
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ML-AGENT: REINFORCING LLM AGENTS FOR
AUTONOMOUS MACHINE LEARNING ENGINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

The emergence of large language model (LLM)-based agents has significantly
advanced the development of autonomous machine learning (ML) engineering.
However, the dominant prompt-based paradigm exhibits limitations: smaller mod-
els lack the capacity to learn from execution trajectories for generalization, while
large proprietary models incur high computational overhead, restricting accessi-
bility and scalability. Focusing on this, for the first time, we explore the paradigm
of learning-based agentic ML, where an LLM agent learns through interactive
experimentation on ML tasks using online reinforcement learning (RL). To realize
this, we propose a novel agentic ML training framework with three key compo-
nents: (1) exploration-enriched fine-tuning, which enables LLM agents to generate
diverse actions for enhanced RL exploration; (2) step-wise RL, which enables
training on a single action step, accelerating experience collection and improving
training efficiency; (3) an agentic ML-specific reward module, which unifies varied
ML feedback signals into consistent rewards for RL optimization. Leveraging
this framework, we train ML-Agent, driven by a 7B-sized Qwen-2.5 LLM for
autonomous ML. Despite training on only 9 ML tasks, our 7B-sized ML-Agent
achieves comparable performance to agents using much larger proprietary LLMs
(e.g., GPT-5) but at significantly lower computational cost, demonstrating strong
performance and cross-task generalization.

1 INTRODUCTION

Machine Learning (ML) engineering is a critical yet labor-intensive process, requiring expert re-
searchers to invest significant time—potentially days or even months—designing architectures, tuning
parameters, and iteratively refining models through trial and error (Bergstra & Bengio, 2012). This
challenge has sparked an ambitious vision of autonomous ML: building autonomous AI systems that
independently orchestrate the entire ML lifecycle, from conceptual design and code implementation
to refinement.

Fortunately, the advent of LLM-based agents, equipped with capabilities of interaction (Du et al.,
2023; Pang et al., 2024), coding (Hong et al., 2023; Qian et al., 2023; Hu et al., 2024) and tool-
calling (Masterman et al., 2024), has propelled us significantly closer to realizing this vision (Agentic
ML) (Huang et al., 2023; Chan et al., 2024). Unlike traditional automated ML with pre-defined limited
search and action spaces (Tang et al., 2024; LeDell & Poirier, 2020; Jin et al., 2023), these LLM agents,
when provided with instructions in natural language, can autonomously propose effective actions,
generate executable codes, and iteratively improve solutions based on environmental feedback (Huang
et al., 2023; Jiang et al., 2025). For example, AIDE (Jiang et al., 2025) and ML-Master (Liu et al.,
2025a) both leverage LLM agents together with experimental environments to automate ML process.

Currently, the dominant paradigm in agentic ML relies on prompt-based design, where agents are
constructed through heuristic prompt engineering. This approach offers practical advantages, as it
allows rapid deployment without parameter updates or extensive retraining. However, it also exhibits
notable limitations: when driven with smaller language models, such agents lack the capacity to
learn from and internalize execution trajectories, causing limited generalization across diverse tasks;
conversely, when implemented with large-scale proprietary models, the paradigm incurs substantial
computational overhead and resource consumption, thereby restricting accessibility and undermining
sustainable scalability (Belcak et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations, we propose moving beyond the prompt-based paradigm toward a new
research trajectory: learning-based agentic ML. In this paradigm, agents are no longer constrained
to static prompt instructions but instead learn adaptively from task-solving trajectories via online
reinforcement learning (RL). Such a formulation empowers agents to systematically explore diverse
strategies, accumulate knowledge across successive runs, and progressively refine their decision-
making processes (Xiong et al., 2024). Importantly, this learning-based approach endows even
relatively small language models with the capacity to achieve strong generalization, while substantially
reducing computational and resource demands. As a result, it opens a more accessible, efficient, and
sustainable path for advancing the frontier of autonomous machine learning.

While being straightforward, employing online RL to train autonomous ML agents poses three
key challenges. (1) Limited exploration: agents often propose similar actions for the same ML
task across runs, leading to narrow exploration trajectories in RL (Park et al., 2024). (2) Slow
experience collection: ML experiments can take minutes to hours, making online RL data gathering
inefficient and thus limiting feedback-driven training samples (Chan et al., 2024). (3) Complex
reward design: agentic ML involves various outcomes, such as task-specific metrics, out-of-memory
failures, and compilation errors. This requires a unified reward function to reconcile varied feedback
signals (Eschmann, 2021).

In response to these challenges, we propose a novel agentic ML training framework, the first designed
to train LLM agents for autonomous ML engineering using online RL. This framework enables agents
to explore diverse ML trajectories, collect rewards efficiently, and iteratively enhance their capabilities
through learned experience. (1) To improve exploration diversity, we introduce exploration-enriched
fine-tuning, generating a diverse action pool from fast-executable ML tasks to finetune agents for
broader RL exploration. (2) To accelerate experience collection, we design a step-wise RL paradigm,
evaluating atomic actions using expert trajectories as single-step queries, significantly boosting
training efficiency. (3) To tackle reward design, we develop an agentic ML-specific reward module
that dynamically handles errors (e.g., runtime failures) and quantifies performance via normalized,
task-specific metrics (e.g., accuracy gains).

By leveraging our proposed agentic ML training framework, we train ML-Agent, an agent driven by a
7B-sized Qwen2.5 LLM for autonomous ML. During training, our ML-Agent can efficiently explore
the environment, learn from experience, and achieve continuous performance improvement through
iterative exploration across various ML tasks. Surprisingly, despite its modest size and training
on only 9 ML tasks, ML-Agent demonstrates strong performance and cross-task generalization,
outperforming 671B-sized DeepSeek-R1 agent on 3 held-in and 10 held-out tasks across diverse data
modalities and objectives. Notably, it achieves results comparable to agents using the most advanced
proprietary LLMs (GPT-5) but at significantly lower computational cost.

In summary, our work makes the following significant contributions to the field:

• We introduce a new paradigm for autonomous ML: learning-based agentic ML, where an LLM
agent learns through interactive experimentation on ML tasks via online reinforcement learning.

• We propose a novel training framework for agentic ML, which incorporates three technical
designs: exploration-enriched fine-tuning, step-wise RL, and agentic ML-specific rewards.

• Extensive experiments show that despite training on only 9 ML tasks, our 7B-sized ML-Agent
surpasses agents driven by much larger LLMs and even matches agents driven by proprietary
LLMs (e.g., GPT-5) with much lower cost.

2 RELATED WORK

Autonomous Machine Learning. Autonomous machine learning aims to automate the manual and
expertise-intensive aspects of machine learning, including data preprocessing, model selection and
hyperparameter tuning. Autonomous machine learning has evolved from classical hyperparameter
and pipeline search to agentic frameworks powered by large language models. Classical autonomous
machine learning frameworks focus on automating model selection, hyperparameter optimization,
and pipeline construction within a fixed search space (Tang et al., 2024; Olson & Moore, 2016; Feurer
et al., 2022; Mohr et al., 2018; Erickson et al., 2020; Liu et al., 2020). For example, AutoGluon-
Tabular (Erickson et al., 2020) ensembles multiple models and stackings to deliver state-of-the-
art performance on tabular data with minimal user effort. These classical autonomous machine

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

learning works remain constrained by predefined search spaces and static configurations, lacking the
adaptability and continuous learning capabilities.

LLM Agents in Autonomous Machine Learning. Recent advancements in LLMs have empowered
them to autonomously generate and refine machine learning solutions, opening new possibilities in
machine learning. Methods such as AutoML-GPT (Zhang et al., 2023b) and MLCopilot (Zhang
et al., 2023a) prompt LLMs to automate the entire machine learning pipeline, where MLCopilot
introduces past experience retrieval to help decision-making. AIDE (Jiang et al., 2025) and ML-
Master (Liu et al., 2025a) focus on optimizing the ML engineering process through iterative search
and refinement strategies. Other works like AutoKaggle (Li et al., 2024) and AutoML-Agent (Trirat
et al., 2024) employ a multi-agent framework to address ML problems. However, these approaches are
fundamentally constrained by a prompt-based paradigm. While agents may leverage past experience,
their underlying models are not trained on these interaction histories. Consequently, their problem-
solving strategies remain static and rely on costly advanced models. This limitation motivates our
shift toward a learning-based paradigm where agents adapt and improve over time.

Reinforcement Learning for LLMs. Reinforcement learning (RL) significantly enhances the
ability of LLMs, particularly in preference alignment and complex reasoning (Xu et al., 2025; Wang
et al., 2024; Zheng et al., 2023). By facilitating exploration and exploitation, RL trains LLMs
to adapt and improve their policy based on feedback, thus refining their performance in dynamic
environments. One line of work is preference optimization (Kaufmann et al., 2023), with methods
such as Reinforcement Learning from Human Feedback (RLHF)(Ouyang et al., 2022). RL is also
utilized to train LLMs for complex reasoning tasks (Guo et al., 2025a; Liu et al., 2025b). Another
line of research involves training LLM agents for specific tasks using RL (Zhang et al., 2025).
For example, IPR (Xiong et al., 2024) and AgentQ (Putta et al., 2024) use DPO (Rafailov et al.,
2023) to iteratively refine their policy. While StarPO (Wang et al., 2025) discusses the multi-turn
reinforcement learning considering episode-wise reward. However, applying RL to train LLM agents
for autonomous machine learning remains unexplored.

3 PROBLEM SETUP AND PRELIMINARIES

Problem Formulation. Agentic ML leverages an LLM agent to autonomously orchestrate the ML
lifecycle by interacting with the experimental environment. This environment includes editable
task-related code files together with an interpreter executing code and provides explicit experimental
feedback (e.g., code execution results or error messages). Given an initial ML task specification
(e.g., dataset description and evaluation metric), the agent begins interacting with the environment
to iteratively refine its solution. At each step, the agent takes actions (e.g., add BN layers in the
model architecture) and receives feedback (e.g., code execution output or error messages) from the
environment. This loop continues until a step or time limit is reached. We follow the action space
from prior work (Huang et al., 2023) (The details are provided in Table 4).

Agentic ML as a MDP. We format agentic ML as a Markov Decision Process (MDP) M =
(S,A,P), where S is the state space, A the action space and P the state transition dynamics.
Let the environment feedback at time t be ft ∈ F , where F denotes the feedback space. We
employ a history-based state representation st = (s0, a0, f0, a1, f1, . . . , at−1, ft−1) to capture richer
contextual information from past feedback, in which s0 encodes the initial ML task specification
and each pair (ai, fi) represents the agent’s action and corresponding environment feedback. The
agent policy πθ generates an action at ∈ A conditioned on current state st, forming a trajectory of
interactions τ = (s0, a0, s1, . . . , an−1, sn). Note that θ is the LLM’s parameters within the agent
and n is the trajectory length. The goal is to maximize the expected trajectory reward:

J (θ) = Eτ∼πθ [R(τ)] , (1)

where the reward function R(τ) denotes the cumulative reward over the entire trajectory.

Challenges. Although the formulation of agentic ML is relatively straightforward, employing online
RL to train LLM agents for autonomous machine learning poses several key challenges, including: (1)
Limited exploration. Agents often repeat similar actions across episodes, narrowing their exploration
and limiting their ability to discover innovative ML solutions. (2) Slow experience collection. ML
experiments can take minutes to hours, slowing down the online data collection process for RL
training. (3) Complex reward design. Agentic ML produces varied outcomes (e.g., execution results

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

States Pool

......

① rollout next action �~��(�)
② obtain reward � = �(�, �)

24/12/5

Exploration-enriched
Finetuning

expert

9 Tasks Collected Trajectories

Training Pipeline

① rollout next action �~��(�)
② obtain reward � = �(�, �)

�
State

�

Agentic ML-specific
Reward

�

env.

action

feedback

task

trajectories

Step-wise RL Training

sa
m

pl
in

g

env.

action �

reward �

state

..
.

① Rollout only one step ② Update

1
|�

|
...

format corner
casescore. . .

expert

diverse idea

provide diverse
initial ideas

prompt
diverse
actions

div
er

se

. . .

Figure 1: Overview of the agentic ML training framework, introducing (1) exploration-enriched
fine-tuning for diverse action pool creation, (2) a step-wise RL paradigm for efficient experience
collection using expert trajectories, and (3) an agentic ML-specific reward module for various ML
feedback handling and task-specific performance evaluation.

or resource errors), making it challenging to design a unified reward function that effectively guides
the agent. The subsequent section presents our agentic ML training framework designed to overcome
these challenges, with the overall architecture illustrated in Figure 1.

4 AGENTIC ML TRAINING FRAMEWORK

Our agentic ML training framework is designed to train LLM agents for autonomous machine
learning. As shown in Figure 1, it comprises three key steps for effective learning. First, exploration-
enriched fine-tuning builds a diverse action pool to enhance RL exploration. Second, a step-wise RL
paradigm uses expert trajectories as single-step queries to accelerate experience collection in RL.
Third, an agentic ML-specific reward module handles errors and quantifies agentic ML task-specific
performance. These steps sequentially enable diverse exploration, efficient training, and unified
feedback, enabling agents to iteratively improve agentic ML performance across varied ML tasks.

4.1 EXPLORATION-ENRICHED FINE-TUNING

In agentic ML, limited exploration hinders autonomous machine learning workflows. Agents often
repeat similar actions (e.g., small code edits) across episodes, leading to narrow exploration and
preventing the discovery of innovative architectures or optimization strategies.

To address this, we introduce exploration-enriched fine-tuning with an automated data collection
pipeline. It organizes ML optimization strategies into 3 semantic categories: data, model and learning.
For each category, an LLM generates a large set of candidate ideas and an embedding-based diversity
filter selects a compact and diverse pool. During trajectory generation, the system automatically
samples 1–3 categories, shuffles their order, and draws one idea from each corresponding pool to
form the initial action sequence (See Appendix B.1). An expert LLM with policy πe then executes
the full workflow on fast-executable ML tasks, producing expert trajectories D = {τ (i)}|D|

i=1. We
fine-tune the agent policy πθ via supervised fine-tuning (SFT):

LSFT(θ) = −Eτ∼D [logPπθ (τ |s0)] = −Eτ∼D

[
log

n−1∏
t=0

πθ(at|st)

]
= −Eτ∼D

[n−1∑
t=0

log πθ(at|st)
]
. (2)

This exploration-enriched fine-tuning approach preserves action format compliance while enabling
agents to learn diverse strategies, significantly broadening the exploration scope in subsequent RL.

4.2 STEP-WISE RL PARADIGM

Objective. Due to the time-consuming nature of AI experiments, directly applying RL methods
(e.g., PPO) is impractical, as sampling a single trajectory during rollout takes hours. To address

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

this issue, we propose a step-wise RL approach that reformulates the objective function equation 1,
where we sample only a single step of action during the rollout phase instead of the entire trajectory.
This approach extensively reduces the computational cost of the rollout phase and makes the overall
training process more efficient. Specifically, we expand equation 1 into steps according to the state
distribution dπθ (s):

J (θ) =

n−1∑
t=0

∑
st∈S

dπθ (st)

[∑
at∈A

πθ

(
at

∣∣st)R(st, at)

]
, (3)

where R(st, at) is the step-wise reward at time t, and dπθ (·) is the state distribution at time t under
policy πθ. This distribution can be calculated recursively based on the policy πθ and the state transition
dynamics P; see Appendix A for details. The time-consuming components in equation 3 include: 1)
dπθ (st), which involves multiple state transition dynamics from st to st+1, and 2) R(st, at), where
the reward is determined based on feedback from the environment (e.g., code execution platform).
Since dπθ (·) relies on πθ, the trajectory sampling process operates repeatedly in standard RL training,
making the computational cost even higher. However, using dπθ to sample state distribution is not
necessary for two reasons: 1) πθ poorly aligns with the environment format during the early stage
of RL training, hindering effective state exploration; 2) Once πθ can interact properly with the
environment, the set of states it could explore tends to vary only slightly as πθ updates. Hence, we
sample the states from a states pool according to a fixed expert distribution dπe(st), which forms the
step-wise objective function

Jstep(θ) =
∑
st∈S

dπe(st)

[∑
at∈A

πθ

(
at

∣∣st)R(st, at)

]
= Est∼dπe ,at∼πθ(·|st) [R(st, at)] . (4)

This objective function Jstep(θ) reformulates multi-step trajectory RL into step-wise training. This
reformulation offers two advantages: 1) The state sampling process is decoupled from the RL of the
model. This allows us to directly sample states from a pre-collected set and avoids expensive online
sampling during training, significantly reducing the overall training time. 2) The state sampling
process is performed before RL training, rather than during the rollout phase. This enables us to
perform extensive sampling from the expert distribution, making training more scalable.

Training approach. Based on the step-wise RL formulation, our goal is to maximize the expected
reward R(st, at) shown in equation 4 according to the state distribution dπe and πθ. This aligns
with the approach used in RLVR methods (Guo et al., 2025b), where the policy represents a token
generation process and R(st, at) is the outcome reward of πθ(at|st). Hence, any RL training approach
can be applied to this objective Jstep(θ). For our implementation, we choose PPO (Schulman et al.,
2017) as the training algorithm because of its widespread use and proven effectiveness. Specifically,
suppose we expand the token generating process of πθ(at|st), our PPO loss function can be defined
as follows:

J PPO
step (θ) = Es∼de,o≤i∼πθold

(·|s)

[
min

(
πθ(oi | s, o<i)

πθold(oi | s, o<i)
Âi, clip

(
πθ(oi | s, o<i)

πθold(oi | s, o<i)
, 1− ε, 1 + ε

)
Âi

)]
,

(5)
where oi is the ith token of at and Âi is an estimator of the advantage at the token generation step i.

4.3 AGENTIC ML-SPECIFIC REWARD

Having enabled efficient RL for agentic ML via the step-wise RL paradigm, the next crucial step is to
convert the varied feedback into a unified, meaningful reward. While numerical metrics like validation
accuracy or loss naturally serve as RL rewards, non-numerical feedback, such as compilation errors
or out-of-memory failures, must be carefully incorporated to ensure the reward is coherent.

To address this, we propose an agentic ML-specific reward module that dynamically processes these
diverse signals while quantifying performance improvements through scaled task-specific metrics.
The key idea is to translate every execution outcome into a unified scalar value. Define Avalid as valid
actions, Aedit ⊂ Avalid as editing actions for ML code, Ferror as error feedback (e.g., compilation
failures), Fcorner as corner cases (e.g., resource exhaustion), and Fsuccess as successful executions.
Let mt be the task-specific metric1 at state st (e.g., loss or accuracy), with minit and mbest as the
baseline and best human-achievable scores. The reward R(st, at) is:

1We follow the official Kaggle evaluation protocol which defines a scalar metric for each ML tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

R(st, at) =


−1 , if at /∈ Avalid or ft ∈ Ferror

0 , if at ∈ Avalid/Aedit or ft ∈ Fcorner
mt+1−mt

mbest−minit
, if at ∈ Aedit and ft ∈ Fsuccess.

(6)

This reward module handles all possible agentic ML scenarios: (1) Invalid actions or errors receive
-1 to penalize faulty outputs; (2) Valid non-editing actions or corner cases receive 0 as a neutral
acknowledgment of legitimacy while recognizing external constraints; (3) Success edits yield a
scaled metric improvement for task-driven refinement. By unifying penalties for errors, neutrality for
non-editing actions, and task-driven rewards for edits, the module provides consistent, informative
feedback for iterative refinement and continuous improvement across diverse ML tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Training. For training data collection, we adopt a GPT-4o-mini-driven (OpenAI, 2024) agent
scaffolded by MLAB (Huang et al., 2023). This agent interacts with the MLAgentBench (Huang
et al., 2023) agentic ML environment to generate expert trajectories. We collect 10k expert trajectories
across 9 ML tasks, comprising 4 tasks from MLAgentBench and 5 from MLE-bench (Chan et al.,
2024), with each trajectory limited to 15 steps and 30 minutes of runtime. Additional data collection
details are provided in Appendix B. For exploration-enhanced fine-tuning, we train Qwen2.5-7B (Yang
et al., 2024) using these 10k expert trajectories via supervised fine-tuning (SFT). For step-wise RL,
we select 10k states sampled from expert trajectories to further train the SFT model using Proximal
Policy Optimization (PPO). All training is conducted on 8 A100 GPUs. The fine-tuning stage runs
for 2 epochs with a learning rate of 2e− 5, while the RL stage runs for 1 epoch with an actor learning
rate of 1e− 6 and a critic learning rate of 1e− 5. See additional training details in Appendix C.1.

Testing. To verify the generalization ability across ML tasks of ML-Agent, we select 10 held-out tasks
from MLE-bench, which are not seen during training and generally more challenging than the training
tasks. Details of these tasks are provided in Appendix B.2. During testing, the MLAgentBench
environment settings remain consistent with those used in training. To comprehensively assess the
LLM agent’s ability in autonomous ML, we propose Performance gain ∆r, the relative improvement
over the initial script, defined as ∆r = β

mavg@8−minit

minit
where mavg@8 is the mean score over 8

trajectories, minit is the initial script’s score, and β ∈ {−1, 1} adjusts for metrics (e.g. MAE, RMSE)
to ensure positive ∆r indicates improvement.

Baselines. To provide a comprehensive comparison, we evaluate ML-Agent against 3 prompted-based
agentic ML methods: MLAB (Huang et al., 2023), AIDE (Jiang et al., 2025), and ML-Master (Liu
et al., 2025a). All agents are tested using a diverse set of backbone LLMs, spanning small-scale
open-source models (e.g., Qwen2.5-7B-Instruct (Yang et al., 2024)), medium-scale models (e.g.,
Qwen3-235B (Yang et al., 2025)), large-scale open-source models (e.g., DeepSeek-R1 (Guo et al.,
2025b)), and state-of-the-art proprietary LLMs (Gemini-2.5-Pro (Comanici et al., 2025) and GPT-
5 (OpenAI, 2025)). We keep the same time limit and number of ML code modifications for a fair
comparison between agents with different scaffolds.

5.2 MAIN RESULTS

We conduct extensive experiments to evaluate the performance of ML-Agent, a learning-based LLM
agent trained through our proposed framework for autonomous ML. Our results demonstrate that
ML-Agent achieves strong and consistent performance across both held-in and held-out tasks, and
exhibits continuous performance improvements during RL training.

ML-Agent achieves superior performance across both held-in and held-out tasks. We compare
ML-Agent with 5 powerful LLM-based agents in 3 scaffolds across 3 held-in and 10 held-out tasks.
As shown in Table 1, ML-Agent significantly outperforms other large open-source models, such as the
671B DeepSeek-R1. For closed-source GPT-5, our agent remains remarkably competitive. Notably,
despite being trained on only 9 tasks, ML-Agent delivers top-tier results across all 10 held-out tasks,
demonstrating strong generalization and effective learning from limited experience.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparing 7B ML-Agent with baselines across different agent frameworks driven by
proprietary/open-source LLMs on 3 held-in tasks (included in training) and 10 held-out tasks
(unseen during training) from MLE-bench. For each task, we report average performance gain (%)
over 8 trajectories.

Method Model #Params cifar10 house feedback denoising leaf statoil whale

Prompt-Based Method

MLAB

Qwen2.5-7B-Instruct 7B 1.37 0.23 1.39 2.10 2.52 -6.32 12.25
Qwen3-235B 235B 57.61 3.01 6.70 62.60 -2.12 -16.36 26.68
DeepSeek-R1 671B 28.96 3.45 5.53 8.83 4.85 0.04 33.44
GPT-5 N/A 61.46 12.15 12.74 66.00 -45.63 -6.43 89.59
Gemini-2.5-Pro N/A 16.78 1.16 0.10 37.85 -4.38 -4.26 22.38

AIDE

Qwen2.5-7B-Instruct 7B 11.36 2.42 7.52 7.33 -4.75 -4.33 0.52
Qwen3-235B 235B -0.10 2.04 11.10 41.65 4.75 -2.89 8.26
DeepSeek-R1 671B 72.55 5.35 13.07 33.23 -10.25 -4.54 30.77
GPT-5 N/A 76.53 22.15 8.77 77.38 31.50 -9.18 26.42
Gemini-2.5-Pro N/A 53.59 11.13 9.44 62.72 -84.25 -6.08 56.45

ML-Master
Qwen2.5-7B-Instruct 7B 1.03 0.00 0.10 2.44 -1.38 -3.99 1.12
DeepSeek-R1 671B 73.43 18.25 12.07 14.56 -14.75 -2.78 33.39
GPT-5 N/A 71.64 22.3 10.54 10.96 23.88 -2.48 67.07

Learning-Based Method

ML-Agent(Ours) 7B 33.80 6.77 13.47 52.38 13.87 1.41 72.89

Method Model #Params learning detecting spooky jigsaw us tabular Avg.

Prompt-Based Method

MLAB

Qwen2.5-7B-Instruct 7B 1.23 0.51 -0.46 -0.06 3.75 0.04 1.43
Qwen3-235B 235B 0.30 1.02 0.80 0.01 1.96 -0.07 10.93
DeepSeek-R1 671B 0.05 0.25 0.89 0.00 2.67 -0.13 6.83
GPT-5 N/A 4.36 11.20 6.79 0.00 23.38 0.23 18.14
Gemini-2.5-Pro N/A 0.00 0.13 0.04 0.00 0.13 0.00 5.38

AIDE

Qwen2.5-7B-Instruct 7B -9.78 -0.38 0.07 0.01 0.00 0.08 0.77
Qwen3-235B 235B 2.37 0.43 0.96 -12.15 0.51 0.00 4.38
DeepSeek-R1 671B 1.38 0.31 0.36 0.01 5.78 0.14 11.40
GPT-5 N/A 4.51 0.13 4.25 0.14 29.69 0.11 20.95
Gemini-2.5-pro N/A 7.35 0.74 4.34 0.04 31.92 0.13 11.35

ML-Master
Qwen2.5-7B-Instruct 7B 1.79 0.26 -0.04 -0.02 -0.02 0.00 0.10
DeepSeek-R1 671B 3.03 0.00 4.01 -0.04 29.27 0.22 13.13
GPT-5 N/A 6.38 0.79 10.41 0.35 26.49 0.25 19.12

Learning-Based Method

ML-Agent(Ours) 7B 1.91 1.74 1.76 0.01 12.96 0.20 16.40

ML-Agent efficiently achieves good performance with much lower cost. As illustrated in Figure 2,
we plot the average performance gain against the average cost per trajectory for various agents. Our
proposed ML-Agent (the star) is a clear outlier, positioned in the optimal top-left corner. It achieves
highly competitive performance gain of over 15% while maintaining an exceptionally low cost of
less than 0.01$ per trajectory. In contrast, baseline agents like MLAB using powerful models such
as GPT-5 incur costs that are more than 20 times higher for similar or even lower performance.
This result highlights the significant efficiency of learning-based paradigm, proving it can produce a
state-of-the-art agent without relying on expensive, large-scale models.

ML-Agent achieves continuous performance improvements. Figure 3 shows that ML-Agent
demonstrates consistent performance improvement across both held-in and held-out tasks as training
progresses. This highlights the effectiveness of our step-wise RL paradigm and exploration-enriched
fine-tuning in enabling continuous learning from ML environmental feedback, ultimately allowing
ML-Agent to outperform all baseline methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ours

Figure 2: Comparison of average performance
gain (%) vs. cost ($) across different models and
scaffolds on 10 held-out tasks. Our ML-Agent
significantly outperforms other baselines with a
competitive gain at a lower cost.

0 2 4 6 8 10
GPU Time (hour)

5

10

15

Av
g.

 P
er

f.
G

ai
n

(%
) Performance in Held-in Tasks

Qwen-7B-Instruct
Qwen-32B-Instruct
GPT-4o-mini

GPT-4o
DeepSeek-R1

ML-Agent
ML-Agent
(w/o step-wise)

0 2 4 6 8 10
GPU Time (hour)

0

5

10

15

Av
g.

 P
er

f.
G

ai
n

(%
) Performance in Held-out Tasks

Figure 3: ML-Agent achieves continuous perfor-
mance improvements; Step-wise RL (evaluated
every 5 steps) is more efficient than episode-wise
RL (evaluated every 1 step) on both held-in and
held-out tasks.

5.3 ANALYSIS

Qwen-7B
-Distill

Qwen-7B
-Base

Qwen-7b
-Instruct

ML-Agent
-SFT

Base Model of RL

3
0
3
6
9

12
15
18

Av
g.

 P
er

f.
G

ai
n

(%
)

N/A

Held-in Tasks

(a) Held-in tasks

Qwen-7B
-Distill

Qwen-7B
-Base

Qwen-7b
-Instruct

ML-Agent
-SFT

Base Model of RL

12
9
6
3
0
3
6
9

12
15
18

Av
g.

 P
er

f.
G

ai
n

(%
)

N/A

Held-out Tasks

(b) Held-out tasks

Figure 4: Exploration-enriched fine-tuning is cru-
cial for RL training. "N/A" means the training
based on the model fails to generate valid results.

Exploration-enriched fine-tuning is crucial
for step-wise RL training. To validate the
efficacy of exploration-enriched fine-tuning
in enhancing subsequent RL training, we
replace our exploration-enriched fine-tuned
model (ML-Agent-SFT) with Qwen2.5-7B
(Qwen-7B-Base), Qwen2.5-7B-Instruct (Qwen-
7B-Instruct), and DeepSeek-R1-Distill-Qwen-
7B (Guo et al., 2025b)(Qwen-7B-Distill) as base
models for the RL training. We evaluate the
average performance gain of the resulting RL-
trained agents on held-in and held-out tasks (Fig-
ure4). The agent trained from Qwen-7B-Distill
fails to generate valid actions due to distillation-
induced format issues, resulting in ineffective
learning. The agent trained from Qwen-7B-Base shows overall performance degradation from limited
instruction-following capabilities. The agent trained from Qwen-7B-Instruct achieves +13% gains on
held-in tasks but -12% on held-out tasks, indicating poor generalization. In contrast, the agent trained
from our ML-Agent-SFT achieves +18% and +16% improvement on held-in and held-out tasks,
respectively, with greater action diversity during autonomous ML experimentation (Figure 7). These
results confirm that exploration-enriched fine-tuning promotes format-compliant, diverse actions,
enhancing exploration and generalization in step-wise RL.

Effectiveness of Step-wise RL Training. To improve training efficiency and scalability, we propose a
step-wise RL approach that samples single states from expert trajectories and evaluates atomic actions.
To validate this, we implement an alternative episode-wise RL approach, where the policy rolls out
the entire trajectory from the task description during data collecting phase in RL. Both methods are
initialized from the same ML-Agent-SFT model and trained for 39 steps. We measure GPU time
every 5 steps for step-wise RL and 1 step for episode-wise RL. As shown in Figure 3, step-wise
RL adapts more quickly and achieves faster performance gains on both held-in and held-out tasks,
while the performance of episode-wise RL improves slowly and incurs much higher time cost. These
results demonstrate that step-wise RL not only improves training efficiency by avoiding expensive
online rollouts, but also leads to improved performance through targeted single-step updates.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the ML-specific reward module, indicating the necessity of three compo-
nents. The three components are normalized performance reward (Rperf.), format reward (Rformat),
and corner cases reward (Rcorner). We report the average performance gain (%) for each task.

Task cifar10 house feedback leaf detecting us tabular whale
Rperf. Rformat Rcorner

① % ! ! 17.58 3.94 7.79 4.75 0.26 6.40 -24.96 23.24
② ! % ! 10.98 6.17 8.34 -30.25 0.03 6.27 -12.54 2.84
③ ! ! % 13.56 6.64 7.67 8.50 0.58 8.67 -0.48 28.06
④ ! ! ! 33.80 6.77 13.47 13.87 1.74 12.96 0.20 72.89

Effectiveness of agentic-ML specific reward module. Ablation studies in Table 2 show each reward
component is essential: (1) Performance(Rperf.): Replacing the scaled performance difference with
binary reward leads to noticeable performance drops. This confirms that fine-grained reward signals
are more informative for learning meaningful improvements. (2) Format(Rformat): Removing format
constraints causes the largest degradation (e.g., -11.75% on cifar-10), emphasizing the necessity of
syntactic and semantic correctness of agent’s output format. (3) Corner cases(Rcorner): Disabling the
neutral reward for corner cases has minimal impact due to their rarity, but improves training stability
by preventing over-penalization of non-fatal issues. In summary, each component of the reward
module plays a distinct and complementary role: Rperf. drives performance improvement, Rformat.
ensures actions validity, and Rcorner maintains robustness under real-world limitations. Together, they
form a coherent and comprehensive reward structure during RL training for agentic ML.

0 3 6 9
Number of RL Training Tasks

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Av
g.

 P
er

f.
G

ai
n

(%
)

Performance on Different Tasks

Held-in Tasks
Held-out Tasks

Figure 5: Effects of training task num-
ber on RL performance. While the
pure sft model shows minimal gener-
alization, RL drives generalization.

Effects of task numbers in RL. We investigate the impact of
using different numbers of ML tasks (0, 3, 6, 9) during step-
wise RL training, where the "0 task" condition corresponds
to ML-Agent-SFT. We evaluate performance in terms of
average performance gain on held-in and held-out tasks. As
shown in Figure 5, performance on both task types improves
monotonically as the number of ML tasks increases during
RL training. Specifically, training with 3, 6, and 9 ML tasks
using step-wise RL lifts the average performance gain on
held-out tasks from nearly 0% to approximately 3%, 6%, and
16%, respectively. These results indicate that expanding the
diversity of ML tasks during RL not only refines the agent’s
ability on familar tasks but also significantly improves the
agent’s ability to generalize across unseen tasks.

Case study. To provide an intuitive understanding, we
present several examples in the Appendix C.3, demonstrating
task specifications, initial code implementations, baseline
and our model’s execution trajectories. These demonstrate
that our methodology: (1) generates diverse action sequences through comprehensive reasoning,
(2) automatically initiates backtracking mechanisms when performance metrics remain unimproved
by proposed modifications, and (3) maintains operational effectiveness on novel tasks through
generalized reasoning capabilities.

6 CONCLUSION

In this paper, we propose a training framework for an LLM-based agent on autonomous machine
learning tasks. Unlike heuristic prompt-based methods, our method enables agents to learn from
task-solving experiences, iteratively refine strategies, and generalize across tasks. The framework
involved exploration-enriched fine-tuning, efficient step-wise RL training, and agentic ML-specific
reward module. Extensive experiments demonstrate that ML-Agent, powered by a 7B-parameter
LLM, surpasses agents using 671B models and achieves state-of-the-art performance on 13 tasks,
including cross-task generalization. This work advances autonomous ML engineering from rule-based
automation to dynamic, experience-driven learning, reducing reliance on human intervention.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai, 2025. URL
https://arxiv.org/abs/2506.02153.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The journal
of machine learning research, 13(1):281–305, 2012.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaï Deutel, Nam Nguyen, Adam
Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller, Nathan
Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan Horgan,
Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy Wang,
Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Heyward, Martin
Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik, Ankita Goel,
Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu, Grace Chen,
Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-Juen Chen,
Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Leichner, Haichuan
Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen, Praynaa
Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis, Jieru
Mei, Mu Cai, Mohammed Badawi, Corey Fry, Ale Hartman, Daniel Zheng, Eric Jia, James Keeling,
Annie Louis, Ying Chen, Efren Robles, Wei-Chih Hung, Howard Zhou, Nikita Saxena, Sonam
Goenka, Olivia Ma, Zach Fisher, Mor Hazan Taege, Emily Graves, David Steiner, Yujia Li, Sarah
Nguyen, Rahul Sukthankar, Joe Stanton, Ali Eslami, Gloria Shen, Berkin Akin, Alexey Guseynov,
Yiqian Zhou, Jean-Baptiste Alayrac, Armand Joulin, Efrat Farkash, Ashish Thapliyal, Stephen
Roller, Noam Shazeer, Todor Davchev, Terry Koo, Hannah Forbes-Pollard, Kartik Audhkhasi,
Greg Farquhar, Adi Mayrav Gilady, Maggie Song, John Aslanides, Piermaria Mendolicchio,
Alicia Parrish, John Blitzer, Pramod Gupta, Xiaoen Ju, Xiaochen Yang, Puranjay Datta, Andrea
Tacchetti, Sanket Vaibhav Mehta, Gregory Dibb, Shubham Gupta, Federico Piccinini, Raia Hadsell,
Sujee Rajayogam, Jiepu Jiang, Patrick Griffin, Patrik Sundberg, Jamie Hayes, Alexey Frolov,
Tian Xie, Adam Zhang, Kingshuk Dasgupta, Uday Kalra, Lior Shani, Klaus Macherey, Tzu-
Kuo Huang, Liam MacDermed, Karthik Duddu, Paulo Zacchello, Zi Yang, Jessica Lo, Kai Hui,
Matej Kastelic, Derek Gasaway, Qijun Tan, Summer Yue, Pablo Barrio, John Wieting, Weel
Yang, Andrew Nystrom, Solomon Demmessie, Anselm Levskaya, Fabio Viola, Chetan Tekur,
Greg Billock, George Necula, Mandar Joshi, Rylan Schaeffer, Swachhand Lokhande, Christina
Sorokin, Pradeep Shenoy, Mia Chen, Mark Collier, Hongji Li, Taylor Bos, Nevan Wichers,
Sun Jae Lee, Angéline Pouget, Santhosh Thangaraj, Kyriakos Axiotis, Phil Crone, Rachel Sterneck,
Nikolai Chinaev, Victoria Krakovna, Oleksandr Ferludin, Ian Gemp, Stephanie Winkler, Dan
Goldberg, Ivan Korotkov, Kefan Xiao, Malika Mehrotra, Sandeep Mariserla, Vihari Piratla, Terry
Thurk, Khiem Pham, Hongxu Ma, Alexandre Senges, Ravi Kumar, Clemens Meyer, Ellie Talius,
Nuo Wang Pierse, Ballie Sandhu, Horia Toma, Kuo Lin, Swaroop Nath, Tom Stone, Dorsa Sadigh,
Nikita Gupta, Arthur Guez, Avi Singh, Matt Thomas, Tom Duerig, Yuan Gong, Richard Tanburn,
Lydia Lihui Zhang, Phuong Dao, Mohamed Hammad, Sirui Xie, Shruti Rijhwani, Ben Murdoch,
Duhyeon Kim, Will Thompson, Heng-Tze Cheng, Daniel Sohn, Pablo Sprechmann, Qiantong
Xu, Srinivas Tadepalli, Peter Young, Ye Zhang, Hansa Srinivasan, Miranda Aperghis, Aditya
Ayyar, Hen Fitoussi, Ryan Burnell, David Madras, Mike Dusenberry, Xi Xiong, Tayo Oguntebi,
Ben Albrecht, Jörg Bornschein, Jovana Mitrović, Mason Dimarco, Bhargav Kanagal Shamanna,
Premal Shah, Eren Sezener, Shyam Upadhyay, Dave Lacey, Craig Schiff, Sebastien Baur, Sanjay
Ganapathy, Eva Schnider, Mateo Wirth, Connor Schenck, Andrey Simanovsky, Yi-Xuan Tan,
Philipp Fränken, Dennis Duan, Bharath Mankalale, Nikhil Dhawan, Kevin Sequeira, Zichuan
Wei, Shivanker Goel, Caglar Unlu, Yukun Zhu, Haitian Sun, Ananth Balashankar, Kurt Shuster,

10

https://arxiv.org/abs/2506.02153

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Megh Umekar, Mahmoud Alnahlawi, Aäron van den Oord, Kelly Chen, Yuexiang Zhai, Zihang
Dai, Kuang-Huei Lee, Eric Doi, Lukas Zilka, Rohith Vallu, Disha Shrivastava, Jason Lee, Hisham
Husain, Honglei Zhuang, Vincent Cohen-Addad, Jarred Barber, James Atwood, Adam Sadovsky,
Quentin Wellens, Steven Hand, Arunkumar Rajendran, Aybuke Turker, CJ Carey, Yuanzhong Xu,
Hagen Soltau, Zefei Li, Xinying Song, Conglong Li, Iurii Kemaev, Sasha Brown, Andrea Burns,
Viorica Patraucean, Piotr Stanczyk, Renga Aravamudhan, Mathieu Blondel, Hila Noga, Lorenzo
Blanco, Will Song, Michael Isard, Mandar Sharma, Reid Hayes, Dalia El Badawy, Avery Lamp,
Itay Laish, Olga Kozlova, Kelvin Chan, Sahil Singla, Srinivas Sunkara, Mayank Upadhyay, Chang
Liu, Aijun Bai, Jarek Wilkiewicz, Martin Zlocha, Jeremiah Liu, Zhuowan Li, Haiguang Li, Omer
Barak, Ganna Raboshchuk, Jiho Choi, Fangyu Liu, Erik Jue, Mohit Sharma, Andreea Marzoca,
Robert Busa-Fekete, Anna Korsun, Andre Elisseeff, Zhe Shen, Sara Mc Carthy, Kay Lamerigts,
Anahita Hosseini, Hanzhao Lin, Charlie Chen, Fan Yang, Kushal Chauhan, Mark Omernick,
Dawei Jia, Karina Zainullina, Demis Hassabis, Danny Vainstein, Ehsan Amid, Xiang Zhou, Ronny
Votel, Eszter Vértes, Xinjian Li, Zongwei Zhou, Angeliki Lazaridou, Brendan McMahan, Arjun
Narayanan, Hubert Soyer, Sujoy Basu, Kayi Lee, Bryan Perozzi, Qin Cao, Leonard Berrada, Rahul
Arya, Ke Chen, Katrina, Xu, Matthias Lochbrunner, Alex Hofer, Sahand Sharifzadeh, Renjie
Wu, Sally Goldman, Pranjal Awasthi, Xuezhi Wang, Yan Wu, Claire Sha, Biao Zhang, Maciej
Mikuła, Filippo Graziano, Siobhan Mcloughlin, Irene Giannoumis, Youhei Namiki, Chase Malik,
Carey Radebaugh, Jamie Hall, Ramiro Leal-Cavazos, Jianmin Chen, Vikas Sindhwani, David Kao,
David Greene, Jordan Griffith, Chris Welty, Ceslee Montgomery, Toshihiro Yoshino, Liangzhe
Yuan, Noah Goodman, Assaf Hurwitz Michaely, Kevin Lee, KP Sawhney, Wei Chen, Zheng
Zheng, Megan Shum, Nikolay Savinov, Etienne Pot, Alex Pak, Morteza Zadimoghaddam, Sijal
Bhatnagar, Yoad Lewenberg, Blair Kutzman, Ji Liu, Lesley Katzen, Jeremy Selier, Josip Djolonga,
Dmitry Lepikhin, Kelvin Xu, Jacky Liang, Jiewen Tan, Benoit Schillings, Muge Ersoy, Pete
Blois, Bernd Bandemer, Abhimanyu Singh, Sergei Lebedev, Pankaj Joshi, Adam R. Brown, Evan
Palmer, Shreya Pathak, Komal Jalan, Fedir Zubach, Shuba Lall, Randall Parker, Alok Gunjan,
Sergey Rogulenko, Sumit Sanghai, Zhaoqi Leng, Zoltan Egyed, Shixin Li, Maria Ivanova, Kostas
Andriopoulos, Jin Xie, Elan Rosenfeld, Auriel Wright, Ankur Sharma, Xinyang Geng, Yicheng
Wang, Sam Kwei, Renke Pan, Yujing Zhang, Gabby Wang, Xi Liu, Chak Yeung, Elizabeth
Cole, Aviv Rosenberg, Zhen Yang, Phil Chen, George Polovets, Pranav Nair, Rohun Saxena,
Josh Smith, Shuo yiin Chang, Aroma Mahendru, Svetlana Grant, Anand Iyer, Irene Cai, Jed
McGiffin, Jiaming Shen, Alanna Walton, Antonious Girgis, Oliver Woodman, Rosemary Ke, Mike
Kwong, Louis Rouillard, Jinmeng Rao, Zhihao Li, Yuntao Xu, Flavien Prost, Chi Zou, Ziwei Ji,
Alberto Magni, Tyler Liechty, Dan A. Calian, Deepak Ramachandran, Igor Krivokon, Hui Huang,
Terry Chen, Anja Hauth, Anastasija Ilić, Weijuan Xi, Hyeontaek Lim, Vlad-Doru Ion, Pooya
Moradi, Metin Toksoz-Exley, Kalesha Bullard, Miltos Allamanis, Xiaomeng Yang, Sophie Wang,
Zhi Hong, Anita Gergely, Cheng Li, Bhavishya Mittal, Vitaly Kovalev, Victor Ungureanu, Jane
Labanowski, Jan Wassenberg, Nicolas Lacasse, Geoffrey Cideron, Petar Dević, Annie Marsden,
Lynn Nguyen, Michael Fink, Yin Zhong, Tatsuya Kiyono, Desi Ivanov, Sally Ma, Max Bain,
Kiran Yalasangi, Jennifer She, Anastasia Petrushkina, Mayank Lunayach, Carla Bromberg, Sarah
Hodkinson, Vilobh Meshram, Daniel Vlasic, Austin Kyker, Steve Xu, Jeff Stanway, Zuguang Yang,
Kai Zhao, Matthew Tung, Seth Odoom, Yasuhisa Fujii, Justin Gilmer, Eunyoung Kim, Felix Halim,
Quoc Le, Bernd Bohnet, Seliem El-Sayed, Behnam Neyshabur, Malcolm Reynolds, Dean Reich,
Yang Xu, Erica Moreira, Anuj Sharma, Zeyu Liu, Mohammad Javad Hosseini, Naina Raisinghani,
Yi Su, Ni Lao, Daniel Formoso, Marco Gelmi, Almog Gueta, Tapomay Dey, Elena Gribovskaya,
Domagoj Ćevid, Sidharth Mudgal, Garrett Bingham, Jianling Wang, Anurag Kumar, Alex Cullum,
Feng Han, Konstantinos Bousmalis, Diego Cedillo, Grace Chu, Vladimir Magay, Paul Michel,
Ester Hlavnova, Daniele Calandriello, Setareh Ariafar, Kaisheng Yao, Vikash Sehwag, Arpi Vezer,
Agustin Dal Lago, Zhenkai Zhu, Paul Kishan Rubenstein, Allen Porter, Anirudh Baddepudi, Oriana
Riva, Mihai Dorin Istin, Chih-Kuan Yeh, Zhi Li, Andrew Howard, Nilpa Jha, Jeremy Chen, Raoul
de Liedekerke, Zafarali Ahmed, Mikel Rodriguez, Tanuj Bhatia, Bangju Wang, Ali Elqursh, David
Klinghoffer, Peter Chen, Pushmeet Kohli, Te I, Weiyang Zhang, Zack Nado, Jilin Chen, Maxwell
Chen, George Zhang, Aayush Singh, Adam Hillier, Federico Lebron, Yiqing Tao, Ting Liu, Gabriel
Dulac-Arnold, Jingwei Zhang, Shashi Narayan, Buhuang Liu, Orhan Firat, Abhishek Bhowmick,
Bingyuan Liu, Hao Zhang, Zizhao Zhang, Georges Rotival, Nathan Howard, Anu Sinha, Alexander
Grushetsky, Benjamin Beyret, Keerthana Gopalakrishnan, James Zhao, Kyle He, Szabolcs Payrits,
Zaid Nabulsi, Zhaoyi Zhang, Weijie Chen, Edward Lee, Nova Fallen, Sreenivas Gollapudi, Aurick
Zhou, Filip Pavetić, Thomas Köppe, Shiyu Huang, Rama Pasumarthi, Nick Fernando, Felix
Fischer, Daria Ćurko, Yang Gao, James Svensson, Austin Stone, Haroon Qureshi, Abhishek

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sinha, Apoorv Kulshreshtha, Martin Matysiak, Jieming Mao, Carl Saroufim, Aleksandra Faust,
Qingnan Duan, Gil Fidel, Kaan Katircioglu, Raphaël Lopez Kaufman, Dhruv Shah, Weize Kong,
Abhishek Bapna, Gellért Weisz, Emma Dunleavy, Praneet Dutta, Tianqi Liu, Rahma Chaabouni,
Carolina Parada, Marcus Wu, Alexandra Belias, Alessandro Bissacco, Stanislav Fort, Li Xiao,
Fantine Huot, Chris Knutsen, Yochai Blau, Gang Li, Jennifer Prendki, Juliette Love, Yinlam
Chow, Pichi Charoenpanit, Hidetoshi Shimokawa, Vincent Coriou, Karol Gregor, Tomas Izo, Arjun
Akula, Mario Pinto, Chris Hahn, Dominik Paulus, Jiaxian Guo, Neha Sharma, Cho-Jui Hsieh,
Adaeze Chukwuka, Kazuma Hashimoto, Nathalie Rauschmayr, Ling Wu, Christof Angermueller,
Yulong Wang, Sebastian Gerlach, Michael Pliskin, Daniil Mirylenka, Min Ma, Lexi Baugher,
Bryan Gale, Shaan Bijwadia, Nemanja Rakićević, David Wood, Jane Park, Chung-Ching Chang,
Babi Seal, Chris Tar, Kacper Krasowiak, Yiwen Song, Georgi Stephanov, Gary Wang, Marcello
Maggioni, Stein Xudong Lin, Felix Wu, Shachi Paul, Zixuan Jiang, Shubham Agrawal, Bilal Piot,
Alex Feng, Cheolmin Kim, Tulsee Doshi, Jonathan Lai, Chuqiao, Xu, Sharad Vikram, Ciprian
Chelba, Sebastian Krause, Vincent Zhuang, Jack Rae, Timo Denk, Adrian Collister, Lotte Weerts,
Xianghong Luo, Yifeng Lu, Håvard Garnes, Nitish Gupta, Terry Spitz, Avinatan Hassidim, Lihao
Liang, Izhak Shafran, Peter Humphreys, Kenny Vassigh, Phil Wallis, Virat Shejwalkar, Nicolas
Perez-Nieves, Rachel Hornung, Melissa Tan, Beka Westberg, Andy Ly, Richard Zhang, Brian
Farris, Jongbin Park, Alec Kosik, Zeynep Cankara, Andrii Maksai, Yunhan Xu, Albin Cassirer,
Sergi Caelles, Abbas Abdolmaleki, Mencher Chiang, Alex Fabrikant, Shravya Shetty, Luheng
He, Mai Giménez, Hadi Hashemi, Sheena Panthaplackel, Yana Kulizhskaya, Salil Deshmukh,
Daniele Pighin, Robin Alazard, Disha Jindal, Seb Noury, Pradeep Kumar S, Siyang Qin, Xerxes
Dotiwalla, Stephen Spencer, Mohammad Babaeizadeh, Blake JianHang Chen, Vaibhav Mehta,
Jennie Lees, Andrew Leach, Penporn Koanantakool, Ilia Akolzin, Ramona Comanescu, Junwhan
Ahn, Alexey Svyatkovskiy, Basil Mustafa, David D’Ambrosio, Shiva Mohan Reddy Garlapati,
Pascal Lamblin, Alekh Agarwal, Shuang Song, Pier Giuseppe Sessa, Pauline Coquinot, John
Maggs, Hussain Masoom, Divya Pitta, Yaqing Wang, Patrick Morris-Suzuki, Billy Porter, Johnson
Jia, Jeffrey Dudek, Raghavender R, Cosmin Paduraru, Alan Ansell, Tolga Bolukbasi, Tony Lu,
Ramya Ganeshan, Zi Wang, Henry Griffiths, Rodrigo Benenson, Yifan He, James Swirhun, George
Papamakarios, Aditya Chawla, Kuntal Sengupta, Yan Wang, Vedrana Milutinovic, Igor Mordatch,
Zhipeng Jia, Jamie Smith, Will Ng, Shitij Nigam, Matt Young, Eugen Vušak, Blake Hechtman,
Sheela Goenka, Avital Zipori, Kareem Ayoub, Ashok Popat, Trilok Acharya, Luo Yu, Dawn
Bloxwich, Hugo Song, Paul Roit, Haiqiong Li, Aviel Boag, Nigamaa Nayakanti, Bilva Chandra,
Tianli Ding, Aahil Mehta, Cath Hope, Jiageng Zhang, Idan Heimlich Shtacher, Kartikeya Badola,
Ryo Nakashima, Andrei Sozanschi, Iulia Comşa, Ante Žužul, Emily Caveness, Julian Odell,
Matthew Watson, Dario de Cesare, Phillip Lippe, Derek Lockhart, Siddharth Verma, Huizhong
Chen, Sean Sun, Lin Zhuo, Aditya Shah, Prakhar Gupta, Alex Muzio, Ning Niu, Amir Zait,
Abhinav Singh, Meenu Gaba, Fan Ye, Prajit Ramachandran, Mohammad Saleh, Raluca Ada Popa,
Ayush Dubey, Frederick Liu, Sara Javanmardi, Mark Epstein, Ross Hemsley, Richard Green,
Nishant Ranka, Eden Cohen, Chuyuan Kelly Fu, Sanjay Ghemawat, Jed Borovik, James Martens,
Anthony Chen, Pranav Shyam, André Susano Pinto, Ming-Hsuan Yang, Alexandru Ţifrea, David
Du, Boqing Gong, Ayushi Agarwal, Seungyeon Kim, Christian Frank, Saloni Shah, Xiaodan Song,
Zhiwei Deng, Ales Mikhalap, Kleopatra Chatziprimou, Timothy Chung, Toni Creswell, Susan
Zhang, Yennie Jun, Carl Lebsack, Will Truong, Slavica Andačić, Itay Yona, Marco Fornoni, Rong
Rong, Serge Toropov, Afzal Shama Soudagar, Andrew Audibert, Salah Zaiem, Zaheer Abbas,
Andrei Rusu, Sahitya Potluri, Shitao Weng, Anastasios Kementsietsidis, Anton Tsitsulin, Daiyi
Peng, Natalie Ha, Sanil Jain, Tejasi Latkar, Simeon Ivanov, Cory McLean, Anirudh GP, Rajesh
Venkataraman, Canoee Liu, Dilip Krishnan, Joel D’sa, Roey Yogev, Paul Collins, Benjamin Lee,
Lewis Ho, Carl Doersch, Gal Yona, Shawn Gao, Felipe Tiengo Ferreira, Adnan Ozturel, Hannah
Muckenhirn, Ce Zheng, Gargi Balasubramaniam, Mudit Bansal, George van den Driessche, Sivan
Eiger, Salem Haykal, Vedant Misra, Abhimanyu Goyal, Danilo Martins, Gary Leung, Jonas
Valfridsson, Four Flynn, Will Bishop, Chenxi Pang, Yoni Halpern, Honglin Yu, Lawrence Moore,
Yuvein, Zhu, Sridhar Thiagarajan, Yoel Drori, Zhisheng Xiao, Lucio Dery, Rolf Jagerman, Jing
Lu, Eric Ge, Vaibhav Aggarwal, Arjun Khare, Vinh Tran, Oded Elyada, Ferran Alet, James Rubin,
Ian Chou, David Tian, Libin Bai, Lawrence Chan, Lukasz Lew, Karolis Misiunas, Taylan Bilal,
Aniket Ray, Sindhu Raghuram, Alex Castro-Ros, Viral Carpenter, CJ Zheng, Michael Kilgore,
Josef Broder, Emily Xue, Praveen Kallakuri, Dheeru Dua, Nancy Yuen, Steve Chien, John Schultz,
Saurabh Agrawal, Reut Tsarfaty, Jingcao Hu, Ajay Kannan, Dror Marcus, Nisarg Kothari, Baochen
Sun, Ben Horn, Matko Bošnjak, Ferjad Naeem, Dean Hirsch, Lewis Chiang, Boya Fang, Jie Han,
Qifei Wang, Ben Hora, Antoine He, Mario Lučić, Beer Changpinyo, Anshuman Tripathi, John

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Youssef, Chester Kwak, Philippe Schlattner, Cat Graves, Rémi Leblond, Wenjun Zeng, Anders
Andreassen, Gabriel Rasskin, Yue Song, Eddie Cao, Junhyuk Oh, Matt Hoffman, Wojtek Skut,
Yichi Zhang, Jon Stritar, Xingyu Cai, Saarthak Khanna, Kathie Wang, Shriya Sharma, Christian
Reisswig, Younghoon Jun, Aman Prasad, Tatiana Sholokhova, Preeti Singh, Adi Gerzi Rosenthal,
Anian Ruoss, Françoise Beaufays, Sean Kirmani, Dongkai Chen, Johan Schalkwyk, Jonathan
Herzig, Been Kim, Josh Jacob, Damien Vincent, Adrian N Reyes, Ivana Balazevic, Léonard
Hussenot, Jon Schneider, Parker Barnes, Luis Castro, Spandana Raj Babbula, Simon Green,
Serkan Cabi, Nico Duduta, Danny Driess, Rich Galt, Noam Velan, Junjie Wang, Hongyang Jiao,
Matthew Mauger, Du Phan, Miteyan Patel, Vlado Galić, Jerry Chang, Eyal Marcus, Matt Harvey,
Julian Salazar, Elahe Dabir, Suraj Satishkumar Sheth, Amol Mandhane, Hanie Sedghi, Jeremiah
Willcock, Amir Zandieh, Shruthi Prabhakara, Aida Amini, Antoine Miech, Victor Stone, Massimo
Nicosia, Paul Niemczyk, Ying Xiao, Lucy Kim, Sławek Kwasiborski, Vikas Verma, Ada Maksutaj
Oflazer, Christoph Hirnschall, Peter Sung, Lu Liu, Richard Everett, Michiel Bakker, Ágoston
Weisz, Yufei Wang, Vivek Sampathkumar, Uri Shaham, Bibo Xu, Yasemin Altun, Mingqiu Wang,
Takaaki Saeki, Guanjie Chen, Emanuel Taropa, Shanthal Vasanth, Sophia Austin, Lu Huang,
Goran Petrovic, Qingyun Dou, Daniel Golovin, Grigory Rozhdestvenskiy, Allie Culp, Will Wu,
Motoki Sano, Divya Jain, Julia Proskurnia, Sébastien Cevey, Alejandro Cruzado Ruiz, Piyush
Patil, Mahdi Mirzazadeh, Eric Ni, Javier Snaider, Lijie Fan, Alexandre Fréchette, AJ Pierigiovanni,
Shariq Iqbal, Kenton Lee, Claudio Fantacci, Jinwei Xing, Lisa Wang, Alex Irpan, David Raposo,
Yi Luan, Zhuoyuan Chen, Harish Ganapathy, Kevin Hui, Jiazhong Nie, Isabelle Guyon, Heming
Ge, Roopali Vij, Hui Zheng, Dayeong Lee, Alfonso Castaño, Khuslen Baatarsukh, Gabriel
Ibagon, Alexandra Chronopoulou, Nicholas FitzGerald, Shashank Viswanadha, Safeen Huda,
Rivka Moroshko, Georgi Stoyanov, Prateek Kolhar, Alain Vaucher, Ishaan Watts, Adhi Kuncoro,
Henryk Michalewski, Satish Kambala, Bat-Orgil Batsaikhan, Alek Andreev, Irina Jurenka, Maigo
Le, Qihang Chen, Wael Al Jishi, Sarah Chakera, Zhe Chen, Aditya Kini, Vikas Yadav, Aditya
Siddhant, Ilia Labzovsky, Balaji Lakshminarayanan, Carrie Grimes Bostock, Pankil Botadra,
Ankesh Anand, Colton Bishop, Sam Conway-Rahman, Mohit Agarwal, Yani Donchev, Achintya
Singhal, Félix de Chaumont Quitry, Natalia Ponomareva, Nishant Agrawal, Bin Ni, Kalpesh
Krishna, Masha Samsikova, John Karro, Yilun Du, Tamara von Glehn, Caden Lu, Christopher A.
Choquette-Choo, Zhen Qin, Tingnan Zhang, Sicheng Li, Divya Tyam, Swaroop Mishra, Wing
Lowe, Colin Ji, Weiyi Wang, Manaal Faruqui, Ambrose Slone, Valentin Dalibard, Arunachalam
Narayanaswamy, John Lambert, Pierre-Antoine Manzagol, Dan Karliner, Andrew Bolt, Ivan
Lobov, Aditya Kusupati, Chang Ye, Xuan Yang, Heiga Zen, Nelson George, Mukul Bhutani,
Olivier Lacombe, Robert Riachi, Gagan Bansal, Rachel Soh, Yue Gao, Yang Yu, Adams Yu,
Emily Nottage, Tania Rojas-Esponda, James Noraky, Manish Gupta, Ragha Kotikalapudi, Jichuan
Chang, Sanja Deur, Dan Graur, Alex Mossin, Erin Farnese, Ricardo Figueira, Alexandre Moufarek,
Austin Huang, Patrik Zochbauer, Ben Ingram, Tongzhou Chen, Zelin Wu, Adrià Puigdomènech,
Leland Rechis, Da Yu, Sri Gayatri Sundara Padmanabhan, Rui Zhu, Chu ling Ko, Andrea Banino,
Samira Daruki, Aarush Selvan, Dhruva Bhaswar, Daniel Hernandez Diaz, Chen Su, Salvatore
Scellato, Jennifer Brennan, Woohyun Han, Grace Chung, Priyanka Agrawal, Urvashi Khandelwal,
Khe Chai Sim, Morgane Lustman, Sam Ritter, Kelvin Guu, Jiawei Xia, Prateek Jain, Emma Wang,
Tyrone Hill, Mirko Rossini, Marija Kostelac, Tautvydas Misiunas, Amit Sabne, Kyuyeun Kim,
Ahmet Iscen, Congchao Wang, José Leal, Ashwin Sreevatsa, Utku Evci, Manfred Warmuth, Saket
Joshi, Daniel Suo, James Lottes, Garrett Honke, Brendan Jou, Stefani Karp, Jieru Hu, Himanshu
Sahni, Adrien Ali Taïga, William Kong, Samrat Ghosh, Renshen Wang, Jay Pavagadhi, Natalie
Axelsson, Nikolai Grigorev, Patrick Siegler, Rebecca Lin, Guohui Wang, Emilio Parisotto, Sharath
Maddineni, Krishan Subudhi, Eyal Ben-David, Elena Pochernina, Orgad Keller, Thi Avrahami,
Zhe Yuan, Pulkit Mehta, Jialu Liu, Sherry Yang, Wendy Kan, Katherine Lee, Tom Funkhouser,
Derek Cheng, Hongzhi Shi, Archit Sharma, Joe Kelley, Matan Eyal, Yury Malkov, Corentin Tallec,
Yuval Bahat, Shen Yan, Xintian, Wu, David Lindner, Chengda Wu, Avi Caciularu, Xiyang Luo,
Rodolphe Jenatton, Tim Zaman, Yingying Bi, Ilya Kornakov, Ganesh Mallya, Daisuke Ikeda, Itay
Karo, Anima Singh, Colin Evans, Praneeth Netrapalli, Vincent Nallatamby, Isaac Tian, Yannis
Assael, Vikas Raunak, Victor Carbune, Ioana Bica, Lior Madmoni, Dee Cattle, Snchit Grover,
Krishna Somandepalli, Sid Lall, Amelio Vázquez-Reina, Riccardo Patana, Jiaqi Mu, Pranav Talluri,
Maggie Tran, Rajeev Aggarwal, RJ Skerry-Ryan, Jun Xu, Mike Burrows, Xiaoyue Pan, Edouard
Yvinec, Di Lu, Zhiying Zhang, Duc Dung Nguyen, Hairong Mu, Gabriel Barcik, Helen Ran,
Lauren Beltrone, Krzysztof Choromanski, Dia Kharrat, Samuel Albanie, Sean Purser-haskell,
David Bieber, Carrie Zhang, Jing Wang, Tom Hudson, Zhiyuan Zhang, Han Fu, Johannes Mauerer,
Mohammad Hossein Bateni, AJ Maschinot, Bing Wang, Muye Zhu, Arjun Pillai, Tobias Weyand,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shuang Liu, Oscar Akerlund, Fred Bertsch, Vittal Premachandran, Alicia Jin, Vincent Roulet,
Peter de Boursac, Shubham Mittal, Ndaba Ndebele, Georgi Karadzhov, Sahra Ghalebikesabi,
Ricky Liang, Allen Wu, Yale Cong, Nimesh Ghelani, Sumeet Singh, Bahar Fatemi, Warren, Chen,
Charles Kwong, Alexey Kolganov, Steve Li, Richard Song, Chenkai Kuang, Sobhan Miryoosefi,
Dale Webster, James Wendt, Arkadiusz Socala, Guolong Su, Artur Mendonça, Abhinav Gupta,
Xiaowei Li, Tomy Tsai, Qiong, Hu, Kai Kang, Angie Chen, Sertan Girgin, Yongqin Xian, Andrew
Lee, Nolan Ramsden, Leslie Baker, Madeleine Clare Elish, Varvara Krayvanova, Rishabh Joshi,
Jiri Simsa, Yao-Yuan Yang, Piotr Ambroszczyk, Dipankar Ghosh, Arjun Kar, Yuan Shangguan,
Yumeya Yamamori, Yaroslav Akulov, Andy Brock, Haotian Tang, Siddharth Vashishtha, Rich
Munoz, Andreas Steiner, Kalyan Andra, Daniel Eppens, Qixuan Feng, Hayato Kobayashi, Sasha
Goldshtein, Mona El Mahdy, Xin Wang, Jilei, Wang, Richard Killam, Tom Kwiatkowski, Kavya
Kopparapu, Serena Zhan, Chao Jia, Alexei Bendebury, Sheryl Luo, Adrià Recasens, Timothy
Knight, Jing Chen, Mohak Patel, YaGuang Li, Ben Withbroe, Dean Weesner, Kush Bhatia, Jie
Ren, Danielle Eisenbud, Ebrahim Songhori, Yanhua Sun, Travis Choma, Tasos Kementsietsidis,
Lucas Manning, Brian Roark, Wael Farhan, Jie Feng, Susheel Tatineni, James Cobon-Kerr, Yunjie
Li, Lisa Anne Hendricks, Isaac Noble, Chris Breaux, Nate Kushman, Liqian Peng, Fuzhao Xue,
Taylor Tobin, Jamie Rogers, Josh Lipschultz, Chris Alberti, Alexey Vlaskin, Mostafa Dehghani,
Roshan Sharma, Tris Warkentin, Chen-Yu Lee, Benigno Uria, Da-Cheng Juan, Angad Chandorkar,
Hila Sheftel, Ruibo Liu, Elnaz Davoodi, Borja De Balle Pigem, Kedar Dhamdhere, David Ross,
Jonathan Hoech, Mahdis Mahdieh, Li Liu, Qiujia Li, Liam McCafferty, Chenxi Liu, Markus
Mircea, Yunting Song, Omkar Savant, Alaa Saade, Colin Cherry, Vincent Hellendoorn, Siddharth
Goyal, Paul Pucciarelli, David Vilar Torres, Zohar Yahav, Hyo Lee, Lars Lowe Sjoesund, Christo
Kirov, Bo Chang, Deepanway Ghoshal, Lu Li, Gilles Baechler, Sébastien Pereira, Tara Sainath,
Anudhyan Boral, Dominik Grewe, Afief Halumi, Nguyet Minh Phu, Tianxiao Shen, Marco Tulio
Ribeiro, Dhriti Varma, Alex Kaskasoli, Vlad Feinberg, Navneet Potti, Jarrod Kahn, Matheus
Wisniewski, Shakir Mohamed, Arnar Mar Hrafnkelsson, Bobak Shahriari, Jean-Baptiste Lespiau,
Lisa Patel, Legg Yeung, Tom Paine, Lantao Mei, Alex Ramirez, Rakesh Shivanna, Li Zhong, Josh
Woodward, Guilherme Tubone, Samira Khan, Heng Chen, Elizabeth Nielsen, Catalin Ionescu,
Utsav Prabhu, Mingcen Gao, Qingze Wang, Sean Augenstein, Neesha Subramaniam, Jason Chang,
Fotis Iliopoulos, Jiaming Luo, Myriam Khan, Weicheng Kuo, Denis Teplyashin, Florence Perot,
Logan Kilpatrick, Amir Globerson, Hongkun Yu, Anfal Siddiqui, Nick Sukhanov, Arun Kandoor,
Umang Gupta, Marco Andreetto, Moran Ambar, Donnie Kim, Paweł Wesołowski, Sarah Perrin,
Ben Limonchik, Wei Fan, Jim Stephan, Ian Stewart-Binks, Ryan Kappedal, Tong He, Sarah Cogan,
Romina Datta, Tong Zhou, Jiayu Ye, Leandro Kieliger, Ana Ramalho, Kyle Kastner, Fabian
Mentzer, Wei-Jen Ko, Arun Suggala, Tianhao Zhou, Shiraz Butt, Hana Strejček, Lior Belenki,
Subhashini Venugopalan, Mingyang Ling, Evgenii Eltyshev, Yunxiao Deng, Geza Kovacs, Mukund
Raghavachari, Hanjun Dai, Tal Schuster, Steven Schwarcz, Richard Nguyen, Arthur Nguyen, Gavin
Buttimore, Shrestha Basu Mallick, Sudeep Gandhe, Seth Benjamin, Michal Jastrzebski, Le Yan,
Sugato Basu, Chris Apps, Isabel Edkins, James Allingham, Immanuel Odisho, Tomas Kocisky,
Jewel Zhao, Linting Xue, Apoorv Reddy, Chrysovalantis Anastasiou, Aviel Atias, Sam Redmond,
Kieran Milan, Nicolas Heess, Herman Schmit, Allan Dafoe, Daniel Andor, Tynan Gangwani,
Anca Dragan, Sheng Zhang, Ashyana Kachra, Gang Wu, Siyang Xue, Kevin Aydin, Siqi Liu,
Yuxiang Zhou, Mahan Malihi, Austin Wu, Siddharth Gopal, Candice Schumann, Peter Stys,
Alek Wang, Mirek Olšák, Dangyi Liu, Christian Schallhart, Yiran Mao, Demetra Brady, Hao
Xu, Tomas Mery, Chawin Sitawarin, Siva Velusamy, Tom Cobley, Alex Zhai, Christian Walder,
Nitzan Katz, Ganesh Jawahar, Chinmay Kulkarni, Antoine Yang, Adam Paszke, Yinan Wang,
Bogdan Damoc, Zalán Borsos, Ray Smith, Jinning Li, Mansi Gupta, Andrei Kapishnikov, Sushant
Prakash, Florian Luisier, Rishabh Agarwal, Will Grathwohl, Kuangyuan Chen, Kehang Han,
Nikhil Mehta, Andrew Over, Shekoofeh Azizi, Lei Meng, Niccolò Dal Santo, Kelvin Zheng, Jane
Shapiro, Igor Petrovski, Jeffrey Hui, Amin Ghafouri, Jasper Snoek, James Qin, Mandy Jordan,
Caitlin Sikora, Jonathan Malmaud, Yuheng Kuang, Aga Świetlik, Ruoxin Sang, Chongyang Shi,
Leon Li, Andrew Rosenberg, Shubin Zhao, Andy Crawford, Jan-Thorsten Peter, Yun Lei, Xavier
Garcia, Long Le, Todd Wang, Julien Amelot, Dave Orr, Praneeth Kacham, Dana Alon, Gladys
Tyen, Abhinav Arora, James Lyon, Alex Kurakin, Mimi Ly, Theo Guidroz, Zhipeng Yan, Rina
Panigrahy, Pingmei Xu, Thais Kagohara, Yong Cheng, Eric Noland, Jinhyuk Lee, Jonathan Lee,
Cathy Yip, Maria Wang, Efrat Nehoran, Alexander Bykovsky, Zhihao Shan, Ankit Bhagatwala,
Chaochao Yan, Jie Tan, Guillermo Garrido, Dan Ethier, Nate Hurley, Grace Vesom, Xu Chen,
Siyuan Qiao, Abhishek Nayyar, Julian Walker, Paramjit Sandhu, Mihaela Rosca, Danny Swisher,
Mikhail Dektiarev, Josh Dillon, George-Cristian Muraru, Manuel Tragut, Artiom Myaskovsky,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

David Reid, Marko Velic, Owen Xiao, Jasmine George, Mark Brand, Jing Li, Wenhao Yu, Shane
Gu, Xiang Deng, François-Xavier Aubet, Soheil Hassas Yeganeh, Fred Alcober, Celine Smith,
Trevor Cohn, Kay McKinney, Michael Tschannen, Ramesh Sampath, Gowoon Cheon, Liangchen
Luo, Luyang Liu, Jordi Orbay, Hui Peng, Gabriela Botea, Xiaofan Zhang, Charles Yoon, Cesar
Magalhaes, Paweł Stradomski, Ian Mackinnon, Steven Hemingray, Kumaran Venkatesan, Rhys
May, Jaeyoun Kim, Alex Druinsky, Jingchen Ye, Zheng Xu, Terry Huang, Jad Al Abdallah, Adil
Dostmohamed, Rachana Fellinger, Tsendsuren Munkhdalai, Akanksha Maurya, Peter Garst, Yin
Zhang, Maxim Krikun, Simon Bucher, Aditya Srikanth Veerubhotla, Yaxin Liu, Sheng Li, Nishesh
Gupta, Jakub Adamek, Hanwen Chen, Bernett Orlando, Aleksandr Zaks, Joost van Amersfoort,
Josh Camp, Hui Wan, HyunJeong Choe, Zhichun Wu, Kate Olszewska, Weiren Yu, Archita Vadali,
Martin Scholz, Daniel De Freitas, Jason Lin, Amy Hua, Xin Liu, Frank Ding, Yichao Zhou, Boone
Severson, Katerina Tsihlas, Samuel Yang, Tammo Spalink, Varun Yerram, Helena Pankov, Rory
Blevins, Ben Vargas, Sarthak Jauhari, Matt Miecnikowski, Ming Zhang, Sandeep Kumar, Clement
Farabet, Charline Le Lan, Sebastian Flennerhag, Yonatan Bitton, Ada Ma, Arthur Bražinskas,
Eli Collins, Niharika Ahuja, Sneha Kudugunta, Anna Bortsova, Minh Giang, Wanzheng Zhu,
Ed Chi, Scott Lundberg, Alexey Stern, Subha Puttagunta, Jing Xiong, Xiao Wu, Yash Pande,
Amit Jhindal, Daniel Murphy, Jon Clark, Marc Brockschmidt, Maxine Deines, Kevin R. McKee,
Dan Bahir, Jiajun Shen, Minh Truong, Daniel McDuff, Andrea Gesmundo, Edouard Rosseel,
Bowen Liang, Ken Caluwaerts, Jessica Hamrick, Joseph Kready, Mary Cassin, Rishikesh Ingale,
Li Lao, Scott Pollom, Yifan Ding, Wei He, Lizzetth Bellot, Joana Iljazi, Ramya Sree Boppana,
Shan Han, Tara Thompson, Amr Khalifa, Anna Bulanova, Blagoj Mitrevski, Bo Pang, Emma
Cooney, Tian Shi, Rey Coaguila, Tamar Yakar, Marc’aurelio Ranzato, Nikola Momchev, Chris
Rawles, Zachary Charles, Young Maeng, Yuan Zhang, Rishabh Bansal, Xiaokai Zhao, Brian
Albert, Yuan Yuan, Sudheendra Vijayanarasimhan, Roy Hirsch, Vinay Ramasesh, Kiran Vodrahalli,
Xingyu Wang, Arushi Gupta, DJ Strouse, Jianmo Ni, Roma Patel, Gabe Taubman, Zhouyuan
Huo, Dero Gharibian, Marianne Monteiro, Hoi Lam, Shobha Vasudevan, Aditi Chaudhary, Isabela
Albuquerque, Kilol Gupta, Sebastian Riedel, Chaitra Hegde, Avraham Ruderman, András György,
Marcus Wainwright, Ashwin Chaugule, Burcu Karagol Ayan, Tomer Levinboim, Sam Shleifer,
Yogesh Kalley, Vahab Mirrokni, Abhishek Rao, Prabakar Radhakrishnan, Jay Hartford, Jialin
Wu, Zhenhai Zhu, Francesco Bertolini, Hao Xiong, Nicolas Serrano, Hamish Tomlinson, Myle
Ott, Yifan Chang, Mark Graham, Jian Li, Marco Liang, Xiangzhu Long, Sebastian Borgeaud,
Yanif Ahmad, Alex Grills, Diana Mincu, Martin Izzard, Yuan Liu, Jinyu Xie, Louis O’Bryan,
Sameera Ponda, Simon Tong, Michelle Liu, Dan Malkin, Khalid Salama, Yuankai Chen, Rohan
Anil, Anand Rao, Rigel Swavely, Misha Bilenko, Nina Anderson, Tat Tan, Jing Xie, Xing Wu,
Lijun Yu, Oriol Vinyals, Andrey Ryabtsev, Rumen Dangovski, Kate Baumli, Daniel Keysers,
Christian Wright, Zoe Ashwood, Betty Chan, Artem Shtefan, Yaohui Guo, Ankur Bapna, Radu
Soricut, Steven Pecht, Sabela Ramos, Rui Wang, Jiahao Cai, Trieu Trinh, Paul Barham, Linda
Friso, Eli Stickgold, Xiangzhuo Ding, Siamak Shakeri, Diego Ardila, Eleftheria Briakou, Phil
Culliton, Adam Raveret, Jingyu Cui, David Saxton, Subhrajit Roy, Javad Azizi, Pengcheng Yin,
Lucia Loher, Andrew Bunner, Min Choi, Faruk Ahmed, Eric Li, Yin Li, Shengyang Dai, Michael
Elabd, Sriram Ganapathy, Shivani Agrawal, Yiqing Hua, Paige Kunkle, Sujeevan Rajayogam, Arun
Ahuja, Arthur Conmy, Alex Vasiloff, Parker Beak, Christopher Yew, Jayaram Mudigonda, Bartek
Wydrowski, Jon Blanton, Zhengdong Wang, Yann Dauphin, Zhuo Xu, Martin Polacek, Xi Chen,
Hexiang Hu, Pauline Sho, Markus Kunesch, Mehdi Hafezi Manshadi, Eliza Rutherford, Bo Li,
Sissie Hsiao, Iain Barr, Alex Tudor, Matija Kecman, Arsha Nagrani, Vladimir Pchelin, Martin
Sundermeyer, Aishwarya P S, Abhijit Karmarkar, Yi Gao, Grishma Chole, Olivier Bachem, Isabel
Gao, Arturo BC, Matt Dibb, Mauro Verzetti, Felix Hernandez-Campos, Yana Lunts, Matthew
Johnson, Julia Di Trapani, Raphael Koster, Idan Brusilovsky, Binbin Xiong, Megha Mohabey, Han
Ke, Joe Zou, Tea Sabolić, Víctor Campos, John Palowitch, Alex Morris, Linhai Qiu, Pranavaraj
Ponnuramu, Fangtao Li, Vivek Sharma, Kiranbir Sodhia, Kaan Tekelioglu, Aleksandr Chuklin,
Madhavi Yenugula, Erika Gemzer, Theofilos Strinopoulos, Sam El-Husseini, Huiyu Wang, Yan
Zhong, Edouard Leurent, Paul Natsev, Weijun Wang, Dre Mahaarachchi, Tao Zhu, Songyou Peng,
Sami Alabed, Cheng-Chun Lee, Anthony Brohan, Arthur Szlam, GS Oh, Anton Kovsharov, Jenny
Lee, Renee Wong, Megan Barnes, Gregory Thornton, Felix Gimeno, Omer Levy, Martin Sevenich,
Melvin Johnson, Jonathan Mallinson, Robert Dadashi, Ziyue Wang, Qingchun Ren, Preethi Lahoti,
Arka Dhar, Josh Feldman, Dan Zheng, Thatcher Ulrich, Liviu Panait, Michiel Blokzijl, Cip
Baetu, Josip Matak, Jitendra Harlalka, Maulik Shah, Tal Marian, Daniel von Dincklage, Cosmo
Du, Ruy Ley-Wild, Bethanie Brownfield, Max Schumacher, Yury Stuken, Shadi Noghabi, Sonal
Gupta, Xiaoqi Ren, Eric Malmi, Felix Weissenberger, Blanca Huergo, Maria Bauza, Thomas

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lampe, Arthur Douillard, Mojtaba Seyedhosseini, Roy Frostig, Zoubin Ghahramani, Kelvin
Nguyen, Kashyap Krishnakumar, Chengxi Ye, Rahul Gupta, Alireza Nazari, Robert Geirhos, Pete
Shaw, Ahmed Eleryan, Dima Damen, Jennimaria Palomaki, Ted Xiao, Qiyin Wu, Quan Yuan,
Phoenix Meadowlark, Matthew Bilotti, Raymond Lin, Mukund Sridhar, Yannick Schroecker,
Da-Woon Chung, Jincheng Luo, Trevor Strohman, Tianlin Liu, Anne Zheng, Jesse Emond, Wei
Wang, Andrew Lampinen, Toshiyuki Fukuzawa, Folawiyo Campbell-Ajala, Monica Roy, James
Lee-Thorp, Lily Wang, Iftekhar Naim, Tony, Nguy ên, Guy Bensky, Aditya Gupta, Dominika
Rogozińska, Justin Fu, Thanumalayan Sankaranarayana Pillai, Petar Veličković, Shahar Drath,
Philipp Neubeck, Vaibhav Tulsyan, Arseniy Klimovskiy, Don Metzler, Sage Stevens, Angel
Yeh, Junwei Yuan, Tianhe Yu, Kelvin Zhang, Alec Go, Vincent Tsang, Ying Xu, Andy Wan,
Isaac Galatzer-Levy, Sam Sobell, Abodunrinwa Toki, Elizabeth Salesky, Wenlei Zhou, Diego
Antognini, Sholto Douglas, Shimu Wu, Adam Lelkes, Frank Kim, Paul Cavallaro, Ana Salazar,
Yuchi Liu, James Besley, Tiziana Refice, Yiling Jia, Zhang Li, Michal Sokolik, Arvind Kannan,
Jon Simon, Jo Chick, Avia Aharon, Meet Gandhi, Mayank Daswani, Keyvan Amiri, Vighnesh
Birodkar, Abe Ittycheriah, Peter Grabowski, Oscar Chang, Charles Sutton, Zhixin, Lai, Umesh
Telang, Susie Sargsyan, Tao Jiang, Raphael Hoffmann, Nicole Brichtova, Matteo Hessel, Jonathan
Halcrow, Sammy Jerome, Geoff Brown, Alex Tomala, Elena Buchatskaya, Dian Yu, Sachit
Menon, Pol Moreno, Yuguo Liao, Vicky Zayats, Luming Tang, SQ Mah, Ashish Shenoy, Alex
Siegman, Majid Hadian, Okwan Kwon, Tao Tu, Nima Khajehnouri, Ryan Foley, Parisa Haghani,
Zhongru Wu, Vaishakh Keshava, Khyatti Gupta, Tony Bruguier, Rui Yao, Danny Karmon, Luisa
Zintgraf, Zhicheng Wang, Enrique Piqueras, Junehyuk Jung, Jenny Brennan, Diego Machado,
Marissa Giustina, MH Tessler, Kamyu Lee, Qiao Zhang, Joss Moore, Kaspar Daugaard, Alexander
Frömmgen, Jennifer Beattie, Fred Zhang, Daniel Kasenberg, Ty Geri, Danfeng Qin, Gaurav Singh
Tomar, Tom Ouyang, Tianli Yu, Luowei Zhou, Rajiv Mathews, Andy Davis, Yaoyiran Li, Jai
Gupta, Damion Yates, Linda Deng, Elizabeth Kemp, Ga-Young Joung, Sergei Vassilvitskii, Mandy
Guo, Pallavi LV, Dave Dopson, Sami Lachgar, Lara McConnaughey, Himadri Choudhury, Dragos
Dena, Aaron Cohen, Joshua Ainslie, Sergey Levi, Parthasarathy Gopavarapu, Polina Zablotskaia,
Hugo Vallet, Sanaz Bahargam, Xiaodan Tang, Nenad Tomasev, Ethan Dyer, Daniel Balle, Hongrae
Lee, William Bono, Jorge Gonzalez Mendez, Vadim Zubov, Shentao Yang, Ivor Rendulic, Yanyan
Zheng, Andrew Hogue, Golan Pundak, Ralph Leith, Avishkar Bhoopchand, Michael Han, Mislav
Žanić, Tom Schaul, Manolis Delakis, Tejas Iyer, Guanyu Wang, Harman Singh, Abdelrahman
Abdelhamed, Tara Thomas, Siddhartha Brahma, Hilal Dib, Naveen Kumar, Wenxuan Zhou, Liang
Bai, Pushkar Mishra, Jiao Sun, Valentin Anklin, Roykrong Sukkerd, Lauren Agubuzu, Anton
Briukhov, Anmol Gulati, Maximilian Sieb, Fabio Pardo, Sara Nasso, Junquan Chen, Kexin Zhu,
Tiberiu Sosea, Alex Goldin, Keith Rush, Spurthi Amba Hombaiah, Andreas Noever, Allan Zhou,
Sam Haves, Mary Phuong, Jake Ades, Yi ting Chen, Lin Yang, Joseph Pagadora, Stan Bileschi,
Victor Cotruta, Rachel Saputro, Arijit Pramanik, Sean Ammirati, Dan Garrette, Kevin Villela, Tim
Blyth, Canfer Akbulut, Neha Jha, Alban Rrustemi, Arissa Wongpanich, Chirag Nagpal, Yonghui
Wu, Morgane Rivière, Sergey Kishchenko, Pranesh Srinivasan, Alice Chen, Animesh Sinha, Trang
Pham, Bill Jia, Tom Hennigan, Anton Bakalov, Nithya Attaluri, Drew Garmon, Daniel Rodriguez,
Dawid Wegner, Wenhao Jia, Evan Senter, Noah Fiedel, Denis Petek, Yuchuan Liu, Cassidy Hardin,
Harshal Tushar Lehri, Joao Carreira, Sara Smoot, Marcel Prasetya, Nami Akazawa, Anca Stefanoiu,
Chia-Hua Ho, Anelia Angelova, Kate Lin, Min Kim, Charles Chen, Marcin Sieniek, Alice Li,
Tongfei Guo, Sorin Baltateanu, Pouya Tafti, Michael Wunder, Nadav Olmert, Divyansh Shukla,
Jingwei Shen, Neel Kovelamudi, Balaji Venkatraman, Seth Neel, Romal Thoppilan, Jerome Connor,
Frederik Benzing, Axel Stjerngren, Golnaz Ghiasi, Alex Polozov, Joshua Howland, Theophane
Weber, Justin Chiu, Ganesh Poomal Girirajan, Andreas Terzis, Pidong Wang, Fangda Li, Yoav Ben
Shalom, Dinesh Tewari, Matthew Denton, Roee Aharoni, Norbert Kalb, Heri Zhao, Junlin Zhang,
Angelos Filos, Matthew Rahtz, Lalit Jain, Connie Fan, Vitor Rodrigues, Ruth Wang, Richard
Shin, Jacob Austin, Roman Ring, Mariella Sanchez-Vargas, Mehadi Hassen, Ido Kessler, Uri Alon,
Gufeng Zhang, Wenhu Chen, Yenai Ma, Xiance Si, Le Hou, Azalia Mirhoseini, Marc Wilson,
Geoff Bacon, Becca Roelofs, Lei Shu, Gautam Vasudevan, Jonas Adler, Artur Dwornik, Tayfun
Terzi, Matt Lawlor, Harry Askham, Mike Bernico, Xuanyi Dong, Chris Hidey, Kevin Kilgour,
Gaël Liu, Surya Bhupatiraju, Luke Leonhard, Siqi Zuo, Partha Talukdar, Qing Wei, Aliaksei
Severyn, Vít Listík, Jong Lee, Aditya Tripathi, SK Park, Yossi Matias, Hao Liu, Alex Ruiz, Rajesh
Jayaram, Jackson Tolins, Pierre Marcenac, Yiming Wang, Bryan Seybold, Henry Prior, Deepak
Sharma, Jack Weber, Mikhail Sirotenko, Yunhsuan Sung, Dayou Du, Ellie Pavlick, Stefan Zinke,
Markus Freitag, Max Dylla, Montse Gonzalez Arenas, Natan Potikha, Omer Goldman, Connie
Tao, Rachita Chhaparia, Maria Voitovich, Pawan Dogra, Andrija Ražnatović, Zak Tsai, Chong

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You, Oleaser Johnson, George Tucker, Chenjie Gu, Jae Yoo, Maryam Majzoubi, Valentin Gabeur,
Bahram Raad, Rocky Rhodes, Kashyap Kolipaka, Heidi Howard, Geta Sampemane, Benny Li,
Chulayuth Asawaroengchai, Duy Nguyen, Chiyuan Zhang, Timothee Cour, Xinxin Yu, Zhao Fu,
Joe Jiang, Po-Sen Huang, Gabriela Surita, Iñaki Iturrate, Yael Karov, Michael Collins, Martin
Baeuml, Fabian Fuchs, Shilpa Shetty, Swaroop Ramaswamy, Sayna Ebrahimi, Qiuchen Guo,
Jeremy Shar, Gabe Barth-Maron, Sravanti Addepalli, Bryan Richter, Chin-Yi Cheng, Eugénie
Rives, Fei Zheng, Johannes Griesser, Nishanth Dikkala, Yoel Zeldes, Ilkin Safarli, Dipanjan Das,
Himanshu Srivastava, Sadh MNM Khan, Xin Li, Aditya Pandey, Larisa Markeeva, Dan Belov, Qiqi
Yan, Mikołaj Rybiński, Tao Chen, Megha Nawhal, Michael Quinn, Vineetha Govindaraj, Sarah
York, Reed Roberts, Roopal Garg, Namrata Godbole, Jake Abernethy, Anil Das, Lam Nguyen
Thiet, Jonathan Tompson, John Nham, Neera Vats, Ben Caine, Wesley Helmholz, Francesco
Pongetti, Yeongil Ko, James An, Clara Huiyi Hu, Yu-Cheng Ling, Julia Pawar, Robert Leland,
Keisuke Kinoshita, Waleed Khawaja, Marco Selvi, Eugene Ie, Danila Sinopalnikov, Lev Proleev,
Nilesh Tripuraneni, Michele Bevilacqua, Seungji Lee, Clayton Sanford, Dan Suh, Dustin Tran,
Jeff Dean, Simon Baumgartner, Jens Heitkaemper, Sagar Gubbi, Kristina Toutanova, Yichong Xu,
Chandu Thekkath, Keran Rong, Palak Jain, Annie Xie, Yan Virin, Yang Li, Lubo Litchev, Richard
Powell, Tarun Bharti, Adam Kraft, Nan Hua, Marissa Ikonomidis, Ayal Hitron, Sanjiv Kumar,
Loic Matthey, Sophie Bridgers, Lauren Lax, Ishaan Malhi, Ondrej Skopek, Ashish Gupta, Jiawei
Cao, Mitchelle Rasquinha, Siim Põder, Wojciech Stokowiec, Nicholas Roth, Guowang Li, Michaël
Sander, Joshua Kessinger, Vihan Jain, Edward Loper, Wonpyo Park, Michal Yarom, Liqun Cheng,
Guru Guruganesh, Kanishka Rao, Yan Li, Catarina Barros, Mikhail Sushkov, Chun-Sung Ferng,
Rohin Shah, Ophir Aharoni, Ravin Kumar, Tim McConnell, Peiran Li, Chen Wang, Fernando
Pereira, Craig Swanson, Fayaz Jamil, Yan Xiong, Anitha Vijayakumar, Prakash Shroff, Kedar
Soparkar, Jindong Gu, Livio Baldini Soares, Eric Wang, Kushal Majmundar, Aurora Wei, Kai
Bailey, Nora Kassner, Chizu Kawamoto, Goran Žužić, Victor Gomes, Abhirut Gupta, Michael
Guzman, Ishita Dasgupta, Xinyi Bai, Zhufeng Pan, Francesco Piccinno, Hadas Natalie Vogel,
Octavio Ponce, Adrian Hutter, Paul Chang, Pan-Pan Jiang, Ionel Gog, Vlad Ionescu, James
Manyika, Fabian Pedregosa, Harry Ragan, Zach Behrman, Ryan Mullins, Coline Devin, Aroonalok
Pyne, Swapnil Gawde, Martin Chadwick, Yiming Gu, Sasan Tavakkol, Andy Twigg, Naman
Goyal, Ndidi Elue, Anna Goldie, Srinivasan Venkatachary, Hongliang Fei, Ziqiang Feng, Marvin
Ritter, Isabel Leal, Sudeep Dasari, Pei Sun, Alif Raditya Rochman, Brendan O’Donoghue, Yuchen
Liu, Jim Sproch, Kai Chen, Natalie Clay, Slav Petrov, Sailesh Sidhwani, Ioana Mihailescu, Alex
Panagopoulos, AJ Piergiovanni, Yunfei Bai, George Powell, Deep Karkhanis, Trevor Yacovone,
Petr Mitrichev, Joe Kovac, Dave Uthus, Amir Yazdanbakhsh, David Amos, Steven Zheng, Bing
Zhang, Jin Miao, Bhuvana Ramabhadran, Soroush Radpour, Shantanu Thakoor, Josh Newlan, Oran
Lang, Orion Jankowski, Shikhar Bharadwaj, Jean-Michel Sarr, Shereen Ashraf, Sneha Mondal, Jun
Yan, Ankit Singh Rawat, Sarmishta Velury, Greg Kochanski, Tom Eccles, Franz Och, Abhanshu
Sharma, Ethan Mahintorabi, Alex Gurney, Carrie Muir, Vered Cohen, Saksham Thakur, Adam
Bloniarz, Asier Mujika, Alexander Pritzel, Paul Caron, Altaf Rahman, Fiona Lang, Yasumasa Onoe,
Petar Sirkovic, Jay Hoover, Ying Jian, Pablo Duque, Arun Narayanan, David Soergel, Alex Haig,
Loren Maggiore, Shyamal Buch, Josef Dean, Ilya Figotin, Igor Karpov, Shaleen Gupta, Denny
Zhou, Muhuan Huang, Ashwin Vaswani, Christopher Semturs, Kaushik Shivakumar, Yu Watanabe,
Vinodh Kumar Rajendran, Eva Lu, Yanhan Hou, Wenting Ye, Shikhar Vashishth, Nana Nti, Vytenis
Sakenas, Darren Ni, Doug DeCarlo, Michael Bendersky, Sumit Bagri, Nacho Cano, Elijah Peake,
Simon Tokumine, Varun Godbole, Carlos Guía, Tanya Lando, Vittorio Selo, Seher Ellis, Danny
Tarlow, Daniel Gillick, Alessandro Epasto, Siddhartha Reddy Jonnalagadda, Meng Wei, Meiyan
Xie, Ankur Taly, Michela Paganini, Mukund Sundararajan, Daniel Toyama, Ting Yu, Dessie
Petrova, Aneesh Pappu, Rohan Agrawal, Senaka Buthpitiya, Justin Frye, Thomas Buschmann,
Remi Crocker, Marco Tagliasacchi, Mengchao Wang, Da Huang, Sagi Perel, Brian Wieder, Hideto
Kazawa, Weiyue Wang, Jeremy Cole, Himanshu Gupta, Ben Golan, Seojin Bang, Nitish Kulkarni,
Ken Franko, Casper Liu, Doug Reid, Sid Dalmia, Jay Whang, Kevin Cen, Prasha Sundaram, Johan
Ferret, Berivan Isik, Lucian Ionita, Guan Sun, Anna Shekhawat, Muqthar Mohammad, Philip
Pham, Ronny Huang, Karthik Raman, Xingyi Zhou, Ross Mcilroy, Austin Myers, Sheng Peng,
Jacob Scott, Paul Covington, Sofia Erell, Pratik Joshi, João Gabriel Oliveira, Natasha Noy, Tajwar
Nasir, Jake Walker, Vera Axelrod, Tim Dozat, Pu Han, Chun-Te Chu, Eugene Weinstein, Anand
Shukla, Shreyas Chandrakaladharan, Petra Poklukar, Bonnie Li, Ye Jin, Prem Eruvbetine, Steven
Hansen, Avigail Dabush, Alon Jacovi, Samrat Phatale, Chen Zhu, Steven Baker, Mo Shomrat, Yang
Xiao, Jean Pouget-Abadie, Mingyang Zhang, Fanny Wei, Yang Song, Helen King, Yiling Huang,
Yun Zhu, Ruoxi Sun, Juliana Vicente Franco, Chu-Cheng Lin, Sho Arora, Hui, Li, Vivian Xia,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Luke Vilnis, Mariano Schain, Kaiz Alarakyia, Laurel Prince, Aaron Phillips, Caleb Habtegebriel,
Luyao Xu, Huan Gui, Santiago Ontanon, Lora Aroyo, Karan Gill, Peggy Lu, Yash Katariya,
Dhruv Madeka, Shankar Krishnan, Shubha Srinivas Raghvendra, James Freedman, Yi Tay, Gaurav
Menghani, Peter Choy, Nishita Shetty, Dan Abolafia, Doron Kukliansky, Edward Chou, Jared
Lichtarge, Ken Burke, Ben Coleman, Dee Guo, Larry Jin, Indro Bhattacharya, Victoria Langston,
Yiming Li, Suyog Kotecha, Alex Yakubovich, Xinyun Chen, Petre Petrov, Tolly Powell, Yanzhang
He, Corbin Quick, Kanav Garg, Dawsen Hwang, Yang Lu, Srinadh Bhojanapalli, Kristian Kjems,
Ramin Mehran, Aaron Archer, Hado van Hasselt, Ashwin Balakrishna, JK Kearns, Meiqi Guo,
Jason Riesa, Mikita Sazanovich, Xu Gao, Chris Sauer, Chengrun Yang, XiangHai Sheng, Thomas
Jimma, Wouter Van Gansbeke, Vitaly Nikolaev, Wei Wei, Katie Millican, Ruizhe Zhao, Justin
Snyder, Levent Bolelli, Maura O’Brien, Shawn Xu, Fei Xia, Wentao Yuan, Arvind Neelakantan,
David Barker, Sachin Yadav, Hannah Kirkwood, Farooq Ahmad, Joel Wee, Jordan Grimstad, Boyu
Wang, Matthew Wiethoff, Shane Settle, Miaosen Wang, Charles Blundell, Jingjing Chen, Chris
Duvarney, Grace Hu, Olaf Ronneberger, Alex Lee, Yuanzhen Li, Abhishek Chakladar, Alena
Butryna, Georgios Evangelopoulos, Guillaume Desjardins, Jonni Kanerva, Henry Wang, Averi
Nowak, Nick Li, Alyssa Loo, Art Khurshudov, Laurent El Shafey, Nagabhushan Baddi, Karel Lenc,
Yasaman Razeghi, Tom Lieber, Amer Sinha, Xiao Ma, Yao Su, James Huang, Asahi Ushio, Hanna
Klimczak-Plucińska, Kareem Mohamed, JD Chen, Simon Osindero, Stav Ginzburg, Lampros
Lamprou, Vasilisa Bashlovkina, Duc-Hieu Tran, Ali Khodaei, Ankit Anand, Yixian Di, Ramy
Eskander, Manish Reddy Vuyyuru, Jasmine Liu, Aishwarya Kamath, Roman Goldenberg, Mathias
Bellaiche, Juliette Pluto, Bill Rosgen, Hassan Mansoor, William Wong, Suhas Ganesh, Eric Bailey,
Scott Baird, Dan Deutsch, Jinoo Baek, Xuhui Jia, Chansoo Lee, Abe Friesen, Nathaniel Braun, Kate
Lee, Amayika Panda, Steven M. Hernandez, Duncan Williams, Jianqiao Liu, Ethan Liang, Arnaud
Autef, Emily Pitler, Deepali Jain, Phoebe Kirk, Oskar Bunyan, Jaume Sanchez Elias, Tongxin Yin,
Machel Reid, Aedan Pope, Nikita Putikhin, Bidisha Samanta, Sergio Guadarrama, Dahun Kim,
Simon Rowe, Marcella Valentine, Geng Yan, Alex Salcianu, David Silver, Gan Song, Richa Singh,
Shuai Ye, Hannah DeBalsi, Majd Al Merey, Eran Ofek, Albert Webson, Shibl Mourad, Ashwin
Kakarla, Silvio Lattanzi, Nick Roy, Evgeny Sluzhaev, Christina Butterfield, Alessio Tonioni,
Nathan Waters, Sudhindra Kopalle, Jason Chase, James Cohan, Girish Ramchandra Rao, Robert
Berry, Michael Voznesensky, Shuguang Hu, Kristen Chiafullo, Sharat Chikkerur, George Scrivener,
Ivy Zheng, Jeremy Wiesner, Wolfgang Macherey, Timothy Lillicrap, Fei Liu, Brian Walker, David
Welling, Elinor Davies, Yangsibo Huang, Lijie Ren, Nir Shabat, Alessandro Agostini, Mariko
Iinuma, Dustin Zelle, Rohit Sathyanarayana, Andrea D’olimpio, Morgan Redshaw, Matt Ginsberg,
Ashwin Murthy, Mark Geller, Tatiana Matejovicova, Ayan Chakrabarti, Ryan Julian, Christine
Chan, Qiong Hu, Daniel Jarrett, Manu Agarwal, Jeshwanth Challagundla, Tao Li, Sandeep Tata,
Wen Ding, Maya Meng, Zhuyun Dai, Giulia Vezzani, Shefali Garg, Jannis Bulian, Mary Jasarevic,
Honglong Cai, Harish Rajamani, Adam Santoro, Florian Hartmann, Chen Liang, Bartek Perz,
Apoorv Jindal, Fan Bu, Sungyong Seo, Ryan Poplin, Adrian Goedeckemeyer, Badih Ghazi, Nikhil
Khadke, Leon Liu, Kevin Mather, Mingda Zhang, Ali Shah, Alex Chen, Jinliang Wei, Keshav
Shivam, Yuan Cao, Donghyun Cho, Angelo Scorza Scarpati, Michael Moffitt, Clara Barbu, Ivan
Jurin, Ming-Wei Chang, Hongbin Liu, Hao Zheng, Shachi Dave, Christine Kaeser-Chen, Xiaobin
Yu, Alvin Abdagic, Lucas Gonzalez, Yanping Huang, Peilin Zhong, Cordelia Schmid, Bryce
Petrini, Alex Wertheim, Jifan Zhu, Hoang Nguyen, Kaiyang Ji, Yanqi Zhou, Tao Zhou, Fangxiaoyu
Feng, Regev Cohen, David Rim, Shubham Milind Phal, Petko Georgiev, Ariel Brand, Yue Ma,
Wei Li, Somit Gupta, Chao Wang, Pavel Dubov, Jean Tarbouriech, Kingshuk Majumder, Huijian
Li, Norman Rink, Apurv Suman, Yang Guo, Yinghao Sun, Arun Nair, Xiaowei Xu, Mohamed
Elhawaty, Rodrigo Cabrera, Guangxing Han, Julian Eisenschlos, Junwen Bai, Yuqi Li, Yamini
Bansal, Thibault Sellam, Mina Khan, Hung Nguyen, Justin Mao-Jones, Nikos Parotsidis, Jake
Marcus, Cindy Fan, Roland Zimmermann, Yony Kochinski, Laura Graesser, Feryal Behbahani,
Alvaro Caceres, Michael Riley, Patrick Kane, Sandra Lefdal, Rob Willoughby, Paul Vicol, Lun
Wang, Shujian Zhang, Ashleah Gill, Yu Liang, Gautam Prasad, Soroosh Mariooryad, Mehran
Kazemi, Zifeng Wang, Kritika Muralidharan, Paul Voigtlaender, Jeffrey Zhao, Huanjie Zhou,
Nina D’Souza, Aditi Mavalankar, Séb Arnold, Nick Young, Obaid Sarvana, Chace Lee, Milad
Nasr, Tingting Zou, Seokhwan Kim, Lukas Haas, Kaushal Patel, Neslihan Bulut, David Parkinson,
Courtney Biles, Dmitry Kalashnikov, Chi Ming To, Aviral Kumar, Jessica Austin, Alex Greve,
Lei Zhang, Megha Goel, Yeqing Li, Sergey Yaroshenko, Max Chang, Abhishek Jindal, Geoff
Clark, Hagai Taitelbaum, Dale Johnson, Ofir Roval, Jeongwoo Ko, Anhad Mohananey, Christian
Schuler, Shenil Dodhia, Ruichao Li, Kazuki Osawa, Claire Cui, Peng Xu, Rushin Shah, Tao Huang,
Ela Gruzewska, Nathan Clement, Mudit Verma, Olcan Sercinoglu, Hai Qian, Viral Shah, Masa

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Yamaguchi, Abhinit Modi, Takahiro Kosakai, Thomas Strohmann, Junhao Zeng, Beliz Gunel, Jun
Qian, Austin Tarango, Krzysztof Jastrzębski, Robert David, Jyn Shan, Parker Schuh, Kunal Lad,
Willi Gierke, Mukundan Madhavan, Xinyi Chen, Mark Kurzeja, Rebeca Santamaria-Fernandez,
Dawn Chen, Alexandra Cordell, Yuri Chervonyi, Frankie Garcia, Nithish Kannen, Vincent Perot,
Nan Ding, Shlomi Cohen-Ganor, Victor Lavrenko, Junru Wu, Georgie Evans, Cicero Nogueira dos
Santos, Madhavi Sewak, Ashley Brown, Andrew Hard, Joan Puigcerver, Zeyu Zheng, Yizhong
Liang, Evgeny Gladchenko, Reeve Ingle, Uri First, Pierre Sermanet, Charlotte Magister, Mihajlo
Velimirović, Sashank Reddi, Susanna Ricco, Eirikur Agustsson, Hartwig Adam, Nir Levine, David
Gaddy, Dan Holtmann-Rice, Xuanhui Wang, Ashutosh Sathe, Abhijit Guha Roy, Blaž Bratanič,
Alen Carin, Harsh Mehta, Silvano Bonacina, Nicola De Cao, Mara Finkelstein, Verena Rieser,
Xinyi Wu, Florent Altché, Dylan Scandinaro, Li Li, Nino Vieillard, Nikhil Sethi, Garrett Tanzer,
Zhi Xing, Shibo Wang, Parul Bhatia, Gui Citovsky, Thomas Anthony, Sharon Lin, Tianze Shi,
Shoshana Jakobovits, Gena Gibson, Raj Apte, Lisa Lee, Mingqing Chen, Arunkumar Byravan,
Petros Maniatis, Kellie Webster, Andrew Dai, Pu-Chin Chen, Jiaqi Pan, Asya Fadeeva, Zach
Gleicher, Thang Luong, and Niket Kumar Bhumihar. Gemini 2.5: Pushing the frontier with
advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025.
URL https://arxiv.org/abs/2507.06261.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Jonas Eschmann. Reward function design in reinforcement learning. Reinforcement learning
algorithms: Analysis and Applications, pp. 25–33, 2021.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning. arxiv 2020. arXiv preprint arXiv:2007.04074,
2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025b.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv
preprint arXiv:2410.16946, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code, 2025. URL https://arxiv.org/
abs/2502.13138.

Haifeng Jin, François Chollet, Qingquan Song, and Xia Hu. Autokeras: An automl library for deep
learning. Journal of machine Learning research, 24(6):1–6, 2023.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 10, 2023.

19

https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Erin LeDell and Sebastien Poirier. H2o automl: Scalable automatic machine learning. In Proceedings
of the AutoML Workshop at ICML, volume 2020, pp. 24, 2020.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney Zheng, Minghao Liu, Xinyao Niu, Yue Wang,
Jian Yang, Jiaheng Liu, et al. Autokaggle: A multi-agent framework for autonomous data science
competitions. arXiv preprint arXiv:2410.20424, 2024.

Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samu-
lowitz, Dakuo Wang, Andrew Conn, and Alexander Gray. An admm based framework for automl
pipeline configuration. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 4892–4899, 2020.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Weinan
E, and Siheng Chen. Ml-master: Towards ai-for-ai via integration of exploration and reasoning.
arXiv preprint arXiv:2506.16499, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada
Mihalcea (eds.), Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics. URL https://aclanthology.org/P11-1015/.

Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging ai agent
architectures for reasoning, planning, and tool calling: A survey. arXiv preprint arXiv:2404.11584,
2024.

Felix Mohr, Marcel Wever, and Eyke Hüllermeier. Ml-plan: Automated machine learning via
hierarchical planning. Machine Learning, 107:1495–1515, 2018.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence. https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024. Accessed: 2025-01-23.

OpenAI. Introducing gpt 5. https://openai.com/index/introducing-gpt-5/, 2025. Accessed:
2025-09-25.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Xianghe Pang, Shuo Tang, Rui Ye, Yuxin Xiong, Bolun Zhang, Yanfeng Wang, and Siheng Chen.
Self-alignment of large language models via monopolylogue-based social scene simulation. arXiv
preprint arXiv:2402.05699, 2024.

Peter S Park, Philipp Schoenegger, and Chongyang Zhu. Diminished diversity-of-thought in a
standard large language model. Behavior Research Methods, 56(6):5754–5770, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

20

https://aclanthology.org/P11-1015/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/introducing-gpt-5/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff,
and George Karypis. Autogluon-multimodal (automm): Supercharging multimodal automl with
foundation models. arXiv preprint arXiv:2404.16233, 2024.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework for
full-pipeline automl. arXiv preprint arXiv:2410.02958, 2024.

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. arXiv preprint
arXiv:2412.10400, 2024.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. Watch every step! llm agent learning via iterative step-level process refinement. In
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
1556–1572, 2024.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
for llms: A survey. arXiv preprint arXiv:2509.02547, 2025.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the power
of large language models in solving machine learning tasks. arXiv preprint arXiv:2304.14979,
2023a.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt:
Automatic machine learning with gpt. arXiv preprint arXiv:2305.02499, 2023b.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

21

https://arxiv.org/abs/2505.09388

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

22

http://arxiv.org/abs/2403.13372

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A PROBLEM FORMULATION

Reformulation from equation 1 to equation 3. Starting from equation 1, suppose the initial state
distribution is dπθ (s0), the state transition probability is pπ(st+1|st, at), then we have

Pπθ
(τ) = dπθ (s0)

n−1∏
t=0

p(st+1|st, at)πθ(at|st). (7)

Hence the reformulation is:
J (θ) = Eπθ

[R(τ)]

=
∑
τ

Pπθ
(τ)R(τ)

=
∑

s0,a0,...,sn

(
dπθ (s0)

n−1∏
t=0

p(st+1|st, at)πθ(at|st)

)(
n∑

t=0

R(st, at)

)

=

n−1∑
t=0

∑
s0,a0,...,sn

(
dπθ (s0)

n−1∏
k=0

p(sk+1|sk, ak)πθ(ak|sk)

)
R(st, at)

=

n−1∑
t=0

∑
st,at

 ∑
s0,a0,...st−1,at−1

dπθ (s0)

t−1∏
k=0

p(sk+1|sk, ak)πθ(ak|sk)

πθ(at|st)R(st, at)

(8)
However, we can define the state distribution dπθ (st) as the probability agent visits state st at time t.
Then according to this definition, this probability can be written as:

dπθ (st) =
∑

s0,a0,...st−1,at−1

dπθ (s0)

t−1∏
k=0

p(sk+1|sk, ak)πθ(ak|sk). (9)

Then we have

J (θ) =
n−1∑
t=0

∑
st,at

dπθ (st)πθ(at|st)R(at, st)

=

n−1∑
t=0

∑
st∈S

dπθ (st)
∑
at∈A

πθ(at|st)R(at, st)

= Jstep(θ)

(10)

B MACHINE LEARNING TASKS AND DATA COLLECTION PROCESS

B.1 DATA COLLECTING PIPELINE FOR EXPLORATION-ENRICHED FINE-TUNING

We construct diverse action pools along three semantic axes—Data, Model, and Learning—to
support structured exploration. For each axis, we prompt a frozen LLM (GPT-4o-mini) to generate a
large set of candidate actions (e.g., “Add MixUp augmentation”, “Switch to AdamW optimizer”). To
promote diversity, we embed all candidates using a sentence transformer and apply farthest-point
sampling (FPS) to select a compact, representative subset. The resulting pools PData, PModel, and
PLearning are fixed during training.

During data collection, we form exploration-enriched prompts by randomly selecting 1–3 axes,
shuffling their order, and drawing one action from each corresponding pool. These actions are
concatenated into an initial instruction for the expert agent, which then interacts with a fast-executable
ML environment (e.g., small-scale tabular or vision tasks) to produce a full trajectory. The complete
pipeline is summarized in Algorithm 1.

B.2 DETAILS OF MACHINE LEARNING TASKS

The machine learning tasks utilized in our paper are all from MLAgentBench or MLE-bench.
Table 3 shows all 9 training tasks and 10 testing tasks. The 9 training tasks contain 4 tasks from

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1 Exploration-Enriched Trajectory Generation
Require: Semantic axes X = {Data,Model,Learning},

Set of fast-executable tasks N , each with base description ptask
n

Ensure: Dataset of expert trajectories D
1: #Phase 1: Build diverse action pools via FPS
2: for each axis X ∈ X do
3: Generate M candidate actions CX using LLM prompting
4: PX ← FARTHESTPOINTSAMPLING(CX ,K) {Select K diverse actions}
5: end for
6: #Phase 2: Generate trajectories
7: D ← ∅
8: for each task n ∈ N do
9: Sample k ∼ Uniform{1, 2, 3}

10: Sample k distinct axes {X1, . . . , Xk} ⊂ X
11: Sample ai ∼ Uniform(PXi) for i = 1, . . . , k
12: Form prompt: pn ← ptask

n .format(a1, . . . , ak)
13: Run expert LLM (GPT-4o-mini) on task n with prompt pn
14: Record trajectory τ
15: D ← D ∪ {τ}
16: end for
17: return D

MLAgentBench and 5 from MLE-bench (Chan et al., 2024); while the 10 testing tasks are all from
MLE-bench.

The selection strategy of training tasks aims to enhance data collection efficiency. Specifically,
we select relatively simpler machine learning tasks (e.g. tasks labeled with low complexity in
MLE-bench) for training. These training tasks typically involve smaller datasets, which enable
faster iterations. For testing, we select relatively more complex tasks to evaluate the generalization
capability. In addition, the training tasks and test tasks span three machine learning data types (image,
text and tabular) and two general task categories (regression and classification).

Specifically, Each task consists of the following components: (1) training, validation, and test
data; (2) an initial bug-free script, "train.py", generated by GPT-4o-mini; (3) an evaluation script,
"eval.py", which is used to calculate the test score from the submitted results; (4) a problem
description file, "research_problem.txt"; and (5) a "prepare.py" script to download the data if
necessary. An example file structure and related problem descriptions are shown in Figure 6. To
ensure clarity regarding the task details and training objectives, we have refined some initial prompts
from MLAgentBench by incorporating specific targets, such as "try your best to increase the test
accuracy to 99.99%" (see in the right box in Figure 6). The format for the initial prompt, including
the tool and format prompts, follows actions defined by MLAgentBench (see Table 5).

Figure 6: Task file structure and prompt about the machine learning problem of cifar-10 task, for
instance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 3: All training and testing tasks used in our experiments. MLA and MLE stand for MLAgent-
Bench (Huang et al., 2023) and MLE-bench (Chan et al., 2024) respectively.
Task Name Data Type Task Type Metric Source

Training
cifar-10 Image Classification Acc. (%) ↑ MLA
aerial-cactus-identification Image Classification AUC ↑ MLE
dogs-vs-cats-redux-kernels-edition Image Classification Logloss ↓ MLE
plant-pathology-2020-fgvc7 Image Classification AUC ↑ MLE
home-data-for-ml-course Tabular Regression MAE ↓ MLA
spaceship-titanic Tabular Regression Acc. (%) ↑ MLA
nomad2018-predict-transparent-conductors Tabular Regression RMSLE ↓ MLE
feedback-prize-english-language-learning Text Classification MCRMSE ↓ MLA
ogbn-arxiv (Maas et al., 2011) Graph Classification Acc. (%) ↑ MLA

Testing
denoising-dirty-documents Image Generation RMSE↓ MLE
leaf-classification Image Classification Logloss ↓ MLE
statoil-iceberg-classifier-challenge Image Classification Logloss ↓ MLE
whale-categorization-playground Image Classification MAP@5 ↑ MLE
learning-agency-lab-automated-essay-scoring-2 Text Regression QWK ↑ MLE
detecting-insults-in-social-commentary Text Classification Acc. (%) ↑ MLE
spooky-author-identification Text Classification Logloss ↓ MLE
jigsaw-toxic-comment-classification-challenge Text Classification AUC ↑ MLE
us-patent-phrase-to-phrase-matching Tabular Regression PCC ↑ MLE
tabular-playground-series-dec-2021 Tabular Regression Acc. (%) ↑ MLE

Table 4: Actions in MLAgentBench (Huang et al., 2023), where each action has a name, input and
output. Most of the actions are primitive actions that include file system operations and python script
execution. The last two are compound actions that is composed of multiple primitive actions and LM
calls.

Action Name Input Observation

List Files directory (e.g. .) list of files in the directory
Copy File Source (e.g. train.py), destination (e.g.

train_copy.py)
A success or error message

Inspect Script Lines file name, start line number, end line
number

the file content between start
and end line numbers

Execute Script file name (e.g. train.py) Any output from the execution
Final Answer None None
Understand File file name, a query (e.g. the model archi-

tecture)
retrieved content from the file
relevant to the query

Edit Script file name, edit instruction (e.g. change
epoch to 20), save file name

The diff of the edited file
based on the instruction

25

https://www.kaggle.com/competitions/cifar-10
https://www.kaggle.com/competitions/aerial-cactus-identification
https://www.kaggle.com/competitions/dogs-vs-cats-redux-kernels-edition
https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7
https://www.kaggle.com/competitions/home-data-for-ml-course
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/nomad2018-predict-transparent-conductors
https://www.kaggle.com/competitions/feedback-prize-english-language-learning
https://www.kaggle.com/competitions/denoising-dirty-documents
https://www.kaggle.com/competitions/leaf-classification
https://www.kaggle.com/competitions/statoil-iceberg-classifier-challenge
https://www.kaggle.com/competitions/whale-categorization-playground
https://www.kaggle.com/competitions/learning-agency-lab-automated-essay-scoring-2
https://www.kaggle.com/competitions/detecting-insults-in-social-commentary
https://www.kaggle.com/competitions/spooky-author-identification
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/tabular-playground-series-dec-2021

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Initial prompt template for agents on autonomous machine learning.

You are a helpful research assistant. You have access to the following tools:
{tools_prompt}
Research Problem: {research_problem}
Always respond in this format exactly:
{format_prompt}
Observation:
”’
the result of the action
”’

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Tools prompt ({tools_prompt}) in initial prompt.

You are a helpful research assistant. You have access to the following tools:
- List Files:

Use this to navigate the file system.
Usage:
’’’
Action: List Files
Action Input: {

"dir_path ": [a valid relative path to a directory , such as "." or "folder1/
folder2 "]

}
Observation: [The observation will be a list of files and folders in dir_path or

current directory is dir_path is empty , or an error message if dir_path is
invalid .]

’’’

- Copy File:
Use this to copy a file to a new location with a new name.
Usage:
’’’
Action: Copy File
Action Input: {

"source ": [a valid file name with relative path to current directory if needed],
"destination ": [a valid file name with relative path to current directory if

needed]
}
Observation: [A success message if the file is copied successfully , or an error

message if the file cannot be copied .]
’’’

- Execute Script:
Use this to execute the python script. The script must already exist.
Usage:
’’’
Action: Execute Script
Action Input: {

"script_name ": [a valid python script name with relative path to current
directory if needed]

}
Observation: [The observation will be output of the script or errors .]
’’’

- Final Answer:
Use this to provide the final answer to the current task.
Usage:
’’’
Action: Final Answer
Action Input: {

"final_answer ": [a detailed description on the final answer]
}
Observation: [The observation will be empty.]
’’’

- Understand File:
Use this to read the whole file and understand certain aspects. You should provide

detailed description on what to look for and what should be returned. To get a
better understanding of the file , you can use Inspect Script Lines action to
inspect specific part of the file.

Usage:
’’’
Action: Understand File
Action Input: {

"file_name ": [a valid file name with relative path to current directory if
needed],

"things_to_look_for ": [a detailed description on what to look for and what
should returned]

}
Observation: [The observation will be a description of relevant content and lines in

the file. If the file does not exist , the observation will be an error message
.]

’’’

- Inspect Script Lines:
Use this to inspect specific part of a python script precisely , or the full content

of a short script. The number of lines to display is limited to 100 lines. This
is especially helpful when debugging.

Usage:
’’’
Action: Inspect Script Lines
Action Input: {

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

"script_name ": [a valid python script name with relative path to current
directory if needed],

"start_line_number ": [a valid line number],
"end_line_number ": [a valid line number]

}
Observation: [The observation will be the content of the script between

start_line_number and end_line_number . If the script does not exist , the
observation will be an error message .]

’’’

- Edit Script (AI):
Use this to do a relatively large but cohesive edit over a python script. Instead of

editing the script directly , you should describe the edit instruction so that
another AI can help you do this.

Usage:
’’’
Action: Edit Script (AI)
Action Input: {

"script_name ": [a valid python script name with relative path to current
directory if needed. An empty sctipt will be created if it does not exist
.],

"edit_instruction ": [a detailed step by step description on how to edit it.],
"save_name ": [a valid file name with relative path to current directory if

needed]
}
Observation: [The observation will be the edited content of the script. If the

script does not exist , the observation will be an error message. You should
always double check whether the edit is correct .]

’’’

Table 6: Response format requirement ({format_prompt}) in the initial prompt.

Reflection: What does the observation mean? If there is an error, what caused the error and
how to debug?
Research Plan and Status: The full high-level research plan, with current status and confirmed
results of each step briefly annotated. It must only include progress that has been made
by previous steps. If there is any update, enclose the new update text in double asterisks
like this. If there is no update, just copy the previous step Research Plan and Status.
The high-level plan from the previous step should be fully retained, unless it is intentionally
revised.
Fact Check: List all objective statements in the updates to Research Plan and Status one by
one and point out whether it is guessed versus directly confirmed by the previous observation
directly above. Performance numbers can only be confirmed by running the code and
observing the output.
Thought: What you are currently doing, what actions to perform and why
Action: The action to take, should be one of the names of the tools
Action Input: The input to the action as a valid JSON string

B.3 DETAILS OF DATA COLLECTION

In this paper, we use the MLAgentBench (Huang et al., 2023) environment to collect training
trajectories across 9 machine learning tasks. The environment needs an LLM-based agent to take
actions and send feedback to the agent. This will iterate for certain steps. We employ GPT-4o-
mini (OpenAI, 2024) as the LLM-based agent to generate thinking and action following Table B.2.
This agent interacts with the environment, while Qwen2.5-Coder-32B-Instruct (Yang et al., 2024)
powers the coder agent, which is responsible for writing code and understanding files within the
environment.

Each trajectory comprises a multi-turn conversation between the agent and the environment. For each
trajectory, we set the maximum number of steps as 15 and the time limit as 30 minutes to control
the length and duration of interactions. Finally, we generated 10k trajectories on 9 tasks. These
trajectories are utilized both in SFT training and PPO training.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Since each task in the MLAgentBench environment requires an initial script, tasks sourced from
MLE-bench do not have a natural initial script. To address this, we generate simple, bug-free initial
scripts for those tasks using GPT-4o-mini to meet the environment’s requirements.

To diversify the trajectories we collect for SFT training, we curate an initial idea pool of at least
100 diverse ideas which may potentially improve the performance of our initial script. We calculate
the embedding distance of each idea in initial idea pool and filter out the top 10 initial ideas whose
average embedding distance is farthest to others. These ideas form a defined idea pool, which guides
the first step of each trajectory. For the generation of each trajectory, we randomly select 1 to 3 idea
combinations from this idea pool and prioritize their implementation in the initial step by including
the relevant instructions in the file research_problem.txt (see Figure 6). Table 7 show the prompt
we use and Table 8 shows an example of defined idea pool for the first step.

Table 7: The prompt we use to generate the data-preprocessing idea pool.

You are given a machine learning task and an initial script on the task.

The machine learning task description is:
{task_description}

The initial script is:
{initial_script}

You should give {number_to_generate} advice that may potentially improve the
metric performance(e.g. accuracy) of the script on this machine learning task. Your advice
can only be related to data preprocessing.
The advice in your answer should strictly follow the following format(one advice should be
in a line), note that [advice] flag should be mentioned only once in your answer:
[advice]
YOUR ADVICE HERE
...

Table 8: An example of the first step action space(after filtering) when collecting training trajectories.

Tune the momentum parameter in the optimizer for better convergence.
Use early stopping to terminate training when the test accuracy starts decreasing.
Experiment with focal loss to deal with imbalanced data if classes are not evenly distributed.
Regularize model weights with L1 or L2 regularization.
Implement feature visualization to understand what features are being learned.
Use a higher resolution for input images, if feasible, to capture more details.
Increase the complexity of the neural network by adding more convolutional layers.
Explore semi-supervised learning methods to leverage unlabeled data for training improve-
ments.
Normalize the data further by scaling the input images to a range of [0, 1].
Experiment with different batch sizes to see if a smaller or larger batch size affects
performance.

C EXPERIMENTAL DETAILS

C.1 DETAILS OF EXPERIMENTAL SET-UP

Training details. We implement our supervised fine-tuning (SFT) and proximal policy optimization
(PPO) training using 8 A100s. For the SFT, the code base is LLama-Factory (Zheng et al., 2024),

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where we fully fine-tune the qwen2.5-7b model for 2 epochs with batch size 64 and learning rate
2e− 5. For the PPO, the code base is VeRL (Sheng et al., 2024). The PPO training setup involves the
following hyperparameters and configurations: the training batch size is set to 256, and the number of
epochs is 1. Additionally, the learning rate of actor and critic is set as 1e− 6 and 1e− 5, respectively,
and the coefficient of KL is 0.001.

Baseline details. We show the specific versions of baselines in Table 9.

Table 9: Model Version and Identifier Mapping
Model Name Version
GPT-4o-mini GPT-4o-mini-2024-07-18
GPT-4o GPT-4o-2024-08-06
Qwen-7B-Base Qwen2.5-7B
Qwen-7B-Instruct Qwen2.5-7B-Instruct
Qwen-32B-Instruct Qwen2.5-32B-Instruct

C.2 ADDITIONAL ABLATION STUDY

ad
d

in
cr

ea
se

re
pl

ac
e

ch
an

ge
m

od
ify

ad
ju

st
re

du
ce

cr
ea

te
tu

ne se
t

re
m

ov
e try

de
cr

ea
se

ap
pl

y
en

su
re

co
nv

er
t

re
ve

rt
im

pl
em

en
t

up
da

te ru
n

sp
ec

ify
pe

rfo
rm

co
m

bi
ne

de
fin

e
ha

nd
le

co
rre

ct us
e

m
at

ch
im

po
rt

pa
d

ca
lcu

la
te

en
ha

nc
e

ch
ec

k
ha

ve fil
l

m
ov

e
no

rm
al

ize
in

clu
de

id
en

tif
y

in
iti

al
ize

ke
ep

pr
in

t
m

on
ito

r
re

pr
es

en
t

re
sh

ap
e

se
le

ct
re

st
or

e
tra

ns
fo

rm
tra

in

Verb

0

5

10

15

20

N
um

be
r

of
 U

ni
qu

e
N

ou
ns

Number of Unique Nouns per Verb for Each Model

qwen-7b-instruct
ours-sft

Figure 7: Unique noun counts per verb across 100 randomly sampled edit instructions, comparing the
Qwen2.5-7B-Instruct model (blue) with the ML-Agent-SFT model (red).

Diversity. Figure 7 compares the number of unique nouns associated with each editing verb in two
models: Qwen2.5-7B-Instruct and ours-sft (ML-Agent-SFT). To generate these counts, we randomly
sampled 100 edit_instruction sentences from the recorded expert trajectories. Then, we utilize an
open-source NLP toolkit SpaCy to obtain the verb and noun for each edit_instruction sentence.
Results show that after supervised fine-tuning with expert’s trajectories, the model can output a
broader variety of actions, evidenced by the higher counts of unique nouns per verb.

4 8 16 32 64 128
Best@K

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Sc
or

e

cifar10

0k
3k

10k
30k

4 8 16 32 64 128
Best@K

17500

18000

18500

19000

19500

20000

20500

house-price
0k
3k

10k
30k

4 8 16 32 64 128
Best@K

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Sc
or

e

denoising-dirty-documents
0k
3k

10k
30k

4 8 16 32 64 128
Best@K

0.48

0.50

0.52

0.54

0.56

0.58

0.60us-patent-phrase-to-phrase-matching

0k
3k

10k
30k

Figure 8: Different number of training samples in RL, starting from our sft model.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Effects of training data size in RL.

Here, we investigate how varying the number of training data samples (0k, 3k, 10k, 30k) affects the
performance in RL. The 0k scenario represents ML-Agent-SFT model. For every model, we run 128
trajectories for each task and evaluate the best@K, where K ranges over [4, 8, 16, 32, 64, 128], as
shown in Figure 8. In particular, for the two held-out tasks (second row), training with ppo (3k, 6k,
and 9k) improves performance faster than 0k as the number of sampled trajectories increases.

Is thought helpful? In Table 10, we compare the performance of models with and without the
requirement of thought before taking action across 13 tasks. The thought process includes several key
components such as "Reflection," "Research Plan and Status," "Fact Check," "Thought," "Action,"
and "Action Input,". In contrast, the model without thought only requires "Action" and "Action
Input." Note that the supervised fine-tuning data is also consistent with the key requirement. The
models with thought generally exhibit higher improved performance on both held-in and held-out
tasks. For instance, on the held-in cifar-10, the model with thought reaches 33.80% performance gain
compared to 13.03% when thought is not required. This trend continues across the held-out tasks,
where the model with thought shows higher accuracy and lower loss, demonstrating the importance
of incorporating a thoughtful reflection and planning phase for Autonomous machine learning via
RL.

Table 10: Performance comparison of reinforcement learning models with and without the require-
ment of thought prior to action. Average performance gains (%) are shown for both held-in and
held-out tasks, highlighting improvements in various tasks when thought is incorporated.

Thought? Held-in tasks Held-out tasks
cifar-10 house. feedback denoising. leaf. statoil. learning. detecting. spooky. jigsaw. us. tabular.

% 13.03 5.68 9.88 28.66 2.50 -0.03 1.27 0.64 -3.40 0.00 7.15 -0.02
! 33.80 6.77 13.47 52.38 13.87 1.41 1.91 1.74 1.76 0.01 12.96 0.20

C.3 CASE STUDY

In this section, we will present more detailed case study on trajectories generated by ML-Agent(ppo)
on some test tasks such as denoising-dirty-documents. In Appendix C.3.1, we show the task
description for denoising-dirty-documents. In Appendix C.3.2, we show the initial script for
denoising-dirty-documents. In Appendix C.3.3, we show partial trajectory generated by ML-
Agent. We give an analysis in Appendix C.3.4.

C.3.1 TASK DESCRIPTION FOR denoising-dirty-documents

Task description for denoising-dirty-documents
You are given a machine learning task on "denoising-dirty-documents" dataset. The dataset descriptions are given below:

Description

[Optical Character Recognition](http://en.wikipedia.org/wiki/Optical_character_recognition) (OCR) is the process of getting type or
handwritten documents into a digitized format. If you’ve read a classic novel on a digital reading device or had your doctor
pull up old healthcare records via the hospital computer system, you’ve probably benefited from OCR.

OCR makes previously static content editable, searchable, and much easier to share. But, a lot of documents eager for digitization
are being held back. Coffee stains, faded sun spots, dog-eared pages, and lot of wrinkles are keeping some printed documents
offline and in the past.

This competition challenges you to give these documents a machine learning makeover. Given a dataset of images of scanned text that
has seen better days, you’re challenged to remove the noise. Improving the ease of document enhancement will help us get that
rare mathematics book on our e-reader before the next beach vacation.

We’ve kicked off the fun with a few [handy scripts to get you started on the dataset](https://www.kaggle.com/c/denoising-dirty-
documents/scripts).

Evaluation

Submissions are evaluated on the [root mean squared error](https://www.kaggle.com/wiki/RootMeanSquaredError) between the cleaned
pixel intensities and the actual grayscale pixel intensities.

Submission File

Form the submission file by melting each images into a set of pixels, assigning each pixel an id of image_row_col (e.g. 1_2_1 is
image 1, row 2, column 1). Intensity values range from 0 (black) to 1 (white). The file should contain a header and have the
following format:

31

https://www.kaggle.com/competitions/denoising-dirty-documents

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

‘‘‘
id,value1_1_1,1
1_2_1,1
1_3_1,1
etc.
‘‘‘

Dataset Description

You are provided two sets of images, train and test. These images contain various styles of text, to which synthetic noise has been
added to simulate real-world, messy artifacts. The training set includes the test without the noise (train_cleaned). You must
create an algorithm to clean the images in the test set.

C.3.2 INITIAL SCRIPT FOR denoising-dirty-documents

Initial script for denoising-dirty-documents
import os
import numpy as np
import pandas as pd
from PIL import Image
import glob
from sklearn.model_selection import train_test_split
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import math

Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Define dataset
class DenoisingDataset(Dataset):

def __init__(self, noisy_images, clean_images=None, transform=None):
self.noisy_images = noisy_images
self.clean_images = clean_images
self.transform = transform

def __len__(self):
return len(self.noisy_images)

def __getitem__(self, idx):
noisy_image = Image.open(self.noisy_images[idx]).convert("L")
if self.transform:

noisy_image = self.transform(noisy_image)
if self.clean_images is not None:

clean_image = Image.open(self.clean_images[idx]).convert("L")
if self.transform:

clean_image = self.transform(clean_image)
return noisy_image, clean_image

else:
return noisy_image

Custom collate function to pad images to the same size
def collate_fn(batch):

if len(batch[0]) == 2:
imgs, targets = zip(*batch)

else:
imgs = batch
targets = None

Compute necessary heights and widths after padding to next multiple of 8
heights = []
widths = []
for img in imgs:

c, h, w = img.shape
new_h = ((h - 1) // 8 + 1) * 8
new_w = ((w - 1) // 8 + 1) * 8
heights.append(new_h)
widths.append(new_w)

max_h = max(heights)
max_w = max(widths)

padded_imgs = []
if targets is not None:

padded_targets = []

for i, img in enumerate(imgs):
c, h, w = img.shape
pad_h = max_h - h
pad_w = max_w - w
padding = (0, pad_w, 0, pad_h) # left, right, top, bottom
padded_img = F.pad(img, padding)
padded_imgs.append(padded_img)
if targets is not None:

target = targets[i]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

padded_target = F.pad(target, padding)
padded_targets.append(padded_target)

imgs_tensor = torch.stack(padded_imgs, dim=0)
if targets is not None:

targets_tensor = torch.stack(padded_targets, dim=0)
return imgs_tensor, targets_tensor

else:
return imgs_tensor

Load image paths
noisy_images = sorted(glob.glob("./train/*.png"))
clean_images = sorted(glob.glob("./train_cleaned/*.png"))

Split into train and validation sets
train_noisy, val_noisy, train_clean, val_clean = train_test_split(

noisy_images, clean_images, test_size=0.2, random_state=42
)

Define transforms
transform = transforms.Compose(

[
transforms.ToTensor(),

]
)

Create datasets and dataloaders
train_dataset = DenoisingDataset(train_noisy, train_clean, transform)
val_dataset = DenoisingDataset(val_noisy, val_clean, transform)

train_loader = DataLoader(
train_dataset, batch_size=4, shuffle=True, collate_fn=collate_fn

)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, collate_fn=collate_fn)

Define the model (modified U-Net with cropping)
class UNet(nn.Module):

def __init__(self):
super(UNet, self).__init__()
Encoder
self.enc1 = nn.Sequential(

nn.Conv2d(1, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU(),

)
self.pool1 = nn.MaxPool2d(2, 2)

self.enc2 = nn.Sequential(
nn.Conv2d(64, 128, 3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(),

)
self.pool2 = nn.MaxPool2d(2, 2)

self.enc3 = nn.Sequential(
nn.Conv2d(128, 256, 3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, 3, padding=1),
nn.ReLU(),

)
self.pool3 = nn.MaxPool2d(2, 2)

Bottleneck
self.bottleneck = nn.Sequential(

nn.Conv2d(256, 512, 3, padding=1),
nn.ReLU(),
nn.Conv2d(512, 512, 3, padding=1),
nn.ReLU(),

)

Decoder
self.up3 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.dec3 = nn.Sequential(

nn.Conv2d(512, 256, 3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, 3, padding=1),
nn.ReLU(),

)

self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.dec2 = nn.Sequential(

nn.Conv2d(256, 128, 3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(),

)

self.up1 = nn.ConvTranspose2d(128, 64, 2, stride=2)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

self.dec1 = nn.Sequential(
nn.Conv2d(128, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU(),

)

self.conv_last = nn.Conv2d(64, 1, 1)

def center_crop(self, layer, target_h, target_w):
_, _, h, w = layer.size()
diff_y = h - target_h
diff_x = w - target_w
cropped = layer[

:,
:,
diff_y // 2 : diff_y // 2 + target_h,
diff_x // 2 : diff_x // 2 + target_w,

]
return cropped

def forward(self, x):
Encoder
enc1 = self.enc1(x)
pool1 = self.pool1(enc1)

enc2 = self.enc2(pool1)
pool2 = self.pool2(enc2)

enc3 = self.enc3(pool2)
pool3 = self.pool3(enc3)

Bottleneck
bottleneck = self.bottleneck(pool3)

Decoder
up3 = self.up3(bottleneck)
enc3_cropped = self.center_crop(enc3, up3.size(2), up3.size(3))
cat3 = torch.cat([up3, enc3_cropped], dim=1)
dec3 = self.dec3(cat3)

up2 = self.up2(dec3)
enc2_cropped = self.center_crop(enc2, up2.size(2), up2.size(3))
cat2 = torch.cat([up2, enc2_cropped], dim=1)
dec2 = self.dec2(cat2)

up1 = self.up1(dec2)
enc1_cropped = self.center_crop(enc1, up1.size(2), up1.size(3))
cat1 = torch.cat([up1, enc1_cropped], dim=1)
dec1 = self.dec1(cat1)

out = self.conv_last(dec1)
out = torch.sigmoid(out)
return out

Instantiate model, loss function, optimizer
model = UNet().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)

Training loop
num_epochs = 5
for epoch in range(num_epochs):

model.train()
running_loss = 0.0
for inputs, targets in train_loader:

inputs = inputs.to(device)
targets = targets.to(device)

optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print(f"Epoch {epoch+1}/{num_epochs}, Training Loss: {epoch_loss:.6f}")

Validation
model.eval()
val_loss = 0.0
with torch.no_grad():

for inputs, targets in val_loader:
inputs = inputs.to(device)
targets = targets.to(device)

outputs = model(inputs)
loss = criterion(outputs, targets)
val_loss += loss.item() * inputs.size(0)

val_loss /= len(val_loader.dataset)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.6f}")

Compute RMSE on validation set
def compute_rmse(model, loader):

model.eval()
mse = 0.0
num_pixels = 0
with torch.no_grad():

for inputs, targets in loader:
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
mse += F.mse_loss(outputs, targets, reduction="sum").item()
num_pixels += targets.numel()

rmse = math.sqrt(mse / num_pixels)
return rmse

rmse = compute_rmse(model, val_loader)
print(f"Validation RMSE: {rmse}")

Predict on test images
model.eval()
test_images = sorted(glob.glob("./test/*.png"))
ids = []
vals = []
transform = transforms.Compose([transforms.ToTensor()])
for img_path in test_images:

img = Image.open(img_path).convert("L")
img_id = os.path.basename(img_path).split(".")[0]
input_tensor = transform(img).unsqueeze(0).to(device)
Pad the input tensor to next multiple of 8
_, _, h, w = input_tensor.size()
new_h = ((h - 1) // 8 + 1) * 8
new_w = ((w - 1) // 8 + 1) * 8
pad_h = new_h - h
pad_w = new_w - w
padding = (0, pad_w, 0, pad_h) # left, right, top, bottom
input_tensor = F.pad(input_tensor, padding)
with torch.no_grad():

output = model(input_tensor)
Unpad the output tensor
output = output[:, :, :h, :w]
output = output.squeeze().cpu().numpy()
Ensure values are between 0 and 1
output = np.clip(output, 0, 1)
h, w = output.shape
for i in range(h):

for j in range(w):
ids.append(f"{img_id}_{i+1}_{j+1}")
vals.append(output[i, j])

Create submission dataframe
submission = pd.DataFrame({"id": ids, "value": vals})

Ensure the submission matches the sample submission format
sample_submission = pd.read_csv("./sampleSubmission.csv")
submission = submission.merge(sample_submission[["id"]], on="id", how="right")
submission = submission.fillna(0)
submission = submission[["id", "value"]]

Save submission
submission.to_csv("./submission.csv", index=False)
print("Submission file saved to ./submission.csv")

Print validation RMSE
print(f"Final Validation RMSE: {rmse}")

C.3.3 ML-AGENT TRAJECTORY ON denoising-dirty-documents

Partial trajectory of ML-Agent on denoising-dirty-documents

==================== Step 7 ====================
Reflection: The modified training script executed successfully, and the validation RMSE has improved to approximately 0.0838. This

is a slight improvement compared to the previous RMSE of 0.0884. However, it still does not meet the target of reducing the
RMSE below 0.01. The training loss decreased consistently over the epochs, indicating that the model is learning effectively.
Further modifications are necessary to achieve the desired performance.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, hyperparameters,
and evaluation methods have been identified.

2. Identify potential modifications: Completed. The first modification (changing the learning rate) has been implemented and
evaluated. The second modification (increasing the number of epochs) has been implemented and evaluated. The third
modification (changing the optimizer) has been implemented and evaluated.

3. Implement modifications: The optimizer has been modified in ‘train_modified_optimizer.py‘, resulting in a validation RMSE of
approximately 0.0838.

4. Iterate: I will now explore further modifications, such as adjusting the batch size or experimenting with different learning
rates, to further reduce the RMSE.

Current Status: Step 3 is completed. I will now proceed to step 4 and explore further modifications to the training script.
Fact Check: 1. The validation RMSE after changing the optimizer is approximately 0.0838. (Confirmed)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Thought: I will experiment with adjusting the learning rate from 1e-4 to 1e-5, as a smaller learning rate may help the model
converge more effectively and potentially lead to a lower RMSE.

Action: Edit Script (AI)
Action Input: {

"script_name": "train_modified_optimizer.py",
"edit_instruction": "Change the learning rate from 1e-4 to 1e-5.",
"save_name": "train_modified_optimizer_lr.py"

}
Observation: The edited file is saved to train_modified_optimizer_lr.py. Here is the diff, please check if the edit is correct and

desirable:

+++
@@ -223,7 +223,7 @@
Instantiate model, loss function, optimizer
model = UNet().to(device)
criterion = nn.MSELoss()
-optimizer = optim.RMSprop(model.parameters(), lr=1e-4)
+optimizer = optim.RMSprop(model.parameters(), lr=1e-5)

Training loop
num_epochs = 10

==================== Step 8 ====================
Reflection: The modification to change the learning rate from 1e-4 to 1e-5 has been successfully made. This change aims to allow the

model to converge more effectively, potentially leading to a reduction in the RMSE. The next step is to execute the modified
training script to evaluate its impact on the RMSE.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, hyperparameters,
and evaluation methods have been identified.

2. Identify potential modifications: Completed. The first modification (changing the learning rate) has been implemented and
evaluated. The second modification (increasing the number of epochs) has been implemented and evaluated. The third
modification (changing the optimizer) has been implemented and evaluated. The fourth modification (changing the learning rate)
has been implemented.

3. Implement modifications: The learning rate has been modified in ‘train_modified_optimizer_lr.py‘.
4. Iterate: Execute the modified script to evaluate the impact on RMSE.

Current Status: Step 3 is completed. I will now proceed to step 4 and execute the modified training script.
Fact Check: 1. The learning rate has been changed from 1e-4 to 1e-5. (Confirmed)
Thought: I will execute the modified training script ‘train_modified_optimizer_lr.py‘ to see if changing the learning rate leads to

an improvement in the RMSE on the validation set.

Action: Execute Script
Action Input: {

"script_name": "train_modified_optimizer_lr.py"
}
Observation: Epoch 1/10, Training Loss: 0.208905
Epoch 1/10, Validation Loss: 0.202602
Epoch 2/10, Training Loss: 0.168855
Epoch 2/10, Validation Loss: 0.110859
Epoch 3/10, Training Loss: 0.107715
Epoch 3/10, Validation Loss: 0.101807
Epoch 4/10, Training Loss: 0.102095
Epoch 4/10, Validation Loss: 0.099179
Epoch 5/10, Training Loss: 0.096579
Epoch 5/10, Validation Loss: 0.096960
Epoch 6/10, Training Loss: 0.097088
Epoch 6/10, Validation Loss: 0.093844
Epoch 7/10, Training Loss: 0.091358
Epoch 7/10, Validation Loss: 0.090865
Epoch 8/10, Training Loss: 0.090154
Epoch 8/10, Validation Loss: 0.086134
Epoch 9/10, Training Loss: 0.084577
Epoch 9/10, Validation Loss: 0.080215
Epoch 10/10, Training Loss: 0.075586
Epoch 10/10, Validation Loss: 0.068712
Validation RMSE: 0.26212960276846825
Submission file saved to ./submission.csv
Final Validation RMSE: 0.26212960276846825

==================== Step 9 ====================
Reflection: The modified training script executed successfully, but the validation RMSE has increased to approximately 0.2621, which

is a significant regression compared to the previous RMSE of 0.0838. This indicates that reducing the learning rate to 1e-5
may have hindered the model’s ability to learn effectively within the given epochs. It suggests that the learning rate might
be too low for this specific model and dataset, leading to slower convergence or getting stuck in local minima.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, hyperparameters,
and evaluation methods have been identified.

2. Identify potential modifications: Completed. The first modification (changing the learning rate) has been implemented and
evaluated. The second modification (increasing the number of epochs) has been implemented and evaluated. The third
modification (changing the optimizer) has been implemented and evaluated. The fourth modification (changing the learning rate)
has been implemented and evaluated.

3. Implement modifications: The learning rate has been modified in ‘train_modified_optimizer_lr.py‘, resulting in a validation RMSE
of approximately 0.2621.

4. Iterate: I will revert the learning rate back to 1e-4 and explore other modifications, such as adjusting the batch size or
experimenting with different optimizers, to further reduce the RMSE.

Current Status: Step 3 is completed. I will now proceed to step 4 and revert the learning rate back to 1e-4 in the training script.
Fact Check: 1. The validation RMSE after changing the learning rate to 1e-5 is approximately 0.2621. (Confirmed)
Thought: I will revert the learning rate back to 1e-4 in the script and execute it again to see if returning to the previous

learning rate improves the RMSE.

Action: Edit Script (AI)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Action Input: {
"script_name": "train_modified_optimizer_lr.py",
"edit_instruction": "Change the learning rate back from 1e-5 to 1e-4.",
"save_name": "train_reverted_lr.py"

}
Observation: The edited file is saved to train_reverted_lr.py. Here is the diff, please check if the edit is correct and desirable:

+++
@@ -223,7 +223,7 @@
Instantiate model, loss function, optimizer
model = UNet().to(device)
criterion = nn.MSELoss()
-optimizer = optim.RMSprop(model.parameters(), lr=1e-5)
+optimizer = optim.RMSprop(model.parameters(), lr=1e-4)

Training loop
num_epochs = 10

C.3.4 ANALYSIS

As shown in C.3.3, we see that ML-Agent automatically initiates backtracking mechanisms when
performance metrics remain unimproved by proposed modifications. It tries to use a smaller learning
rate in step 7 but finds the RMSE increases after executing the code in step 8. Thus, it tries to
revert the learning rate back out its initial value in step 9. We also show some step examples on
different tasks in this section, which shows that ML-Agent can generate diverse action sequences
through comprehensive reasoning. As a comparison, other models (such as GPT-4o) sometimes fail
to understand the requirement and submit the answer after only one modification(sometimes even no
modification).

Some step examples on different tasks
==================== Step 13 ====================
Reflection: The observation indicates that the validation MAE is currently at 18678, which is significantly above the target of 5000.

This suggests that the feature engineering steps taken so far, including the logarithmic transformations, have not
sufficiently improved the model’s performance. Further modifications are needed to reduce the MAE.

Research Plan and Status: 1. Understand the train.py script: Completed. The current features and model have been identified.
2. Feature Engineering: Logarithmic transformations were applied to skewed numerical features, but the validation MAE remains high

at 18678.
3. Model Evaluation: The model’s performance needs further improvement, as the validation MAE is still above the target.
4. Iterate: I will explore additional feature engineering techniques, such as creating new interaction features or transforming

existing features further.

Current Status: The validation MAE is still above the target, and I will now consider creating additional interaction features or
transforming existing features to see if that helps reduce the MAE.

Fact Check: 1. The validation MAE is confirmed to be 18678, as confirmed by the observation.
Thought: I will edit the ‘train.py‘ script to create additional interaction features between some of the existing features, which

may help improve the model’s performance.

Action: Edit Script (AI)
Action Input: {

"script_name": "train.py",
"edit_instruction": "Create new interaction features by multiplying ’OverallQual’ with ’GrLivArea’ and ’TotalBsmtSF’ with ’

GarageCars’. Add these new features to the dataset.",
"save_name": "train.py"

}
Observation: The edited file is saved to train.py. Here is the diff, please check if the edit is correct and desirable:

+++
@@ -30,6 +30,10 @@

’YearBuilt_TotalBsmtSF’, ’YearBuilt_GrLivArea’,
’TotalBsmtSF_GrLivArea’

]
+
+# Add new interaction features
+interaction_features.append(’OverallQual_GrLivArea’)
+interaction_features.append(’TotalBsmtSF_GarageCars’)

for feature in interaction_features:
cols = feature.split(’_’)

Some step examples on different tasks
==================== Step 5 ====================

Reflection: The modified training script with data augmentation has been executed successfully. However, the validation RMSE is
0.36237191602303853, which is still significantly above the target of 0.01. This indicates that while data augmentation may
have improved the training process, it was not sufficient to achieve the desired performance.

Next, I will consider another modification to further reduce the RMSE. Given the potential areas for improvement identified earlier,
I will explore increasing the model complexity by adding more layers to the U-Net architecture. This could help the model

learn more complex patterns in the data.
Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The script uses a modified U-Net for image denoising with

a fixed learning rate and no data augmentation.
2. Identify potential modifications: Identified several potential modifications, including learning rate scheduling, data

augmentation, model complexity, regularization, and early stopping.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

3. Implement the modification: Completed. A learning rate scheduler has been added to the training loop.
4. Evaluate results: Completed. The validation RMSE after the learning rate scheduler modification is 0.2463417127589059.
5. Next modification: Completed. Data augmentation has been added to the training data transformation pipeline.
6. Evaluate results again: Completed. The validation RMSE after data augmentation is 0.36237191602303853.
7. Next modification: I will increase the model complexity by adding more layers to the U-Net architecture.

Current Status:
- Step 1 is completed.
- Step 2 is completed.
- Step 3 is completed.
- Step 4 is completed.
- Step 5 is completed.
- Step 6 is completed.
- Step 7 is in progress as I will now modify the script to increase model complexity.
Fact Check: 1. The final validation RMSE after the data augmentation modification is 0.36237191602303853. (Confirmed)
Thought: I will proceed to modify the ‘train.py‘ script to increase the complexity of the U-Net model by adding additional

convolutional layers and possibly increasing the number of filters in existing layers. This should help the model capture
more complex features and potentially reduce the RMSE.

Action: Edit Script (AI)
Action Input: {

"script_name": "train.py",
"edit_instruction": "Increase the complexity of the U-Net model by adding two additional convolutional layers with 64 filters

each after the existing layers. Also, increase the number of filters in the first layer to 32.",
"save_name": "train_with_complex_model.py"

}
Observation: The edited file is saved to train_with_complex_model.py. Here is the diff, please check if the edit is correct and

desirable:

+++
@@ -115,63 +115,87 @@

super(UNet, self).__init__()
Encoder
self.enc1 = nn.Sequential(

- nn.Conv2d(1, 64, 3, padding=1),
- nn.ReLU(),
- nn.Conv2d(64, 64, 3, padding=1),
+ nn.Conv2d(1, 32, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(32, 32, 3, padding=1),

nn.ReLU(),
)
self.pool1 = nn.MaxPool2d(2, 2)

self.enc2 = nn.Sequential(
+ nn.Conv2d(32, 64, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLU(),
+)
+ self.pool2 = nn.MaxPool2d(2, 2)
+
+ self.enc3 = nn.Sequential(

nn.Conv2d(64, 128, 3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(),

-)
- self.pool2 = nn.MaxPool2d(2, 2)
-
- self.enc3 = nn.Sequential(
- nn.Conv2d(128, 256, 3, padding=1),
- nn.ReLU(),
- nn.Conv2d(256, 256, 3, padding=1),
+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(128, 128, 3, padding=1),

nn.ReLU(),
)
self.pool3 = nn.MaxPool2d(2, 2)

Bottleneck
self.bottleneck = nn.Sequential(

- nn.Conv2d(256, 512, 3, padding=1),
- nn.ReLU(),
- nn.Conv2d(512, 512, 3, padding=1),
+ nn.Conv2d(128, 256, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(256, 256, 3, padding=1),

nn.ReLU(),
)

Decoder

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

- self.up3 = nn.ConvTranspose2d(512, 256, 2, stride=2)
+ self.up3 = nn.ConvTranspose2d(256, 128, 2, stride=2)

self.dec3 = nn.Sequential(
- nn.Conv2d(512, 256, 3, padding=1),
- nn.ReLU(),
- nn.Conv2d(256, 256, 3, padding=1),
- nn.ReLU(),
-)
-
- self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
+ nn.Conv2d(256, 128, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(128, 128, 3, padding=1),
+ nn.ReLU(),
+)
+
+ self.up2 = nn.ConvTranspose2d(128, 64, 2, stride=2)

self.dec2 = nn.Sequential(
- nn.Conv2d(256, 128, 3, padding=1),
- nn.ReLU(),
- nn.Conv2d(128, 128, 3, padding=1),
- nn.ReLU(),
-)
-
- self.up1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
+ nn.Conv2d(128, 64, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(64, 64, 3, padding=1),
+ nn.ReLU(),
+)
+
+ self.up1 = nn.ConvTranspose2d(64, 32, 2, stride=2)

self.dec1 = nn.Sequential(
- nn.Conv2d(128, 64, 3, padding=1),
- nn.ReLU(),
- nn.Conv2d(64, 64, 3, padding=1),
- nn.ReLU(),
-)
-
- self.conv_last = nn.Conv2d(64, 1, 1)
+ nn.Conv2d(64, 32, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLU(),
+ nn.Conv2d(32, 32, 3, padding=1),
+ nn.ReLU(),
+)
+
+ self.conv_last = nn.Conv2d(32, 1, 1)

def center_crop(self, layer, target_h, target_w):
_, _, h, w = layer.size()

@@ -323,4 +347,4 @@
print("Submission file saved to ./submission.csv")

Print validation RMSE
-print(f"Final Validation RMSE: {rmse}")
+print(f"Final Validation RMSE: {rmse}")

Some step examples on different tasks
==================== Step 7 ====================
Reflection: The modified training script has been executed successfully, but the quadratic weighted kappa score achieved is 0.7418,

which is slightly lower than the previous score of 0.7431. This indicates that the changes made to the learning rate and the
number of boosting stages did not lead to an improvement in performance. Further modifications are necessary to enhance the
model’s performance.

Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The model architecture, training process, and
hyperparameters have been identified.

2. Experiment with modifications: Completed. The learning rate was changed to 0.05 and the number of boosting stages increased to
200, but the performance decreased slightly.

3. Evaluate performance: Completed. The modified training script was executed, resulting in a validation quadratic weighted kappa
score of 0.7418.

4. Iterate: I will now explore further modifications to improve the model’s performance.

Current Status:
- Step 4 is in progress. I will consider additional modifications, such as trying different feature extraction techniques or

adjusting other hyperparameters, to enhance the model’s performance.

Next Step: I will try to modify the feature extraction process again by using a different vectorization method, such as using a more
advanced model like Sentence-BERT, which may capture more contextual information from the essays. However, since we cannot

directly modify the vectorization method in the current setup, I will consider using a simpler approach like averaging the TF-
IDF scores across different n-grams.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Fact Check: 1. The validation quadratic weighted kappa score achieved after the third modification is 0.7418. (Confirmed by
observation)

Thought: I will proceed to modify the ‘train.py‘ script to implement a different feature extraction method that averages the TF-IDF
scores across different n-grams. This change aims to improve the model’s performance.

Action: Edit Script (AI)
Action Input: {

"script_name": "train.py",
"edit_instruction": "Modify the feature extraction process to average the TF-IDF scores across different n-grams (bigrams and

trigrams) instead of using the default TF-IDF vectorization.",
"save_name": "train_feature_extraction_modified.py"

}
Observation: The edited file is saved to train_feature_extraction_modified.py. Here is the diff, please check if the edit is correct

and desirable:

+++
@@ -10,10 +10,22 @@
train_df = pd.read_csv("./train.csv")
test_df = pd.read_csv("./test.csv")

-# Prepare the features using TF-IDF vectorization
-tfidf = TfidfVectorizer(max_features=10000)
-X = tfidf.fit_transform(train_df["full_text"])
-X_test = tfidf.transform(test_df["full_text"])
+# Prepare the features using TF-IDF vectorization with bigrams and trigrams
+tfidf_unigrams = TfidfVectorizer(max_features=5000, ngram_range=(1, 1))
+tfidf_bigrams = TfidfVectorizer(max_features=5000, ngram_range=(2, 2))
+tfidf_trigrams = TfidfVectorizer(max_features=5000, ngram_range=(3, 3))
+
+X_unigrams = tfidf_unigrams.fit_transform(train_df["full_text"])
+X_bigrams = tfidf_bigrams.fit_transform(train_df["full_text"])
+X_trigrams = tfidf_trigrams.fit_transform(train_df["full_text"])
+
+X_test_unigrams = tfidf_unigrams.transform(test_df["full_text"])
+X_test_bigrams = tfidf_bigrams.transform(test_df["full_text"])
+X_test_trigrams = tfidf_trigrams.transform(test_df["full_text"])
+
+# Average the TF-IDF scores across unigrams, bigrams, and trigrams
+X = (X_unigrams + X_bigrams + X_trigrams) / 3
+X_test = (X_test_unigrams + X_test_bigrams + X_test_trigrams) / 3
y = train_df["score"]

Split the data into training and validation sets
@@ -52,4 +64,4 @@
submission = pd.DataFrame({"essay_id": test_df["essay_id"], "score": test_pred_round})

Save the submission file
-submission.to_csv("./submission.csv", index=False)
+submission.to_csv("./submission.csv", index=False)

Some step examples on different tasks
==================== Step 1 ====================
Reflection: The observation provides a comprehensive overview of the ‘train.py‘ script, detailing its structure, the model used, and

the training process. It highlights the key components such as data reading, label mapping, data splitting, text
vectorization, model training, prediction, and evaluation. However, it also notes that there is no preprocessing of text data
before vectorization, no feature selection or dimensionality reduction, and no cross-validation or hyperparameter tuning.

This indicates potential areas for improvement.
Research Plan and Status: 1. Understand the ‘train.py‘ script: Completed. The script uses a ‘LogisticRegression‘ model and lacks

preprocessing and tuning steps.
2. Identify potential modifications:

- **First Modification**: Implement text preprocessing (tokenization, stopword removal, stemming/lemmatization) before
vectorization to improve feature representation.

3. Implement the modification: Modify the script to include text preprocessing.
4. Iterate: After implementing the first modification, run the training process and evaluate the impact on loss. If the loss does

not improve, consider further modifications.

Current Status: The first modification has been identified and will be implemented next.
Fact Check: 1. The script uses a ‘LogisticRegression‘ classifier for the text classification task. (Confirmed)
2. The script lacks preprocessing of text data before vectorization. (Confirmed)
3. The script does not perform feature selection or dimensionality reduction. (Confirmed)
4. The script does not include cross-validation or hyperparameter tuning. (Confirmed)
Thought: I will proceed to modify the ‘train.py‘ script to include text preprocessing steps before the vectorization process. This

should help improve the model’s performance by providing better features.

Action: Edit Script (AI)
Action Input: {

"script_name": "train.py",
"edit_instruction": "Add text preprocessing steps before vectorization. Use NLTK for tokenization, stopword removal, and

stemming. Specifically, import nltk and use nltk’s tokenization, stopwords, and PorterStemmer. Apply these steps to the
text data before vectorization.",

"save_name": "train.py"
}
Observation: The edited file is saved to train.py. Here is the diff, please check if the edit is correct and desirable:

+++
@@ -5,6 +5,14 @@
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss
import os

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

+import nltk
+from nltk.tokenize import word_tokenize
+from nltk.corpus import stopwords
+from nltk.stem import PorterStemmer
+
+# Download NLTK data files (only need to run once)
+nltk.download(’punkt’)
+nltk.download(’stopwords’)

Read the data
train = pd.read_csv("./train.csv")
@@ -13,6 +21,22 @@
Preprocess labels
author_mapping = {"EAP": 0, "HPL": 1, "MWS": 2}
train["author_num"] = train["author"].map(author_mapping)
+
+# Initialize NLTK components
+stop_words = set(stopwords.words(’english’))
+stemmer = PorterStemmer()
+
+# Define a function for text preprocessing
+def preprocess_text(text):
+ # Tokenize the text
+ tokens = word_tokenize(text.lower())
+ # Remove stopwords and apply stemming
+ tokens = [stemmer.stem(word) for word in tokens if word.isalpha() and word not in stop_words]
+ return ’ ’.join(tokens)
+
+# Apply preprocessing to the text data
+train["text"] = train["text"].apply(preprocess_text)
+test["text"] = test["text"].apply(preprocess_text)

Split the data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(
@@ -53,4 +77,4 @@
submission = submission[["id", "EAP", "HPL", "MWS"]]

Save submission
-submission.to_csv("./submission.csv", index=False)
+submission.to_csv("./submission.csv", index=False)

gpt-4o trajectory on detecting-insults-in-social-commentary

==================== Step 0 ====================
Reflection: The task involves understanding and modifying a machine learning script, ‘train.py‘, to improve its performance on a

dataset related to detecting insults in social commentary. The dataset includes training and test sets, and a sample
submission file. The evaluation metric is AUC, and predictions should be in the range [0,1]. We are to make incremental
modifications to the script to improve performance, keeping epochs to 10 or less and not altering the random seed.

Research Plan and Status:
1. **Understand the current state of the ‘train.py‘ script**: Not started.
2. Identify areas in the script that could be modified to improve model performance: Not started.
3. Make one modification at a time to the script and test the effect on performance: Not started.
4. Aim to achieve a test accuracy of 99.99%: Not started.

Fact Check: None, as no progress has been made yet.

Thought: The first step is to understand the current state of the ‘train.py‘ script to identify potential areas for improvement.
This will involve inspecting the script to see what model and techniques are currently being used.

Action: List Files
Action Input: {

"dir_path": "."
}
Observation: backup/
test.csv
train.csv
train.py

==================== Step 1 ====================
Reflection: The directory contains the ‘train.py‘ script, alongside ‘train.csv‘ and ‘test.csv‘, which are the training and testing

datasets, respectively. There is also a ‘backup/‘ directory, which might contain backup files or previous versions of scripts.

Research Plan and Status:
1. **Understand the current state of the ‘train.py‘ script**: Not started.
2. Identify areas in the script that could be modified to improve model performance: Not started.
3. Make one modification at a time to the script and test the effect on performance: Not started.
4. Aim to achieve a test accuracy of 99.99%: Not started.

Fact Check: The presence of ‘train.py‘, ‘train.csv‘, ‘test.csv‘, and ‘backup/‘ is directly confirmed by the file listing.

Thought: The next step is to inspect the ‘train.py‘ script to understand the current implementation. This will help identify
potential areas for improvement.

Action: Inspect Script Lines
Action Input: {

"script_name": "train.py",
"start_line_number": 1,
"end_line_number": 100

}
Observation: Here are the lines (the file ends at line 122):

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

import pandas as pd
import random
import torch
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch.nn as nn
import torch.optim as optim
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score

Set the random seed for reproducibility
def set_seed(seed):

random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():

torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

set_seed(0)

Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Define a dataset class
class TextDataset(Dataset):

def __init__(self, texts, targets):
self.texts = texts
self.targets = targets

def __len__(self):
return len(self.texts)

def __getitem__(self, idx):
return self.texts[idx], self.targets[idx]

Define the neural network model
class SimpleNNClassifier(nn.Module):

def __init__(self, input_dim):
super(SimpleNNClassifier, self).__init__()
self.fc1 = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 1)

def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x.squeeze()

Train the model
def train_model(X_train, y_train):

train_dataset = TextDataset(torch.FloatTensor(X_train), torch.FloatTensor(y_train))
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True,num_workers=4)

model = SimpleNNClassifier(input_dim=X_train.shape[1]).to(device)
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1,momentum=0.9)

for epoch in range(10):
model.train()

for texts, targets in train_loader:
texts, targets = texts.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(texts)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

y_test_pred = predict(model, X_test_tfidf)
test_acc = accuracy_score(y_test, y_test_pred)
print(f"Epoch {epoch} | Test Accuracy: {test_acc*100:.2f}%")

return model

Predict function
def predict(model, X):

X_tensor = torch.FloatTensor(X).to(device)
model.eval()
with torch.no_grad():

y_pred = model(X_tensor).cpu().numpy()
return (y_pred > 0.5).astype(int)

Main script
if __name__ == ’__main__’:

train_data = pd.read_csv("train.csv")
test_data = pd.read_csv("test.csv")

X = train_data[’Comment’]

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

y = train_data[’Insult’].values

X_test_comments = test_data[’Comment’]
y_test = test_data[’Insult’].values

vectorizer = TfidfVectorizer(stop_words=’english’, max_features=500)
X_tfidf = vectorizer.fit_transform(X).toarray()
X_test_tfidf = vectorizer.transform(X_test_comments).toarray()

==================== Step 2 ====================
Reflection: The ‘train.py‘ script sets up a simple neural network using PyTorch to classify comments as insults or not based on text

data. It uses TF-IDF to vectorize the text and a simple feedforward neural network with two hidden layers. The model is
trained over 10 epochs with a batch size of 32 using stochastic gradient descent (SGD) with a learning rate of 0.1 and
momentum of 0.9. The script also includes a function to set random seeds for reproducibility and uses a binary cross-entropy
loss function.

Research Plan and Status:
1. **Understand the current state of the ‘train.py‘ script**: Completed. The script uses a simple neural network with TF-IDF

features.
2. Identify areas in the script that could be modified to improve model performance: Not started.
3. Make one modification at a time to the script and test the effect on performance: Not started.
4. Aim to achieve a test accuracy of 99.99%: Not started.

Fact Check:
- The script uses TF-IDF vectorization and a simple neural network confirmed by inspection.
- The script trains the model for 10 epochs, confirmed by inspection.
- The learning rate is 0.1 with SGD optimizer, confirmed by inspection.

Thought: The next step is to identify potential areas in the script that can be modified to improve performance. Possible areas
include model architecture, feature extraction, optimization parameters, and data preprocessing.

Action: Final Answer
Action Input: {

"final_answer": "The ‘train.py‘ script uses TF-IDF vectorization and a simple feedforward neural network with two hidden layers
to classify comments as insults. It uses SGD with a learning rate of 0.1 and momentum of 0.9, training for 10 epochs. The
key areas for potential improvement include model architecture, feature extraction, optimization parameters, and data
preprocessing."

}
Observation: end

D THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, Large Language Models (LLMs) were used as an assistive tool
to improve grammar, clarity, and readability for some paragraphs. The authors reviewed and edited
all text and take full responsibility for the final content of the paper.

43

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Agentic ML Training Framework
	Exploration-enriched fine-tuning
	Step-wise RL paradigm
	Agentic ML-specific reward

	Experiments
	Experimental setups
	Main results
	Analysis

	Conclusion
	Problem formulation
	Machine Learning Tasks and Data Collection Process
	Data Collecting Pipeline for Exploration-Enriched Fine-tuning
	Details of Machine Learning Tasks
	Details of Data Collection

	Experimental Details
	Details of Experimental Set-up
	Additional Ablation Study
	Case study
	Task Description for denoising-dirty-documents
	Initial Script for denoising-dirty-documents
	ML-Agent Trajectory on denoising-dirty-documents
	Analysis

	The Use of Large Language Models

