Under review as a conference paper at ICLR 2026

ML-AGENT: REINFORCING LLLM AGENTS FOR
AUTONOMOUS MACHINE LEARNING ENGINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

The emergence of large language model (LLM)-based agents has significantly
advanced the development of autonomous machine learning (ML) engineering.
However, the dominant prompt-based paradigm exhibits limitations: smaller mod-
els lack the capacity to learn from execution trajectories for generalization, while
large proprietary models incur high computational overhead, restricting accessi-
bility and scalability. Focusing on this, for the first time, we explore the paradigm
of learning-based agentic ML, where an LLM agent learns through interactive
experimentation on ML tasks using online reinforcement learning (RL). To realize
this, we propose a novel agentic ML training framework with three key compo-
nents: (1) exploration-enriched fine-tuning, which enables LLM agents to generate
diverse actions for enhanced RL exploration; (2) step-wise RL, which enables
training on a single action step, accelerating experience collection and improving
training efficiency; (3) an agentic ML-specific reward module, which unifies varied
ML feedback signals into consistent rewards for RL optimization. Leveraging
this framework, we train ML-Agent, driven by a 7B-sized Qwen-2.5 LLM for
autonomous ML. Despite training on only 9 ML tasks, our 7B-sized ML-Agent
achieves comparable performance to agents using much larger proprietary LLMs
(e.g., GPT-5) but at significantly lower computational cost, demonstrating strong
performance and cross-task generalization.

1 INTRODUCTION

Machine Learning (ML) engineering is a critical yet labor-intensive process, requiring expert re-
searchers to invest significant time—potentially days or even months—designing architectures, tuning
parameters, and iteratively refining models through trial and error (Bergstra & Bengio,2012). This
challenge has sparked an ambitious vision of autonomous ML: building autonomous Al systems that
independently orchestrate the entire ML lifecycle, from conceptual design and code implementation
to refinement.

Fortunately, the advent of LLM-based agents, equipped with capabilities of interaction (Du et al.|
2023}, |Pang et al., [2024), coding (Hong et al., [2023}; |Qian et al., 2023} |Hu et al., |2024) and tool-
calling (Masterman et al.,[2024), has propelled us significantly closer to realizing this vision (Agentic
ML) (Huang et al.;|2023;|Chan et al.|[2024). Unlike traditional automated ML with pre-defined limited
search and action spaces (Tang et al.,|2024; |LeDell & Poirier, 2020; Jin et al.}2023)), these LLM agents,
when provided with instructions in natural language, can autonomously propose effective actions,
generate executable codes, and iteratively improve solutions based on environmental feedback (Huang
et al.| | 2023; Jiang et al.,|2025)). For example, AIDE (Jiang et al.| 2025) and ML-Master (Liu et al.,
20254) both leverage LLM agents together with experimental environments to automate ML process.

Currently, the dominant paradigm in agentic ML relies on prompt-based design, where agents are
constructed through heuristic prompt engineering. This approach offers practical advantages, as it
allows rapid deployment without parameter updates or extensive retraining. However, it also exhibits
notable limitations: when driven with smaller language models, such agents lack the capacity to
learn from and internalize execution trajectories, causing limited generalization across diverse tasks;
conversely, when implemented with large-scale proprietary models, the paradigm incurs substantial
computational overhead and resource consumption, thereby restricting accessibility and undermining
sustainable scalability (Belcak et al.| [2025)).

Under review as a conference paper at ICLR 2026

To address these limitations, we propose moving beyond the prompt-based paradigm toward a new
research trajectory: learning-based agentic ML. In this paradigm, agents are no longer constrained
to static prompt instructions but instead learn adaptively from task-solving trajectories via online
reinforcement learning (RL). Such a formulation empowers agents to systematically explore diverse
strategies, accumulate knowledge across successive runs, and progressively refine their decision-
making processes (Xiong et al., 2024). Importantly, this learning-based approach endows even
relatively small language models with the capacity to achieve strong generalization, while substantially
reducing computational and resource demands. As a result, it opens a more accessible, efficient, and
sustainable path for advancing the frontier of autonomous machine learning.

While being straightforward, employing online RL to train autonomous ML agents poses three
key challenges. (1) Limited exploration: agents often propose similar actions for the same ML
task across runs, leading to narrow exploration trajectories in RL (Park et al,, [2024). (2) Slow
experience collection: ML experiments can take minutes to hours, making online RL data gathering
inefficient and thus limiting feedback-driven training samples (Chan et al., 2024). (3) Complex
reward design: agentic ML involves various outcomes, such as task-specific metrics, out-of-memory
failures, and compilation errors. This requires a unified reward function to reconcile varied feedback
signals (Eschmann, 2021).

In response to these challenges, we propose a novel agentic ML training framework, the first designed
to train LLM agents for autonomous ML engineering using online RL. This framework enables agents
to explore diverse ML trajectories, collect rewards efficiently, and iteratively enhance their capabilities
through learned experience. (1) To improve exploration diversity, we introduce exploration-enriched
fine-tuning, generating a diverse action pool from fast-executable ML tasks to finetune agents for
broader RL exploration. (2) To accelerate experience collection, we design a step-wise RL paradigm,
evaluating atomic actions using expert trajectories as single-step queries, significantly boosting
training efficiency. (3) To tackle reward design, we develop an agentic ML-specific reward module
that dynamically handles errors (e.g., runtime failures) and quantifies performance via normalized,
task-specific metrics (e.g., accuracy gains).

By leveraging our proposed agentic ML training framework, we train ML-Agent, an agent driven by a
7B-sized Qwen2.5 LLM for autonomous ML. During training, our ML-Agent can efficiently explore
the environment, learn from experience, and achieve continuous performance improvement through
iterative exploration across various ML tasks. Surprisingly, despite its modest size and training
on only 9 ML tasks, ML-Agent demonstrates strong performance and cross-task generalization,
outperforming 671B-sized DeepSeek-R1 agent on 3 held-in and 10 held-out tasks across diverse data
modalities and objectives. Notably, it achieves results comparable to agents using the most advanced
proprietary LLMs (GPT-5) but at significantly lower computational cost.

In summary, our work makes the following significant contributions to the field:

* We introduce a new paradigm for autonomous ML: learning-based agentic ML, where an LLM
agent learns through interactive experimentation on ML tasks via online reinforcement learning.

* We propose a novel training framework for agentic ML, which incorporates three technical
designs: exploration-enriched fine-tuning, step-wise RL, and agentic ML-specific rewards.

» Extensive experiments show that despite training on only 9 ML tasks, our 7B-sized ML-Agent
surpasses agents driven by much larger LLMs and even matches agents driven by proprietary
LLMs (e.g., GPT-5) with much lower cost.

2 RELATED WORK

Autonomous Machine Learning. Autonomous machine learning aims to automate the manual and
expertise-intensive aspects of machine learning, including data preprocessing, model selection and
hyperparameter tuning. Autonomous machine learning has evolved from classical hyperparameter
and pipeline search to agentic frameworks powered by large language models. Classical autonomous
machine learning frameworks focus on automating model selection, hyperparameter optimization,
and pipeline construction within a fixed search space (Tang et al., 2024} Olson & Moore} 2016} Feurer
et al., 2022; Mohr et al., [2018}; [Erickson et al.| 2020; [Liu et al., [2020). For example, AutoGluon-
Tabular (Erickson et al.l 2020) ensembles multiple models and stackings to deliver state-of-the-
art performance on tabular data with minimal user effort. These classical autonomous machine

Under review as a conference paper at ICLR 2026

learning works remain constrained by predefined search spaces and static configurations, lacking the
adaptability and continuous learning capabilities.

LLM Agents in Autonomous Machine Learning. Recent advancements in LLMs have empowered
them to autonomously generate and refine machine learning solutions, opening new possibilities in
machine learning. Methods such as AutoML-GPT (Zhang et al., |2023b) and MLCopilot (Zhang
et al.| |2023a) prompt LLMs to automate the entire machine learning pipeline, where MLCopilot
introduces past experience retrieval to help decision-making. AIDE (Jiang et al.| [2025) and ML-
Master (Liu et al., 2025a) focus on optimizing the ML engineering process through iterative search
and refinement strategies. Other works like AutoKaggle (Li et al., [2024) and AutoML-Agent (Trirat
et al.|[2024) employ a multi-agent framework to address ML problems. However, these approaches are
fundamentally constrained by a prompt-based paradigm. While agents may leverage past experience,
their underlying models are not trained on these interaction histories. Consequently, their problem-
solving strategies remain static and rely on costly advanced models. This limitation motivates our
shift toward a learning-based paradigm where agents adapt and improve over time.

Reinforcement Learning for LLMs. Reinforcement learning (RL) significantly enhances the
ability of LLMs, particularly in preference alignment and complex reasoning (Xu et al.| [2025; |Wang
et al., 2024} [Zheng et al., 2023)). By facilitating exploration and exploitation, RL trains LLMs
to adapt and improve their policy based on feedback, thus refining their performance in dynamic
environments. One line of work is preference optimization (Kaufmann et al.,|2023)), with methods
such as Reinforcement Learning from Human Feedback (RLHF)(Ouyang et al.| 2022). RL is also
utilized to train LLMs for complex reasoning tasks (Guo et al.,|2025a} [Liu et al., [2025b). Another
line of research involves training LLM agents for specific tasks using RL (Zhang et al., |2025).
For example, IPR (Xiong et al., |2024) and AgentQ (Putta et al., [2024) use DPO (Rafailov et al.,
2023) to iteratively refine their policy. While StarPO (Wang et al., 2025) discusses the multi-turn
reinforcement learning considering episode-wise reward. However, applying RL to train LLM agents
for autonomous machine learning remains unexplored.

3 PROBLEM SETUP AND PRELIMINARIES

Problem Formulation. Agentic ML leverages an LLM agent to autonomously orchestrate the ML,
lifecycle by interacting with the experimental environment. This environment includes editable
task-related code files together with an interpreter executing code and provides explicit experimental
feedback (e.g., code execution results or error messages). Given an initial ML task specification
(e.g., dataset description and evaluation metric), the agent begins interacting with the environment
to iteratively refine its solution. At each step, the agent takes actions (e.g., add BN layers in the
model architecture) and receives feedback (e.g., code execution output or error messages) from the
environment. This loop continues until a step or time limit is reached. We follow the action space
from prior work (Huang et al., [2023)) (The details are provided in Table 4.

Agentic ML as a MDP. We format agentic ML as a Markov Decision Process (MDP) M =
(S, A, P), where S is the state space, .4 the action space and P the state transition dynamics.
Let the environment feedback at time ¢ be f; € F, where F denotes the feedback space. We
employ a history-based state representation s; = (so, ag, fo, a1, f1,---,at—1, ft—1) to capture richer
contextual information from past feedback, in which sy encodes the initial ML task specification
and each pair (a;, f;) represents the agent’s action and corresponding environment feedback. The
agent policy my generates an action a; € A conditioned on current state s;, forming a trajectory of

interactions 7 = (sg, ag, S1, - - - ,n—1, Sy). Note that 6 is the LLM’s parameters within the agent
and n is the trajectory length. The goal is to maximize the expected trajectory reward:
J(0) = Ernrg [R(T)], (1)

where the reward function R(7) denotes the cumulative reward over the entire trajectory.

Challenges. Although the formulation of agentic ML is relatively straightforward, employing online
RL to train LLM agents for autonomous machine learning poses several key challenges, including: (1)
Limited exploration. Agents often repeat similar actions across episodes, narrowing their exploration
and limiting their ability to discover innovative ML solutions. (2) Slow experience collection. ML
experiments can take minutes to hours, slowing down the online data collection process for RL
training. (3) Complex reward design. Agentic ML produces varied outcomes (e.g., execution results

Under review as a conference paper at ICLR 2026

9 Tasks Collected Trajectories A__ States Pool Agentic ML-specific
A task action i ‘ : ; Rward
A s 44
! Il env.: score format corner
A I_»: : go ; case
rompt ! expert iR LD mmm— - i
Piveree { 2P feedbackA ! g v o actiong R4
[v]
w

actions é‘vq'
)
S e @IV
reward

[
i b (g
. .
: = e
’ i

trajectories @ Rollout only one step @ Update

| 0 -
Exploration-enriched . -
II —) P Finetuning —) mm) Step-wise RL Training —b

Figure 1: Overview of the agentic ML training framework, introducing (1) exploration-enriched
fine-tuning for diverse action pool creation, (2) a step-wise RL paradigm for efficient experience
collection using expert trajectories, and (3) an agentic ML-specific reward module for various ML.
feedback handling and task-specific performance evaluation.

or resource errors), making it challenging to design a unified reward function that effectively guides
the agent. The subsequent section presents our agentic ML training framework designed to overcome
these challenges, with the overall architecture illustrated in Figure E}

4 AGENTIC ML TRAINING FRAMEWORK

Our agentic ML training framework is designed to train LLM agents for autonomous machine
learning. As shown in Figure[l] it comprises three key steps for effective learning. First, exploration-
enriched fine-tuning builds a diverse action pool to enhance RL exploration. Second, a step-wise RL
paradigm uses expert trajectories as single-step queries to accelerate experience collection in RL.
Third, an agentic ML-specific reward module handles errors and quantifies agentic ML task-specific
performance. These steps sequentially enable diverse exploration, efficient training, and unified
feedback, enabling agents to iteratively improve agentic ML performance across varied ML tasks.

4.1 EXPLORATION-ENRICHED FINE-TUNING

In agentic ML, limited exploration hinders autonomous machine learning workflows. Agents often
repeat similar actions (e.g., small code edits) across episodes, leading to narrow exploration and
preventing the discovery of innovative architectures or optimization strategies.

To address this, we introduce exploration-enriched fine-tuning with an automated data collection
pipeline. It organizes ML optimization strategies into 3 semantic categories: data, model and learning.
For each category, an LLM generates a large set of candidate ideas and an embedding-based diversity
filter selects a compact and diverse pool. During trajectory generation, the system automatically
samples 1-3 categories, shuffles their order, and draws one idea from each corresponding pool to
form the initial action sequence (See Appendix [B.T). An expert LLM with policy 7. then executes

the full workflow on fast-executable ML tasks, producing expert trajectories D = {T(i) } ‘;:9'1 We
fine-tune the agent policy 7y via supervised fine-tuning (SFT):

t=0 t=0

n—1 n—1
Lspr(0) = —E-op [log Pr, (7|50)] = —E-~p [log H 7rg(at|st):| =—-E.vp [Z log 7o (at\st)} . @

This exploration-enriched fine-tuning approach preserves action format compliance while enabling
agents to learn diverse strategies, significantly broadening the exploration scope in subsequent RL.

4.2 STEP-WISE RL PARADIGM

Objective. Due to the time-consuming nature of Al experiments, directly applying RL methods
(e.g., PPO) is impractical, as sampling a single trajectory during rollout takes hours. To address

Under review as a conference paper at ICLR 2026

this issue, we propose a step-wise RL approach that reformulates the objective function equation [T}
where we sample only a single step of action during the rollout phase instead of the entire trajectory.
This approach extensively reduces the computational cost of the rollout phase and makes the overall
training process more efficient. Specifically, we expand equation I]into steps according to the state
distribution d™ (s):

n—1
j(e) = Z Z dﬂ-e (St) Z e (at|st) R(st,at) 5 (3)
t=0 s:€S at€A

where R(s;, a;) is the step-wise reward at time ¢, and d™ (-) is the state distribution at time ¢ under
policy mg. This distribution can be calculated recursively based on the policy 7y and the state transition
dynamics P; see Appendix [A]for details. The time-consuming components in equation 3 include: 1)
d™ (s;), which involves multiple state transition dynamics from s; to s¢11, and 2) R(s;, a;), where
the reward is determined based on feedback from the environment (e.g., code execution platform).
Since d™ (-) relies on 7y, the trajectory sampling process operates repeatedly in standard RL training,
making the computational cost even higher. However, using d™ to sample state distribution is not
necessary for two reasons: 1) my poorly aligns with the environment format during the early stage
of RL training, hindering effective state exploration; 2) Once 7y can interact properly with the
environment, the set of states it could explore tends to vary only slightly as 7wy updates. Hence, we
sample the states from a states pool according to a fixed expert distribution d™« (s;), which forms the
step-wise objective function

Tstep(0) = Z d" (s¢) Z o (ac|st) R(st,ar) | = Eg,ndre apmmg(-1se) [R(st,a1)] .)
st€S at€A

This objective function Jyep(0) reformulates multi-step trajectory RL into step-wise training. This
reformulation offers two advantages: 1) The state sampling process is decoupled from the RL of the
model. This allows us to directly sample states from a pre-collected set and avoids expensive online
sampling during training, significantly reducing the overall training time. 2) The state sampling
process is performed before RL training, rather than during the rollout phase. This enables us to
perform extensive sampling from the expert distribution, making training more scalable.

Training approach. Based on the step-wise RL formulation, our goal is to maximize the expected
reward R(s;, a;) shown in equation E] according to the state distribution d™ and 7. This aligns
with the approach used in RLVR methods (Guo et al.,[2025b)), where the policy represents a token
generation process and R(s¢, a;) is the outcome reward of g (a¢|s;). Hence, any RL training approach
can be applied to this objective Jyep(#). For our implementation, we choose PPO (Schulman et al.,
2017) as the training algorithm because of its widespread use and proven effectiveness. Specifically,
suppose we expand the token generating process of mg(a¢|s:), our PPO loss function can be defined
as follows:

TO0) = Evte om0 [m <7T()A cip <<|>) ey) A>

)

&)

where o, is the ith token of a; and A; is an estimator of the advantage at the token generation step ¢.

614 (Oi ‘ S, O<i) T o1 (Oi | S, 0<i

4.3 AGENTIC ML-SPECIFIC REWARD

Having enabled efficient RL for agentic ML via the step-wise RL paradigm, the next crucial step is to
convert the varied feedback into a unified, meaningful reward. While numerical metrics like validation
accuracy or loss naturally serve as RL rewards, non-numerical feedback, such as compilation errors
or out-of-memory failures, must be carefully incorporated to ensure the reward is coherent.

To address this, we propose an agentic ML-specific reward module that dynamically processes these
diverse signals while quantifying performance improvements through scaled task-specific metrics.
The key idea is to translate every execution outcome into a unified scalar value. Define Ay,jq as valid
actions, Aeqix C Avang as editing actions for ML code, Feyor as error feedback (e.g., compilation
failures), Feomer as corner cases (e.g., resource exhaustion), and Fyyccess @s successful executions.
Let m; be the task-specific metri(ﬂ at state s; (e.g., loss or accuracy), with min;; and my,est as the
baseline and best human-achievable scores. The reward R(s¢, at) is:

'We follow the official Kaggle evaluation protocol which defines a scalar metric for each ML tasks.

Under review as a conference paper at ICLR 2026

-1 71f ag ¢ »Avalid or ft S Jrerror
R(Sta at) = 0 71f ag € Avalid/Aedil or ft € fcorner (6)

H ,if ap € Aegie and f; € Fyuccess-
This reward module handles all possible agentic ML scenarios: (1) Invalid actions or errors receive
-1 to penalize faulty outputs; (2) Valid non-editing actions or corner cases receive O as a neutral
acknowledgment of legitimacy while recognizing external constraints; (3) Success edits yield a
scaled metric improvement for task-driven refinement. By unifying penalties for errors, neutrality for
non-editing actions, and task-driven rewards for edits, the module provides consistent, informative
feedback for iterative refinement and continuous improvement across diverse ML tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Training. For training data collection, we adopt a GPT-40-mini-driven (OpenAl, [2024) agent
scaffolded by MLAB (Huang et al.| 2023). This agent interacts with the MLAgentBench (Huang
et al.}[2023)) agentic ML environment to generate expert trajectories. We collect 10k expert trajectories
across 9 ML tasks, comprising 4 tasks from MLAgentBench and 5 from MLE-bench (Chan et al.,
2024), with each trajectory limited to 15 steps and 30 minutes of runtime. Additional data collection
details are provided in Appendix[B] For exploration-enhanced fine-tuning, we train Qwen2.5-7B (Yang
et al., [2024) using these 10k expert trajectories via supervised fine-tuning (SFT). For step-wise RL,
we select 10k states sampled from expert trajectories to further train the SFT model using Proximal
Policy Optimization (PPO). All training is conducted on 8 A100 GPUs. The fine-tuning stage runs
for 2 epochs with a learning rate of 2e — 5, while the RL stage runs for 1 epoch with an actor learning
rate of 1e — 6 and a critic learning rate of 1e — 5. See additional training details in Appendix [C.I]

Testing. To verify the generalization ability across ML tasks of ML-Agent, we select 10 held-out tasks
from MLE-bench, which are not seen during training and generally more challenging than the training
tasks. Details of these tasks are provided in Appendix [B.2] During testing, the MLAgentBench
environment settings remain consistent with those used in training. To comprehensively assess the
LLM agent’s ability in autonomous ML, we propose Performance gain A,., the relative improvement
over the initial script, defined as A, = g M where m,3@s is the mean score over 8
trajectories, My 1s the initial script’s score, and B e { 1,1} adjusts for metrics (e.g. MAE, RMSE)
to ensure positive A,. indicates improvement.

Baselines. To provide a comprehensive comparison, we evaluate ML-Agent against 3 prompted-based
agentic ML methods: MLAB (Huang et al.| [2023)), AIDE (Jiang et al.| 2025), and ML-Master (Liu
et al.; |2025a). All agents are tested using a diverse set of backbone LLMs, spanning small-scale
open-source models (e.g., Qwen2.5-7B-Instruct (Yang et al., [2024)), medium-scale models (e.g.,
Qwen3-235B (Yang et al.,|[2025)), large-scale open-source models (e.g., DeepSeek-R1 (Guo et al.,
2025b))), and state-of-the-art proprietary LLMs (Gemini-2.5-Pro (Comanici et al., 2025) and GPT-
5 (OpenAlL [2025)). We keep the same time limit and number of ML code modifications for a fair
comparison between agents with different scaffolds.

5.2 MAIN RESULTS

We conduct extensive experiments to evaluate the performance of ML-Agent, a learning-based LLM
agent trained through our proposed framework for autonomous ML. Our results demonstrate that
ML-Agent achieves strong and consistent performance across both held-in and held-out tasks, and
exhibits continuous performance improvements during RL training.

ML-Agent achieves superior performance across both held-in and held-out tasks. We compare
ML-Agent with 5 powerful LLM-based agents in 3 scaffolds across 3 held-in and 10 held-out tasks.
As shown in Table[T} ML-Agent significantly outperforms other large open-source models, such as the
671B DeepSeek-R1. For closed-source GPT-5, our agent remains remarkably competitive. Notably,
despite being trained on only 9 tasks, ML-Agent delivers top-tier results across all 10 held-out tasks,
demonstrating strong generalization and effective learning from limited experience.

Under review as a conference paper at ICLR 2026

Table 1: Comparing 7B ML-Agent with baselines across different agent frameworks driven by
proprietary/open-source LLMs on 3 held-in tasks (included in training) and 10 held-out tasks
(unseen during training) from MLE-bench. For each task, we report average performance gain (%)
over 8 trajectories.

Method Model #Params cifarl0 house feedback denoising leaf statoil whale
Prompt-Based Method

Qwen2.5-7B-Instruct 7B 1.37 0.23 1.39 2.10 2.52 -6.32 12.25

Qwen3-235B 235B 57.61 3.01 6.70 62.60 -2.12 -16.36 26.68

MLAB DeepSeek-R1 671B 28.96 345 5.53 8.83 4.85 0.04 3344
GPT-5 N/A 61.46 12.15 12.74 66.00 -45.63 -643 89.59
Gemini-2.5-Pro N/A 16.78 1.16 0.10 37.85 -4.38 426 2238
Qwen2.5-7B-Instruct 7B 11.36 242 7.52 7.33 -475 -4.33 0.52

Qwen3-235B 235B -0.10 2.04 11.10 41.65 475 -2.89 826

AIDE DeepSeek-R1 671B 72.55 5.35 13.07 33.23 -10.25 -454 30.77
GPT-5 N/A 76.53 22.15 8.77 77.38 31.50 -9.18 2642
Gemini-2.5-Pro N/A 53.59 11.13 9.44 62.72 -84.25 -6.08 56.45
Qwen2.5-7B-Instruct 7B 1.03 0.00 0.10 2.44 -1.38 -3.99 1.12

ML-Master DeepSeek-R1 671B 7343 18.25 12.07 14.56 -1475 -2.78 33.39
GPT-5 N/A 71.64 22.3 10.54 10.96 23.88 -248 67.07

Learning-Based Method
ML-Agent(Ours) 7B 33.80 6.77 13.47 52.38 13.87 141 72.89
Method Model #Params learning detecting spooky jigsaw wus tabular Avg.
Prompt-Based Method

Qwen2.5-7B-Instruct 7B 1.23 0.51 -0.46 -0.06 3.75 0.04 1.43
Qwen3-235B 235B 0.30 1.02 0.80 0.01 1.96 -0.07 1093

MLAB DeepSeek-R1 671B 0.05 0.25 0.89 0.00 2.67 -0.13 6.83
GPT-5 N/A 4.36 11.20 6.79 0.00 2338 023 18.14
Gemini-2.5-Pro N/A 0.00 0.13 0.04 0.00 0.13 0.00 5.38
Qwen?2.5-7B-Instruct 7B -9.78 -0.38 0.07 0.01 0.00 0.08 0.77

Qwen3-235B 235B 2.37 0.43 096 -12.15 0.51 0.00 4.38
AIDE DeepSeek-R1 671B 1.38 0.31 0.36 0.01 5.78 0.14 11.40
GPT-5 N/A 4.51 0.13 4.25 0.14 29.69 0.11 20.95
Gemini-2.5-pro N/A 7.35 0.74 4.34 0.04 3192 0.13 11.35
Qwen2.5-7B-Instruct 7B 1.79 0.26 -0.04 -0.02 -0.02 0.00 0.10
ML-Master DeepSeek-R1 671B 3.03 0.00 4.01 -0.04 2927 0.22 13.13
GPT-5 N/A 6.38 0.79 10.41 035 2649 025 19.12

Learning-Based Method
ML-Agent(Ours) 7B 1.91 1.74 1.76 0.01 1296 020 16.40

ML-Agent efficiently achieves good performance with much lower cost. As illustrated in Figure 2]
we plot the average performance gain against the average cost per trajectory for various agents. Our
proposed ML-Agent (the star) is a clear outlier, positioned in the optimal top-left corner. It achieves
highly competitive performance gain of over 15% while maintaining an exceptionally low cost of
less than 0.01$ per trajectory. In contrast, baseline agents like MLAB using powerful models such
as GPT-5 incur costs that are more than 20 times higher for similar or even lower performance.
This result highlights the significant efficiency of learning-based paradigm, proving it can produce a
state-of-the-art agent without relying on expensive, large-scale models.

ML-Agent achieves continuous performance improvements. Figure [3|shows that ML-Agent
demonstrates consistent performance improvement across both held-in and held-out tasks as training
progresses. This highlights the effectiveness of our step-wise RL paradigm and exploration-enriched
fine-tuning in enabling continuous learning from ML environmental feedback, ultimately allowing
ML-Agent to outperform all baseline methods.

Under review as a conference paper at ICLR 2026

¥ ML-Agent Qwen2.5-7B-Instruct GPT-40
O MLAB e Qwen3-2358 e Gemini-2.5-Pro 8W9n';§;r:5trtUCtt SF’T"‘SO R mtfﬁgent
~ - wen- -INstruc eepseek-| -Agen
% I\AAILDEAaster DeepSeek-R1 GPT-5 GPT-40-mini “* (w/o step-wise)
- Performance in Held-in Tasks
Performance vs. Cost 9
=\ £15
s !* 1 ours AO 8
7
S o £ 100, oooomee————"
c]
= a s
© g
@ 10
° < 0 2 4 6 8 10
H GPU Time (hour)
£ () A
5 E - Performance in Held-out Tasks
Q
'E 5 A @) AO® S5
o c
o © @ 10
>
< © e
0 O G s
A a
0.005 0.010 0.050 0.100 0.500 é’ o /
Avg. Cost per Trajectory ($) < 0 > 4 6 8 10

GPU Time (hour)

Figure 2: Comparison of average performance Figure 3: ML-Agent achieves continuous perfor-
gain (%) vs. cost ($) across different models and ~ mance improvements; Step-wise RL (evaluated
scaffolds on 10 held-out tasks. Our ML-Agent every 5 steps) is more efficient than episode-wise
significantly outperforms other baselines with a ~ RL (evaluated every 1 step) on both held-in and
competitive gain at a lower cost. held-out tasks.

5.3 ANALYSIS

Exploration-enriched fine-tuning is crucial

for step-wise RL training. To validate the 18 Held-In Tasks 1 Held-out Tasks
efficacy of exploration-enriched fine-tuning 1 g

in enhancing subsequent RL training, we §@ H §

replace our exploration-enriched fine-tuned % « E',g' A D -
model (ML-Agent-SFT) with Qwen25-7B ¢ | | @ ¢~ 7 D
(Qwen-7B-Base), Qwen2.5-7B-Instruct (Qwen- . V4 ey

7B-Instruct), and DeepSeek-R1-Distill-Qwen- i e St " B e it S
7B (Guo et al., |2025b)(Qwen-7B-Distill) as base (a) Held-in tasks (b) Held-out tasks

models for the RL training. We evaluate the
average performance gain of the resulting RL-
trained agents on held-in and held-out tasks (Fig-
urefd). The agent trained from Qwen-7B-Distill
fails to generate valid actions due to distillation-
induced format issues, resulting in ineffective
learning. The agent trained from Qwen-7B-Base shows overall performance degradation from limited
instruction-following capabilities. The agent trained from Qwen-7B-Instruct achieves +13% gains on
held-in tasks but -12% on held-out tasks, indicating poor generalization. In contrast, the agent trained
from our ML-Agent-SFT achieves +18% and +16% improvement on held-in and held-out tasks,
respectively, with greater action diversity during autonomous ML experimentation (Figure[7). These
results confirm that exploration-enriched fine-tuning promotes format-compliant, diverse actions,
enhancing exploration and generalization in step-wise RL.

Figure 4: Exploration-enriched fine-tuning is cru-
cial for RL training. "N/A" means the training
based on the model fails to generate valid results.

Effectiveness of Step-wise RL Training. To improve training efficiency and scalability, we propose a
step-wise RL approach that samples single states from expert trajectories and evaluates atomic actions.
To validate this, we implement an alternative episode-wise RL approach, where the policy rolls out
the entire trajectory from the task description during data collecting phase in RL. Both methods are
initialized from the same ML-Agent-SFT model and trained for 39 steps. We measure GPU time
every 5 steps for step-wise RL and 1 step for episode-wise RL. As shown in Figure [3] step-wise
RL adapts more quickly and achieves faster performance gains on both held-in and held-out tasks,
while the performance of episode-wise RL improves slowly and incurs much higher time cost. These
results demonstrate that step-wise RL not only improves training efficiency by avoiding expensive
online rollouts, but also leads to improved performance through targeted single-step updates.

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the ML-specific reward module, indicating the necessity of three compo-
nents. The three components are normalized performance reward (Rper,), format reward (Rformat),
and corner cases reward (Rcomer). We report the average performance gain (%) for each task.
Task
Rperﬂ Rformal Rcorner

vV | 1758 394 779 | 475 026 640 2496 2324
vV | 1098 617 834 |-3025 003 627 -1254 284
X | 1356 664 167 850 058 867 -048 2806
vV | 3380 677 1347 | 1387 174 1296 020 72.89

cifar10 house feedback‘ leaf detecting us tabular whale

CHERCNC
RS
RN

Effectiveness of agentic-ML specific reward module. Ablation studies in Table 2]show each reward
component is essential: (1) Performance(R,er.): Replacing the scaled performance difference with
binary reward leads to noticeable performance drops. This confirms that fine-grained reward signals
are more informative for learning meaningful improvements. (2) Format(Rfomat): Removing format
constraints causes the largest degradation (e.g., -11.75% on cifar-10), emphasizing the necessity of
syntactic and semantic correctness of agent’s output format. (3) Corner cases(Rcomer): Disabling the
neutral reward for corner cases has minimal impact due to their rarity, but improves training stability
by preventing over-penalization of non-fatal issues. In summary, each component of the reward
module plays a distinct and complementary role: Rpef, drives performance improvement, Reomat.
ensures actions validity, and Rome; maintains robustness under real-world limitations. Together, they
form a coherent and comprehensive reward structure during RL training for agentic ML.

Effects of task numbers in RL. We investigate the impact of
using different numbers of ML tasks (0, 3, 6, 9) during step- Performance on Different Tasks
wise RL training, where the "0 task" condition corresponds 17. N N ——

to ML-Agent-SFT. We evaluate performance in terms of F1s0 Held-out Tasks
average performance gain on held-in and held-out tasks. As
shown in Figure[5] performance on both task types improves ~ © 10,0

in
-
N
[

monotonically as the number of ML tasks increases during % 75
RL training. Specifically, training with 3, 6, and 9 ML tasks : 5.0
using step-wise RL lifts the average performance gainon Z 25

held-out tasks from nearly 0% to approximately 3%, 6%, and 0.0
16%, respectively. These results indicate that expanding the
diversity of ML tasks during RL not only refines the agent’s
ability on familar tasks but also significantly improves the
agent’s ability to generalize across unseen tasks.

0 3 6 9
Number of RL Training Tasks

Figure 5: Effects of training task num-
ber on RL performance. While the
Case study. To provide an intuitive understanding, we pure sft model shows minimal gener-
present several examples in the Appendix|C.3] demonstrating ~ alization, RL drives generalization.
task specifications, initial code implementations, baseline

and our model’s execution trajectories. These demonstrate

that our methodology: (1) generates diverse action sequences through comprehensive reasoning,
(2) automatically initiates backtracking mechanisms when performance metrics remain unimproved
by proposed modifications, and (3) maintains operational effectiveness on novel tasks through
generalized reasoning capabilities.

6 CONCLUSION

In this paper, we propose a training framework for an LLM-based agent on autonomous machine
learning tasks. Unlike heuristic prompt-based methods, our method enables agents to learn from
task-solving experiences, iteratively refine strategies, and generalize across tasks. The framework
involved exploration-enriched fine-tuning, efficient step-wise RL training, and agentic ML-specific
reward module. Extensive experiments demonstrate that ML-Agent, powered by a 7B-parameter
LLM, surpasses agents using 671B models and achieves state-of-the-art performance on 13 tasks,
including cross-task generalization. This work advances autonomous ML engineering from rule-based
automation to dynamic, experience-driven learning, reducing reliance on human intervention.

Under review as a conference paper at ICLR 2026

REFERENCES

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai, 2025. URL
https://arxiv.org/abs/2506.02153.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The journal
of machine learning research, 13(1):281-305, 2012.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilai Deutel, Nam Nguyen, Adam
Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller, Nathan
Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan Horgan,
Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy Wang,
Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Heyward, Martin
Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik, Ankita Goel,
Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu, Grace Chen,
Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-Juen Chen,
Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Leichner, Haichuan
Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen, Praynaa
Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis, Jieru
Mei, Mu Cai, Mohammed Badawi, Corey Fry, Ale Hartman, Daniel Zheng, Eric Jia, James Keeling,
Annie Louis, Ying Chen, Efren Robles, Wei-Chih Hung, Howard Zhou, Nikita Saxena, Sonam
Goenka, Olivia Ma, Zach Fisher, Mor Hazan Taege, Emily Graves, David Steiner, Yujia Li, Sarah
Nguyen, Rahul Sukthankar, Joe Stanton, Ali Eslami, Gloria Shen, Berkin Akin, Alexey Guseynov,
Yiqian Zhou, Jean-Baptiste Alayrac, Armand Joulin, Efrat Farkash, Ashish Thapliyal, Stephen
Roller, Noam Shazeer, Todor Davchev, Terry Koo, Hannah Forbes-Pollard, Kartik Audhkhasi,
Greg Farquhar, Adi Mayrav Gilady, Maggie Song, John Aslanides, Piermaria Mendolicchio,
Alicia Parrish, John Blitzer, Pramod Gupta, Xiaoen Ju, Xiaochen Yang, Puranjay Datta, Andrea
Tacchetti, Sanket Vaibhav Mehta, Gregory Dibb, Shubham Gupta, Federico Piccinini, Raia Hadsell,
Sujee Rajayogam, Jiepu Jiang, Patrick Griffin, Patrik Sundberg, Jamie Hayes, Alexey Frolov,
Tian Xie, Adam Zhang, Kingshuk Dasgupta, Uday Kalra, Lior Shani, Klaus Macherey, Tzu-
Kuo Huang, Liam MacDermed, Karthik Duddu, Paulo Zacchello, Zi Yang, Jessica Lo, Kai Hui,
Matej Kastelic, Derek Gasaway, Qijun Tan, Summer Yue, Pablo Barrio, John Wieting, Weel
Yang, Andrew Nystrom, Solomon Demmessie, Anselm Levskaya, Fabio Viola, Chetan Tekur,
Greg Billock, George Necula, Mandar Joshi, Rylan Schaeffer, Swachhand Lokhande, Christina
Sorokin, Pradeep Shenoy, Mia Chen, Mark Collier, Hongji Li, Taylor Bos, Nevan Wichers,
Sun Jae Lee, Angéline Pouget, Santhosh Thangaraj, Kyriakos Axiotis, Phil Crone, Rachel Sterneck,
Nikolai Chinaev, Victoria Krakovna, Oleksandr Ferludin, Ian Gemp, Stephanie Winkler, Dan
Goldberg, Ivan Korotkov, Kefan Xiao, Malika Mehrotra, Sandeep Mariserla, Vihari Piratla, Terry
Thurk, Khiem Pham, Hongxu Ma, Alexandre Senges, Ravi Kumar, Clemens Meyer, Ellie Talius,
Nuo Wang Pierse, Ballie Sandhu, Horia Toma, Kuo Lin, Swaroop Nath, Tom Stone, Dorsa Sadigh,
Nikita Gupta, Arthur Guez, Avi Singh, Matt Thomas, Tom Duerig, Yuan Gong, Richard Tanburn,
Lydia Lihui Zhang, Phuong Dao, Mohamed Hammad, Sirui Xie, Shruti Rijhwani, Ben Murdoch,
Duhyeon Kim, Will Thompson, Heng-Tze Cheng, Daniel Sohn, Pablo Sprechmann, Qiantong
Xu, Srinivas Tadepalli, Peter Young, Ye Zhang, Hansa Srinivasan, Miranda Aperghis, Aditya
Ayyar, Hen Fitoussi, Ryan Burnell, David Madras, Mike Dusenberry, Xi Xiong, Tayo Oguntebi,
Ben Albrecht, Jorg Bornschein, Jovana Mitrovi¢, Mason Dimarco, Bhargav Kanagal Shamanna,
Premal Shah, Eren Sezener, Shyam Upadhyay, Dave Lacey, Craig Schiff, Sebastien Baur, Sanjay
Ganapathy, Eva Schnider, Mateo Wirth, Connor Schenck, Andrey Simanovsky, Yi-Xuan Tan,
Philipp Frianken, Dennis Duan, Bharath Mankalale, Nikhil Dhawan, Kevin Sequeira, Zichuan
Wei, Shivanker Goel, Caglar Unlu, Yukun Zhu, Haitian Sun, Ananth Balashankar, Kurt Shuster,

10

https://arxiv.org/abs/2506.02153

Under review as a conference paper at ICLR 2026

Megh Umekar, Mahmoud Alnahlawi, Aédron van den Oord, Kelly Chen, Yuexiang Zhai, Zihang
Dai, Kuang-Huei Lee, Eric Doi, Lukas Zilka, Rohith Vallu, Disha Shrivastava, Jason Lee, Hisham
Husain, Honglei Zhuang, Vincent Cohen-Addad, Jarred Barber, James Atwood, Adam Sadovsky,
Quentin Wellens, Steven Hand, Arunkumar Rajendran, Aybuke Turker, CJ Carey, Yuanzhong Xu,
Hagen Soltau, Zefei Li, Xinying Song, Conglong Li, Iurii Kemaev, Sasha Brown, Andrea Burns,
Viorica Patraucean, Piotr Stanczyk, Renga Aravamudhan, Mathieu Blondel, Hila Noga, Lorenzo
Blanco, Will Song, Michael Isard, Mandar Sharma, Reid Hayes, Dalia El Badawy, Avery Lamp,
Itay Laish, Olga Kozlova, Kelvin Chan, Sahil Singla, Srinivas Sunkara, Mayank Upadhyay, Chang
Liu, Aijun Bai, Jarek Wilkiewicz, Martin Zlocha, Jeremiah Liu, Zhuowan Li, Haiguang Li, Omer
Barak, Ganna Raboshchuk, Jiho Choi, Fangyu Liu, Erik Jue, Mohit Sharma, Andreea Marzoca,
Robert Busa-Fekete, Anna Korsun, Andre Elisseeff, Zhe Shen, Sara Mc Carthy, Kay Lamerigts,
Anahita Hosseini, Hanzhao Lin, Charlie Chen, Fan Yang, Kushal Chauhan, Mark Omernick,
Dawei Jia, Karina Zainullina, Demis Hassabis, Danny Vainstein, Ehsan Amid, Xiang Zhou, Ronny
Votel, Eszter Vértes, Xinjian Li, Zongwei Zhou, Angeliki Lazaridou, Brendan McMahan, Arjun
Narayanan, Hubert Soyer, Sujoy Basu, Kayi Lee, Bryan Perozzi, Qin Cao, Leonard Berrada, Rahul
Arya, Ke Chen, Katrina, Xu, Matthias Lochbrunner, Alex Hofer, Sahand Sharifzadeh, Renjie
Wu, Sally Goldman, Pranjal Awasthi, Xuezhi Wang, Yan Wu, Claire Sha, Biao Zhang, Maciej
Mikuta, Filippo Graziano, Siobhan Mcloughlin, Irene Giannoumis, Youhei Namiki, Chase Malik,
Carey Radebaugh, Jamie Hall, Ramiro Leal-Cavazos, Jianmin Chen, Vikas Sindhwani, David Kao,
David Greene, Jordan Griffith, Chris Welty, Ceslee Montgomery, Toshihiro Yoshino, Liangzhe
Yuan, Noah Goodman, Assaf Hurwitz Michaely, Kevin Lee, KP Sawhney, Wei Chen, Zheng
Zheng, Megan Shum, Nikolay Savinov, Etienne Pot, Alex Pak, Morteza Zadimoghaddam, Sijal
Bhatnagar, Yoad Lewenberg, Blair Kutzman, Ji Liu, Lesley Katzen, Jeremy Selier, Josip Djolonga,
Dmitry Lepikhin, Kelvin Xu, Jacky Liang, Jiewen Tan, Benoit Schillings, Muge Ersoy, Pete
Blois, Bernd Bandemer, Abhimanyu Singh, Sergei Lebedev, Pankaj Joshi, Adam R. Brown, Evan
Palmer, Shreya Pathak, Komal Jalan, Fedir Zubach, Shuba Lall, Randall Parker, Alok Gunjan,
Sergey Rogulenko, Sumit Sanghai, Zhaoqi Leng, Zoltan Egyed, Shixin Li, Maria Ivanova, Kostas
Andriopoulos, Jin Xie, Elan Rosenfeld, Auriel Wright, Ankur Sharma, Xinyang Geng, Yicheng
Wang, Sam Kwei, Renke Pan, Yujing Zhang, Gabby Wang, Xi Liu, Chak Yeung, Elizabeth
Cole, Aviv Rosenberg, Zhen Yang, Phil Chen, George Polovets, Pranav Nair, Rohun Saxena,
Josh Smith, Shuo yiin Chang, Aroma Mahendru, Svetlana Grant, Anand Iyer, Irene Cai, Jed
McGiffin, Jiaming Shen, Alanna Walton, Antonious Girgis, Oliver Woodman, Rosemary Ke, Mike
Kwong, Louis Rouillard, Jinmeng Rao, Zhihao Li, Yuntao Xu, Flavien Prost, Chi Zou, Ziwei Ji,
Alberto Magni, Tyler Liechty, Dan A. Calian, Deepak Ramachandran, Igor Krivokon, Hui Huang,
Terry Chen, Anja Hauth, Anastasija Ili¢, Weijuan Xi, Hyeontaek Lim, Vlad-Doru Ion, Pooya
Moradi, Metin Toksoz-Exley, Kalesha Bullard, Miltos Allamanis, Xiaomeng Yang, Sophie Wang,
Zhi Hong, Anita Gergely, Cheng Li, Bhavishya Mittal, Vitaly Kovalev, Victor Ungureanu, Jane
Labanowski, Jan Wassenberg, Nicolas Lacasse, Geoffrey Cideron, Petar Devi¢, Annie Marsden,
Lynn Nguyen, Michael Fink, Yin Zhong, Tatsuya Kiyono, Desi Ivanov, Sally Ma, Max Bain,
Kiran Yalasangi, Jennifer She, Anastasia Petrushkina, Mayank Lunayach, Carla Bromberg, Sarah
Hodkinson, Vilobh Meshram, Daniel Vlasic, Austin Kyker, Steve Xu, Jeff Stanway, Zuguang Yang,
Kai Zhao, Matthew Tung, Seth Odoom, Yasuhisa Fujii, Justin Gilmer, Eunyoung Kim, Felix Halim,
Quoc Le, Bernd Bohnet, Seliem El-Sayed, Behnam Neyshabur, Malcolm Reynolds, Dean Reich,
Yang Xu, Erica Moreira, Anuj Sharma, Zeyu Liu, Mohammad Javad Hosseini, Naina Raisinghani,
Yi Su, Ni Lao, Daniel Formoso, Marco Gelmi, Almog Gueta, Tapomay Dey, Elena Gribovskaya,
Domagoj Cevid, Sidharth Mudgal, Garrett Bingham, Jianling Wang, Anurag Kumar, Alex Cullum,
Feng Han, Konstantinos Bousmalis, Diego Cedillo, Grace Chu, Vladimir Magay, Paul Michel,
Ester Hlavnova, Daniele Calandriello, Setareh Ariafar, Kaisheng Yao, Vikash Sehwag, Arpi Vezer,
Agustin Dal Lago, Zhenkai Zhu, Paul Kishan Rubenstein, Allen Porter, Anirudh Baddepudi, Oriana
Riva, Mihai Dorin Istin, Chih-Kuan Yeh, Zhi Li, Andrew Howard, Nilpa Jha, Jeremy Chen, Raoul
de Liedekerke, Zafarali Ahmed, Mikel Rodriguez, Tanuj Bhatia, Bangju Wang, Ali Elqursh, David
Klinghoffer, Peter Chen, Pushmeet Kohli, Te I, Weiyang Zhang, Zack Nado, Jilin Chen, Maxwell
Chen, George Zhang, Aayush Singh, Adam Hillier, Federico Lebron, Yiqing Tao, Ting Liu, Gabriel
Dulac-Arnold, Jingwei Zhang, Shashi Narayan, Buhuang Liu, Orhan Firat, Abhishek Bhowmick,
Bingyuan Liu, Hao Zhang, Zizhao Zhang, Georges Rotival, Nathan Howard, Anu Sinha, Alexander
Grushetsky, Benjamin Beyret, Keerthana Gopalakrishnan, James Zhao, Kyle He, Szabolcs Payrits,
Zaid Nabulsi, Zhaoyi Zhang, Weijie Chen, Edward Lee, Nova Fallen, Sreenivas Gollapudi, Aurick
Zhou, Filip Paveti¢, Thomas K&ppe, Shiyu Huang, Rama Pasumarthi, Nick Fernando, Felix
Fischer, Daria Curko, Yang Gao, James Svensson, Austin Stone, Haroon Qureshi, Abhishek

11

Under review as a conference paper at ICLR 2026

Sinha, Apoorv Kulshreshtha, Martin Matysiak, Jieming Mao, Carl Saroufim, Aleksandra Faust,
Qingnan Duan, Gil Fidel, Kaan Katircioglu, Raphaél Lopez Kaufman, Dhruv Shah, Weize Kong,
Abhishek Bapna, Gellért Weisz, Emma Dunleavy, Praneet Dutta, Tianqgi Liu, Rahma Chaabouni,
Carolina Parada, Marcus Wu, Alexandra Belias, Alessandro Bissacco, Stanislav Fort, Li Xiao,
Fantine Huot, Chris Knutsen, Yochai Blau, Gang Li, Jennifer Prendki, Juliette Love, Yinlam
Chow, Pichi Charoenpanit, Hidetoshi Shimokawa, Vincent Coriou, Karol Gregor, Tomas 1zo, Arjun
Akula, Mario Pinto, Chris Hahn, Dominik Paulus, Jiaxian Guo, Neha Sharma, Cho-Jui Hsieh,
Adaeze Chukwuka, Kazuma Hashimoto, Nathalie Rauschmayr, Ling Wu, Christof Angermueller,
Yulong Wang, Sebastian Gerlach, Michael Pliskin, Daniil Mirylenka, Min Ma, Lexi Baugher,
Bryan Gale, Shaan Bijwadia, Nemanja Rakiéevi¢, David Wood, Jane Park, Chung-Ching Chang,
Babi Seal, Chris Tar, Kacper Krasowiak, Yiwen Song, Georgi Stephanov, Gary Wang, Marcello
Maggioni, Stein Xudong Lin, Felix Wu, Shachi Paul, Zixuan Jiang, Shubham Agrawal, Bilal Piot,
Alex Feng, Cheolmin Kim, Tulsee Doshi, Jonathan Lai, Chuqgiao, Xu, Sharad Vikram, Ciprian
Chelba, Sebastian Krause, Vincent Zhuang, Jack Rae, Timo Denk, Adrian Collister, Lotte Weerts,
Xianghong Luo, Yifeng Lu, Havard Garnes, Nitish Gupta, Terry Spitz, Avinatan Hassidim, Lihao
Liang, Izhak Shafran, Peter Humphreys, Kenny Vassigh, Phil Wallis, Virat Shejwalkar, Nicolas
Perez-Nieves, Rachel Hornung, Melissa Tan, Beka Westberg, Andy Ly, Richard Zhang, Brian
Farris, Jongbin Park, Alec Kosik, Zeynep Cankara, Andrii Maksai, Yunhan Xu, Albin Cassirer,
Sergi Caelles, Abbas Abdolmaleki, Mencher Chiang, Alex Fabrikant, Shravya Shetty, Luheng
He, Mai Giménez, Hadi Hashemi, Sheena Panthaplackel, Yana Kulizhskaya, Salil Deshmukh,
Daniele Pighin, Robin Alazard, Disha Jindal, Seb Noury, Pradeep Kumar S, Siyang Qin, Xerxes
Dotiwalla, Stephen Spencer, Mohammad Babaeizadeh, Blake JianHang Chen, Vaibhav Mehta,
Jennie Lees, Andrew Leach, Penporn Koanantakool, Ilia Akolzin, Ramona Comanescu, Junwhan
Ahn, Alexey Svyatkovskiy, Basil Mustafa, David D’ Ambrosio, Shiva Mohan Reddy Garlapati,
Pascal Lamblin, Alekh Agarwal, Shuang Song, Pier Giuseppe Sessa, Pauline Coquinot, John
Maggs, Hussain Masoom, Divya Pitta, Yaqing Wang, Patrick Morris-Suzuki, Billy Porter, Johnson
Jia, Jeffrey Dudek, Raghavender R, Cosmin Paduraru, Alan Ansell, Tolga Bolukbasi, Tony Lu,
Ramya Ganeshan, Zi Wang, Henry Griffiths, Rodrigo Benenson, Yifan He, James Swirhun, George
Papamakarios, Aditya Chawla, Kuntal Sengupta, Yan Wang, Vedrana Milutinovic, Igor Mordatch,
Zhipeng Jia, Jamie Smith, Will Ng, Shitij Nigam, Matt Young, Eugen Vusak, Blake Hechtman,
Sheela Goenka, Avital Zipori, Kareem Ayoub, Ashok Popat, Trilok Acharya, Luo Yu, Dawn
Bloxwich, Hugo Song, Paul Roit, Haiqiong Li, Aviel Boag, Nigamaa Nayakanti, Bilva Chandra,
Tianli Ding, Aahil Mehta, Cath Hope, Jiageng Zhang, Idan Heimlich Shtacher, Kartikeya Badola,
Ryo Nakashima, Andrei Sozanschi, Iulia Comsa, Ante Zuzul, Emily Caveness, Julian Odell,
Matthew Watson, Dario de Cesare, Phillip Lippe, Derek Lockhart, Siddharth Verma, Huizhong
Chen, Sean Sun, Lin Zhuo, Aditya Shah, Prakhar Gupta, Alex Muzio, Ning Niu, Amir Zait,
Abhinav Singh, Meenu Gaba, Fan Ye, Prajit Ramachandran, Mohammad Saleh, Raluca Ada Popa,
Ayush Dubey, Frederick Liu, Sara Javanmardi, Mark Epstein, Ross Hemsley, Richard Green,
Nishant Ranka, Eden Cohen, Chuyuan Kelly Fu, Sanjay Ghemawat, Jed Borovik, James Martens,
Anthony Chen, Pranav Shyam, André Susano Pinto, Ming-Hsuan Yang, Alexandru Tifrea, David
Du, Boging Gong, Ayushi Agarwal, Seungyeon Kim, Christian Frank, Saloni Shah, Xiaodan Song,
Zhiwei Deng, Ales Mikhalap, Kleopatra Chatziprimou, Timothy Chung, Toni Creswell, Susan
Zhang, Yennie Jun, Carl Lebsack, Will Truong, Slavica Andacié, Itay Yona, Marco Fornoni, Rong
Rong, Serge Toropov, Afzal Shama Soudagar, Andrew Audibert, Salah Zaiem, Zaheer Abbas,
Andrei Rusu, Sahitya Potluri, Shitao Weng, Anastasios Kementsietsidis, Anton Tsitsulin, Daiyi
Peng, Natalie Ha, Sanil Jain, Tejasi Latkar, Simeon Ivanov, Cory McLean, Anirudh GP, Rajesh
Venkataraman, Canoee Liu, Dilip Krishnan, Joel D’sa, Roey Yogev, Paul Collins, Benjamin Lee,
Lewis Ho, Carl Doersch, Gal Yona, Shawn Gao, Felipe Tiengo Ferreira, Adnan Ozturel, Hannah
Muckenhirn, Ce Zheng, Gargi Balasubramaniam, Mudit Bansal, George van den Driessche, Sivan
Eiger, Salem Haykal, Vedant Misra, Abhimanyu Goyal, Danilo Martins, Gary Leung, Jonas
Valfridsson, Four Flynn, Will Bishop, Chenxi Pang, Yoni Halpern, Honglin Yu, Lawrence Moore,
Yuvein, Zhu, Sridhar Thiagarajan, Yoel Drori, Zhisheng Xiao, Lucio Dery, Rolf Jagerman, Jing
Lu, Eric Ge, Vaibhav Aggarwal, Arjun Khare, Vinh Tran, Oded Elyada, Ferran Alet, James Rubin,
Tan Chou, David Tian, Libin Bai, Lawrence Chan, Lukasz Lew, Karolis Misiunas, Taylan Bilal,
Aniket Ray, Sindhu Raghuram, Alex Castro-Ros, Viral Carpenter, CJ Zheng, Michael Kilgore,
Josef Broder, Emily Xue, Praveen Kallakuri, Dheeru Dua, Nancy Yuen, Steve Chien, John Schultz,
Saurabh Agrawal, Reut Tsarfaty, Jingcao Hu, Ajay Kannan, Dror Marcus, Nisarg Kothari, Baochen
Sun, Ben Horn, Matko Bos$njak, Ferjad Naeem, Dean Hirsch, Lewis Chiang, Boya Fang, Jie Han,
Qifei Wang, Ben Hora, Antoine He, Mario Luci¢, Beer Changpinyo, Anshuman Tripathi, John

12

Under review as a conference paper at ICLR 2026

Youssef, Chester Kwak, Philippe Schlattner, Cat Graves, Rémi Leblond, Wenjun Zeng, Anders
Andreassen, Gabriel Rasskin, Yue Song, Eddie Cao, Junhyuk Oh, Matt Hoffman, Wojtek Skut,
Yichi Zhang, Jon Stritar, Xingyu Cai, Saarthak Khanna, Kathie Wang, Shriya Sharma, Christian
Reisswig, Younghoon Jun, Aman Prasad, Tatiana Sholokhova, Preeti Singh, Adi Gerzi Rosenthal,
Anian Ruoss, Francoise Beaufays, Sean Kirmani, Dongkai Chen, Johan Schalkwyk, Jonathan
Herzig, Been Kim, Josh Jacob, Damien Vincent, Adrian N Reyes, Ivana Balazevic, Léonard
Hussenot, Jon Schneider, Parker Barnes, Luis Castro, Spandana Raj Babbula, Simon Green,
Serkan Cabi, Nico Duduta, Danny Driess, Rich Galt, Noam Velan, Junjie Wang, Hongyang Jiao,
Matthew Mauger, Du Phan, Miteyan Patel, Vlado Gali¢, Jerry Chang, Eyal Marcus, Matt Harvey,
Julian Salazar, Elahe Dabir, Suraj Satishkumar Sheth, Amol Mandhane, Hanie Sedghi, Jeremiah
Willcock, Amir Zandieh, Shruthi Prabhakara, Aida Amini, Antoine Miech, Victor Stone, Massimo
Nicosia, Paul Niemczyk, Ying Xiao, Lucy Kim, Stawek Kwasiborski, Vikas Verma, Ada Maksutaj
Oflazer, Christoph Hirnschall, Peter Sung, Lu Liu, Richard Everett, Michiel Bakker, Agoston
Weisz, Yufei Wang, Vivek Sampathkumar, Uri Shaham, Bibo Xu, Yasemin Altun, Mingqgiu Wang,
Takaaki Saeki, Guanjie Chen, Emanuel Taropa, Shanthal Vasanth, Sophia Austin, Lu Huang,
Goran Petrovic, Qingyun Dou, Daniel Golovin, Grigory Rozhdestvenskiy, Allie Culp, Will Wu,
Motoki Sano, Divya Jain, Julia Proskurnia, Sébastien Cevey, Alejandro Cruzado Ruiz, Piyush
Patil, Mahdi Mirzazadeh, Eric Ni, Javier Snaider, Lijie Fan, Alexandre Fréchette, AJ Pierigiovanni,
Shariq Igbal, Kenton Lee, Claudio Fantacci, Jinwei Xing, Lisa Wang, Alex Irpan, David Raposo,
Yi Luan, Zhuoyuan Chen, Harish Ganapathy, Kevin Hui, Jiazhong Nie, Isabelle Guyon, Heming
Ge, Roopali Vij, Hui Zheng, Dayeong Lee, Alfonso Castafio, Khuslen Baatarsukh, Gabriel
Ibagon, Alexandra Chronopoulou, Nicholas FitzGerald, Shashank Viswanadha, Safeen Huda,
Rivka Moroshko, Georgi Stoyanov, Prateek Kolhar, Alain Vaucher, Ishaan Watts, Adhi Kuncoro,
Henryk Michalewski, Satish Kambala, Bat-Orgil Batsaikhan, Alek Andreev, Irina Jurenka, Maigo
Le, Qihang Chen, Wael Al Jishi, Sarah Chakera, Zhe Chen, Aditya Kini, Vikas Yadav, Aditya
Siddhant, Ilia Labzovsky, Balaji Lakshminarayanan, Carrie Grimes Bostock, Pankil Botadra,
Ankesh Anand, Colton Bishop, Sam Conway-Rahman, Mohit Agarwal, Yani Donchev, Achintya
Singhal, Félix de Chaumont Quitry, Natalia Ponomareva, Nishant Agrawal, Bin Ni, Kalpesh
Krishna, Masha Samsikova, John Karro, Yilun Du, Tamara von Glehn, Caden Lu, Christopher A.
Choquette-Choo, Zhen Qin, Tingnan Zhang, Sicheng Li, Divya Tyam, Swaroop Mishra, Wing
Lowe, Colin Ji, Weiyi Wang, Manaal Faruqui, Ambrose Slone, Valentin Dalibard, Arunachalam
Narayanaswamy, John Lambert, Pierre-Antoine Manzagol, Dan Karliner, Andrew Bolt, Ivan
Lobov, Aditya Kusupati, Chang Ye, Xuan Yang, Heiga Zen, Nelson George, Mukul Bhutani,
Olivier Lacombe, Robert Riachi, Gagan Bansal, Rachel Soh, Yue Gao, Yang Yu, Adams Yu,
Emily Nottage, Tania Rojas-Esponda, James Noraky, Manish Gupta, Ragha Kotikalapudi, Jichuan
Chang, Sanja Deur, Dan Graur, Alex Mossin, Erin Farnese, Ricardo Figueira, Alexandre Moufarek,
Austin Huang, Patrik Zochbauer, Ben Ingram, Tongzhou Chen, Zelin Wu, Adria Puigdomenech,
Leland Rechis, Da Yu, Sri Gayatri Sundara Padmanabhan, Rui Zhu, Chu ling Ko, Andrea Banino,
Samira Daruki, Aarush Selvan, Dhruva Bhaswar, Daniel Hernandez Diaz, Chen Su, Salvatore
Scellato, Jennifer Brennan, Woohyun Han, Grace Chung, Priyanka Agrawal, Urvashi Khandelwal,
Khe Chai Sim, Morgane Lustman, Sam Ritter, Kelvin Guu, Jiawei Xia, Prateek Jain, Emma Wang,
Tyrone Hill, Mirko Rossini, Marija Kostelac, Tautvydas Misiunas, Amit Sabne, Kyuyeun Kim,
Ahmet Iscen, Congchao Wang, José Leal, Ashwin Sreevatsa, Utku Evci, Manfred Warmuth, Saket
Joshi, Daniel Suo, James Lottes, Garrett Honke, Brendan Jou, Stefani Karp, Jieru Hu, Himanshu
Sahni, Adrien Ali Taiga, William Kong, Samrat Ghosh, Renshen Wang, Jay Pavagadhi, Natalie
Axelsson, Nikolai Grigorev, Patrick Siegler, Rebecca Lin, Guohui Wang, Emilio Parisotto, Sharath
Maddineni, Krishan Subudhi, Eyal Ben-David, Elena Pochernina, Orgad Keller, Thi Avrahami,
Zhe Yuan, Pulkit Mehta, Jialu Liu, Sherry Yang, Wendy Kan, Katherine Lee, Tom Funkhouser,
Derek Cheng, Hongzhi Shi, Archit Sharma, Joe Kelley, Matan Eyal, Yury Malkov, Corentin Tallec,
Yuval Bahat, Shen Yan, Xintian, Wu, David Lindner, Chengda Wu, Avi Caciularu, Xiyang Luo,
Rodolphe Jenatton, Tim Zaman, Yingying Bi, Ilya Kornakov, Ganesh Mallya, Daisuke Ikeda, Itay
Karo, Anima Singh, Colin Evans, Praneeth Netrapalli, Vincent Nallatamby, Isaac Tian, Yannis
Assael, Vikas Raunak, Victor Carbune, Ioana Bica, Lior Madmoni, Dee Cattle, Snchit Grover,
Krishna Somandepalli, Sid Lall, Amelio Vdzquez-Reina, Riccardo Patana, Jiaqi Mu, Pranav Talluri,
Maggie Tran, Rajeev Aggarwal, RJ Skerry-Ryan, Jun Xu, Mike Burrows, Xiaoyue Pan, Edouard
Yvinec, Di Lu, Zhiying Zhang, Duc Dung Nguyen, Hairong Mu, Gabriel Barcik, Helen Ran,
Lauren Beltrone, Krzysztof Choromanski, Dia Kharrat, Samuel Albanie, Sean Purser-haskell,
David Bieber, Carrie Zhang, Jing Wang, Tom Hudson, Zhiyuan Zhang, Han Fu, Johannes Mauerer,
Mohammad Hossein Bateni, AJ Maschinot, Bing Wang, Muye Zhu, Arjun Pillai, Tobias Weyand,

13

Under review as a conference paper at ICLR 2026

Shuang Liu, Oscar Akerlund, Fred Bertsch, Vittal Premachandran, Alicia Jin, Vincent Roulet,
Peter de Boursac, Shubham Mittal, Ndaba Ndebele, Georgi Karadzhov, Sahra Ghalebikesabi,
Ricky Liang, Allen Wu, Yale Cong, Nimesh Ghelani, Sumeet Singh, Bahar Fatemi, Warren, Chen,
Charles Kwong, Alexey Kolganov, Steve Li, Richard Song, Chenkai Kuang, Sobhan Miryoosefi,
Dale Webster, James Wendt, Arkadiusz Socala, Guolong Su, Artur Mendonga, Abhinav Gupta,
Xiaowei Li, Tomy Tsai, Qiong, Hu, Kai Kang, Angie Chen, Sertan Girgin, Yongqin Xian, Andrew
Lee, Nolan Ramsden, Leslie Baker, Madeleine Clare Elish, Varvara Krayvanova, Rishabh Joshi,
Jiri Simsa, Yao-Yuan Yang, Piotr Ambroszczyk, Dipankar Ghosh, Arjun Kar, Yuan Shangguan,
Yumeya Yamamori, Yaroslav Akulov, Andy Brock, Haotian Tang, Siddharth Vashishtha, Rich
Munoz, Andreas Steiner, Kalyan Andra, Daniel Eppens, Qixuan Feng, Hayato Kobayashi, Sasha
Goldshtein, Mona El Mahdy, Xin Wang, Jilei, Wang, Richard Killam, Tom Kwiatkowski, Kavya
Kopparapu, Serena Zhan, Chao Jia, Alexei Bendebury, Sheryl Luo, Adria Recasens, Timothy
Knight, Jing Chen, Mohak Patel, YaGuang Li, Ben Withbroe, Dean Weesner, Kush Bhatia, Jie
Ren, Danielle Eisenbud, Ebrahim Songhori, Yanhua Sun, Travis Choma, Tasos Kementsietsidis,
Lucas Manning, Brian Roark, Wael Farhan, Jie Feng, Susheel Tatineni, James Cobon-Kerr, Yunjie
Li, Lisa Anne Hendricks, Isaac Noble, Chris Breaux, Nate Kushman, Ligian Peng, Fuzhao Xue,
Taylor Tobin, Jamie Rogers, Josh Lipschultz, Chris Alberti, Alexey Vlaskin, Mostafa Dehghani,
Roshan Sharma, Tris Warkentin, Chen-Yu Lee, Benigno Uria, Da-Cheng Juan, Angad Chandorkar,
Hila Sheftel, Ruibo Liu, Elnaz Davoodi, Borja De Balle Pigem, Kedar Dhamdhere, David Ross,
Jonathan Hoech, Mahdis Mahdieh, Li Liu, Qiujia Li, Liam McCafferty, Chenxi Liu, Markus
Mircea, Yunting Song, Omkar Savant, Alaa Saade, Colin Cherry, Vincent Hellendoorn, Siddharth
Goyal, Paul Pucciarelli, David Vilar Torres, Zohar Yahav, Hyo Lee, Lars Lowe Sjoesund, Christo
Kirov, Bo Chang, Deepanway Ghoshal, Lu Li, Gilles Baechler, Sébastien Pereira, Tara Sainath,
Anudhyan Boral, Dominik Grewe, Afief Halumi, Nguyet Minh Phu, Tianxiao Shen, Marco Tulio
Ribeiro, Dhriti Varma, Alex Kaskasoli, Vlad Feinberg, Navneet Potti, Jarrod Kahn, Matheus
Wisniewski, Shakir Mohamed, Arnar Mar Hrafnkelsson, Bobak Shahriari, Jean-Baptiste Lespiau,
Lisa Patel, Legg Yeung, Tom Paine, Lantao Mei, Alex Ramirez, Rakesh Shivanna, Li Zhong, Josh
Woodward, Guilherme Tubone, Samira Khan, Heng Chen, Elizabeth Nielsen, Catalin Ionescu,
Utsav Prabhu, Mingcen Gao, Qingze Wang, Sean Augenstein, Neesha Subramaniam, Jason Chang,
Fotis Iliopoulos, Jiaming Luo, Myriam Khan, Weicheng Kuo, Denis Teplyashin, Florence Perot,
Logan Kilpatrick, Amir Globerson, Hongkun Yu, Anfal Siddiqui, Nick Sukhanov, Arun Kandoor,
Umang Gupta, Marco Andreetto, Moran Ambar, Donnie Kim, Pawet Wesotowski, Sarah Perrin,
Ben Limonchik, Wei Fan, Jim Stephan, Ian Stewart-Binks, Ryan Kappedal, Tong He, Sarah Cogan,
Romina Datta, Tong Zhou, Jiayu Ye, Leandro Kieliger, Ana Ramalho, Kyle Kastner, Fabian
Mentzer, Wei-Jen Ko, Arun Suggala, Tianhao Zhou, Shiraz Butt, Hana Strejcek, Lior Belenki,
Subhashini Venugopalan, Mingyang Ling, Evgenii Eltyshev, Yunxiao Deng, Geza Kovacs, Mukund
Raghavachari, Hanjun Dai, Tal Schuster, Steven Schwarcz, Richard Nguyen, Arthur Nguyen, Gavin
Buttimore, Shrestha Basu Mallick, Sudeep Gandhe, Seth Benjamin, Michal Jastrzebski, Le Yan,
Sugato Basu, Chris Apps, Isabel Edkins, James Allingham, Immanuel Odisho, Tomas Kocisky,
Jewel Zhao, Linting Xue, Apoorv Reddy, Chrysovalantis Anastasiou, Aviel Atias, Sam Redmond,
Kieran Milan, Nicolas Heess, Herman Schmit, Allan Dafoe, Daniel Andor, Tynan Gangwani,
Anca Dragan, Sheng Zhang, Ashyana Kachra, Gang Wu, Siyang Xue, Kevin Aydin, Siqi Liu,
Yuxiang Zhou, Mahan Malihi, Austin Wu, Siddharth Gopal, Candice Schumann, Peter Stys,
Alek Wang, Mirek Ol§dk, Dangyi Liu, Christian Schallhart, Yiran Mao, Demetra Brady, Hao
Xu, Tomas Mery, Chawin Sitawarin, Siva Velusamy, Tom Cobley, Alex Zhai, Christian Walder,
Nitzan Katz, Ganesh Jawahar, Chinmay Kulkarni, Antoine Yang, Adam Paszke, Yinan Wang,
Bogdan Damoc, Zaldn Borsos, Ray Smith, Jinning Li, Mansi Gupta, Andrei Kapishnikov, Sushant
Prakash, Florian Luisier, Rishabh Agarwal, Will Grathwohl, Kuangyuan Chen, Kehang Han,
Nikhil Mehta, Andrew Over, Shekoofeh Azizi, Lei Meng, Niccolod Dal Santo, Kelvin Zheng, Jane
Shapiro, Igor Petrovski, Jeffrey Hui, Amin Ghafouri, Jasper Snoek, James Qin, Mandy Jordan,
Caitlin Sikora, Jonathan Malmaud, Yuheng Kuang, Aga Swietlik, Ruoxin Sang, Chongyang Shi,
Leon Li, Andrew Rosenberg, Shubin Zhao, Andy Crawford, Jan-Thorsten Peter, Yun Lei, Xavier
Garcia, Long Le, Todd Wang, Julien Amelot, Dave Orr, Praneeth Kacham, Dana Alon, Gladys
Tyen, Abhinav Arora, James Lyon, Alex Kurakin, Mimi Ly, Theo Guidroz, Zhipeng Yan, Rina
Panigrahy, Pingmei Xu, Thais Kagohara, Yong Cheng, Eric Noland, Jinhyuk Lee, Jonathan Lee,
Cathy Yip, Maria Wang, Efrat Nehoran, Alexander Bykovsky, Zhihao Shan, Ankit Bhagatwala,
Chaochao Yan, Jie Tan, Guillermo Garrido, Dan Ethier, Nate Hurley, Grace Vesom, Xu Chen,
Siyuan Qiao, Abhishek Nayyar, Julian Walker, Paramjit Sandhu, Mihaela Rosca, Danny Swisher,
Mikhail Dektiarev, Josh Dillon, George-Cristian Muraru, Manuel Tragut, Artiom Myaskovsky,

14

Under review as a conference paper at ICLR 2026

David Reid, Marko Velic, Owen Xiao, Jasmine George, Mark Brand, Jing Li, Wenhao Yu, Shane
Gu, Xiang Deng, Francois-Xavier Aubet, Soheil Hassas Yeganeh, Fred Alcober, Celine Smith,
Trevor Cohn, Kay McKinney, Michael Tschannen, Ramesh Sampath, Gowoon Cheon, Liangchen
Luo, Luyang Liu, Jordi Orbay, Hui Peng, Gabriela Botea, Xiaofan Zhang, Charles Yoon, Cesar
Magalhaes, Pawet Stradomski, Ian Mackinnon, Steven Hemingray, Kumaran Venkatesan, Rhys
May, Jaeyoun Kim, Alex Druinsky, Jingchen Ye, Zheng Xu, Terry Huang, Jad Al Abdallah, Adil
Dostmohamed, Rachana Fellinger, Tsendsuren Munkhdalai, Akanksha Maurya, Peter Garst, Yin
Zhang, Maxim Krikun, Simon Bucher, Aditya Srikanth Veerubhotla, Yaxin Liu, Sheng Li, Nishesh
Gupta, Jakub Adamek, Hanwen Chen, Bernett Orlando, Aleksandr Zaks, Joost van Amersfoort,
Josh Camp, Hui Wan, HyunJeong Choe, Zhichun Wu, Kate Olszewska, Weiren Yu, Archita Vadali,
Martin Scholz, Daniel De Freitas, Jason Lin, Amy Hua, Xin Liu, Frank Ding, Yichao Zhou, Boone
Severson, Katerina Tsihlas, Samuel Yang, Tammo Spalink, Varun Yerram, Helena Pankov, Rory
Blevins, Ben Vargas, Sarthak Jauhari, Matt Miecnikowski, Ming Zhang, Sandeep Kumar, Clement
Farabet, Charline Le Lan, Sebastian Flennerhag, Yonatan Bitton, Ada Ma, Arthur BraZinskas,
Eli Collins, Niharika Ahuja, Sneha Kudugunta, Anna Bortsova, Minh Giang, Wanzheng Zhu,
Ed Chi, Scott Lundberg, Alexey Stern, Subha Puttagunta, Jing Xiong, Xiao Wu, Yash Pande,
Amit Jhindal, Daniel Murphy, Jon Clark, Marc Brockschmidt, Maxine Deines, Kevin R. McKee,
Dan Bahir, Jiajun Shen, Minh Truong, Daniel McDuff, Andrea Gesmundo, Edouard Rosseel,
Bowen Liang, Ken Caluwaerts, Jessica Hamrick, Joseph Kready, Mary Cassin, Rishikesh Ingale,
Li Lao, Scott Pollom, Yifan Ding, Wei He, Lizzetth Bellot, Joana Iljazi, Ramya Sree Boppana,
Shan Han, Tara Thompson, Amr Khalifa, Anna Bulanova, Blagoj Mitrevski, Bo Pang, Emma
Cooney, Tian Shi, Rey Coaguila, Tamar Yakar, Marc’aurelio Ranzato, Nikola Momchev, Chris
Rawles, Zachary Charles, Young Maeng, Yuan Zhang, Rishabh Bansal, Xiaokai Zhao, Brian
Albert, Yuan Yuan, Sudheendra Vijayanarasimhan, Roy Hirsch, Vinay Ramasesh, Kiran Vodrahalli,
Xingyu Wang, Arushi Gupta, DJ Strouse, Jianmo Ni, Roma Patel, Gabe Taubman, Zhouyuan
Huo, Dero Gharibian, Marianne Monteiro, Hoi Lam, Shobha Vasudevan, Aditi Chaudhary, Isabela
Albuquerque, Kilol Gupta, Sebastian Riedel, Chaitra Hegde, Avraham Ruderman, Andras Gyorgy,
Marcus Wainwright, Ashwin Chaugule, Burcu Karagol Ayan, Tomer Levinboim, Sam Shleifer,
Yogesh Kalley, Vahab Mirrokni, Abhishek Rao, Prabakar Radhakrishnan, Jay Hartford, Jialin
Wu, Zhenhai Zhu, Francesco Bertolini, Hao Xiong, Nicolas Serrano, Hamish Tomlinson, Myle
Ott, Yifan Chang, Mark Graham, Jian Li, Marco Liang, Xiangzhu Long, Sebastian Borgeaud,
Yanif Ahmad, Alex Grills, Diana Mincu, Martin Izzard, Yuan Liu, Jinyu Xie, Louis O’Bryan,
Sameera Ponda, Simon Tong, Michelle Liu, Dan Malkin, Khalid Salama, Yuankai Chen, Rohan
Anil, Anand Rao, Rigel Swavely, Misha Bilenko, Nina Anderson, Tat Tan, Jing Xie, Xing Wu,
Lijun Yu, Oriol Vinyals, Andrey Ryabtsev, Rumen Dangovski, Kate Baumli, Daniel Keysers,
Christian Wright, Zoe Ashwood, Betty Chan, Artem Shtefan, Yaohui Guo, Ankur Bapna, Radu
Soricut, Steven Pecht, Sabela Ramos, Rui Wang, Jiahao Cai, Trieu Trinh, Paul Barham, Linda
Friso, Eli Stickgold, Xiangzhuo Ding, Siamak Shakeri, Diego Ardila, Eleftheria Briakou, Phil
Culliton, Adam Raveret, Jingyu Cui, David Saxton, Subhrajit Roy, Javad Azizi, Pengcheng Yin,
Lucia Loher, Andrew Bunner, Min Choi, Faruk Ahmed, Eric Li, Yin Li, Shengyang Dai, Michael
Elabd, Sriram Ganapathy, Shivani Agrawal, Yiqing Hua, Paige Kunkle, Sujeevan Rajayogam, Arun
Ahuja, Arthur Conmy, Alex Vasiloff, Parker Beak, Christopher Yew, Jayaram Mudigonda, Bartek
Wydrowski, Jon Blanton, Zhengdong Wang, Yann Dauphin, Zhuo Xu, Martin Polacek, Xi Chen,
Hexiang Hu, Pauline Sho, Markus Kunesch, Mehdi Hafezi Manshadi, Eliza Rutherford, Bo Li,
Sissie Hsiao, Iain Barr, Alex Tudor, Matija Kecman, Arsha Nagrani, Vladimir Pchelin, Martin
Sundermeyer, Aishwarya P S, Abhijit Karmarkar, Yi Gao, Grishma Chole, Olivier Bachem, Isabel
Gao, Arturo BC, Matt Dibb, Mauro Verzetti, Felix Hernandez-Campos, Yana Lunts, Matthew
Johnson, Julia Di Trapani, Raphael Koster, Idan Brusilovsky, Binbin Xiong, Megha Mohabey, Han
Ke, Joe Zou, Tea Saboli¢, Victor Campos, John Palowitch, Alex Morris, Linhai Qiu, Pranavaraj
Ponnuramu, Fangtao Li, Vivek Sharma, Kiranbir Sodhia, Kaan Tekelioglu, Aleksandr Chuklin,
Madhavi Yenugula, Erika Gemzer, Theofilos Strinopoulos, Sam El-Husseini, Huiyu Wang, Yan
Zhong, Edouard Leurent, Paul Natsev, Weijun Wang, Dre Mahaarachchi, Tao Zhu, Songyou Peng,
Sami Alabed, Cheng-Chun Lee, Anthony Brohan, Arthur Szlam, GS Oh, Anton Kovsharov, Jenny
Lee, Renee Wong, Megan Barnes, Gregory Thornton, Felix Gimeno, Omer Levy, Martin Sevenich,
Melvin Johnson, Jonathan Mallinson, Robert Dadashi, Ziyue Wang, Qingchun Ren, Preethi Lahoti,
Arka Dhar, Josh Feldman, Dan Zheng, Thatcher Ulrich, Liviu Panait, Michiel Blokzijl, Cip
Baetu, Josip Matak, Jitendra Harlalka, Maulik Shah, Tal Marian, Daniel von Dincklage, Cosmo
Du, Ruy Ley-Wild, Bethanie Brownfield, Max Schumacher, Yury Stuken, Shadi Noghabi, Sonal
Gupta, Xiaoqi Ren, Eric Malmi, Felix Weissenberger, Blanca Huergo, Maria Bauza, Thomas

15

Under review as a conference paper at ICLR 2026

Lampe, Arthur Douillard, Mojtaba Seyedhosseini, Roy Frostig, Zoubin Ghahramani, Kelvin
Nguyen, Kashyap Krishnakumar, Chengxi Ye, Rahul Gupta, Alireza Nazari, Robert Geirhos, Pete
Shaw, Ahmed Eleryan, Dima Damen, Jennimaria Palomaki, Ted Xiao, Qiyin Wu, Quan Yuan,
Phoenix Meadowlark, Matthew Bilotti, Raymond Lin, Mukund Sridhar, Yannick Schroecker,
Da-Woon Chung, Jincheng Luo, Trevor Strohman, Tianlin Liu, Anne Zheng, Jesse Emond, Wei
Wang, Andrew Lampinen, Toshiyuki Fukuzawa, Folawiyo Campbell-Ajala, Monica Roy, James
Lee-Thorp, Lily Wang, Iftekhar Naim, Tony, Nguy én, Guy Bensky, Aditya Gupta, Dominika
Rogozifiska, Justin Fu, Thanumalayan Sankaranarayana Pillai, Petar Velickovi¢, Shahar Drath,
Philipp Neubeck, Vaibhav Tulsyan, Arseniy Klimovskiy, Don Metzler, Sage Stevens, Angel
Yeh, Junwei Yuan, Tianhe Yu, Kelvin Zhang, Alec Go, Vincent Tsang, Ying Xu, Andy Wan,
Isaac Galatzer-Levy, Sam Sobell, Abodunrinwa Toki, Elizabeth Salesky, Wenlei Zhou, Diego
Antognini, Sholto Douglas, Shimu Wu, Adam Lelkes, Frank Kim, Paul Cavallaro, Ana Salazar,
Yuchi Liu, James Besley, Tiziana Refice, Yiling Jia, Zhang Li, Michal Sokolik, Arvind Kannan,
Jon Simon, Jo Chick, Avia Aharon, Meet Gandhi, Mayank Daswani, Keyvan Amiri, Vighnesh
Birodkar, Abe Ittycheriah, Peter Grabowski, Oscar Chang, Charles Sutton, Zhixin, Lai, Umesh
Telang, Susie Sargsyan, Tao Jiang, Raphael Hoffmann, Nicole Brichtova, Matteo Hessel, Jonathan
Halcrow, Sammy Jerome, Geoff Brown, Alex Tomala, Elena Buchatskaya, Dian Yu, Sachit
Menon, Pol Moreno, Yuguo Liao, Vicky Zayats, Luming Tang, SQ Mah, Ashish Shenoy, Alex
Siegman, Majid Hadian, Okwan Kwon, Tao Tu, Nima Khajehnouri, Ryan Foley, Parisa Haghani,
Zhongru Wu, Vaishakh Keshava, Khyatti Gupta, Tony Bruguier, Rui Yao, Danny Karmon, Luisa
Zintgraf, Zhicheng Wang, Enrique Piqueras, Junehyuk Jung, Jenny Brennan, Diego Machado,
Marissa Giustina, MH Tessler, Kamyu Lee, Qiao Zhang, Joss Moore, Kaspar Daugaard, Alexander
Frommgen, Jennifer Beattie, Fred Zhang, Daniel Kasenberg, Ty Geri, Danfeng Qin, Gaurav Singh
Tomar, Tom Ouyang, Tianli Yu, Luowei Zhou, Rajiv Mathews, Andy Davis, Yaoyiran Li, Jai
Gupta, Damion Yates, Linda Deng, Elizabeth Kemp, Ga-Young Joung, Sergei Vassilvitskii, Mandy
Guo, Pallavi LV, Dave Dopson, Sami Lachgar, Lara McConnaughey, Himadri Choudhury, Dragos
Dena, Aaron Cohen, Joshua Ainslie, Sergey Levi, Parthasarathy Gopavarapu, Polina Zablotskaia,
Hugo Vallet, Sanaz Bahargam, Xiaodan Tang, Nenad Tomasev, Ethan Dyer, Daniel Balle, Hongrae
Lee, William Bono, Jorge Gonzalez Mendez, Vadim Zubov, Shentao Yang, Ivor Rendulic, Yanyan
Zheng, Andrew Hogue, Golan Pundak, Ralph Leith, Avishkar Bhoopchand, Michael Han, Mislav
Zanié, Tom Schaul, Manolis Delakis, Tejas Iyer, Guanyu Wang, Harman Singh, Abdelrahman
Abdelhamed, Tara Thomas, Siddhartha Brahma, Hilal Dib, Naveen Kumar, Wenxuan Zhou, Liang
Bai, Pushkar Mishra, Jiao Sun, Valentin Anklin, Roykrong Sukkerd, Lauren Agubuzu, Anton
Briukhov, Anmol Gulati, Maximilian Sieb, Fabio Pardo, Sara Nasso, Junquan Chen, Kexin Zhu,
Tiberiu Sosea, Alex Goldin, Keith Rush, Spurthi Amba Hombaiah, Andreas Noever, Allan Zhou,
Sam Haves, Mary Phuong, Jake Ades, Yi ting Chen, Lin Yang, Joseph Pagadora, Stan Bileschi,
Victor Cotruta, Rachel Saputro, Arijit Pramanik, Sean Ammirati, Dan Garrette, Kevin Villela, Tim
Blyth, Canfer Akbulut, Neha Jha, Alban Rrustemi, Arissa Wongpanich, Chirag Nagpal, Yonghui
Wu, Morgane Riviere, Sergey Kishchenko, Pranesh Srinivasan, Alice Chen, Animesh Sinha, Trang
Pham, Bill Jia, Tom Hennigan, Anton Bakalov, Nithya Attaluri, Drew Garmon, Daniel Rodriguez,
Dawid Wegner, Wenhao Jia, Evan Senter, Noah Fiedel, Denis Petek, Yuchuan Liu, Cassidy Hardin,
Harshal Tushar Lehri, Joao Carreira, Sara Smoot, Marcel Prasetya, Nami Akazawa, Anca Stefanoiu,
Chia-Hua Ho, Anelia Angelova, Kate Lin, Min Kim, Charles Chen, Marcin Sieniek, Alice Li,
Tongfei Guo, Sorin Baltateanu, Pouya Tafti, Michael Wunder, Nadav Olmert, Divyansh Shukla,
Jingwei Shen, Neel Kovelamudi, Balaji Venkatraman, Seth Neel, Romal Thoppilan, Jerome Connor,
Frederik Benzing, Axel Stjerngren, Golnaz Ghiasi, Alex Polozov, Joshua Howland, Theophane
Weber, Justin Chiu, Ganesh Poomal Girirajan, Andreas Terzis, Pidong Wang, Fangda Li, Yoav Ben
Shalom, Dinesh Tewari, Matthew Denton, Roee Aharoni, Norbert Kalb, Heri Zhao, Junlin Zhang,
Angelos Filos, Matthew Rahtz, Lalit Jain, Connie Fan, Vitor Rodrigues, Ruth Wang, Richard
Shin, Jacob Austin, Roman Ring, Mariella Sanchez-Vargas, Mehadi Hassen, Ido Kessler, Uri Alon,
Gufeng Zhang, Wenhu Chen, Yenai Ma, Xiance Si, Le Hou, Azalia Mirhoseini, Marc Wilson,
Geoff Bacon, Becca Roelofs, Lei Shu, Gautam Vasudevan, Jonas Adler, Artur Dwornik, Tayfun
Terzi, Matt Lawlor, Harry Askham, Mike Bernico, Xuanyi Dong, Chris Hidey, Kevin Kilgour,
Gaél Liu, Surya Bhupatiraju, Luke Leonhard, Siqi Zuo, Partha Talukdar, Qing Wei, Aliaksei
Severyn, Vit Listik, Jong Lee, Aditya Tripathi, SK Park, Yossi Matias, Hao Liu, Alex Ruiz, Rajesh
Jayaram, Jackson Tolins, Pierre Marcenac, Yiming Wang, Bryan Seybold, Henry Prior, Deepak
Sharma, Jack Weber, Mikhail Sirotenko, Yunhsuan Sung, Dayou Du, Ellie Pavlick, Stefan Zinke,
Markus Freitag, Max Dylla, Montse Gonzalez Arenas, Natan Potikha, Omer Goldman, Connie
Tao, Rachita Chhaparia, Maria Voitovich, Pawan Dogra, Andrija RaZnatovi¢, Zak Tsai, Chong

16

Under review as a conference paper at ICLR 2026

You, Oleaser Johnson, George Tucker, Chenjie Gu, Jae Yoo, Maryam Majzoubi, Valentin Gabeur,
Bahram Raad, Rocky Rhodes, Kashyap Kolipaka, Heidi Howard, Geta Sampemane, Benny Li,
Chulayuth Asawaroengchai, Duy Nguyen, Chiyuan Zhang, Timothee Cour, Xinxin Yu, Zhao Fu,
Joe Jiang, Po-Sen Huang, Gabriela Surita, Ifiaki Iturrate, Yael Karov, Michael Collins, Martin
Baeuml, Fabian Fuchs, Shilpa Shetty, Swaroop Ramaswamy, Sayna Ebrahimi, Qiuchen Guo,
Jeremy Shar, Gabe Barth-Maron, Sravanti Addepalli, Bryan Richter, Chin-Yi Cheng, Eugénie
Rives, Fei Zheng, Johannes Griesser, Nishanth Dikkala, Yoel Zeldes, Ilkin Safarli, Dipanjan Das,
Himanshu Srivastava, Sadh MNM Khan, Xin Li, Aditya Pandey, Larisa Markeeva, Dan Belov, Qiqi
Yan, Mikotaj Rybifiski, Tao Chen, Megha Nawhal, Michael Quinn, Vineetha Govindaraj, Sarah
York, Reed Roberts, Roopal Garg, Namrata Godbole, Jake Abernethy, Anil Das, Lam Nguyen
Thiet, Jonathan Tompson, John Nham, Neera Vats, Ben Caine, Wesley Helmholz, Francesco
Pongetti, Yeongil Ko, James An, Clara Huiyi Hu, Yu-Cheng Ling, Julia Pawar, Robert Leland,
Keisuke Kinoshita, Waleed Khawaja, Marco Selvi, Eugene Ie, Danila Sinopalnikov, Lev Proleev,
Nilesh Tripuraneni, Michele Bevilacqua, Seungji Lee, Clayton Sanford, Dan Suh, Dustin Tran,
Jeff Dean, Simon Baumgartner, Jens Heitkaemper, Sagar Gubbi, Kristina Toutanova, Yichong Xu,
Chandu Thekkath, Keran Rong, Palak Jain, Annie Xie, Yan Virin, Yang Li, Lubo Litchev, Richard
Powell, Tarun Bharti, Adam Kraft, Nan Hua, Marissa Ikonomidis, Ayal Hitron, Sanjiv Kumar,
Loic Matthey, Sophie Bridgers, Lauren Lax, Ishaan Malhi, Ondrej Skopek, Ashish Gupta, Jiawei
Cao, Mitchelle Rasquinha, Siim P&der, Wojciech Stokowiec, Nicholas Roth, Guowang Li, Michaél
Sander, Joshua Kessinger, Vihan Jain, Edward Loper, Wonpyo Park, Michal Yarom, Liqun Cheng,
Guru Guruganesh, Kanishka Rao, Yan Li, Catarina Barros, Mikhail Sushkov, Chun-Sung Ferng,
Rohin Shah, Ophir Aharoni, Ravin Kumar, Tim McConnell, Peiran Li, Chen Wang, Fernando
Pereira, Craig Swanson, Fayaz Jamil, Yan Xiong, Anitha Vijayakumar, Prakash Shroff, Kedar
Soparkar, Jindong Gu, Livio Baldini Soares, Eric Wang, Kushal Majmundar, Aurora Wei, Kai
Bailey, Nora Kassner, Chizu Kawamoto, Goran Zuiié, Victor Gomes, Abhirut Gupta, Michael
Guzman, Ishita Dasgupta, Xinyi Bai, Zhufeng Pan, Francesco Piccinno, Hadas Natalie Vogel,
Octavio Ponce, Adrian Hutter, Paul Chang, Pan-Pan Jiang, Ionel Gog, Vlad Ionescu, James
Manyika, Fabian Pedregosa, Harry Ragan, Zach Behrman, Ryan Mullins, Coline Devin, Aroonalok
Pyne, Swapnil Gawde, Martin Chadwick, Yiming Gu, Sasan Tavakkol, Andy Twigg, Naman
Goyal, Ndidi Elue, Anna Goldie, Srinivasan Venkatachary, Hongliang Fei, Zigiang Feng, Marvin
Ritter, Isabel Leal, Sudeep Dasari, Pei Sun, Alif Raditya Rochman, Brendan O’Donoghue, Yuchen
Liu, Jim Sproch, Kai Chen, Natalie Clay, Slav Petrov, Sailesh Sidhwani, Ioana Mihailescu, Alex
Panagopoulos, AJ Piergiovanni, Yunfei Bai, George Powell, Deep Karkhanis, Trevor Yacovone,
Petr Mitrichev, Joe Kovac, Dave Uthus, Amir Yazdanbakhsh, David Amos, Steven Zheng, Bing
Zhang, Jin Miao, Bhuvana Ramabhadran, Soroush Radpour, Shantanu Thakoor, Josh Newlan, Oran
Lang, Orion Jankowski, Shikhar Bharadwaj, Jean-Michel Sarr, Shereen Ashraf, Sneha Mondal, Jun
Yan, Ankit Singh Rawat, Sarmishta Velury, Greg Kochanski, Tom Eccles, Franz Och, Abhanshu
Sharma, Ethan Mahintorabi, Alex Gurney, Carrie Muir, Vered Cohen, Saksham Thakur, Adam
Bloniarz, Asier Mujika, Alexander Pritzel, Paul Caron, Altaf Rahman, Fiona Lang, Yasumasa Onoe,
Petar Sirkovic, Jay Hoover, Ying Jian, Pablo Duque, Arun Narayanan, David Soergel, Alex Haig,
Loren Maggiore, Shyamal Buch, Josef Dean, Ilya Figotin, Igor Karpov, Shaleen Gupta, Denny
Zhou, Muhuan Huang, Ashwin Vaswani, Christopher Semturs, Kaushik Shivakumar, Yu Watanabe,
Vinodh Kumar Rajendran, Eva Lu, Yanhan Hou, Wenting Ye, Shikhar Vashishth, Nana Nti, Vytenis
Sakenas, Darren Ni, Doug DeCarlo, Michael Bendersky, Sumit Bagri, Nacho Cano, Elijah Peake,
Simon Tokumine, Varun Godbole, Carlos Guia, Tanya Lando, Vittorio Selo, Seher Ellis, Danny
Tarlow, Daniel Gillick, Alessandro Epasto, Siddhartha Reddy Jonnalagadda, Meng Wei, Meiyan
Xie, Ankur Taly, Michela Paganini, Mukund Sundararajan, Daniel Toyama, Ting Yu, Dessie
Petrova, Aneesh Pappu, Rohan Agrawal, Senaka Buthpitiya, Justin Frye, Thomas Buschmann,
Remi Crocker, Marco Tagliasacchi, Mengchao Wang, Da Huang, Sagi Perel, Brian Wieder, Hideto
Kazawa, Weiyue Wang, Jeremy Cole, Himanshu Gupta, Ben Golan, Seojin Bang, Nitish Kulkarni,
Ken Franko, Casper Liu, Doug Reid, Sid Dalmia, Jay Whang, Kevin Cen, Prasha Sundaram, Johan
Ferret, Berivan Isik, Lucian Ionita, Guan Sun, Anna Shekhawat, Muqthar Mohammad, Philip
Pham, Ronny Huang, Karthik Raman, Xingyi Zhou, Ross Mcilroy, Austin Myers, Sheng Peng,
Jacob Scott, Paul Covington, Sofia Erell, Pratik Joshi, Jodo Gabriel Oliveira, Natasha Noy, Tajwar
Nasir, Jake Walker, Vera Axelrod, Tim Dozat, Pu Han, Chun-Te Chu, Eugene Weinstein, Anand
Shukla, Shreyas Chandrakaladharan, Petra Poklukar, Bonnie Li, Ye Jin, Prem Eruvbetine, Steven
Hansen, Avigail Dabush, Alon Jacovi, Samrat Phatale, Chen Zhu, Steven Baker, Mo Shomrat, Yang
Xiao, Jean Pouget-Abadie, Mingyang Zhang, Fanny Wei, Yang Song, Helen King, Yiling Huang,
Yun Zhu, Ruoxi Sun, Juliana Vicente Franco, Chu-Cheng Lin, Sho Arora, Hui, Li, Vivian Xia,

17

Under review as a conference paper at ICLR 2026

Luke Vilnis, Mariano Schain, Kaiz Alarakyia, Laurel Prince, Aaron Phillips, Caleb Habtegebriel,
Luyao Xu, Huan Gui, Santiago Ontanon, Lora Aroyo, Karan Gill, Peggy Lu, Yash Katariya,
Dhruv Madeka, Shankar Krishnan, Shubha Srinivas Raghvendra, James Freedman, Yi Tay, Gaurav
Menghani, Peter Choy, Nishita Shetty, Dan Abolafia, Doron Kukliansky, Edward Chou, Jared
Lichtarge, Ken Burke, Ben Coleman, Dee Guo, Larry Jin, Indro Bhattacharya, Victoria Langston,
Yiming Li, Suyog Kotecha, Alex Yakubovich, Xinyun Chen, Petre Petrov, Tolly Powell, Yanzhang
He, Corbin Quick, Kanav Garg, Dawsen Hwang, Yang Lu, Srinadh Bhojanapalli, Kristian Kjems,
Ramin Mehran, Aaron Archer, Hado van Hasselt, Ashwin Balakrishna, JK Kearns, Meiqi Guo,
Jason Riesa, Mikita Sazanovich, Xu Gao, Chris Sauer, Chengrun Yang, XiangHai Sheng, Thomas
Jimma, Wouter Van Gansbeke, Vitaly Nikolaev, Wei Wei, Katie Millican, Ruizhe Zhao, Justin
Snyder, Levent Bolelli, Maura O’Brien, Shawn Xu, Fei Xia, Wentao Yuan, Arvind Neelakantan,
David Barker, Sachin Yadav, Hannah Kirkwood, Farooq Ahmad, Joel Wee, Jordan Grimstad, Boyu
Wang, Matthew Wiethoff, Shane Settle, Miaosen Wang, Charles Blundell, Jingjing Chen, Chris
Duvarney, Grace Hu, Olaf Ronneberger, Alex Lee, Yuanzhen Li, Abhishek Chakladar, Alena
Butryna, Georgios Evangelopoulos, Guillaume Desjardins, Jonni Kanerva, Henry Wang, Averi
Nowak, Nick Li, Alyssa Loo, Art Khurshudov, Laurent El Shafey, Nagabhushan Baddi, Karel Lenc,
Yasaman Razeghi, Tom Lieber, Amer Sinha, Xiao Ma, Yao Su, James Huang, Asahi Ushio, Hanna
Klimczak-Plucinska, Kareem Mohamed, JD Chen, Simon Osindero, Stav Ginzburg, Lampros
Lamprou, Vasilisa Bashlovkina, Duc-Hieu Tran, Ali Khodaei, Ankit Anand, Yixian Di, Ramy
Eskander, Manish Reddy Vuyyuru, Jasmine Liu, Aishwarya Kamath, Roman Goldenberg, Mathias
Bellaiche, Juliette Pluto, Bill Rosgen, Hassan Mansoor, William Wong, Suhas Ganesh, Eric Bailey,
Scott Baird, Dan Deutsch, Jinoo Baek, Xuhui Jia, Chansoo Lee, Abe Friesen, Nathaniel Braun, Kate
Lee, Amayika Panda, Steven M. Hernandez, Duncan Williams, Jiangiao Liu, Ethan Liang, Arnaud
Autef, Emily Pitler, Deepali Jain, Phoebe Kirk, Oskar Bunyan, Jaume Sanchez Elias, Tongxin Yin,
Machel Reid, Aedan Pope, Nikita Putikhin, Bidisha Samanta, Sergio Guadarrama, Dahun Kim,
Simon Rowe, Marcella Valentine, Geng Yan, Alex Salcianu, David Silver, Gan Song, Richa Singh,
Shuai Ye, Hannah DeBalsi, Majd Al Merey, Eran Ofek, Albert Webson, Shibl Mourad, Ashwin
Kakarla, Silvio Lattanzi, Nick Roy, Evgeny Sluzhaev, Christina Butterfield, Alessio Tonioni,
Nathan Waters, Sudhindra Kopalle, Jason Chase, James Cohan, Girish Ramchandra Rao, Robert
Berry, Michael Voznesensky, Shuguang Hu, Kristen Chiafullo, Sharat Chikkerur, George Scrivener,
Ivy Zheng, Jeremy Wiesner, Wolfgang Macherey, Timothy Lillicrap, Fei Liu, Brian Walker, David
Welling, Elinor Davies, Yangsibo Huang, Lijie Ren, Nir Shabat, Alessandro Agostini, Mariko
linuma, Dustin Zelle, Rohit Sathyanarayana, Andrea D’olimpio, Morgan Redshaw, Matt Ginsberg,
Ashwin Murthy, Mark Geller, Tatiana Matejovicova, Ayan Chakrabarti, Ryan Julian, Christine
Chan, Qiong Hu, Daniel Jarrett, Manu Agarwal, Jeshwanth Challagundla, Tao Li, Sandeep Tata,
Wen Ding, Maya Meng, Zhuyun Dai, Giulia Vezzani, Shefali Garg, Jannis Bulian, Mary Jasarevic,
Honglong Cai, Harish Rajamani, Adam Santoro, Florian Hartmann, Chen Liang, Bartek Perz,
Apoorv Jindal, Fan Bu, Sungyong Seo, Ryan Poplin, Adrian Goedeckemeyer, Badih Ghazi, Nikhil
Khadke, Leon Liu, Kevin Mather, Mingda Zhang, Ali Shah, Alex Chen, Jinliang Wei, Keshav
Shivam, Yuan Cao, Donghyun Cho, Angelo Scorza Scarpati, Michael Moffitt, Clara Barbu, Ivan
Jurin, Ming-Wei Chang, Hongbin Liu, Hao Zheng, Shachi Dave, Christine Kaeser-Chen, Xiaobin
Yu, Alvin Abdagic, Lucas Gonzalez, Yanping Huang, Peilin Zhong, Cordelia Schmid, Bryce
Petrini, Alex Wertheim, Jifan Zhu, Hoang Nguyen, Kaiyang Ji, Yanqi Zhou, Tao Zhou, Fangxiaoyu
Feng, Regev Cohen, David Rim, Shubham Milind Phal, Petko Georgiev, Ariel Brand, Yue Ma,
Wei Li, Somit Gupta, Chao Wang, Pavel Dubov, Jean Tarbouriech, Kingshuk Majumder, Huijian
Li, Norman Rink, Apurv Suman, Yang Guo, Yinghao Sun, Arun Nair, Xiaowei Xu, Mohamed
Elhawaty, Rodrigo Cabrera, Guangxing Han, Julian Eisenschlos, Junwen Bai, Yuqi Li, Yamini
Bansal, Thibault Sellam, Mina Khan, Hung Nguyen, Justin Mao-Jones, Nikos Parotsidis, Jake
Marcus, Cindy Fan, Roland Zimmermann, Yony Kochinski, Laura Graesser, Feryal Behbahani,
Alvaro Caceres, Michael Riley, Patrick Kane, Sandra Lefdal, Rob Willoughby, Paul Vicol, Lun
Wang, Shujian Zhang, Ashleah Gill, Yu Liang, Gautam Prasad, Soroosh Mariooryad, Mehran
Kazemi, Zifeng Wang, Kritika Muralidharan, Paul Voigtlaender, Jeffrey Zhao, Huanjie Zhou,
Nina D’Souza, Aditi Mavalankar, Séb Arnold, Nick Young, Obaid Sarvana, Chace Lee, Milad
Nasr, Tingting Zou, Seokhwan Kim, Lukas Haas, Kaushal Patel, Neslihan Bulut, David Parkinson,
Courtney Biles, Dmitry Kalashnikov, Chi Ming To, Aviral Kumar, Jessica Austin, Alex Greve,
Lei Zhang, Megha Goel, Yeqing Li, Sergey Yaroshenko, Max Chang, Abhishek Jindal, Geoff
Clark, Hagai Taitelbaum, Dale Johnson, Ofir Roval, Jeongwoo Ko, Anhad Mohananey, Christian
Schuler, Shenil Dodhia, Ruichao Li, Kazuki Osawa, Claire Cui, Peng Xu, Rushin Shah, Tao Huang,
Ela Gruzewska, Nathan Clement, Mudit Verma, Olcan Sercinoglu, Hai Qian, Viral Shah, Masa

18

Under review as a conference paper at ICLR 2026

Yamaguchi, Abhinit Modi, Takahiro Kosakai, Thomas Strohmann, Junhao Zeng, Beliz Gunel, Jun
Qian, Austin Tarango, Krzysztof Jastrzgbski, Robert David, Jyn Shan, Parker Schuh, Kunal Lad,
Willi Gierke, Mukundan Madhavan, Xinyi Chen, Mark Kurzeja, Rebeca Santamaria-Fernandez,
Dawn Chen, Alexandra Cordell, Yuri Chervonyi, Frankie Garcia, Nithish Kannen, Vincent Perot,
Nan Ding, Shlomi Cohen-Ganor, Victor Lavrenko, Junru Wu, Georgie Evans, Cicero Nogueira dos
Santos, Madhavi Sewak, Ashley Brown, Andrew Hard, Joan Puigcerver, Zeyu Zheng, Yizhong
Liang, Evgeny Gladchenko, Reeve Ingle, Uri First, Pierre Sermanet, Charlotte Magister, Mihajlo
Velimirovié, Sashank Reddi, Susanna Ricco, Eirikur Agustsson, Hartwig Adam, Nir Levine, David
Gaddy, Dan Holtmann-Rice, Xuanhui Wang, Ashutosh Sathe, Abhijit Guha Roy, Blaz Bratanic,
Alen Carin, Harsh Mehta, Silvano Bonacina, Nicola De Cao, Mara Finkelstein, Verena Rieser,
Xinyi Wu, Florent Altché, Dylan Scandinaro, Li Li, Nino Vieillard, Nikhil Sethi, Garrett Tanzer,
Zhi Xing, Shibo Wang, Parul Bhatia, Gui Citovsky, Thomas Anthony, Sharon Lin, Tianze Shi,
Shoshana Jakobovits, Gena Gibson, Raj Apte, Lisa Lee, Mingqing Chen, Arunkumar Byravan,
Petros Maniatis, Kellie Webster, Andrew Dai, Pu-Chin Chen, Jiaqi Pan, Asya Fadeeva, Zach
Gleicher, Thang Luong, and Niket Kumar Bhumihar. Gemini 2.5: Pushing the frontier with
advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025.
URL https://arxiv.org/abs/2507.06261.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Jonas Eschmann. Reward function design in reinforcement learning. Reinforcement learning
algorithms: Analysis and Applications, pp. 25-33, 2021.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning. arxiv 2020. arXiv preprint arXiv:2007.04074,
2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025b.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv
preprint arXiv:2410.16946, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code, 2025. URL https://arxiv.org/
abs/2502.13138|

Haifeng Jin, Francois Chollet, Qingquan Song, and Xia Hu. Autokeras: An automl library for deep
learning. Journal of machine Learning research, 24(6):1-6, 2023.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hiillermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 10, 2023.

19

https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138

Under review as a conference paper at ICLR 2026

Erin LeDell and Sebastien Poirier. H20 automl: Scalable automatic machine learning. In Proceedings
of the AutoML Workshop at ICML, volume 2020, pp. 24, 2020.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney Zheng, Minghao Liu, Xinyao Niu, Yue Wang,
Jian Yang, Jiaheng Liu, et al. Autokaggle: A multi-agent framework for autonomous data science
competitions. arXiv preprint arXiv:2410.20424, 2024.

Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samu-
lowitz, Dakuo Wang, Andrew Conn, and Alexander Gray. An admm based framework for automl
pipeline configuration. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 4892-4899, 2020.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Weinan
E, and Siheng Chen. Ml-master: Towards ai-for-ai via integration of exploration and reasoning.
arXiv preprint arXiv:2506.16499, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada
Mihalcea (eds.), Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pp. 142—150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics. URL |https://aclanthology.org/P11-1015/.

Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging ai agent
architectures for reasoning, planning, and tool calling: A survey. arXiv preprint arXiv:2404.11584,
2024.

Felix Mohr, Marcel Wever, and Eyke Hiillermeier. Ml-plan: Automated machine learning via
hierarchical planning. Machine Learning, 107:1495-1515, 2018.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66—74. PMLR, 2016.

OpenAl. Gpt-4o mini: Advancing cost-efficient intelligence. https://openai.com/index/
gpt-4o0-mini-advancing-cost-efficient-intelligence/, 2024. Accessed: 2025-01-23.

OpenAl. Introducing gpt 5. |https://openai.com/index/introducing-gpt-5/} 2025. Accessed:
2025-09-25.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Xianghe Pang, Shuo Tang, Rui Ye, Yuxin Xiong, Bolun Zhang, Yanfeng Wang, and Siheng Chen.
Self-alignment of large language models via monopolylogue-based social scene simulation. arXiv
preprint arXiv:2402.05699, 2024.

Peter S Park, Philipp Schoenegger, and Chongyang Zhu. Diminished diversity-of-thought in a
standard large language model. Behavior Research Methods, 56(6):5754-5770, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,

Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

20

https://aclanthology.org/P11-1015/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/introducing-gpt-5/

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Zhigiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff,
and George Karypis. Autogluon-multimodal (automm): Supercharging multimodal automl with
foundation models. arXiv preprint arXiv:2404.16233, 2024.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework for
full-pipeline automl. arXiv preprint arXiv:2410.02958, 2024.

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. arXiv preprint
arXiv:2412.10400, 2024.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. Watch every step! llm agent learning via iterative step-level process refinement. In
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
1556-1572, 2024.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388,

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
for llms: A survey. arXiv preprint arXiv:2509.02547, 2025.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the power
of large language models in solving machine learning tasks. arXiv preprint arXiv:2304.14979,
2023a.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt:
Automatic machine learning with gpt. arXiv preprint arXiv:2305.02499, 2023b.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

21

https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqgiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

22

http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

A PROBLEM FORMULATION

Reformulation from equation [I|to equation [3] Starting from equation|I] suppose the initial state
distribution is d™ (), the state transition probability is pr (st+1|st, at), then we have

n—1
Pry (1) = A (s0) [[p(sr41lse, ar)moarlse). N
t=0
Hence the reformulation is:
J(0) = Er,[R(7)]
= Pry(T)R(T)
n—1
= > <d”*’ s0) [I p(stralse, ar)mo(alse)) (ZR St, Q¢)
80,30,---,Sn t=0
n—1 n—1
=> > <d”"(50) 11 p(5k+13kvak)779(ak|5k)> R(se, ar)
t=0 sp,a0,-.., Sn k=0
n—1 t—1
= Z Z Z d™ (s9) Hp(sk+1|sk,ak)7rg(ak|sk) mo(ae|s¢) R(st, at)
t=0 s¢,a¢ 80,Q0,--8t—1,0¢t—1 k=0

(®)
However, we can define the state distribution d™° (s;) as the probability agent visits state s, at time .
Then according to this definition, this probability can be written as:

t—1
d™ (s¢) = Z d™ (so) H D(Sk+1|Sk, ak)mo(ak|sk)-)
80,00, St—1,at—1 k=0

Then we have

Z > d™(s))mo(as]se) Rla, st)

t=0 s¢,a¢

n—1 (10)
- Z Z d™ (s;) Z mo(atlse) R(at, st)

=0 s:€S a;€A
= Tep(0)

B MACHINE LEARNING TASKS AND DATA COLLECTION PROCESS

B.1 DATA COLLECTING PIPELINE FOR EXPLORATION-ENRICHED FINE-TUNING

We construct diverse action pools along three semantic axes—Data, Model, and Learning—to
support structured exploration. For each axis, we prompt a frozen LLM (GPT-40-mini) to generate a
large set of candidate actions (e.g., “Add MixUp augmentation”, “Switch to AdamW optimizer”). To
promote diversity, we embed all candidates using a sentence transformer and apply farthest-point
sampling (FPS) to select a compact, representative subset. The resulting pools Ppata, Pmodel, and
PLeaming are fixed during training.

During data collection, we form exploration-enriched prompts by randomly selecting 1-3 axes,
shuffling their order, and drawing one action from each corresponding pool. These actions are
concatenated into an initial instruction for the expert agent, which then interacts with a fast-executable
ML environment (e.g., small-scale tabular or vision tasks) to produce a full trajectory. The complete
pipeline is summarized in Algorithm T}

B.2 DETAILS OF MACHINE LEARNING TASKS

The machine learning tasks utilized in our paper are all from MLAgentBench or MLE-bench.
Table 3| shows all 9 training tasks and 10 testing tasks. The 9 training tasks contain 4 tasks from

23

Under review as a conference paper at ICLR 2026

Algorithm 1 Exploration-Enriched Trajectory Generation

Require: Semantic axes X = {Data, Model, Learning},
Set of fast-executable tasks A/, each with base description pffk

Ensure: Dataset of expert trajectories D

1: #Phase 1: Build diverse action pools via FPS

2: for each axis X € X do

3: Generate M candidate actions Cx using LLM prompting

Px <+ FARTHESTPOINTSAMPLING(Cx, K) {Select K diverse actions}

end for
#Phase 2: Generate trajectories
D+ 0
for each task n € A do

9: Sample k ~ Uniform{1, 2,3}
10: Sample k distinct axes {X1,..., X} C X
11: Sample a; ~ Uniform(Py,) fori =1,...,k
12: Form prompt: p,, <+ p**.format(ay,...,ax)
13: Run expert LLM (GPT-40-mini) on task n with prompt p,,
14: Record trajectory 7
15 D+« DU{r}
16: end for
17: return D

A A

MLAgentBench and 5 from MLE-bench (Chan et al.| 2024)); while the 10 testing tasks are all from
MLE-bench.

The selection strategy of training tasks aims to enhance data collection efficiency. Specifically,
we select relatively simpler machine learning tasks (e.g. tasks labeled with low complexity in
MLE-bench) for training. These training tasks typically involve smaller datasets, which enable
faster iterations. For testing, we select relatively more complex tasks to evaluate the generalization
capability. In addition, the training tasks and test tasks span three machine learning data types (image,
text and tabular) and two general task categories (regression and classification).

Specifically, Each task consists of the following components: (1) training, validation, and test
data; (2) an initial bug-free script, "train.py", generated by GPT-40-mini; (3) an evaluation script,
"eval.py", which is used to calculate the test score from the submitted results; (4) a problem
description file, "research_problem. txt"; and (5) a "prepare.py" script to download the data if
necessary. An example file structure and related problem descriptions are shown in Figure [§] To
ensure clarity regarding the task details and training objectives, we have refined some initial prompts
from MLAgentBench by incorporating specific targets, such as "try your best to increase the test
accuracy t0 99.99%" (see in the right box in Figure[6). The format for the initial prompt, including
the tool and format prompts, follows actions defined by MLAgentBench (see Table[5).

File Tree You are given a machine learning task on cifar10 dataset and a training script
|— env train.py.
I L Si:zn Py You duty is to understand the train.py script well and try your best to improve
L L performance.
scripts Note that:
l— eval.py 1. You should not modified the random seed.

|_ 2. You should try your best to increase the test accuracy to 99.99%.
prepare.py ot

d 1y fil xt 3. You should save per class probabilities for test set examples to
|I: e @Y e oo submission.csv as shown in train.py.

| research_problem.txt | == 4. The training epoch should be less or equal than 10 to save time.

Figure 6: Task file structure and prompt about the machine learning problem of cifar-10 task, for
instance.

24

Under review as a conference paper at ICLR 2026

Table 3: All training and testing tasks used in our experiments. MLA and MLE stand for MLAgent-
Bench (Huang et al.,2023)) and MLE-bench (Chan et al.,2024) respectively.

Task Name Data Type Task Type Metric Source
Training
cifar-10 Image Classification Acc. (%) T MLA
aerial-cactus-identification Image Classification AUC?T MLE
dogs-vs-cats-redux-kernels-edition Image Classification = Logloss | MLE
plant-pathology-2020-fgvc7 Image Classification AUC1T MLE
home-data-for-ml-course Tabular Regression MAE | MLA
spaceship-titanic Tabular ~ Regression Acc. (%) 1T MLA
nomad2018-predict-transparent-conductors Tabular ~ Regression RMSLE | MLE
feedback-prize-english-language-learning Text Classification MCRMSE | MLA
ogbn-arxiv (Maas et al., 2011) Graph Classification Acc. (%) 1T MLA
Testing
denoising-dirty-documents Image Generation RMSE| MLE
leaf-classification Image Classification Logloss | MLE
statoil-iceberg-classifier-challenge Image Classification Logloss | MLE
whale-categorization-playground Image Classification MAP@51 MLE
learning-agency-lab-automated-essay-scoring-2 Text Regression QWK 1T MLE
detecting-insults-in-social-commentary Text Classification Acc. (%) T MLE
spooky-author-identification Text Classification Logloss | MLE
jigsaw-toxic-comment-classification-challenge Text Classification AUC?T MLE
us-patent-phrase-to-phrase-matching Tabular ~ Regression PCC1T MLE
tabular-playground-series-dec-2021 Tabular Regression Acc. (%) 1T MLE

Table 4: Actions in MLAgentBench (Huang et al., [2023)), where each action has a name, input and
output. Most of the actions are primitive actions that include file system operations and python script
execution. The last two are compound actions that is composed of multiple primitive actions and LM
calls.

Action Name Input Observation
List Files directory (e.g. .) list of files in the directory
Copy File Source (e.g. train.py), destination (e.g. A success or error message

train_copy.py)
Inspect Script Lines file name, start line number, end line the file content between start

number and end line numbers
Execute Script file name (e.g. train.py) Any output from the execution
Final Answer None None
Understand File file name, a query (e.g. the model archi- retrieved content from the file
tecture) relevant to the query
Edit Script file name, edit instruction (e.g. change The diff of the edited file
epoch to 20), save file name based on the instruction

25

https://www.kaggle.com/competitions/cifar-10
https://www.kaggle.com/competitions/aerial-cactus-identification
https://www.kaggle.com/competitions/dogs-vs-cats-redux-kernels-edition
https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7
https://www.kaggle.com/competitions/home-data-for-ml-course
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/nomad2018-predict-transparent-conductors
https://www.kaggle.com/competitions/feedback-prize-english-language-learning
https://www.kaggle.com/competitions/denoising-dirty-documents
https://www.kaggle.com/competitions/leaf-classification
https://www.kaggle.com/competitions/statoil-iceberg-classifier-challenge
https://www.kaggle.com/competitions/whale-categorization-playground
https://www.kaggle.com/competitions/learning-agency-lab-automated-essay-scoring-2
https://www.kaggle.com/competitions/detecting-insults-in-social-commentary
https://www.kaggle.com/competitions/spooky-author-identification
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/tabular-playground-series-dec-2021

Under review as a conference paper at ICLR 2026

Table 5: Initial prompt template for agents on autonomous machine learning.

You are a helpful research assistant. You have access to the following tools:
{tools_prompt}

Research Problem: {research_problem}

Always respond in this format exactly:

{format_prompt}

Observation:

999

the result of the action

999

26

Under review as a conference paper at ICLR 2026

Tools prompt ({tools_prompt}) in initial prompt.

You are a helpful research assistant. You have access to the following tools:
- List Files:
Use this to navigate the file system.
Usage:
Action: List Files
Action Input: {
"dir_path"”: [a valid relative path to a directory, such as "." or "folder1/
folder2"]
3
Observation: [The observation will be a list of files and folders in dir_path or
current directory is dir_path is empty, or an error message if dir_path is

invalid.]
- Copy File:
Use this to copy a file to a new location with a new name.
Usage:

Action: Copy File
Action Input: {

"source”: [a valid file name with relative path to current directory if needed],
"destination"”: [a valid file name with relative path to current directory if
needed]

}
Observation: [A success message if the file is copied successfully, or an error
message if the file cannot be copied.]

- Execute Script:
Use this to execute the python script. The script must already exist.
Usage:
Action: Execute Script
Action Input: {
"script_name”: [a valid python script name with relative path to current
directory if needed]
3

Observation: [The observation will be output of the script or errors.]

P

- Final Answer:
Use this to provide the final answer to the current task.
Usage:
Action: Final Answer
Action Input: {
"final_answer"”: [a detailed description on the final answer]

}

Observation: [The observation will be empty.]

P

- Understand File:

Use this to read the whole file and understand certain aspects. You should provide
detailed description on what to look for and what should be returned. To get a
better understanding of the file, you can use Inspect Script Lines action to
inspect specific part of the file.

Usage:

Action: Understand File

Action Input: {

"file_name"”: [a valid file name with relative path to current directory if
needed],
"things_to_look_for”: [a detailed description on what to look for and what

should returned]
3
Observation: [The observation will be a description of relevant content and lines in
the file. If the file does not exist, the observation will be an error message

od)

- Inspect Script Lines:
Use this to inspect specific part of a python script precisely, or the full content
of a short script. The number of lines to display is limited to 100 lines. This
is especially helpful when debugging.
Usage:
Action: Inspect Script Lines
Action Input: {

27

Under review as a conference paper at ICLR 2026

"script_name": [a valid python script name with relative path to current
directory if needed],
"start_line_number”: [a valid line number],
"end_line_number”: [a valid line number]
¥
Observation: [The observation will be the content of the script between
start_line_number and end_line_number . If the script does not exist, the

observation will be an error message.]

- Edit Script (AI):
Use this to do a relatively large but cohesive edit over a python script. Instead of
editing the script directly, you should describe the edit instruction so that
another AI can help you do this.
Usage:
Action: Edit Script (AI)
Action Input: {
"script_name"”: [a valid python script name with relative path to current
directory if needed. An empty sctipt will be created if it does not exist
.1,

"edit_instruction”: [a detailed step by step description on how to edit it.],
"save_name”: [a valid file name with relative path to current directory if
needed]

3

Observation: [The observation will be the edited content of the script. If the
script does not exist, the observation will be an error message. You should
always double check whether the edit is correct.]

Table 6: Response format requirement ({ format_prompt}) in the initial prompt.

Reflection: What does the observation mean? If there is an error, what caused the error and
how to debug?

Research Plan and Status: The full high-level research plan, with current status and confirmed
results of each step briefly annotated. It must only include progress that has been made
by previous steps. If there is any update, enclose the new update text in double asterisks
*xx1ike this*x. If there is no update, just copy the previous step Research Plan and Status.
The high-level plan from the previous step should be fully retained, unless it is intentionally
revised.

Fact Check: List all objective statements in the updates to Research Plan and Status one by
one and point out whether it is guessed versus directly confirmed by the previous observation
directly above. Performance numbers can only be confirmed by running the code and
observing the output.

Thought: What you are currently doing, what actions to perform and why

Action: The action to take, should be one of the names of the tools

Action Input: The input to the action as a valid JSON string

B.3 DETAILS OF DATA COLLECTION

In this paper, we use the MLAgentBench (Huang et al., 2023) environment to collect training
trajectories across 9 machine learning tasks. The environment needs an LLM-based agent to take
actions and send feedback to the agent. This will iterate for certain steps. We employ GPT-40-
mini (OpenAl, [2024) as the LLM-based agent to generate thinking and action following Table [B.2]
This agent interacts with the environment, while Qwen2.5-Coder-32B-Instruct (Yang et al.,|2024)
powers the coder agent, which is responsible for writing code and understanding files within the
environment.

Each trajectory comprises a multi-turn conversation between the agent and the environment. For each
trajectory, we set the maximum number of steps as 15 and the time limit as 30 minutes to control
the length and duration of interactions. Finally, we generated 10k trajectories on 9 tasks. These
trajectories are utilized both in SFT training and PPO training.

28

Under review as a conference paper at ICLR 2026

Since each task in the MLAgentBench environment requires an initial script, tasks sourced from
MLE-bench do not have a natural initial script. To address this, we generate simple, bug-free initial
scripts for those tasks using GPT-4o0-mini to meet the environment’s requirements.

To diversify the trajectories we collect for SFT training, we curate an initial idea pool of at least
100 diverse ideas which may potentially improve the performance of our initial script. We calculate
the embedding distance of each idea in initial idea pool and filter out the top 10 initial ideas whose
average embedding distance is farthest to others. These ideas form a defined idea pool, which guides
the first step of each trajectory. For the generation of each trajectory, we randomly select 1 to 3 idea
combinations from this idea pool and prioritize their implementation in the initial step by including
the relevant instructions in the file research_problem. txt (see Figure[6). Table[7]show the prompt
we use and Table|8|shows an example of defined idea pool for the first step.

Table 7: The prompt we use to generate the data-preprocessing idea pool.

You are given a machine learning task and an initial script on the task.

The machine learning task description is:
{task_description }

The initial script is:
{initial_script}

You should give {number_to_generate} advice that may potentially improve the
metric performance(e.g. accuracy) of the script on this machine learning task. Your advice
can only be related to data preprocessing.

The advice in your answer should strictly follow the following format(one advice should be
in a line), note that [advice] flag should be mentioned only once in your answer:

[advice]

YOUR ADVICE HERE

Table 8: An example of the first step action space(after filtering) when collecting training trajectories.

Tune the momentum parameter in the optimizer for better convergence.

Use early stopping to terminate training when the test accuracy starts decreasing.
Experiment with focal loss to deal with imbalanced data if classes are not evenly distributed.
Regularize model weights with L1 or L2 regularization.

Implement feature visualization to understand what features are being learned.

Use a higher resolution for input images, if feasible, to capture more details.

Increase the complexity of the neural network by adding more convolutional layers.
Explore semi-supervised learning methods to leverage unlabeled data for training improve-
ments.

Normalize the data further by scaling the input images to a range of [0, 1].

Experiment with different batch sizes to see if a smaller or larger batch size affects
performance.

C EXPERIMENTAL DETAILS

C.1 DETAILS OF EXPERIMENTAL SET-UP

Training details. We implement our supervised fine-tuning (SFT) and proximal policy optimization
(PPO) training using 8 A100s. For the SFT, the code base is LLama-Factory (Zheng et al., [2024),

29

Under review as a conference paper at ICLR 2026

where we fully fine-tune the qwen2.5-7b model for 2 epochs with batch size 64 and learning rate

2e — 5. For the PPO, the code base is VeRL 2024). The PPO training setup involves the
following hyperparameters and configurations: the training batch size is set to 256, and the number of
epochs is 1. Additionally, the learning rate of actor and critic is set as 1e — 6 and 1le — 5, respectively,
and the coefficient of KL is 0.001.

Baseline details. We show the specific versions of baselines in Table 0]

Table 9: Model Version and Identifier Mapping

Model Name Version

GPT-40-mini GPT-40-mini-2024-07-18
GPT-40 GPT-40-2024-08-06
Qwen-7B-Base Qwen2.5-7B

Qwen-7B-Instruct Qwen2.5-7B-Instruct
Qwen-32B-Instruct Qwen2.5-32B-Instruct

C.2 ADDITIONAL ABLATION STUDY

Number of Unique Nouns per Verb for Each Model

[

c .

320 B gwen-7b-instruct

[-]

2 B ours-sft

[}

315

g

c

210

=

°

@

a 5

3 ||||I| | | I

Z 5 1 N L TR I O [E T

— C
LT IS B S E Sy B EE R YT YRS EEE LY LES
@ ©®®oco 2305 0Wg Y g3 OO T O 5=z 2@ S Qf c 0 o=353EB=Z9gtc ¥ Ugl9os50
V5 8 00T Y B 020 2ZET] 2 %G € & © S © £ C E@egEcmiac VRS
5222895 E S2aoctots QtEeEgsossc £ 32T co oz S5 89%
o o € Lo 5 o @ O [T T o < O £ L c 5 = = c
c =0 2 o] o =] T S SERE E%E - g
© £ S 2 o 5
Verb

Figure 7: Unique noun counts per verb across 100 randomly sampled edit instructions, comparing the
Qwen?2.5-7B-Instruct model (blue) with the ML-Agent-SFT model (red).

Diversity. Figure [7]compares the number of unique nouns associated with each editing verb in two
models: Qwen2.5-7B-Instruct and ours-sft (ML-Agent-SFT). To generate these counts, we randomly
sampled 100 edit_instruction sentences from the recorded expert trajectories. Then, we utilize an
open-source NLP toolkit SpaCy to obtain the verb and noun for each edit_instruction sentence.
Results show that after supervised fine-tuning with expert’s trajectories, the model can output a
broader variety of actions, evidenced by the higher counts of unique nouns per verb.

cifar10 house-price ising-dirty- tent-phrase-to-ph

0.60
ok —e— 10k 009 ok —e— 10k
20500

0.80 3k —e— 30k 3k —e— 30k 0.58
20000

19500
o
2
19000 8006
w
18500 0.05

0.60 18000
0k —e— 10k

Ok —e— 10k
0.48
0.55 3k —e— 30k 17500 0.03 3k —e— 30k

4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64

128
Best@K Best@K Best@K Best@K

Figure 8: Different number of training samples in RL, starting from our sft model.

30

Under review as a conference paper at ICLR 2026

Effects of training data size in RL.

Here, we investigate how varying the number of training data samples (0k, 3k, 10k, 30k) affects the
performance in RL. The Ok scenario represents ML-Agent-SFT model. For every model, we run 128
trajectories for each task and evaluate the best@K, where K ranges over [4, 8, 16, 32, 64, 128], as
shown in Figure[8| In particular, for the two held-out tasks (second row), training with ppo (3k, 6k,
and 9k) improves performance faster than Ok as the number of sampled trajectories increases.

Is thought helpful? In Table we compare the performance of models with and without the
requirement of thought before taking action across 13 tasks. The thought process includes several key
components such as "Reflection," "Research Plan and Status," "Fact Check," "Thought," "Action,"
and "Action Input,". In contrast, the model without thought only requires "Action" and "Action
Input." Note that the supervised fine-tuning data is also consistent with the key requirement. The
models with thought generally exhibit higher improved performance on both held-in and held-out
tasks. For instance, on the held-in cifar-10, the model with thought reaches 33.80% performance gain
compared to 13.03% when thought is not required. This trend continues across the held-out tasks,
where the model with thought shows higher accuracy and lower loss, demonstrating the importance
of incorporating a thoughtful reflection and planning phase for Autonomous machine learning via
RL.

Table 10: Performance comparison of reinforcement learning models with and without the require-
ment of thought prior to action. Average performance gains (%) are shown for both held-in and
held-out tasks, highlighting improvements in various tasks when thought is incorporated.

Held-in tasks ‘ Held-out tasks
cifar-10 house. feedback |denoising. leaf. statoil. learning. detecting. spooky. jigsaw. us. tabular.
X ‘ 13.03 5.68 9.88 ‘ 28.66 2.50 -0.03 1.27 0.64 -340 000 7.15 -0.02
v 3380 6.77 13.47 ‘ 5238 13.87 141 1.91 1.74 1.76 ~ 0.01 1296 0.20

Thought?

C.3 CASE STUDY

In this section, we will present more detailed case study on trajectories generated by ML-Agent(ppo)
on some test tasks such as denoising-dirty-documents. In Appendix we show the task
description for denoising-dirty-documents. In Appendix [C.3.2] we show the initial script for
denoising-dirty-documents. In Appendix [C.3.3] we show partial trajectory generated by ML-
Agent. We give an analysis in Appendix [C.3.4]

C.3.1 TASK DESCRIPTION FOR denoising-dirty-documents

Task description for denoising-dirty-documents

You are given a machine learning task on "denoising-dirty-documents” dataset. The dataset descriptions are given below:

Description

[Optical Character Recognition](http://en.wikipedia.org/wiki/Optical_character_recognition) (OCR) is the process of getting type or
handwritten documents into a digitized format. If you’ve read a classic novel on a digital reading device or had your doctor
pull up old healthcare records via the hospital computer system, you’ve probably benefited from OCR.

OCR makes previously static content editable, searchable, and much easier to share. But, a lot of documents eager for digitization
are being held back. Coffee stains, faded sun spots, dog-eared pages, and lot of wrinkles are keeping some printed documents
offline and in the past.

This competition challenges you to give these documents a machine learning makeover. Given a dataset of images of scanned text that
has seen better days, you’re challenged to remove the noise. Improving the ease of document enhancement will help us get that

rare mathematics book on our e-reader before the next beach vacation.

We’ve kicked off the fun with a few [handy scripts to get you started on the dataset](https://www.kaggle.com/c/denoising-dirty-
documents/scripts) .

Evaluation

Submissions are evaluated on the [root mean squared error](https://www.kaggle.com/wiki/RootMeanSquaredError) between the cleaned
pixel intensities and the actual grayscale pixel intensities.

Submission File
Form the submission file by melting each images into a set of pixels, assigning each pixel an id of image_row_col (e.g. 1_2_1 is

image 1, row 2, column 1). Intensity values range from @ (black) to 1 (white). The file should contain a header and have the
following format:

31

https://www.kaggle.com/competitions/denoising-dirty-documents

Under review as a conference paper at ICLR 2026

id,valuel_1_1,1

Dataset Description

You are provided two sets of images, train and test. These images contain various styles of text, to which synthetic noise has been
added to simulate real-world, messy artifacts. The training set includes the test without the noise (train_cleaned). You must
create an algorithm to clean the images in the test set.

C.3.2 INITIAL SCRIPT FOR denoising-dirty-documents

Initial script for denoising-dirty-documents

import os

import numpy as np

import pandas as pd

from PIL import Image

import glob

from sklearn.model_selection import train_test_split
import torch

from torch.utils.data import Dataset, DatalLoader
from torchvision import transforms

import torch.nn as nn

import torch.optim as optim

import torch.nn.functional as F

import math

Set device
device = torch.device("cuda” if torch.cuda.is_available() else "cpu”)

Define dataset
class DenoisingDataset(Dataset):
def __init__(self, noisy_images, clean_images=None, transform=None):
self.noisy_images = noisy_images
self.clean_images = clean_images
self.transform = transform

def __len__(self):
return len(self.noisy_images)

def __getitem__(self, idx):
noisy_image = Image.open(self.noisy_images[idx]).convert("L")
if self.transform:
noisy_image = self.transform(noisy_image)
if self.clean_images is not None:
clean_image = Image.open(self.clean_images[idx]).convert("L")
if self.transform:
clean_image = self.transform(clean_image)
return noisy_image, clean_image
else:
return noisy_image

Custom collate function to pad images to the same size
def collate_fn(batch):

if len(batch[0]) == 2:

imgs, targets = zip(*batch)
else:

imgs = batch

targets = None

Compute necessary heights and widths after padding to next multiple of 8
heights = []
widths = []
for img in imgs:
c, h, w = img.shape
new_h = (Ch - 1) // 8+ 1) %8
neww = ((w-1)//8+1) %8
heights.append(new_h)
widths.append(new_w)

max_h = max(heights)
max_w = max(widths)

padded_imgs = []
if targets is not None:
padded_targets = []

for i, img in enumerate(imgs):
c, h, w = img.shape
pad_h = max_h - h
pad_w = max_w - w
padding = (@, pad_w, @, pad_h) # left, right, top, bottom
padded_img = F.pad(img, padding)
padded_imgs . append(padded_img)
if targets is not None:
target = targets[i]

32

Under review as a conference paper at ICLR 2026

padded_target = F.pad(target, padding)
padded_targets.append(padded_target)

imgs_tensor = torch.stack(padded_imgs, dim=0)

if targets is not None:
targets_tensor = torch.stack(padded_targets, dim=0)
return imgs_tensor, targets_tensor

else:
return imgs_tensor

Load image paths
noisy_images = sorted(glob.glob("./train/*.png"))
clean_images = sorted(glob.glob("./train_cleaned/*.png"))

Split into train and validation sets
train_noisy, val_noisy, train_clean, val_clean = train_test_split(
noisy_images, clean_images, test_size=0.2, random_state=42

)

Define transforms
transform = transforms.Compose (
r
transforms.ToTensor(),
]
)

Create datasets and dataloaders
train_dataset = DenoisingDataset(train_noisy, train_clean, transform)
val_dataset = DenoisingDataset(val_noisy, val_clean, transform)

train_loader = Dataloader(
train_dataset, batch_size=4, shuffle=True, collate_fn=collate_fn

val_loader = DatalLoader(val_dataset, batch_size=4, shuffle=False, collate_fn=collate_fn)

Define the model (modified U-Net with cropping)
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
Encoder
self.encl = nn.Sequential(

nn.Conv2d(1, 64, 3, padding=1),
nn.ReLUQ),
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU(),

self.pooll = nn.MaxPool2d(2, 2)

self.enc2 = nn.Sequential(
nn.Conv2d(64, 128, 3, padding=1),
nn.ReLU(),

n.Conv2d(128, 128, 3, padding=1),

nn.ReLU(),

>

)
self.pool2 = nn.MaxPool2d(2, 2)

self.enc3 = nn.Sequential(

nn.Conv2d(128, 256, 3, padding=1),
nn.ReLUQ),
nn.Conv2d(256, 256, 3, padding=1),
nn.RelLU(),

)
self.pool3 = nn.MaxPool2d(2, 2)

Bottleneck
self.bottleneck = nn.Sequential(
nn.Conv2d(256, 512, 3, padding=1),

nn.ReLU(),
nn.Conv2d(512, 512, 3, padding=1),
nn.ReLU(),

)

Decoder

self.up3 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.dec3 = nn.Sequential(

nn.Conv2d(512, 256, 3, padding=1),
nn.ReLUQ),
nn.Conv2d(256, 256, 3, padding=1),
nn.ReLU(),

)

self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.dec2 = nn.Sequential(

nn.Conv2d(256, 128, 3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(),

)

self.upl = nn.ConvTranspose2d(128, 64, 2, stride=2)

33

Under review as a conference paper at ICLR 2026

self.decl = nn.Sequential(
nn.Conv2d(128, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU(),

)

self.conv_last = nn.Conv2d(64, 1, 1)

def center_crop(self, layer, target_h, target_w):
—, -, h, w=layer.size()
diff_y = h - target_h
diff_x = w - target_w
cropped = layer[

diff_y /
diff_x /

/ 2 : diff_y // 2 + target_h,
/ 2 : diff_x // 2 + target_w,
]

return cropped

def forward(self, x):
Encoder
encl = self.enc1(x)
pooll = self.pooll(encl)

enc2 = self.enc2(pooll)
pool2 = self.pool2(enc2)

enc3 = self.enc3(pool2)
pool3 = self.pool3(enc3)

Bottleneck
bottleneck = self.bottleneck(pool3)

Decoder

up3 = self.up3(bottleneck)

enc3_cropped = self.center_crop(enc3, up3.size(2), up3.size(3))
cat3 = torch.cat([up3, enc3_cropped], dim=1)

dec3 = self.dec3(cat3)

up2 = self.up2(dec3)

enc2_cropped = self.center_crop(enc2, up2.size(2), up2.size(3))
cat2 = torch.cat([up2, enc2_cropped], dim=1)

dec2 = self.dec2(cat2)

upl = self.upl(dec2)

encl_cropped = self.center_crop(encl, upl.size(2), upl.size(3))
catl = torch.cat([upl, encl_cropped], dim=1)

decl = self.decl(catl)

out = self.conv_last(decl)
out = torch.sigmoid(out)
return out

Instantiate model, loss function, optimizer
model = UNet().to(device)

criterion = nn.MSELoss()

optimizer = optim.Adam(model.parameters(), lr=1e-4)

Training loop
num_epochs = 5
for epoch in range(num_epochs):
model. train()
running_loss = 0.0
for inputs, targets in train_loader:
inputs = inputs.to(device)
targets = targets.to(device)

optimizer.zero_grad()

outputs = model(inputs)

loss = criterion(outputs, targets)
loss.backward()

optimizer.step()

running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print(f"Epoch {epoch+1}/{num_epochs}, Training Loss: {epoch_loss:.6f}")

Validation
model.eval()
val_loss = 0.0
with torch.no_grad():
for inputs, targets in val_loader:
inputs = inputs.to(device)
targets = targets.to(device)

outputs = model(inputs)

loss = criterion(outputs, targets)

val_loss += loss.item() * inputs.size(0)
val_loss /= len(val_loader.dataset)

34

Under review as a conference paper at ICLR 2026

print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.6f}")

Compute RMSE on validation set
def compute_rmse(model, loader):
model.eval()
mse = 0.0
num_pixels = @
with torch.no_grad():
for inputs, targets in loader:
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
mse += F.mse_loss(outputs, targets, reduction="sum").item()
num_pixels += targets.numel()
rmse = math.sqrt(mse / num_pixels)
return rmse

rmse = compute_rmse(model, val_loader)
print(f"”validation RMSE: {rmse}")

Predict on test images
model.eval()
test_images = sorted(glob.glob("./test/*.png"))
ids = []
vals = []
transform = transforms.Compose([transforms.ToTensor()1)
for img_path in test_images:
img = Image.open(img_path).convert("L")
img_id = os.path.basename(img_path).split(".")[0]
input_tensor = transform(img).unsqueeze(0).to(device)
Pad the input tensor to next multiple of 8
_, —, h, w = input_tensor.size()
new_h = ((h - 1) // 8+ 1) *8
neww=((w-1)//8+1) %8
pad_h = new_h - h
pad_w = new_w - w
padding = (@, pad_w, @, pad_h) # left, right, top, bottom
input_tensor = F.pad(input_tensor, padding)
with torch.no_grad():
output = model(input_tensor)
Unpad the output tensor
output = outputl[:, :, :h, :w]
output = output.squeeze().cpu().numpy()
Ensure values are between @ and 1
output = np.clip(output, @, 1)
h, w = output.shape
for i in range(h):
for j in range(w):
ids.append(f"{img_id}_{i+1}_{j+1}")
vals.append(output[i, j1)

Create submission dataframe
submission = pd.DataFrame({"id": ids, "value"”: vals})

Ensure the submission matches the sample submission format
sample_submission = pd.read_csv("./sampleSubmission.csv")

submission = submission.merge(sample_submission[["id"]], on="id", how="right")
submission = submission.fillna(@)

submission = submission[["id”, "value"]]

Save submission
submission.to_csv("./submission.csv”, index=False)
print(”Submission file saved to ./submission.csv")

Print validation RMSE
print(f"Final Validation RMSE: {rmse}")

C.3.3 ML-AGENT TRAJECTORY ON denoising-dirty-documents

Partial trajectory of ML-Agent on denoising-dirty-documents

Step 7 == =)

Reflection: The modified training script executed successfully, and the validation RMSE has improved to approximately ©.0838. This
is a slight improvement compared to the previous RMSE of 0.0884. However, it still does not meet the target of reducing the
RMSE below ©.01. The training loss decreased consistently over the epochs, indicating that the model is learning effectively.

Further modifications are necessary to achieve the desired performance.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, hyperparameters,

and evaluation methods have been identified.

2. Identify potential modifications: Completed. The first modification (changing the learning rate) has been implemented and
evaluated. The second modification (increasing the number of epochs) has been implemented and evaluated. The third
modification (changing the optimizer) has been implemented and evaluated.

3. Implement modifications: The optimizer has been modified in ‘train_modified_optimizer.py‘, resulting in a validation RMSE of
approximately 0.0838.

4. Iterate: I will now explore further modifications, such as adjusting the batch size or experimenting with different learning
rates, to further reduce the RMSE.

Current Status: Step 3 is completed. I will now proceed to step 4 and explore further modifications to the training script.
Fact Check: 1. The validation RMSE after changing the optimizer is approximately ©.0838. (Confirmed)

35

Under review as a conference paper at ICLR 2026

Thought: I will experiment with adjusting the learning rate from 1le-4 to le-5, as a smaller learning rate may help the model
converge more effectively and potentially lead to a lower RMSE.

Action: Edit Script (AI)
Action Input: {
"script_name": "train_modified_optimizer.py",
"edit_instruction”: "Change the learning rate from le-4 to 1e-5.",
"save_name": "train_modified_optimizer_lr.py"
)
Observation: The edited file is saved to train_modified_optimizer_lr.py. Here is the diff, please check if the edit is correct and
desirable:

+++
@@ -223,7 +223,7 @@

Instantiate model, loss function, optimizer

model = UNet().to(device)

criterion = nn.MSELoss()

-optimizer = optim.RMSprop(model.parameters(), lr=1e-4)
+optimizer = optim.RMSprop(model.parameters(), lr=1e-5)

Training loop
num_epochs = 10

Step 8 == =

Reflection: The modification to change the learning rate from le-4 to le-5 has been successfully made. This change aims to allow the
model to converge more effectively, potentially leading to a reduction in the RMSE. The next step is to execute the modified
training script to evaluate its impact on the RMSE.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, hyperparameters,

and evaluation methods have been identified.

2. Identify potential modifications: Completed. The first modification (changing the learning rate) has been implemented and
evaluated. The second modification (increasing the number of epochs) has been implemented and evaluated. The third
modification (changing the optimizer) has been implemented and evaluated. The fourth modification (changing the learning rate)

has been implemented.

3. Implement modifications: The learning rate has been modified in ‘train_modified_optimizer_lr.py‘.

4. Iterate: Execute the modified script to evaluate the impact on RMSE.

Current Status: Step 3 is completed. I will now proceed to step 4 and execute the modified training script.

Fact Check: 1. The learning rate has been changed from 1e-4 to 1e-5. (Confirmed)

Thought: I will execute the modified training script ‘train_modified_optimizer_lr.py‘ to see if changing the learning rate leads to
an improvement in the RMSE on the validation set.

Action: Execute Script
Action Input: {

"script_name": "train_modified_optimizer_lr.py”
)
Observation: Epoch 1/10, Training Loss: 0.208905
Epoch 1/10, Validation Loss: 0.202602
Epoch 2/10, Training Loss: 0.168855
Epoch 2/10, Validation Loss: 0.110859
Epoch 3/10, Training Loss: 0.107715
Epoch 3/10, Validation Loss: 0.101807
Epoch 4/10, Training Loss: 0.102095
Epoch 4/10, Validation Loss: 0.099179
Epoch 5/10, Training Loss: ©.096579
Epoch 5/10, Validation Loss: 0.096960
Epoch 6/10, Training Loss: 0.097088
Epoch 6/10, Validation Loss: 0.093844
Epoch 7/10, Training Loss: 0.091358
Epoch 7/10, Validation Loss: 0.090865
Epoch 8/10, Training Loss: 0.090154
Epoch 8/10, Validation Loss: 0.086134
Epoch 9/10, Training Loss: 0.084577
Epoch 9/10, Validation Loss: 0.080215
Epoch 10/10, Training Loss: 0.075586
Epoch 10/10, Validation Loss: 0.068712
Validation RMSE: 0.26212960276846825
Submission file saved to ./submission.csv
Final Validation RMSE: 0.26212960276846825

Reflection: The modified training script executed successfully, but the validation RMSE has increased to approximately 0.2621, which
is a significant regression compared to the previous RMSE of ©.0838. This indicates that reducing the learning rate to le-5
may have hindered the model’s ability to learn effectively within the given epochs. It suggests that the learning rate might
be too low for this specific model and dataset, leading to slower convergence or getting stuck in local minima.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, hyperparameters,

and evaluation methods have been identified.

2. Identify potential modifications: Completed. The first modification (changing the learning rate) has been implemented and
evaluated. The second modification (increasing the number of epochs) has been implemented and evaluated. The third
modification (changing the optimizer) has been implemented and evaluated. The fourth modification (changing the learning rate)

has been implemented and evaluated.

3. Implement modifications: The learning rate has been modified in ‘train_modified_optimizer_lr.py‘, resulting in a validation RMSE
of approximately 0.2621.

4. Iterate: I will revert the learning rate back to 1e-4 and explore other modifications, such as adjusting the batch size or
experimenting with different optimizers, to further reduce the RMSE.

Current Status: Step 3 is completed. I will now proceed to step 4 and revert the learning rate back to 1e-4 in the training script.

Fact Check: 1. The validation RMSE after changing the learning rate to le-5 is approximately 0.2621. (Confirmed)

Thought: I will revert the learning rate back to le-4 in the script and execute it again to see if returning to the previous
learning rate improves the RMSE.

Action: Edit Script (AI)

36

Under review as a conference paper at ICLR 2026

Action Input: {

"script_name": "train_modified_optimizer_lr.py",
"edit_instruction”: "Change the learning rate back from le-5 to le-4.",
"save_name": "train_reverted_lr.py"

3

Observation: The edited file is saved to train_reverted_lr.py. Here is the diff, please check if the edit is correct and desirable:

+++

@@ -223,7 +223,7 @@

Instantiate model, loss function, optimizer

model = UNet().to(device)

criterion = nn.MSELoss()

-optimizer = optim.RMSprop(model.parameters(), lr=1e-5)
+optimizer = optim.RMSprop(model.parameters(), lr=1e-4)

Training loop
num_epochs = 10

C.3.4 ANALYSIS

As shown in [C.3.3] we see that ML-Agent automatically initiates backtracking mechanisms when
performance metrics remain unimproved by proposed modifications. It tries to use a smaller learning
rate in step 7 but finds the RMSE increases after executing the code in step 8. Thus, it tries to
revert the learning rate back out its initial value in step 9. We also show some step examples on
different tasks in this section, which shows that ML-Agent can generate diverse action sequences
through comprehensive reasoning. As a comparison, other models (such as GPT-40) sometimes fail
to understand the requirement and submit the answer after only one modification(sometimes even no
modification).

Some step examples on different tasks

== Step 13 =

Reflection: The observation indicates that the validation MAE is currently at 18678, which is significantly above the target of 5000.
This suggests that the feature engineering steps taken so far, including the logarithmic transformations, have not
sufficiently improved the model’s performance. Further modifications are needed to reduce the MAE.

Research Plan and Status: 1. Understand the train.py script: Completed. The current features and model have been identified.

2. Feature Engineering: Logarithmic transformations were applied to skewed numerical features, but the validation MAE remains high
at 18678.

3. Model Evaluation: The model’s performance needs further improvement, as the validation MAE is still above the target.

4. Iterate: I will explore additional feature engineering techniques, such as creating new interaction features or transforming
existing features further.

Current Status: The validation MAE is still above the target, and I will now consider creating additional interaction features or
transforming existing features to see if that helps reduce the MAE.

Fact Check: 1. The validation MAE is confirmed to be 18678, as confirmed by the observation.

Thought: I will edit the ‘train.py‘ script to create additional interaction features between some of the existing features, which
may help improve the model’s performance.

Action: Edit Script (AI)
Action Input: {
"script_name": "train.py",
"edit_instruction”: "Create new interaction features by multiplying ’OverallQual’ with ’GrLivArea’ and ’TotalBsmtSF’ with ’
GarageCars’. Add these new features to the dataset.”,
"save_name": "train.py"
}

Observation: The edited file is saved to train.py. Here is the diff, please check if the edit is correct and desirable:

+H+
@e -30,6 +30,10 @@
’YearBuilt_TotalBsmtSF’, ’YearBuilt_GrLivArea’,
’TotalBsmtSF_GrLivArea’
]

¥
+# Add new interaction features

+interaction_features.append(’OverallQual_GrLivArea’)
+interaction_features.append(’TotalBsmtSF_GarageCars’)

for feature in interaction_features:
cols = feature.split(’_’)

Some step examples on different tasks

Step 5
Reflection: The modified training script with data augmentation has been executed successfully. However, the validation RMSE is
0.36237191602303853, which is still significantly above the target of ©.01. This indicates that while data augmentation may
have improved the training process, it was not sufficient to achieve the desired performance.

Next, I will consider another modification to further reduce the RMSE. Given the potential areas for improvement identified earlier,
I will explore increasing the model complexity by adding more layers to the U-Net architecture. This could help the model
learn more complex patterns in the data.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The script uses a modified U-Net for image denoising with
a fixed learning rate and no data augmentation.

2. Identify potential modifications: Identified several potential modifications, including learning rate scheduling, data
augmentation, model complexity, regularization, and early stopping.

37

Under review as a conference paper at ICLR 2026

. Implement the modification: Completed. A learning rate scheduler has been added to the training loop.

. Evaluate results: Completed. The validation RMSE after the learning rate scheduler modification is ©.2463417127589059.
. Next modification: Completed. Data augmentation has been added to the training data transformation pipeline.

. Evaluate results again: Completed. The validation RMSE after data augmentation is ©0.36237191602303853.

. Next modification: I will increase the model complexity by adding more layers to the U-Net architecture.

~No g s w

Current Status:

- Step 1 is completed.
- Step 2 is completed.
- Step 3 is completed.
- Step 4 is completed.
- Step 5 is completed.
- Step 6 is completed.

- Step 7 is in progress as I will now modify the script to increase model complexity.

Fact Check: 1. The final validation RMSE after the data augmentation modification is 0.36237191602303853. (Confirmed)

Thought: I will proceed to modify the ‘train.py‘ script to increase the complexity of the U-Net model by adding additional
convolutional layers and possibly increasing the number of filters in existing layers. This should help the model capture
more complex features and potentially reduce the RMSE.

Action: Edit Script (AI)
Action Input: {

"script_name": "train.py",
"edit_instruction”: "Increase the complexity of the U-Net model by adding two additional convolutional layers with 64 filters
each after the existing layers. Also, increase the number of filters in the first layer to 32.",
"save_name": "train_with_complex_model.py"
)
Observation: The edited file is saved to train_with_complex_model.py. Here is the diff, please check if the edit is correct and
desirable:
+++

@@ -115,63 +115,87 @@
super(UNet, self).__init__()
Encoder
self.encl = nn.Sequential(
- nn.Conv2d(1, 64, 3, padding=1),
- nn.ReLU(),
.Conv2d(64, 64, 3, padding=1),
nn.Conv2d(1, 32, 3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.ReLUQ),
nn.Conv2d(32, 32, 3, padding=1),
nn.ReLUQ),
nn.Conv2d(32, 32, 3, padding=1),
nn.ReLUQ),

I
g
S| S| SES|

=]

)
self.pooll = nn.MaxPool2d(2, 2)

self.enc2 = nn.Sequential(
nn.Conv2d(32, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 3
nn.ReLU(),
nn.Conv2d(64, 64, 3
nn.ReLU(),
nn.Conv2d(64, 64, 3
nn.ReLU(),
)
self.pool2 = nn.MaxPool2d(2, 2)

5

5

padding=1),

5

padding=1),

=]

padding=1),

R T S S

self.enc3 = nn.Sequential(
nn.Conv2d(64, 128, 3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(),

=)

- self.pool2 = nn.MaxPool2d(2, 2)

- self.enc3 = nn.Sequential(

- nn.Conv2d(128, 256, 3, padding=1),
- nn.ReLU(),

- nn.Conv2d(256, 256, 3, padding=1),
+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(128, 128, 3, padding=1),

nn.ReLUQ),

5

53

=]

)
self.pool3 = nn.MaxPool2d(2, 2)

Bottleneck

self.bottleneck = nn.Sequential(
.Conv2d(256, 512, 3, padding=1),
- nn.ReLU(),
.Conv2d(512, 512, 3, padding=1),
nn.Conv2d(128, 256, 3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, 3, padding=1),

nn.ReLU(),

|
=
5

+ o+ o+
s
S| g 5

)

Decoder

38

Under review as a conference paper at ICLR 2026

self.up3 = nn.ConvTranspose2d(512, 256, 2, stride=2)

self.up3 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.dec3 = nn.Sequential(

- nn.Conv2d(512, 256, 3, padding=1),

- nn.ReLU(),

n.Conv2d(256, 256, 3, padding=1),

- nn.ReLU(),

=)

+

'
g

self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)

+ nn.Conv2d(256, 128, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLU(),

+)

¥

+ self.up2 = nn.ConvTranspose2d(128, 64, 2, stride=2)

self.dec2 = nn.Sequential(
nn.Conv2d(256, 128, 3, padding=1),
nn.RelLU(),
- nn.Conv2d(128, 128, 3, padding=1),
nn.ReLUQ),
)

self.upl = nn.ConvTranspose2d(128, 64, 2, stride=2)

+ nn.Conv2d(128, 64, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLU(),

+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLUQ),

+)

¥

+ self.upl = nn.ConvTranspose2d(64, 32, 2, stride=2)

self.decl = nn.Sequential(

- nn.Conv2d(128, 64, 3, padding=1),
- nn.ReLU(),

- nn.Conv2d(64, 64, 3, padding=1),
- nn.ReLU(),

=)

- self.conv_last = nn.Conv2d(64, 1, 1)

+ nn.Conv2d(64, 32, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLU(),

+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLUQ),

+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLUQ),

+)

¥

+ self.conv_last = nn.Conv2d(32, 1, 1)

def center_crop(self, layer, target_h, target_w):
_, _, h, w = layer.size()
@@ -323,4 +347,4 @@
print(”Submission file saved to ./submission.csv")

Print validation RMSE
-print(f”Final Validation RMSE: {rmse}")
+print(f"Final Validation RMSE: {rmse}")

Some step examples on different tasks

Step 7 == ==

Reflection: The modified training script has been executed successfully, but the quadratic weighted kappa score achieved is 0.7418,
which is slightly lower than the previous score of ©.7431. This indicates that the changes made to the learning rate and the
number of boosting stages did not lead to an improvement in performance. Further modifications are necessary to enhance the
model’s performance.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, and
hyperparameters have been identified.

2. Experiment with modifications: Completed. The learning rate was changed to 0.05 and the number of boosting stages increased to
200, but the performance decreased slightly.

3. Evaluate performance: Completed. The modified training script was executed, resulting in a validation quadratic weighted kappa
score of 0.7418.

4. Iterate: I will now explore further modifications to improve the model’s performance.

Current Status:
- Step 4 is in progress. I will consider additional modifications, such as trying different feature extraction techniques or
adjusting other hyperparameters, to enhance the model’s performance.

Next Step: I will try to modify the feature extraction process again by using a different vectorization method, such as using a more
advanced model like Sentence-BERT, which may capture more contextual information from the essays. However, since we cannot
directly modify the vectorization method in the current setup, I will consider using a simpler approach like averaging the TF-
IDF scores across different n-grams.

39

Under review as a conference paper at ICLR 2026

Fact Check: 1. The validation quadratic weighted kappa score achieved after the third modification is ©.7418. (Confirmed by
observation)

Thought: I will proceed to modify the ‘train.py‘ script to implement a different feature extraction method that averages the TF-IDF
scores across different n-grams. This change aims to improve the model’s performance.

Action: Edit Script (AI)
Action Input: {
"script_name": "train.py",
"edit_instruction”: "Modify the feature extraction process to average the TF-IDF scores across different n-grams (bigrams and
trigrams) instead of using the default TF-IDF vectorization.”,
"save_name”: "train_feature_extraction_modified.py"”
)
Observation: The edited file is saved to train_feature_extraction_modified.py. Here is the diff, please check if the edit is correct
and desirable:

+++
@e -10,10 +10,22 ee@

train_df = pd.read_csv("./train.csv")
test_df = pd.read_csv("./test.csv")

-# Prepare the features using TF-IDF vectorization

-tfidf = TfidfVectorizer(max_features=10000)

-X = tfidf.fit_transform(train_df["full_text"])

-X_test = tfidf.transform(test_df[”full_text"])

+# Prepare the features using TF-IDF vectorization with bigrams and trigrams
+tfidf_unigrams = TfidfVectorizer(max_features=5000, ngram_range=(1, 1))
+tfidf_bigrams = TfidfVectorizer(max_features=5000, ngram_range=(2, 2))
+tfidf_trigrams = TfidfVectorizer(max_features=5000, ngram_range=(3, 3))
¥

+X_unigrams = tfidf_unigrams.fit_transform(train_df["full_text"])
+X_bigrams = tfidf_bigrams.fit_transform(train_df["full_text"])
+X_trigrams = tfidf_trigrams.fit_transform(train_df["full_text"])

¥

+X_test_unigrams = tfidf_unigrams.transform(test_df["full_text"])
+X_test_bigrams = tfidf_bigrams.transform(test_df["full_text"])
+X_test_trigrams = tfidf_trigrams.transform(test_df["full_text"])

¥

+# Average the TF-IDF scores across unigrams, bigrams, and trigrams

+X = (X_unigrams + X_bigrams + X_trigrams) / 3

+X_test = (X_test_unigrams + X_test_bigrams + X_test_trigrams) / 3

y = train_df["score”]

Split the data into training and validation sets
@@ -52,4 +64,4 @@
submission = pd.DataFrame({"essay_id": test_df["essay_id"], "score”: test_pred_round})

Save the submission file
-submission.to_csv("./submission.csv”, index=False)
+submission.to_csv("./submission.csv”, index=False)

Some step examples on different tasks

Reflection: The observation provides a comprehensive overview of the ‘train.py‘ script, detailing its structure, the model used, and
the training process. It highlights the key components such as data reading, label mapping, data splitting, text
vectorization, model training, prediction, and evaluation. However, it also notes that there is no preprocessing of text data
before vectorization, no feature selection or dimensionality reduction, and no cross-validation or hyperparameter tuning.
This indicates potential areas for improvement.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The script uses a ‘LogisticRegression‘ model and lacks
preprocessing and tuning steps.

2. Identify potential modifications:

- *xFirst Modification*x: Implement text preprocessing (tokenization, stopword removal, stemming/lemmatization) before
vectorization to improve feature representation.

3. Implement the modification: Modify the script to include text preprocessing.

4. Iterate: After implementing the first modification, run the training process and evaluate the impact on loss. If the loss does
not improve, consider further modifications.

Current Status: The first modification has been identified and will be implemented next.

Fact Check: 1. The script uses a ‘LogisticRegression‘ classifier for the text classification task. (Confirmed)

2. The script lacks preprocessing of text data before vectorization. (Confirmed)

3. The script does not perform feature selection or dimensionality reduction. (Confirmed)

4. The script does not include cross-validation or hyperparameter tuning. (Confirmed)

Thought: I will proceed to modify the ‘train.py‘ script to include text preprocessing steps before the vectorization process. This
should help improve the model’s performance by providing better features.

Action: Edit Script (AI)
Action Input: {

"script_name": "train.py"”,

"edit_instruction”: "Add text preprocessing steps before vectorization. Use NLTK for tokenization, stopword removal, and
stemming. Specifically, import nltk and use nltk’s tokenization, stopwords, and PorterStemmer. Apply these steps to the
text data before vectorization.”,

"save_name": "train.py”

}

Observation: The edited file is saved to train.py. Here is the diff, please check if the edit is correct and desirable:

+++
@e -5,6 +5,14 @@

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss

import os

40

Under review as a conference paper at ICLR 2026

+import nltk

+from nltk.tokenize import word_tokenize

+from nltk.corpus import stopwords

+from nltk.stem import PorterStemmer

¥

+# Download NLTK data files (only need to run once)
+nltk.download(’ punkt’)

+nltk.download(’ stopwords’)

Read the data

train = pd.read_csv("./train.csv")

@@ -13,6 +21,22 @@

Preprocess labels

author_mapping = {"EAP": @, "HPL": 1, "MWS": 2}
train["author_num”] = train["author"].map(author_mapping)
+

+# Initialize NLTK components

+stop_words = set(stopwords.words(’english’))

+stemmer = PorterStemmer()

+

+# Define a function for text preprocessing

+def preprocess_text(text):

Tokenize the text

+ tokens = word_tokenize(text.lower())

+ # Remove stopwords and apply stemming

+ tokens = [stemmer.stem(word) for word in tokens if word.isalpha() and word not in stop_words]
+ return ’ ’.join(tokens)

+

+# Apply preprocessing to the text data
+train["text"] = train["text"].apply(preprocess_text)
+test["text"] = test[”text”].apply(preprocess_text)

Split the data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(
@e -53,4 +77,4 @@

submission = submission[["id"”, "EAP", "HPL", "MWS"]1]

Save submission
-submission.to_csv("./submission.csv", index=False)
+submission.to_csv("./submission.csv”, index=False)

gpt-4o trajectory on detecting-insults-in-social-commentary

== Step 0 ==
: The task involves understanding and modifying a machine learning script, ‘train.py‘, to improve its performance on a
dataset related to detecting insults in social commentary. The dataset includes training and test sets, and a sample
submission file. The evaluation metric is AUC, and predictions should be in the range [0,1]. We are to make incremental
modifications to the script to improve performance, keeping epochs to 10 or less and not altering the random seed.

Research Plan and Status:

1. **Understand the current state of the ‘train.py‘ scriptx*: Not started.

2. Identify areas in the script that could be modified to improve model performance: Not started.
3. Make one modification at a time to the script and test the effect on performance: Not started.
4. Aim to achieve a test accuracy of 99.99%: Not started.

Fact Check: None, as no progress has been made yet.

Thought: The first step is to understand the current state of the ‘train.py‘ script to identify potential areas for improvement.
This will involve inspecting the script to see what model and techniques are currently being used.

Action: List Files
Action Input: {
"dir_path”: "."

3

Observation: backup/
test.csv

train.csv

train.py

Reflection: The directory contains the ‘train.py‘ script, alongside ‘train.csv‘ and ‘test.csv‘, which are the training and testing
datasets, respectively. There is also a ‘backup/‘ directory, which might contain backup files or previous versions of scripts.

Research Plan and Status:

1. **Understand the current state of the ‘train.py‘ script**: Not started.

2. Identify areas in the script that could be modified to improve model performance: Not started.
3. Make one modification at a time to the script and test the effect on performance: Not started.
4. Aim to achieve a test accuracy of 99.99%: Not started.

Fact Check: The presence of ‘train.py‘, ‘train.csv‘, ‘test.csv‘, and ‘backup/‘ is directly confirmed by the file listing.

Thought: The next step is to inspect the ‘train.py‘ script to understand the current implementation. This will help identify
potential areas for improvement.

Action: Inspect Script Lines

Action Input: {
"script_name": "train.py",
"start_line_number”: 1,
"end_line_number”: 100

)

Observation: Here are the lines (the file ends at line 122):

41

Under review as a conference paper at ICLR 2026

import pandas as pd

import random

import torch

import numpy as np

from torch.utils.data import DatalLoader, Dataset

import torch.nn as nn

import torch.optim as optim

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score

Set the random seed for reproducibility
def set_seed(seed):
random. seed(seed)
np.random. seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

set_seed(0)

Device configuration
device = torch.device("cuda” if torch.cuda.is_available() else "cpu”)

Define a dataset class
class TextDataset(Dataset):
def __init__(self, texts, targets):
self.texts = texts
self.targets = targets

def __len__(self):
return len(self.texts)

def __getitem__(self, idx):
return self.texts[idx], self.targets[idx]

Define the neural network model
class SimpleNNClassifier(nn.Module):
def __init__(self, input_dim):
super(SimpleNNClassifier, self).__init__()
self.fcl = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 1)

def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x.squeeze()

Train the model

def train_model(X_train, y_train):
train_dataset = TextDataset(torch.FloatTensor(X_train), torch.FloatTensor(y_train))
train_loader = Dataloader(train_dataset, batch_size=32, shuffle=True,num_workers=4)

model = SimpleNNClassifier(input_dim=X_train.shape[1]).to(device)
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1,momentum=0.9)

for epoch in range(10):
model. train()

for texts, targets in train_loader:
texts, targets = texts.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(texts)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

y_test_pred = predict(model, X_test_tfidf)
test_acc = accuracy_score(y_test, y_test_pred)
print(f"Epoch {epoch} | Test Accuracy: {test_accx100:.2f}%")

return model

Predict function
def predict(model, X):
X_tensor = torch.FloatTensor(X).to(device)
model.eval()
with torch.no_grad():
y_pred = model(X_tensor).cpu().numpy()
return (y_pred > 0.5).astype(int)

Main script

if __name__ == ’__main__’:
train_data = pd.read_csv("train.csv")
test_data = pd.read_csv("test.csv")

X = train_data[’Comment’]

42

Under review as a conference paper at ICLR 2026

y = train_data[’Insult’].values

X_test_comments = test_data[’Comment’]
y_test = test_datal[’Insult’].values

vectorizer = TfidfVectorizer(stop_words="english’, max_features=500)
X_tfidf = vectorizer.fit_transform(X).toarray()
X_test_tfidf = vectorizer.transform(X_test_comments).toarray()

Step 2
The ‘train.py‘
data. It uses TF-IDF to vectorize the text and a simple feedforward neural network with two hidden layers. The model is
trained over 10 epochs with a batch size of 32 using stochastic gradient descent (SGD) with a learning rate of 0.1 and
momentum of ©.9. The script also includes a function to set random seeds for reproducibility and uses a binary cross-entropy
loss function.

Research Plan and Status:

1. **Understand the current state of the ‘train.py‘ script**: Completed. The script uses a simple neural network with TF-IDF
features.

2. Identify areas in the script that could be modified to improve model performance: Not started.

3. Make one modification at a time to the script and test the effect on performance: Not started.

4. Aim to achieve a test accuracy of 99.99%: Not started.

Fact Check:

- The script uses TF-IDF vectorization and a simple neural network confirmed by inspection.
- The script trains the model for 10 epochs, confirmed by inspection.

- The learning rate is 0.1 with SGD optimizer, confirmed by inspection.

Thought: The next step is to identify potential areas in the script that can be modified to improve performance. Possible areas
include model architecture, feature extraction, optimization parameters, and data preprocessing.

Action: Final Answer
Action Input: {

"final_answer”: "The ‘train.py‘ script uses TF-IDF vectorization and a simple feedforward neural network with two hidden layers
to classify comments as insults. It uses SGD with a learning rate of .1 and momentum of ©.9, training for 10 epochs. The
key areas for potential improvement include model architecture, feature extraction, optimization parameters, and data
preprocessing.”

)

Observation: end

D THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, Large Language Models (LLMs) were used as an assistive tool
to improve grammar, clarity, and readability for some paragraphs. The authors reviewed and edited
all text and take full responsibility for the final content of the paper.

43

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Agentic ML Training Framework
	Exploration-enriched fine-tuning
	Step-wise RL paradigm
	Agentic ML-specific reward

	Experiments
	Experimental setups
	Main results
	Analysis

	Conclusion
	Problem formulation
	Machine Learning Tasks and Data Collection Process
	Data Collecting Pipeline for Exploration-Enriched Fine-tuning
	Details of Machine Learning Tasks
	Details of Data Collection

	Experimental Details
	Details of Experimental Set-up
	Additional Ablation Study
	Case study
	Task Description for denoising-dirty-documents
	Initial Script for denoising-dirty-documents
	ML-Agent Trajectory on denoising-dirty-documents
	Analysis

	The Use of Large Language Models

