.e., nM ) in training set to

decrease the generalization gap bound O(
√

| PM | /nM ). However, obtaining a large number of
labeled data is challenging and costly in real scenarios. To solve this issue, in this paper, we design a
label-propagated contrastive loss and two self-supervised losses, extending all unlabeled nodes as the
potential labeled data to further improve the model’s generalization ability.

Specifically, we first propose to conduct the label propagation for the unlabeled data based on the
adaptively tuned homogeneous graph structure A and the label matrix Y, i.e.,

Ỹ = AY, (11)
where Y consists of one-hot label indicator vectors for labeled nodes and zero vectors for unlabeled
nodes. As a result, Eq. (11) encourages the label propagation from the labeled nodes and tends to
assign the same label for unlabeled nodes within the same class. Note that we utilize the homogeneous
graph structure for the label propagation instead of the heterogeneous graph structure, as the label
propagation occurs only among target nodes of the same type.

Given the propagated labels Ỹ, a common approach is to train a classifier that maps node repre-
sentations Z to a probability matrix and then computes the cross-entropy loss between the label
matrix and the probability matrix. However, the cross-entropy loss typically differs from the ob-
jective function used in the pre-training stage, leading to the gap between pre-trained models and
downstream tasks (Jing et al., 2021; Yu et al., 2024c). Fortunately, existing literature indicates that
any standard contrastive pre-training task on graphs can be reformulated as the objective function
based on subgraph similarity (Liu et al., 2023b; Yu et al., 2024b). Therefore, we propose to bridge
the gap between different pre-trained models and downstream tasks by reformulating the downstream
objective function according to the class-subgraph similarity.

To do this, we first employ a projection gρ to map node representations Z, resulting in the prediction
matrix P of all nodes, i.e., P = ZWρ, where Wρ ∈ Rd′×c is the trainable parameters of gρ, and
c denotes the number of classes. We then consider nodes with the same propagated label to be in
the same subgraph, and we can further obtain the class-subgraph prediction cỹi by averaging the
prediction vectors of nodes whose original labels equal to ỹi. After that, we propose a contrastive loss
based on the subgraph similarity to incorporate supervision signals by enforcing the node prediction
close to its class-subgraph prediction while far away from different class-subgraph predictions, i.e.,

Lcon = −
ỸL∑
i

ln
exp(sim(pi, cỹi

)/τ)∑
ỹi ̸=ỹj

exp(sim(pi, cỹj )/τ)
− λ

ỸUL∑
i

ln
exp(sim (pi, cỹi

) /τ)∑
ỹi ̸=ỹj

exp(sim(pi, cỹj )/τ)
, (12)

where λ is a non-negative parameter, ỸL and ỸUL indicate the sets of node indices with and without
original labels, respectively, sim(·) denotes a similarity function between two vectors, and τ is a
temperature parameter. Consequently, Eq. (12) simulates objective functions in different pre-trained
HGNN models based on the subgraph similarity, thereby bridging the gap between pre-trained models
and downstream tasks. This facilitates the application of the proposed method to different pre-trained
HGNN models. Moreover, Eq. (12) encourages the prediction vectors of both labeled and unlabeled
nodes to effectively capture the class information, potentially increasing the number of labeled data
to further decrease the model’s generalization error bound.

Although the label-propagated contrastive loss increases the number of labeled data potentially, the
confidence of propagated labels of unlabeled nodes in Ỹ may be insufficient during the early stages
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of training due to the gradual optimization of the graph structure A. This may hinder the optimization
of the dual adapters, i.e., the homogeneous and heterogeneous graph structures of labeled nodes
may be better tuned than that of unlabeled nodes. To address this issue, we start with the essence of
homogeneous and heterogeneous graph structures, and then design two self-supervised losses for the
dual adapters and treat both labeled and unlabeled nodes as equal supervision signals.

Intuitively, for nodes within the same type, a good homogeneous graph structure A should connect
nodes from the same class while disconnecting nodes from different classes. Moreover, existing
literature suggests that nodes with similar node features generally come from the same class (Liu
et al., 2022; Wu et al., 2023). For instance, in an academic heterogeneous graph, if the features of two
“paper” nodes share many keywords, they are likely to belong to the same class. Therefore, there is
an intuitive way to optimize the homogeneous graph structure by connecting nodes that share similar
node features while disconnecting nodes with dissimilar node features. To do this, we design a feature
reconstruction loss to align node features before and after the message-passing, thus optimizing the
graph structure A to assign appropriate weights to node pairs within the same class, i.e.,

Lrec = −
m∑
i=1

f∑
j=1

xi,j ln(AX)i,j , (13)

where m and f denote the number of sampled nodes and the feature dimension, respectively. Eq. (13)
enforces the reconstructed node features after message-passing to be aligned with the original node
features, which requires that message-passing occurs only among nodes with similar node features.
Therefore, Eq. (13) encourages the graph structure A to connect nodes within the same class while
disconnecting nodes from different classes as much as possible to optimize it.

Different from tuning the homogeneous graph structure that connects nodes within the same type,
the heterogeneous graph structure connects nodes from different types. Therefore, the feature
reconstruction may not be suitable for optimizing the heterogeneous graph structure S as the connected
nodes come from different feature distributions. To alleviate this, we first analyze the significance of
different heterogeneous neighbors and then optimize the weights assigned to them.

Intuitively, if a certain type of heterogeneous neighbor of node vi provides more relevant information
for identifying the node’s label than other neighbors, then such neighbors are more important to the
node vi and should be assigned larger weights. That is, although heterogeneous neighbors come from
different feature distributions, their representations may still partially overlap with the class-subgraph
representation cỹi of the node vi to provide class-related information. Furthermore, the degree of
overlap is greater for important neighbors than unimportant neighbors. Therefore, this paper designs
a margin loss to relatively narrow the distance between the class-subgraph representation cỹi and
the adapted representation m̂i, thus optimizing the graph structure S to assign large weights for
important heterogeneous neighbors, i.e.,

Lmar =

n∑
i,j=1,ỹi ̸=ỹj

{
d(cỹi

, m̂i)
2 − d(cỹi

, m̂j)
2 + γ

}
+
, (14)

where {·}+ = max{·, 0}, d(·) indicates a distance measurement between two vectors, and γ is a
non-negative parameter. Eq. (14) aims to decrease the distance d(cỹi

, m̂i)
2 while increasing the

distance d(cỹi , m̂j)
2, thus ensuring the “safe” margin γ between them. Therefore, the adapted

representation m̂i =
∑|R|

r=1 si,rmi,r is encouraged to preserve its class-related information that
shared with cỹi . This optimizes the heterogeneous graph structure S to assign large weights to
important neighbors that contain more class-related information. Note that the margin loss only
requires the relative distance to exceed γ, unlike traditional contrastive losses (e.g., InfoNCE (Oord
et al., 2018)) that enforce the alignment between the class-subgraph representation and the adapted
representation. Such direct alignment may be inappropriate, as these representations come from
different feature distributions (verified in Appendix E.8).

Finally, we integrate the contrastive loss in Eq. (12), the feature reconstruction loss in Eq. (13), and
the margin loss in Eq. (14) to obtain the objective function of the proposed method, i.e.,

J = Lcon + ηLrec + µLmar, (15)

where η and µ are non-negative parameters. With the objective function in Eq. (15), the proposed
method optimizes the dual adapters and extends the potential labeled data by incorporating both
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Table 1: Classification performance (i.e., Macro-F1 and Micro-F1) on all heterogeneous graph
datasets, where the best results are highlighted in bold, while improved results with the proposed
HG-Adapter are underlined. The “+” symbol indicates the integration of HG-Adapter and HetGPT
with original pre-trained HGNN models.

Method ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

HAN 89.4±0.2 89.2±0.2 90.5±1.2 90.7±1.4 91.2±0.4 92.0±0.5 65.3±0.7 72.8±0.4
HGT 91.5±0.7 91.6±0.6 89.9±0.5 90.2±0.6 90.9±0.6 91.7±0.8 64.5±0.5 71.0±0.7
DMGI 89.8±0.1 89.8±0.1 82.9±0.8 85.8±0.9 92.1±0.2 92.9±0.3 63.8±0.4 67.6±0.5
HGCML 90.6±0.7 90.7±0.5 90.7±0.8 91.0±0.7 91.9±0.8 93.2±0.7 70.5±0.4 76.3±0.6
HGMAE 90.5±0.5 90.6±0.7 90.5±0.7 90.7±0.5 92.9±0.5 93.4±0.6 72.3±0.9 80.3±1.2
HGPrompt 92.1±0.7 92.0±0.6 92.5±0.4 92.3±0.5 93.5±0.6 94.0±0.7 74.8±0.8 83.9±0.6

HDMI 90.1±0.3 90.1±0.3 80.7±0.6 84.0±0.9 91.3±0.2 92.2±0.5 65.9±0.4 71.7±0.6
+HetGPT 91.0±0.7 90.9±0.6 81.4±0.4 84.8±0.5 91.9±0.8 92.9±0.6 67.1±0.3 72.9±0.4
+HG-Adpater 91.4±0.6 91.5±0.7 82.0±0.8 85.5±1.1 92.4±0.5 93.3±0.7 67.9±0.3 73.6±0.4

HeCo 88.3±0.3 88.2±0.2 85.3±0.7 87.9±0.6 91.0±0.3 91.6±0.2 71.8±0.9 78.6±0.7
+HetGPT 88.5±0.4 88.4±0.6 85.9±0.8 88.6±0.9 91.5±0.6 92.2±0.5 72.1±0.7 79.0±0.4
+HG-Adpater 89.0±0.5 89.0±0.4 86.4±0.6 89.2±0.7 92.3±0.8 92.6±0.6 72.8±0.5 79.8±0.3

HERO 92.2±0.5 92.1±0.7 92.4±0.7 92.3±0.6 93.8±0.6 94.4±0.4 75.1±0.7 84.5±0.9
+HetGPT 92.4±0.4 92.2±0.3 92.6±0.5 92.4±0.7 93.8±0.4 94.5±0.3 75.7±0.6 85.2±0.8
+HG-Adapter 92.7±0.4 92.7±0.7 93.1±0.6 92.7±0.5 94.0±0.7 94.7±0.8 78.3±0.5 87.1±0.6

labeled and unlabeled nodes as supervision signals. As a result, this decreases the generalization gap
and thus further decreases the generalization error bound of existing methods to solve the challenge
(iii) (verified in Appendix E.4). Actually, we can derive that the proposed method with dual adapters
and labeled data extension achieves a lower generalization error bound than existing methods by
decreasing the training error and the generalization gap, which can be found in Appendix C.2.
Consequently, the proposed method is expected to obtain better generalization and effectiveness on
downstream tasks. (verified in Section 3.2.1 and Section 3.2.2).

3 EXPERIMENTS

In this section, we conduct experiments on four public heterogeneous graph datasets to evaluate
the proposed HG-Adapter in terms of different downstream tasks (i.e., node classification and node
clustering), compared to both fine-tuning-based methods and prompt-tuning-based methods. The
code of the proposed method is released at https://github.com/YujieMo/HG-Adapter.

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS

The used datasets include three academic datasets (i.e., ACM (Wang et al., 2019), DBLP (Wang et al.,
2019), and Aminer (Hu et al., 2019)), and one business dataset (i.e., Yelp (Lu et al., 2019)).

3.1.2 COMPARISON METHODS

The comparison methods include two traditional semi-supervised methods (i.e., HAN (Wang et al.,
2019) and HGT (Hu et al., 2020b)), six fine-tuning-based methods (i.e., DMGI (Park et al., 2020),
HDMI (Jing et al., 2021), HeCo (Wang et al., 2021), HGCML (Wang et al., 2023), HGMAE (Tian
et al., 2023), and HERO (Mo et al., 2024)), and two prompt-tuning-based methods (i.e., HGPrompt
(Yu et al., 2024a) and HetGPT (Ma et al., 2024)), where the pre-training and the prompt-tuning of
HGPrompt are both specifically designed, while HetGPT only designs the prompt-tuning and thus
can be used for different pre-trained HGNN models.
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Figure 2: (a) Homophily ratios of the homogeneous graph structure A learned by HERO+HG-Adapter
on four datasets. (b) Node classification results without maximal/minimal weights neighbors in the
heterogeneous graph structure S learned by HERO+HG-Adapter on three datasets (excluding the
DBLP dataset, as its target node has only one type of neighbors). (c) Test errors of HERO with
different tuning methods (i.e., traditional fine-tuning, prompt-tuning-based HetGPT, and the proposed
HG-Adapter) on the ACM dataset.

3.2 RESULTS ANALYSIS

3.2.1 EFFECTIVENESS ON DOWNSTREAM TASKS

To evaluate the effectiveness of the proposed HG-Adapter, we follow previous works (Fu et al., 2020;
Ma et al., 2024; Mo et al., 2024) to employ node classification and node clustering as downstream
tasks and report their results in Table 1 and Appendix E, respectively. Obviously, the proposed
method consistently demonstrates superior performance on both node classification task and node
clustering task than other comparison methods.

Specifically, first, for the node classification task, the proposed method always outperforms fine-
tuning-based and prompt-tuning-based comparison methods by large margins. For instance, the
proposed method on average, improves by 0.81%, compared to the best prompt-tuning-based method
(i.e., HetGPT), on different pre-trained HGNN models (i.e., HDMI, HeCo, and HERO). This improve-
ment can be attributed to the dual structure-aware adapters and the potential labeled data extension,
which decrease the training error and the generalization gap. Consequently, the proposed method
enhances the model’s generalization ability on downstream tasks to decrease the generalization error
on test data, thus improving the performance of different pre-trained HGNN models.

Second, for the node clustering task, the proposed method also obtains promising improvements.
For instance, the proposed method on average, improves by 2.69%, compared to the best prompt-
tuning-based method (i.e., HetGPT), across different pre-trained HGNN models. This demonstrates
the superiority of the proposed method, which designs a contrastive loss based on the class-subgraph
similarity to ensure that nodes within the same class are close to each other, thereby enhancing the
clustering performance. As a result, the effectiveness of the proposed method is verified on both node
classification and node clustering downstream tasks.

3.2.2 EFFECTIVENESS OF DUAL-ADAPTERS

To verify the effectiveness of the proposed dual structure-aware adapters, we calculate the homophily
ratio (i.e., the ratio of edges that connect nodes within the same class) of A, collect the performance
degradation without minimal and maximal weights neighbors in S, evaluate the test errors of HERO
with different tuning methods, and report the results in Figure 2.

First, from Figure 2(a), the homophily ratio of the learned homogeneous graph structure A increases
rapidly at the beginning of training and tends to stabilize after reaching a high value. This suggests that
the homogeneous adapter effectively learns A to build edges among nodes within the same class. As
a result, the homogeneous adapter captures the task-related homogeneous structural information and
promotes message-passing within the same class. Second, from Figure 2(b), the proposed HG-Adapter
without minimal weights neighbors obtains significantly less performance degradation than without

9
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Table 2: Classification performance (i.e., Macro-F1 and Micro-F1) of each component in the objective
function J on all heterogeneous graph datasets.

Lcon Lrec Lmar
ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

− − ✓ 30.2±1.1 39.5±1.3 50.3±0.7 56.7±0.9 11.9±0.5 31.4±0.7 35.7±0.8 67.7±1.0
− ✓ − 32.3±0.9 40.5±0.8 41.7±0.6 52.2±0.5 10.9±0.8 30.8±0.9 35.6±0.7 67.5±0.6
✓ − − 87.9±0.5 87.8±0.7 89.1±0.4 89.0±0.3 80.7±0.8 82.6±0.7 73.2±0.5 79.8±0.3
− ✓ ✓ 32.3±0.5 40.5±0.6 40.6±0.8 48.2±0.7 11.9±0.5 31.4±0.4 35.7±0.6 67.7±0.7
✓ − ✓ 89.6±0.5 89.5±0.7 90.0±0.6 89.6±0.4 91.6±0.9 92.5±1.1 75.1±0.8 82.2±0.7
✓ ✓ − 90.1±0.4 90.0±0.5 92.0±0.5 91.8±0.6 92.7±0.8 93.5±0.7 76.3±0.5 84.6±0.4
✓ ✓ ✓ 92.7±0.4 92.7±0.7 93.1±0.6 92.7±0.5 94.0±0.7 94.7±0.8 78.3±0.5 87.1±0.6

maximal weights neighbors. This demonstrates that the heterogeneous adapter effectively learns the
heterogeneous graph structure S to assign large weights for important neighbors while assigning
small weights for unimportant neighbors. Therefore, the heterogeneous adapter enables nodes to
aggregate information from important neighbors, thus capturing more class-related information to
benefit downstream tasks. Third, from Figure 2(c), the proposed HG-Adapter achieves the lowest test
error than fine-tuning-based and prompt-tuning-based methods on the test data. This indicates that
the proposed method indeed achieves lower generalization errors than existing methods on unlabeled
data, obtaining better generalization ability on downstream tasks.

3.2.3 ABLATION STUDY

The proposed method investigates the objective function J to optimize the dual adapters and extend
the labeled data potentially. To verify the effectiveness of each component of J (i.e., the contrastive
loss Lcon, the feature reconstruction loss Lrec, and the margin loss Lmar), we investigate the
performance of all variants on the node classification task and report the results in Table 2.

From Table 2, we have the observations as follows. First, the variant without Lcon performs
significantly worse to the other two variants (i.e., without Lrec and without Lmar, respectively).
The reason can be attributed to the fact that the label information is necessary for the proposed HG-
Adapter because it provides the ground truth for optimizing adapters and node predictions. Second,
the proposed method with the complete objective function obtains the best performance. For example,
the proposed method on average improves by 2.0%, compared to the best variant (i.e., without Lmar),
indicating that all components in the objective function are necessary for the proposed method. This
is reasonable because the feature reconstruction loss Lrec and the margin loss Lmar optimize graph
structures and incorporate all unlabeled nodes as equal supervision signals, thus improving the model
generalization. These observations are consistent with our claims, i.e., capturing the task-related
structural information with dual adapters and extending the potential labeled data is essential for
improving the effectiveness and generalization ability of pre-trained HGNN models.

4 CONCLUSION

In this paper, we derived the generalization error bound for existing prompt-tuning-based methods
and then proposed a novel framework with dual structure-aware adapters and potential labeled data
extension to address existing issues. Specifically, we first established the theoretical foundation by
deriving the generalization error bound for existing methods based on the training error and the
generalization gap. We then designed homogeneous and heterogeneous adapters to adaptively tune
homogeneous and heterogeneous graph structures, thus capturing the task-related structural informa-
tion to decrease the training error. Moreover, we designed a label-propagated contrastive loss and two
self-supervised losses on unlabeled nodes, thus optimizing dual adapters and potentially increasing
the labeled data to decrease the generalization gap. Theoretical analysis indicates that the proposed
method is expected to obtain a lower generalization error bound and better generalization ability
than existing prompt-tuning-based methods. Comprehensive experiments verify the effectiveness
and generalization of the proposed method on various heterogeneous graph datasets and different
downstream tasks. We discuss potential limitations and future directions in Appendix F.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This project is supported by the National Key Research and Development Program of China under
Grant No. 2022YFA1004100, the Natural Science Foundation of Guangdong Province of China
under Grant No. 2024A1515011381, and National Research Foundation, Singapore, under its AI
Singapore Programme (AISG Award No: AISG2-RP-2021-023).

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In ACL, pp. 7319–7328, 2021.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In ICML, pp. 254–263, 2018.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
In ICLR, 2021.
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A RELATED WORK

This section briefly reviews topics related to this work, including fine-tuning-based pre-trained
heterogeneous graph neural networks in Section A.1, and graph prompt-tuning and adapter-tuning in
Section A.2.

A.1 FINE-TUNING-BASED PRE-TRAINED HETEROGENEOUS GRAPH NEURAL NETWORKS

In recent years, inspired by the prosperity of pre-trained models in the fields of computer vision (Bao
et al., 2021) and natural language processing (Dong et al., 2019), many pre-trained heterogeneous
graph neural networks (HGNNs) have been introduced for the heterogeneous graph data (Wang et al.,
2019; Jiang et al., 2021). Generally, these pre-trained HGNN models are trained in a self-supervised
fashion, facilitating the transfer of knowledge to downstream tasks through a fine-tuning step (Jing
et al., 2021; Zhu et al., 2022).

Existing fine-tuning-based pre-trained HGNN methods can be broadly classified into two groups,
i.e., meta-path-based methods and meta-path-free methods. In meta-path-based methods, several
graphs are usually constructed based on different pre-defined meta-paths to examine diverse rela-
tionships among nodes that share similar labels (Jing et al., 2021; Zhu et al., 2022). For example,
STENCIL (Zhu et al., 2022) and HDMI (Jing et al., 2021) construct meth-path-based graphs and
then conduct node-level consistency constraints (e.g., contrastive loss) between node representations
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in different graphs. In addition, HGCML (Wang et al., 2023) and CPIM (Mo et al., 2023) propose
to maximize the mutual information between node representations from different meta-path-based
graphs. However, pre-defined meta-paths in these methods generally require expert knowledge and
prohibitive computation costs (Zhang et al., 2022). Therefore, meta-path-free methods are proposed
to capture the relationships among nodes without meta-paths. For example, SR-RSC (Zhang et al.,
2022) designs a multi-hop contrast to optimize the regional structural information by utilizing the
strong correlation between nodes and their neighbor graphs. In addition, recently, HERO (Mo et al.,
2024) made the first attempt to learn an adaptive self-expressive matrix to capture the homophily in
the heterogeneous graph, thus avoiding meta-paths.

A.2 GRAPH PROMPT-TUNING AND ADAPTER-TUNING

The “pre-train, fine-tuning” paradigm has become prevalent in graph learning, particularly for tasks
with limited labeled data (Ma et al., 2024). However, this approach often suffers from a mismatch
between the objectives of pre-training and downstream tasks, resulting in a “negative transfer”
problem. Consequently, the knowledge acquired during the pre-training stage can negatively impact
the performance of downstream tasks.

To solve this issue, recent research suggests the “pre-train, prompt-tuning” diagram to establish a
connection between downstream tasks and pre-trained models by designing a learnable prompt that
modifies the model input (Fang et al., 2023; Yu et al., 2024b). For example, for the homogeneous
graph, GPPT (Sun et al., 2022) introduces prompt templates to align the link prediction pre-training
task with the downstream node classification task. ProG (Sun et al., 2023) proposes a new multi-task
prompting method for graph models by unifying the format of graph prompts and language prompts
with the prompt token, token structure, and inserting pattern. GraphPrompt (Liu et al., 2023b)
employs subgraph similarity as its template and designs a learnable prompt to unify pre-training with
multiple downstream tasks. For the heterogeneous graph, HGPrompt (Yu et al., 2024a) proposes to
unify pre-training and downstream tasks as well as homogeneous and heterogeneous graphs via dual-
template and dual-prompt design. HetGPT (Ma et al., 2024) designs virtual class and heterogeneous
feature prompts, and reformulates downstream tasks to mirror pretext tasks. Despite effectiveness,
both HGPrompt and HetGPT ignore the graph structures during the prompt-tuning stage. Although
part homogeneous graph prompt-tuning methods (e.g., ProG) investigate to design structure prompts,
they may not easily be transferred to the heterogeneous graph, as the more complex graph structures
in the heterogeneous graph. As a result, when tuning the pre-trained HGNNs, the model may not
sufficiently model the input data to increase the training error and decrease the generalization ability.

Different from the “pre-train, prompt-tuning” diagram, the “pre-train, adapter-tuning” diagram aims
to insert adapter modules with lightweight neural network architecture to bridge the gap between
pre-trained models and downstream tasks. Recent works propose adapter-tuning for homogeneous
graph pre-trained models by inserting different adapter modules (Li et al., 2024; Gui et al., 2024).
For example, G-Adapter (Gui et al., 2024) leverages the graph structure and Bregman proximal point
optimization strategy to mitigate the feature distribution shift issue. In addition, AdapterGNN (Li
et al., 2024) proposes to preserve the knowledge of the large pre-trained model and leverage highly
expressive adapters for graph neural networks, adapting to downstream tasks effectively with only a
few parameters. However, they are designed for the homogeneous graph and cannot easily transfer to
the heterogeneous graph. Moreover, these adapter-tuning-based methods also cannot tune the graph
structures, thus increasing the training error and decreasing the model generalization.

As a result, when tuning pre-trained HGNN models, despite the effectiveness of existing prompt-
tuning-based methods, they still have some limitations to address. That is, homogeneous and
heterogeneous graph structures are generally ignored in the tuning stage, leading to increased training
error and decreased generalization ability. Moreover, existing prompt-tuning-based methods may
suffer from the issue of limited labeled data in the tuning stage, leading to a large generalization gap
between training and test errors and sub-optimal generalization on downstream tasks.

B ALGORITHM

This section provides the pseudo-code of the proposed method in Section B.1 and the complexity
analysis in Section B.2.
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B.1 ALGORITHM

Algorithm 1 The pseudo-code of the proposed method.

Input: Heterogeneous graph G = (V, E ,A,R, ϕ, φ), pre-trained HGNN model, maximum training
steps E;

Output: Homogeneous and heterogeneous adapters, projection gρ;
1: Initialize parameters and upload pre-trained parameters;
2: while not reaching E do
3: Obtain homogeneous graph structure A by Eq. (7);
4: Obtain the homogeneous representations Z̃ by Eq. (7);
5: obtain heterogeneous graph structure S by Eq. (9);
6: Obtain the heterogeneous representations Ẑ by Eq. (10);
7: Conduct the label propagation by Eq. (11);
8: Conduct the label-propagated contrastive loss by Eq. (12);
9: Conduct the feature reconstruction loss by Eq. (13);

10: Conduct the margin loss by Eq. (14);
11: Compute the objective function J by Eq. (15);
12: Back-propagate J to update model weights;
13: end while

B.2 COMPLEXITY ANALYSIS

The proposed method consists of two prats, i.e., dual structure-aware adapters and potential labeled
data extension. We analyze the time complexity of each part as follows. First, the time complexity
of the dual structure-aware adapters is O(nkd+ n|R|), where n, k, d, and |R| indicate the number
of nodes, the number of neighbors of each node, the number representation dimension, and the
number of edge types, respectively. Second, the time complexity of the potential labeled data
extension is O(nkc+ nc2 + nkf), where c and f indicate the number of classes and dimensions of
node features, respectively. Therefore, the overall time complexity of the proposed HG-Adapter is
O(n(kd+ |R|+ kc+ c2 + kf)). As a result, The proposed HG-Adapter is scaled linearly with the
sample size and has the potential to be implemented with limited resources.

C PROOFS OF THEOREMS

C.1 PROOF OF THEOREM 2.3

To prove Theorem 2.3, we first introduce the generalization error bound for finite hypothesis space in
classical regime (Bousquet & Elisseeff, 2000; Huang & Meyn, 2013) by the following Lemma.

Lemma C.1. (Generalization error bound for finite hypothesis space in the classical regime.)
Statistically, the upper bound U(E) of the test error E of a model in the finite hypothesis space is
determined as follows:

E ≤ U(E) = Ê (Dn,P) +O(
√

|P|/n), (16)

where training data Dn and parameters P are variables of the training error Ê . The number of
training samples n and the size of parameter space |P| are variables of the generalization gap bound
O(
√
|P|/n) between the training error and the test error.

Proof. Let H represent a finite hypothesis space, where each h ∈ H corresponds to a set of trained
parameters within this parameter space H. ÊDn

represents training error over sampled training data
Dn, and E represents test error. n is the number of training data.

Then, the probability that the difference between the test error and the training error of the hypothesis
space h is greater than ε can be written as

P (∃h ∈ H, |ÊDn(h)− E(h)| > ε). (17)
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Based on the union bound of probability, we further have:

P (∃h ∈ H, |ÊDn(h)− E(h)| > ε)

= P ([|ÊDn
(h1)− E(h1)| > ε] ∨ · · · ∨ [|ÊDn

(h|H|)− E(h|H|)| > ε])

≤
∑
h∈H

P (|ÊDn
(h)− E(h)| > ε).

(18)

In addition, based on the Hoeffding’s Inequality, we have∑
h∈H

P (|ÊDn
(h)− E(h)| > ε) ≤ 2 exp(−2nε2). (19)

We then let 2 exp(−2nε2) = δ/|H|, where 0 < δ < 1 and have∑
h∈H

P (|ÊDn(h)− E(h)| > ε) ≤
∑
h∈H

δ/|H| ⩽ |H| · δ/|H| = δ. (20)

That is, when 2 exp(−2nε2) = δ/|H|, we have∑
h∈H

P (|ÊDn(h)− E(h)| > ε) ≤ δ. (21)

According to 2 exp(−2nε2) = δ/|H|, we can obtain ε =
√

ln |H|+ln(2/δ)
2n . Moreover, we can rewrite

Eq. (21) as
P (∀h ∈ H, |ÊDn

(h)− E(h)| ≤ ε) ≥ 1− δ. (22)

Replace ε with
√

ln |H|+ln(2/δ)
2n , we can further have

P

(
∀h ∈ H, |ÊDn

(h)− E(h)| ≤
√

ln |H|+ ln(2/δ)

2n

)
≥ 1− δ. (23)

Therefore, with probability at least 1− δ, we have

E(h) ≤ ÊDn
(h) +

√
ln |H|+ ln(2/δ)

2n
. (24)

For simplicity, we omit the probability notation and use U to represent the upper bound. We also
omit the ln term and use P to represent the parameter space. Therefore, |P| quantifies the size of the
parameter space, sampled data Dn and the trained parameters P are variables of the training error Ê ,
and we have

E ≤ U(E) = Ê (Dn,P) +O(
√

|P|/n). (25)
Thus we complete the proof.

Based on Lemma C.1, we can further derive the lowest generalization error bound for pre-trained
HGNN models during the prompt-tuning stage, which benefit from the parameter optimization by the
pre-training stage.
Theorem C.2. (Generalization error bound for prompt-tuning-based methods.) Statistically, the
upper bound U(EM ) of the test error EM of a pre-trained HGNN model with prompt-tuning can be
determined as follows:

U(EM ) = ÊM (DnM
,PM ) +O(

√
|PM | /nM ), (26)

where training data DnM
and prompt-tuning parameters PM are variables of the training error ÊM

of the model in prompt-tuning stage. The number of training samples nM and the size of parameter
space |PM | are variables of the generalization gap bound between training error and test error.
Moreover, when nM is fixed, there exist an optimal |PM | to achieve the lowest upper bound for
prompt-tuning-based methods, i.e.,

min(U(EM )) = ÊM (DnM
,PM ) +O(

√
| PM | /nM ). (27)
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Proof. We first derive the generalization bound for existing prompt-tuning-based methods. Based on
Lemma C.1, if we ignore the pre-trained model, we can obtain the generalization bound of existing
prompt-tuning methods, i.e.,

U (EM ) = Ê(DnM
,PM ) +O(

√
|PM | /nM ). (28)

However, training error of the model in the prompt-tuning stage will benefit from the better initial-
ization with the pre-trained stage. Actually, such benefits B on the training error can be written as
follows.

B = Ê (DnM
,PM )− ÊM (DnM

,PM ) . (29)
Therefore, we can obtain the generalization error bound for existing prompt-tuning-based methods as
follows.

U(EM ) = Ê(DnM
,PM ) +O(

√
|PM | /nM )−B

= Ê(DnM
,PM ) +O(

√
|PM | /nM )− Ê(DnM

,PM ) + ÊM (DnM
,PM )

= ÊM (DnM
,PM ) +O(

√
|PM | /nM ).

(30)

Based on the generalization bound, to examine whether the lowest upper generalization bound exists,
we derive the partial derivative of U (EM ) with respect to |PM |, i.e.,

∂(U(EM ))

∂ |PM |
=

∂(ÊM (DnM
,PM ))

∂ |PM |
+

∂O(
√
|PM | /nM )

∂ |PM |

=
∂(ÊM (DnM

,PM ))

∂ |PM |
+O(1/

√
|PM | · nM ).

(31)

In addition, according to the generalization bound, we have the observations as follows. First,
with the increase of parameters PM , a larger parameter size confers stronger optimization ability,
leading to the decrease of the training error (i.e., ÊM (DnM

,PM )) in Eq. (30). In addition, the

generalization gap bound (i.e., O(
√
|PM | /nM )) increases. Therefore, ∂(ÊM (DnM

,PM ))

∂|PM | < 0 while

O(1/
√
|PM | · nM ) > 0. As a result, there exist a optimal size of PM (i.e., |PM |), which enables the

derivative of U (EM ) with respect to |PM | equals to 0. Therefore, we can achieve the lowest upper
bound for prompt-tuning-based methods, i.e.,

min(U(EM )) = ÊM (DnM
,PM ) +O(

√
| PM | /nM ). (32)

Thus we complete the proof.

C.2 COMPARISON OF THE GENERALIZATION ERROR BOUND

Theorem C.3. (Generalization error bound for the proposed HG-Adapter.) With dual structure-
aware adapters and potential labeled data extension, the proposed HG-Adapter decreases both the
training error and the generalization gap to achieve a lower generalization error bound U(EA)nA

than that of existing prompt-tuning-based methods (i.e., U(EM )nM
), i.e.,

U(EA)nA
< U(EA)nM

< U(EM )nM
, (33)

where nA indicates the number of training data for the proposed HG-Adapter.

Proof. According to the Theorem 2.3, we have the generalization error bound of existing prompt-
tuning-based methods, i.e.,

U (EM ) = ÊM (DnM
,PM ) +O(

√
|PM | /nM ). (34)

Moreover, given the fixed size of the training data nM , we can obtain the lowest generalization error
bound when the model achieves the optimal parameters PM , i.e.,

min(U(EM )) = ÊM (DnM
,PM ) +O(

√
| PM | /nM ). (35)

Therefore, when the training data is fixed as nM , we see that the generalization error bound of existing
prompt-tuning-based methods follows the U-shaped behavior. That is, as the size of parameters PM
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Table 3: Statistics of all datasets.

Datasets #Nodes #Node Types #Edges #Edge Types Target Node/Edge #Training #Test #Class

ACM 8,994 3 25,922 4 Paper 600 2,125 3

Yelp 3,913 4 72,132 6 Bussiness 300 2,014 3

DBLP 18,405 3 67,946 4 Author 800 2,857 4

Aminer 55,783 3 153,676 4 Paper 80 1,000 4

HBN-B 15,322 4 6,135,187 10 Drug-Target 7,875 875 2

Ogbn-mag 1,939,743 4 36,805,743 7 Paper 625,930 66,275 349

increases, the generalization error of the model first decreases until the generalization error is lowest
at the optimal parameters PM , and then as the size of parameters PM increases, the generalization
error of the model increases. As we mentioned above, previous methods generally ignore the graph
structures and thus may not be sufficient to model the input data and increase the training error ÊM .
As a result, we can obtain that |PM | < |PM |. To solve this issue, the proposed method designs dual
structure-aware adapters to tune the heterogeneous and homogeneous graph structures by increasing
a few parameters. Then the parameters PA are expected to be closer to the optimal parameters PM

than the parameters PM , i.e.,

||PA| − |PM || < ||PM | − |PM ||. (36)

We then have
U (EA)−min(U(EM )) < U (EM )−min(U(EM )). (37)

Then, when the training data is fixed as nM , we can obtain

U(EA)nM
< U(EM )nM

. (38)

In addition to the dual adapters, we further conduct the potential labeled data extension by designing
the label-propagated contrastive loss and two self-supervised losses, thus incorporating all unlabeled
nodes as supervision signals. Therefore, the size of training data after extension (i.e., nA) is supposed
to be larger than the original size of training data nM . Therefore, we have

O(
√
|PA| /nA) < O(

√
|PA| /nM ). (39)

We then have
U(EA)nA

< U(EA)nM
< U(EM )nM

. (40)

Thus we complete the proof.

D EXPERIMENTAL SETTINGS

This section provides detailed experimental settings in Section Experiments, including the description
of all datasets in Section D.1, summarization of all comparison methods in Section D.2, evaluation
protocol in Section D.3, model architectures and settings in Section D.4, and computing resource
details in Section D.5.

D.1 DATASETS

We use four public heterogeneous graph datasets from various domains including three academic
datasets (i.e., ACM (Wang et al., 2019), DBLP (Wang et al., 2019), and Aminer (Hu et al., 2019)),
and one business dataset (i.e., Yelp (Zhao et al., 2021)). Table 3 summarizes the data statistics. We
list the details of the datasets as follows.

• ACM is an academic heterogeneous graph dataset. It contains three types of nodes (paper
(P), author (A), subject (S)), four types of edges (PA, AP, PS, SP), and treats categories of
papers as labels.
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• Yelp is a business heterogeneous graph dataset. It contains three types of nodes (business
(B), user (U), service (S), level (L)), six types of edges (BU, UB, BS, SB, BL, LB), and
treats categories of businesses as labels.

• DBLP is an academic heterogeneous graph dataset. It contains three types of nodes (paper
(P), authors (A), conference (C)), four types of edges (PA, AP, PC, CP), and treats research
areas of authors as labels.

• Aminer is an academic heterogeneous graph dataset. It contains three types of nodes (paper
(P), author (A), reference (R)), four types of edges (PA, AP, PR, RP), and treats categories
of papers as labels.

• HBN-B is a biomedical heterogeneous graph dataset. It contains four types of nodes (drug
(Dr), target (T), disease (Di)), side-effect (S), ten types of edges (DrT, DrDr, DrDi, DrS, TT,
TDi, TDr, DiDr, SDr, DiT), and treats the existence of drug-target interaction as labels.

• Ogbn-mag is a large-scale academic heterogeneous graph dataset. It contains four types of
nodes (paper (P), Author (A), Institution (I), Field (F)), seven types of edges (PA, PP, PF,
AI, AP, FP, IA), and treats categories of papers as labels.

Table 4: The characteristics of all comparison methods.

Methods Semi-supervised Fine-tuning Prompt-tuning Adapter-tuning
HAN (2019) ✓
HGT (2020) ✓

DMGI (2020) ✓
HDMI (2021) ✓
HeCo (2021) ✓

HGCML (2023) ✓
HGMAE (2023) ✓

HERO (2024) ✓
HGPrompt (2024) ✓

HetGPT (2024) ✓
HG-Adapter (ours) ✓

D.2 COMPARISON METHODS

The comparison methods include two traditional semi-supervised methods (i.e., HAN (Wang et al.,
2019) and HGT (Hu et al., 2020b)), six fine-tuning-based methods (i.e., DMGI (Park et al., 2020),
HDMI (Jing et al., 2021), HeCo (Wang et al., 2021), HGCML (Wang et al., 2023), HGMAE (Tian
et al., 2023), and HERO (Mo et al., 2024)), and two prompt-tuning-based methods (i.e., HGPrompt
(Yu et al., 2024a) and HetGPT (Ma et al., 2024)), where the pre-training and prompt-tuning of
HGPrompt are specifically designed, while HetGPT only designs the prompt-tuning and thus can be
used for different pre-trained models. The characteristics of all methods are listed in Table 4, where
“Semi-supervised”, “Fine-tuning”, “Prompt-tuning”, and “Adapter-tuning” indicate that the method
conducts semi-supervised learning, fine-tuning, prompt-tuning, and adapter-tuning, respectively.

D.3 EVALUATION PROTOCOL

We follow the evaluation protocol in previous works (Jing et al., 2021; Pan & Kang, 2021; Zhou
et al., 2022) to conduct node classification and node clustering as semi-supervised and unsupervised
downstream tasks, respectively.

For fine-tuning-based methods, we first train models with unlabeled data in a self-supervised manner
and output learned node representations. After that, the resulting representations can be used for
different downstream tasks. For the node classification task, we train a simple logistic regression
classifier with a fixed iteration number, and then evaluate the effectiveness with Micro-F1 and Macro-
F1 scores. For the node clustering task, we conduct clustering and split the learned representations
into c clusters with the K-means algorithm, then calculate the normalized mutual information (NMI)
and average rand index (ARI) to evaluate the performance of node clustering.
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Figure 3: Toy example sampled from the ACM dataset, where blue nodes belong to class 1 and
yellow nodes belong to class 2. The nodes with dashed lines are unlabeled nodes in the test set, and
the nodes without dashed lines are labeled nodes in the training set. The left side is the original graph
with edge weights of 1, and the right side is the graph after adapter-tuning, where labeled nodes are
extended and edge weights are tuned.
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Figure 4: The training error of the proposed method with and without the structure tuning on all
heterogeneous graph datasets.

For prompt-tuning-based methods and the proposed adapter-tuning-based method, the models are
also pre-trained in an unsupervised manner and output frozen representations. In the tuning stage, for
the node classification task, we first obtain the predicted probability of each node by calculating the
similarity between the prediction vector and each class-subgraph representation, and then using the
softmax function to obtain class probabilities. Then, the class with the maximum likelihood for each
node is designated as the predicted class. We also evaluate the effectiveness of models with Micro-F1
and Macro-F1 scores. For the node clustering task, we input the class probabilities to the K-means
algorithm, then calculate the normalized mutual information (NMI) and average rand index (ARI) to
evaluate the performance of node clustering.

D.4 MODEL ARCHITECTURES AND SETTINGS

As described in Section 2, the proposed method employs homogeneous and heterogeneous adapters
to tune the homogeneous and heterogeneous graph structures (i.e., A and S) and capture task-related
structural information. Moreover, the proposed method employs the projection (i.e., gϑ) to obtain the
prediction matrix P. In the proposed method, homogeneous and heterogeneous adapters are simply
implemented by two linear layers, followed by the ReLU activation. In addition, the projection gϑ
is also simply implemented by the linear layer. Finally, In the proposed method, all parameters
were optimized by the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate. In all
experiments, we repeat the experiments five times for all methods and report the average results.

D.5 COMPUTING RESOURCE DETAILS

All experiments were implemented in PyTorch and conducted on a server with 8 NVIDIA GeForce
3090 (24GB memory each). Almost every experiment can be done on an individual 3090, and the
training time of all comparison methods as well as our method, is less than 1 hour.
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Table 5: Performance on biomedical and large-scale heterogeneous graph datasets, where the best
results are highlighted in bold, while improved results with the proposed HG-Adapter are underlined.
The “+” symbol indicates the integration of HG-Adapter and HetGPT with original pre-trained
HGNN models. “OOM” indicates out-of-memory, “-” indicates that the method is not suitable for the
task, and ∗ indicates the mini-batch version method on the Ognb-mag dataset.

Method HBN-B Ogbn-mag

AUC AUPR Accuracy

HAN - - OOM
HGT 84.9±0.6 81.3±0.5 49.8±0.9
DMGI - - OOM
HGCML - - OOM
HGMAE 86.3±0.6 87.6±0.2 OOM
HGPrompt 86.6±0.5 87.8±0.4 OOM

HDMI∗ - - 46.6±0.7
+HetGPT - - 47.1±0.6
+HG-Adapter - - 49.5±0.5

HeCo∗ 86.1±0.4 87.5±0.7 48.7±0.5
+HetGPT 86.7±0.6 88.1±0.8 49.3±0.8
+HG-Adapter 87.7±0.5 88.9±0.6 50.5±0.7

HERO∗ 85.6±0.7 86.8±0.5 49.5±0.4
+HetGPT 86.0±0.6 87.1±0.8 50.6±0.3
+HG-Adapter 87.3±0.5 88.5±0.7 52.1±0.5
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Figure 5: The generalization gap (the difference between test error and training error) of the proposed
method with and without the labeled data extension on all heterogeneous graph datasets.

E ADDITIONAL EXPERIMENTS

This section provides some additional experimental results to support the proposed method, including
the motivation illustration in Section E.1, the experimental results on biomedical and large-scale
datasets in Section E.2, the ablation study on the structure tuning in Section E.3, the ablation study
on the potential labeled data extension in Section E.4, the ablation study on the parameters in the
proposed method in Section E.5, the ablation study on the dimensions of dual adapters in Section E.6,
the ablation study on dual adapters in Section E.7, the ablation study of the margin loss in Section
E.8, visualization of the learned representations in Section E.9, parameter analysis in Section E.10,
experimental results on the node clustering task in Table 8.

E.1 MOTIVATION ILLUSTRATION

In this paper, we point out that existing methods only focus on node features while ignoring graph
structures, thereby increasing the training error. Moreover, existing methods may be constrained by
the limited labeled data during the prompt-tuning stage, leading to a large generalization gap. To
further explain above motivation, we sample a few nodes from the ACM dataset and construct a toy
example and implement adapter-tuning and label propagation on it, and visualize them in Figure 3,
where different colors indicate nodes from different classes, nodes with dashed lines are unlabeled
nodes in the test set, and the nodes without dashed lines are labeled nodes in the training set.
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Table 6: Classification performance (i.e., Macro-F1 and Micro-F1) of the variant methods without
homogeneous and heterogeneous adapters on all heterogeneous graph datasets.

Method ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

w/o hom-adapter 92.1±0.6 92.0±0.5 91.1±0.7 90.7±0.8 83.7±1.2 84.5±1.0 73.2±0.8 82.3±0.9
w/o het-adapter 86.0±0.7 85.3±0.6 92.2±0.8 91.4±0.7 81.4±0.7 82.5±0.6 71.9±0.5 80.1±0.3
Proposed 92.7±0.4 92.7±0.7 93.1±0.6 92.7±0.5 94.0±0.7 94.7±0.8 78.3±0.5 87.1±0.6

Table 7: Classification performance (i.e., Macro-F1 and Micro-F1) of the variant methods with the
proposed margin loss and the InfoNCE loss on all heterogeneous graph datasets.

Method ACM Yelp DBLP Aminer

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

InfoNCE loss 89.6±0.9 89.5±0.7 91.1±0.5 91.4±0.6 92.1±0.8 93.0±0.7 75.8±0.4 82.6±0.5
Margin loss 92.7±0.4 92.7±0.7 93.1±0.6 92.7±0.5 94.0±0.7 94.7±0.8 78.3±0.5 87.1±0.6

From Figure 3, we have the observations as follows. First, if we only tune the node features and
ignore tuning the graph structures, some nodes in the training set may be misclassified, thereby
increasing the training error. For example, for node 11, it will aggregate much information from the
nodes (nodes 10, 12, 13) of another class after the message-passing with the original graph structures.
Therefore, this may cause nodes to confuse their own class information, thus increasing the training
error. In contrast, if we tune both the node features and ignore tuning the graph structures, the
misclassified node 11 may be corrected by re-weighting the edge weight. As a result, the proposed
method decreases the training error thus improve the model generalization. Second, compared with
unlabeled nodes, the ratio of labeled nodes is very small, result in a large generalization gap between
the training error and the test error. However, after the label propagation, the number of labeled nodes
increases greatly. As a result, the proposed method decreases the generalization gap thus improve the
model generalization.

E.2 EFFECTIVENESS ON DATASET FROM OTHER DOMAINS AND LARGE-SCALE DATASET

To further verify the model’s generalization ability across different domains, we evaluate the proposed
method on the biomedical heterogeneous graph dataset HBN-B (Li et al., 2022) and the large-scale
heterogeneous graph dataset (i.e., Ogbn-mag (Hu et al., 2020a)), and report the results in Table 5.

Obviously, on the biomedical heterogeneous graph dataset HBN-B, the proposed method consistently
obtains improvements on the pre-trained HGNNs (i.e., HeCo and HERO). For instance, the proposed
method on average, improves by 1.3%, compared to the baseline method HeCo in terms of AUC
and AUPR. In addition, the proposed HG-Adapter also obtains significant improvements to the
prompt-tuning method. For instance, the proposed method on average, improves by 1.3%, compared
to the best prompt-tuning method (i.e., HGPrompt) in terms of AUC and AUPR. Therefore, the
effectiveness and generalization ability of the proposed method is further verified on datasets from
different domains. In addition, on the large-scale heterogeneous graph dataset Ogbn-mag, the
proposed method always obtains promising results, compared to the original baselines (HDMI, HeCo,
and HERO) as well as the prompt-tuning-based method (i.e., HetGPT). For example, the proposed
method improves by 5.3% and 3.0%, compared to the baseline method HERO and prompt-tuning-
based method HetGPT, respectively, in terms of Accuracy. Therefore, the effectiveness and scalability
of the proposed method are further verified.

E.3 EFFECTIVENESS OF THE STRUCTURE TUNING

The proposed method designs the dual adapters to capture more task-related structural information
than prompt-tuning-based methods. To verify the effectiveness of the structure tuning with dual
adapters, we investigate the training error of the proposed method with and without the structure
tuning, and report the results in Figure 4. Obviously, as the number of epochs increases, the training
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Figure 6: The test errors of the HERO with prompt-tuning on features, adapter-tuning on features,
and adapter-tuning on both features and structures on all heterogeneous graph datasets.

error of the proposed method with structure tuning continues to decrease and finally tends to 0. This
indicates that the proposed method fits the input data well. Moreover, the proposed method with
structure tuning obtains consistently lower training error than the method without structure tuning.
The reason can be attributed to the fact that the structure tuning enables the model to fit the input data
better and get closer to the optimal parameters PM , thus reducing the training error and improving
the model’s generalization ability.

E.4 EFFECTIVENESS OF THE POTENTIAL LABELED DATA EXTENSION

The proposed method designs the potential labeled data extension to incorporate both labeled and
unlabeled nodes as supervision signals, thus alleviating the limited labeled data in the tuning stage.
To verify the effectiveness of the potential labeled data extension, we investigate the generalization
gap of the proposed method with and without the label extension and report the results in Figure
5. From Figure 5, we can find that the proposed method with the potential labeled data extension
consistently achieves a smaller generalization gap than the method without label extension. This is
reasonable because the label extension increases the number of training samples potentially, thus

decreasing the generalization gap bound O(
√

| PM | /nM ) and further decreasing the generalization
error bound of existing methods.

E.5 EFFECTIVENESS OF THE PARAMETERS IN THE PROPOSED METHOD

The proposed method designs dual adapters with parameters |PA| to fit better the input data to
decrease the training error, thus decreasing the upper bound of the test error and approaching the
optimal parameters

∣∣P̄M

∣∣. To verify that |PA| is indeed closer to the optimal parameters
∣∣P̄M

∣∣ than
existing prompt-tuning-based methods, we remove the label extension module and fix the number
of training samples, and then implement several variant methods (i.e., adapter-tuning on both node
features and graph structures, adapter-tuning on only node features, and prompt-tuning on only
node features), and report the results in Figure 6. Obviously, when the number of training samples
is fixed, the proposed adapter-tuning on node features and graph structures always obtains lower
test error than the prompt-tuning and adapter-tuning on only node features. As a result, we can
obtain that the parameters |PA| of the proposed adapter-tuning is indeed closer to

∣∣P̄M

∣∣ than existing
prompt-tuning-based methods.

E.6 ABLATION STUDY OF THE DIMENSION OF DUAL-ADAPTERS

Theorem 2.3 indicates that the upper bound of the test error exhibits a U-shaped pattern, where it
initially decreases and then increases as the number of parameters grows. Therefore, we cannot
further improve the performance by simply increasing the size of dual adapters. To verify it, we
conduct the ablation study by varying the size of each adapter, and report the results in Figure 7.
From Figure 7, we can find that that as the adapter size increases, the performance of the model may
first improve, and then decrease when the size is too large. This is consistent with our theoretical
results above, i.e., as the parameter size increases, the upper bound of the test error decreases first and
then increases. Correspondingly, the performance of the model may increase first and then decrease.
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(a) Homogeneous adapter
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(b) Heterogeneous adapter

Figure 7: The performance of the proposed method under different adapter dimensions and corre-
sponding parameter sizes.

(a) HERO+Fine-Tuning (SIL: 0.31) (b) HERO+HetGPT (SIL: 0.38) (c) HERO+HG-Adapter (SIL: 0.44)

Figure 8: Visualization plotted by t-SNE and the corresponding silhouette scores (SIL) of the
representations learned by HERO with fine-tuning, prompt-tuning (i.e., HetGPT), and the proposed
adapter-tuning on the DBLP dataset, respectively.

E.7 ABLATION STUDY OF DUAL ADAPTERS

The proposed method designs dual adapters to adaptively tune the homogeneous and heterogeneous
graph structures (i.e., A and S) to capture the task-related information. We demonstrate the effec-
tiveness of dual adapters in Section 3.2.2. To further verify it, we investigate the node classification
performance of the variants methods without the homogeneous and heterogeneous adapters, respec-
tively, and report the results in Table 6. Obviously, the proposed method with dual adapters obtains
superior performance than the variant methods without homogeneous and heterogeneous adapters.
The reason can be attributed to the fact that dual adapters tunes homogeneous and heterogeneous
graph structures simultaneously, thus can better fit the input data than variant method without adapters
to achieve lower generalization error bound and better performance on different downstream tasks.
As a result, the effectiveness of dual adapters is verified again.

E.8 ABLATION STUDY OF THE MARGIN LOSS

The proposed method designs the margin loss to optimize the heterogeneous graph structure S
and treat both labeled and unlabeled nodes as equal supervision signals. The margin loss aims to
decrease the distance d(cỹi

, m̂i)
2, while increasing the distance d(cỹi

, m̂j)
2, thus satisfying the

“safe” distance between them. To verify the effectiveness of the margin loss, we investigate the node
classification performance of the variants method with the InfoNCE loss instead of the proposed
margin loss and report the results in Table 7. From Table 7, we can find that the proposed method
with the margin loss obtains better performance than the variant method with the InfoNCE loss.
This can be attributed to the fact that directly aligning class-subgraph representation and adapted
representation is unreasonable since they come from different feature distributions.
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Figure 9: The classification performance of the proposed method at different parameter settings
(i.e., α and β) on all heterogeneous graph datasets.
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Figure 10: The classification performance of the proposed method at different parameter settings
(i.e., η and µ) on all heterogeneous graph datasets.

E.9 VISUALIZATION OF LEARNED REPRESENTATIONS

To further verify the effectiveness of the learned representations, we visualize node representations
learned by the combinations of pre-trained HERO and different tuning methods (fine-tuning, prompt-
tuning, and proposed adapter-tuning) on the ACM dataset and report the results and corresponding
silhouette scores (SIL) in Figure 8. Obviously, in the visualization, the node representations learned
by the proposed HG-Adapter exhibit better clustering status, i.e., nodes with different class labels are
more widely separated. Moreover, the representations learned by the proposed method obtain the
best silhouette score, compared to other methods (i.e., fine-tuning, and HetGPT). The reason can be
attributed to the fact that the proposed method designs a contrastive loss based on class subgraph
similarity to ensure that nodes within the same class are close to each other, thereby enhancing
clustering performance.

E.10 PARAMETER ANALYSIS

In the proposed method, we employ non-negative parameters α and β to achieve a trade-off between
the adapted representations and the frozen representations. Moreover, we employ non-negative
parameters η and µ between different terms of the final objective function J . To investigate the
impact of α and β as well as η and µ with different settings, we conduct the node classification on
all heterogeneous graph datasets by varying the value of parameters in the range of [10−3,103] and
reporting the results in Figure 9 and Figure 10.

From Figure 9, we can find that if the values of parameters (i.e., α and β) are too large (e.g., 103),
the proposed method cannot achieve satisfactory performance. This verifies that both the adapted
representations and the frozen representations are important for downstream tasks. In addition, from
Figure 10, we can also find that if the values of parameters (i.e., η and µ) are too large (e.g., 103), the
proposed method obtains inferior performance. The reason can be attributed to the fact that when
η and µ are large, the effect of the contrastive loss Lcon may be affected, thus failing to provide
sufficient label guidance for the model.
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Table 8: Clustering performance (i.e., NMI and ARI) on all heterogeneous graph datasets, where
the best results are highlighted in bold, while improved results with the proposed HG-Adapter are
underlined. The “+” symbol indicates the integration of HG-Adapter and HetGPT with original
pre-trained HGNN models.

Method ACM Yelp DBLP Aminer

NMI ARI NMI ARI NMI ARI NMI ARI

HAN 65.6±1.3 67.4±1.5 37.8±0.9 40.1±1.1 77.5±0.7 83.0±0.8 35.5±0.6 31.6±0.5
HGT 68.9±0.9 69.9±0.8 39.1±0.6 41.2±0.7 78.6±0.4 83.9±0.6 36.1±0.6 32.3±0.8
DMGI 67.8±0.9 70.2±1.0 36.8±0.6 34.4±0.7 72.2±0.8 72.8±0.9 27.3±0.9 23.1±0.8
HGCML 69.1±0.7 71.6±0.8 37.4±0.6 39.5±0.8 74.5±0.9 75.1±1.1 35.9±0.6 31.1±0.5
HGMAE 69.7±0.8 72.6±0.6 40.3±0.9 42.4±0.8 76.9±0.6 82.3±0.7 41.1±0.8 38.3±0.9
HGPrompt 69.2±0.4 72.0±0.5 37.5±0.4 39.7±0.7 76.1±0.6 81.2±0.8 37.2±0.9 33.8±1.1

HDMI 69.5±0.5 72.3±0.7 38.9±0.6 40.7±0.8 73.1±0.3 74.4±0.4 33.5±0.4 28.9±0.5
+HetGPT 70.1±0.6 72.8±0.8 39.2±0.6 41.5±0.7 74.8±0.9 75.7±1.1 34.4±0.7 29.3±0.6
+HG-Adpater 70.4±0.7 73.1±0.6 39.7±0.5 42.2±0.4 75.9±0.6 80.7±0.8 35.1±0.9 30.9±1.0

HeCo 67.8±0.8 70.5±0.7 39.3±0.6 42.1±0.8 74.5±0.8 80.1±0.9 32.2±1.1 28.6±1.0
+HetGPT 68.2±0.6 70.8±0.5 40.1±0.7 42.5±0.9 75.1±0.5 80.5±0.7 32.7±0.4 29.2±0.6
+HG-Adpater 69.0±0.4 72.9±0.3 41.2±0.5 43.1±0.6 76.3±0.9 81.9±1.0 34.1±0.7 30.3±0.8

HERO 68.8±0.6 71.8±0.6 38.6±0.8 40.6±0.9 74.1±0.7 79.3±0.7 36.8±0.7 35.3±0.9
+HetGPT 69.7±0.5 72.3±0.4 39.3±0.7 41.3±0.9 74.6±0.6 80.4±0.5 40.2±0.6 37.1±0.7
+HG-Adapter 70.5±0.8 73.3±0.9 41.1±0.6 42.8±0.5 76.2±0.8 81.4±0.7 42.3±0.4 39.4±0.5

F POTENTIAL LIMITATIONS AND FUTURE DIRECTIONS

In this paper, we design dual adapters to capture task-related structural information, thus approaching
the optimal parameters and benefiting the model’s generalization ability. Moreover, we design
contrastive loss, feature reconstruction loss, and margin loss to optimize dual adapters as well as
extend potential labeled data. Actually, the feature reconstruction loss relies on the feature-label
consistency assumption. That is, if two nodes have the same label, their node features will be similar.
However, there are a few cases in which nodes have the same label but totally different node features.
In that case, the learned graph structure may suffer from noisy connections. In addition, the quality
of the propagated labels of unlabeled data will be affected correspondingly because it relies on the
learned graph structure. To solve these issues, we may conduct class feature reconstruction instead of
node feature reconstruction to address this issue. We consider these aspects as potential directions for
future research.
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