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ABSTRACT

Semi-supervised learning (SSL) is a fundamental task in machine learning, empow-
ering models to extract valuable insights from datasets with limited labeled samples
and a large amount of unlabeled data. Although pseudo-labeling is a widely used
approach for SSL that generates pseudo-labels for unlabeled data and leverages
them as ground truth labels for training, traditional pseudo-labeling techniques
often suffer from the problem of error accumulation, leading to a significant de-
crease in the quality of pseudo-labels and hence the overall model performance.
In this paper, we propose a novel Bi-level Optimization method for Pseudo-label
Learning (BOPL) to boost semi-supervised training. It treats pseudo-labels as
latent variables, and optimizes the model parameters and pseudo-labels jointly
within a bi-level optimization framework. By enabling direct optimization over the
pseudo-labels towards maximizing the prediction model performance, the method
is expected to produce high-quality pseudo-labels that are much less susceptible
to error accumulation. To evaluate the effectiveness of the proposed approach, we
conduct extensive experiments on multiple SSL benchmarks. The experimental
results show the proposed BOPL outperforms the state-of-the-art SSL techniques.

1 INTRODUCTION

Despite the remarkable advances achieved by deep learning models, their widespread application has
been impeded by the cost of acquiring sufficient amount of labeled data (Kingma et al., 2014; LeCun
et al., 2015). In light of this challenge, semi-supervised learning (SSL) has emerged as a highly
promising research area by offering the capacity to leverage a small number of labeled samples and a
sufficient number of unlabeled samples for effective learning (Van Engelen & Hoos, 2020). The key
for successful SSL lies in effectively exploiting the large number of unlabeled samples to remedy the
shortage of the labeled data.

Many SSL methods have been developed to exploit the unlabeled data in various ways, includ-
ing a variety of loss regularization based methods (Miyato et al., 2018; Zhang et al., 2020), and
teacher-student model based methods (Athiwaratkun et al., 2019; Tarvainen & Valpola, 2017). One
popularly adopted SSL technique is pseudo-labeling that aims to effectively expand the labeled data
by generating predicted pseudo-labels for the unlabeled samples and then using them as ground-truth
labels for model training. A number of recent works have explored diverse data augmentation based
pseudo-labeling techniques such as MixMatch (Berthelot et al., 2019), ReMixMatch (Berthelot et al.,
2020), FixMatch (Sohn et al., 2020), Dash (Xu et al., 2021) and FlexMatch (Zhang et al., 2021) to
enhance the quality of the pseudo-labels and improve the model performance, while several other
studies such as TSSDL (Shi et al., 2018) and LPD (Iscen et al., 2019) have explored label propagation
techniques to create pseudo-labels based on the density of the local neighborhood. Although these
methods achieve enhanced SSL performance, they are often prone to error accumulations from the
mistakes of pseudo-labels to the afterwards model parameter updates, lacking of principled strategies
to simultaneously maintain the quality of pseudo-labels and the prediction consistency between
labeled and unlabeled samples. Such drawbacks can lead to poor suboptimal solutions, yielding
prediction models that cannot generalize well.

In this paper, we propose a novel Bi-level Optimization method for Pseudo-label Learning (BOPL) to
address the abovementioned limitations of existing pseudo-labeling techniques. Bi-level optimization
provides a convenient framework for simultaneous optimization of two objectives that are at different
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levels and inter-dependent. We adopt bi-level optimization to address SSL through a novel and direct
pseudo-labeling design. Specifically, we treat pseudo-labels as latent variables and formulate pseudo-
labeling as a bi-level optimization problem to jointly learn the pseudo-labels and model parameters
at different levels through a pair of bi-level objectives. By optimizing the pseudo-labels directly,
the method is expected to produce more reliable labels for the unlabeled samples. By designing
the bi-level objectives properly, the quality of pseudo-labels and the prediction consistency between
labeled and unlabeled data can be simultaneously enhanced to promote the generalizability of the
prediction model. To validate the proposed methodology, we conduct experiments on multiple SSL
benchmark datasets and compare the proposed BOPL with multiple state-of-the-art SSL methods.
The experimental results demonstrate BOPL outperforms the comparison methods and achieves
state-of-the-art performance. The key contribution of this paper can be summarized as follows:

• We propose a novel bi-level optimization method, BOPL, for SSL, which treats pseudo-labels
as latent variables and directly optimizes them.

• We design a proper pair of bi-level objectives to ensure prediction consistency between
labeled and unlabeled samples and promote generalizability of the model.

• Our empirical results validate the efficacy of the proposed BOPL by comparing with a set of
state-of-the-art SSL methods.

2 RELATED WORKS

Semi-Supervised Learning With the widespread application of deep learning models, SSL has
been receiving growing attentions for exploiting the unlabeled data to reduce demands for labeled
samples. One popular line of this research is to develop regularization-based SSL methods that
introduce additional loss terms based on the unlabeled data to enhance model training. Examples
of such methods include the Π-model (Laine & Aila, 2017) and the Temporal-Ensemble (Laine &
Aila, 2017), which add consistency regularizations to the loss function and leverage the exponential
moving average of model predictions. Virtual Adversarial Training (VAT) (Miyato et al., 2018) is
another regularization-based approach for SSL that trains a deep neural network with adversarial
perturbation based regularization for all the training data samples. A more recent work, Consistency
Regularization for Generative Adversarial Networks (CR-GAN) (Zhang et al., 2020), combines a
generative adversarial network (GAN) with a consistency regularization term to generate pseudo-
labels for the unlabeled data. Another line of SSL research centers on the teacher-student based
methods, which train a student network to match the predictions of a teacher network on unlabeled
data. Mean Teacher (MT) model (Tarvainen & Valpola, 2017) is a well-known method in this
category. MT + Fast SWA (Athiwaratkun et al., 2019) combines Mean Teacher with Fast Stochastic
Weight Averaging to further improve performance. Smooth Neighbors on Teacher Graphs (SNTG)
(Luo et al., 2018) leverages a graph for the teacher model to regulate or control the distribution of
features in the unlabeled samples. Interpolation Consistency Training (ICT) (Verma et al., 2022) is a
regularization-based method built on teacher-student networks. It enforces consistency between the
predictions on an interpolated set of unlabeled data points and the interpolation of the predictions on
those points, pushing the decision boundary to low-density regions.

Pseudo-Labeling One early representative pseudo-labeling technique for SSL is Co-Training
(Blum & Mitchell, 1998), which trains two classifiers to generate pseudo-labels on unlabeled samples
for each other. Recently, more SSL studies have focused on generating good pseudo-labels to support
model training. Pseudo-Label (Lee et al., 2013) generates labels for unlabeled samples based on
model predictions while filtering out the low-confidence predictions. MixMatch (Berthelot et al.,
2019) employs data augmentation to create multiple versions of each input data sample and obtains
predictions for all of them. The predictions are then averaged to produce the pseudo-labels. Several
other works, such as ReMixMatch (Berthelot et al., 2020), UDA (Xie et al., 2020), and FixMatch
(Sohn et al., 2020), first generate pseudo-labels on weakly augmented samples based on confidence
thresholds, and then use them as annotations for strongly augmented samples. Another set of works
known as label propagation methods, such as TSSDL (Shi et al., 2018) and LPD (Iscen et al., 2019),
assign pseudo-labels based on the density of the local neighborhood. DASO (Oh et al., 2022), on
the other hand, blends confidence-based pseudo-labels and density-based pseudo-labels in different
ways for each class. Moreover, some approaches, such as Dash (Xu et al., 2021) and FlexMatch
(Zhang et al., 2021), adjust the confidence thresholds dynamically in a curriculum learning manner to
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Figure 1: The proposed Bi-level Optimization framework for Pseudo-Labeling (BOPL). The inner
loss Linner is used to optimize the model parameters by leveraging the unlabeled data with pseudo-
labels. The outer loss Louter is used to optimize the pseudo-labels as latent variables by utilizing both
the labeled and unlabeled samples; it treats the model parameters as a function of the pseudo-labels.

improve the quality of pseudo-labels for SSL. SimMatch (Zheng et al., 2022) uses similarity-based
label propagation to improve pseudo-label quality. CoMatch (Li et al., 2021) combines consistency
regularization and mutual learning for enhanced pseudo-labeling.

Bi-level Optimization Methods Bi-level optimization has emerged as a powerful learning tech-
nique that allows the optimization of an inner (lower-level) objective while simultaneously optimizing
an outer (higher-level) objective that depends on the solution to the lower-level problem. It has
been deployed to solve various problems, including hyperparameter optimization (Pedregosa, 2016),
and neural architecture search (Liu et al., 2019). Recently, some researchers have adopted bi-level
optimization for SSL. In particular, Meta Pseudo-Labels (Pham et al., 2021) formulates SSL as a
bi-level optimization problem that optimizes the teacher network parameters from the outer level
while optimizes the student network parameters at the inner level with the pseudo-labels determined
by the teacher network. Meta-Semi (Wang et al., 2020) deploys a bi-level meta optimization frame-
work, which optimizes the weights of the unlabeled instances from the outer level based on loss
on the labeled samples while learning the model parameters at the inner level by minimizing the
weighted loss on unlabeled samples with predicted pseudo-labels. Although achieved state-of-the-art
SSL performance, these methods still can suffer from the error accumulations due to the intermediate
pseudo-label determination process. By contrast, we propose to directly optimize pseudo-labels from
the outer level of a newly designed bi-level optimization framework for SSL.

3 PROPOSED METHOD

We consider the following SSL setting: The training dataset consists of a relatively small number
of labeled samples, Dl = {(xl

i,yi)}N
l

i=1, and a large number of unlabeled samples, Du = {xu
i }N

u

i=1,
where xl

i ∈ X and xu
i ∈ X denote the i-th labeled and unlabeled instances respectively, and yi is

the corresponding one-hot label vector of xl
i that indicates the class labels from the label set Y . We

assume the size of the unlabeled set greatly surpasses the labeled set: Nu ≫ N l. The goal is to train
a classifier f : X → Y that generalizes well to previously unseen test data drawn from the same
distribution as the training data.

In this section, we present our proposed Bi-Level Optimization method for Pseudo-label Learning
(BOPL), which directly optimizes the pseudo-labels of the unlabeled samples at the outer level by
treating the model parameters as a function of the pseudo-labels. The architecture of the proposed
BOPL framework is illustrated in Figure 1. We present the bi-level optimization formulation in
section 3.1, and provide the optimization algorithm in section 3.2. In section 4, we present a model
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fine-tuning procedure given the learned pseudo-labels. Finally, we propose to further improve BOPL
by incorporating interpolation consistency training into model fine-tuning in section 4.1.

3.1 PSEUDO-LABELING WITH BI-LEVEL OPTIMIZATION

We formulate the pseudo-labeling problem of SSL as a novel bi-level optimization problem by
directly learning the pseudo-labels of unlabeled samples as latent variables through an outer level
optimization, while learning the model parameters through an inner level optimization. To mitigate
potential oscillations during training, we adopt a simple teacher-student concept to maintain two sets
of model parameters: a student model θS and a teacher model θT . The student model is learned
directly during training, while the teacher model is updated using an exponential moving average
(EMA) of the student model; at the t-th iteration, the update is conducted as follows:

θt
T = β θt−1

T + (1− β) θt
S , (1)

where β ∈ (0, 1) is a momentum coefficient hyperparameter. The student and teacher models are
initialized by performing pre-training on the labeled and unlabeled data for some iterations using the
Mean-Teacher approach (Tarvainen & Valpola, 2017).

The bi-level loss functions of the proposed BOPL is designed as follows to induce high quality
pseudo-labels while learning optimal model parameters as functions of the pseudo-labels. First, since
we have a large amount of unlabeled samples, when the pseudo-labels of the unlabeled data are given,
the optimal model parameters θ∗

S can simply be learned by minimizing the standard cross-entropy
loss on the pseudo-labeled data Du that are originally unlabeled:

Linner(θS , Ŷ ) =
1

Nu

∑Nu

i=1
ℓCE(ŷi, f(x

u
i ,θS)) (2)

where ℓCE denotes the cross-entropy loss, f(xu
i ,θS) is the probabilistic prediction output of the

student model for the unlabeled instance xu
i , and ŷi denotes the pseudo-label vector for xu

i . As
different pseudo-labels will lead to different optimal model parameters θ∗

S , we can treat θ∗
S as a

function of the pseudo-labels Ŷ = [ŷ1, · · · , ŷi, · · · , ŷNu ]. The quality of the pseudo-labels Ŷ
determines the quality of the model parameters θ∗

S , while the latter reflects the former.

Due to the dependence of the optimal model parameters θ∗
S on pseudo-labels, we propose to evaluate

the quality of pseudo-labels by assessing the corresponding optimal model’s performance. Specifically,
given no separate validation set, we validate θ∗

S’s performance using the whole training set—Dl and
Du. On the labeled data Dl, we use the standard cross-entropy loss as the validation loss:

Ll
outer(θ

∗
S) =

1

N l

∑N l

i=1
ℓCE(yi, f(x

l
i,θ

∗
S)). (3)

This validation loss can naturally reflect the prediction consistency between the labeled (with true
labels) and unlabeled (with pseudo-labels) samples. On the unlabeled data Du, we use the entropy
loss as the validation loss:

Lu
outer(θ

∗
S) =

1

Nu

∑Nu

i=1
ℓE(f(x

u
i ,θ

∗
S)), (4)

where ℓE denotes the entropy loss function. The entropy loss reflects the prediction uncertainty of
the given model on the unlabeled samples. The overall validation loss on the training data integrates
these two loss terms together:

Louter(θ
∗
S) = Ll

outer(θ
∗
S) + λLu

outer(θ
∗
S), (5)

where λ ∈ [0, 1] is a trade-off hyperparameter. Since the labeled data have the true label information,
λ is typically set to a value smaller than 1 to give more weight to the validation loss on Dl.

To obtain high quality pseudo-labels, we then treat the pseudo-labels Ŷ as latent variables and learn
the pseudo-labels by minimizing the corresponding optimal model’s validation loss. This leads to the
following bi-level optimization problem:

min
Ŷ ∈C

Louter(θ
∗
S(Ŷ )) (6)

s.t. θ∗
S = argminθS

Linner(θS , Ŷ )
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where the pseudo-label variables Ŷ are subject to the soft label distribution constraints, such as:

C = {Ŷ : ŷi ≥ 0,
∑

j
ŷij = 1, ∀i}. (7)

By optimizing the pseudo-labels directly, the proposed bi-level optimization is expected to produce
more reliable high quality pseudo labels for the unlabeled samples through the outer validation
loss. Meanwhile, it also provides a principled mechanism to ensure prediction consistency between
the labeled and pseudo-labeled samples. These desirable properties can foreseeably enhance the
generalization capacity of the subsequent prediction model.

3.2 OPTIMIZATION PROCEDURE

We propose to solve the bi-level optimization problem in Eq.(6) using stochastic gradient descent.
The key for designing the optimization algorithm lies in deriving the gradient of the outer validation
loss function Louter regarding the pseudo-label variables Ŷ = [ŷ1, · · · , ŷi, · · · , ŷNu ].

As the pseudo-label variables only impact the validation loss via the model parameters θ∗
S , we derive

the gradient of Louter w.r.t. each ŷi using the following chain rule:

∇ŷi
Louter = ∇θ∗

S
Louter · ∇ŷi

θ∗
S . (8)

Moreover, we propose to approximate θ∗
S by updating the model parameters θ with a single gradient

descent step over the inner loss function Linner. Specifically, at the t-th iteration, we set

θ∗
S = θt+1

S = θt
S − α∇θS

Linner(θ
t
S , Ŷ

t) (9)

where α is the learning rate. For convenience of notation, let’s define:

δ(θt+1
S ) = ∇θS

Ll
outer(θ

t+1
S ) + λ∇θS

Lu
outer(θ

t+1
S ). (10)

We then compute the target gradient as follows.

Proposition 1. With the chain rule in Eq.(8) and the approximation in Eq.(9), the gradient of Louter
w.r.t. ŷi can be expressed as:

∇ŷi
Louter = −α · δ(θt+1

S ) · ∇ŷi
∇θS
Linner(θ

t
S , Ŷ ) (11)

Proof. Given the approximation in Eq.(9), we have:

∇ŷi
θ∗
S = ∇ŷi

θt+1
S = ∇ŷi

(θt
S − α∇θS

Linner(θ
t
S , Ŷ

t)) = −α · ∇ŷi
∇θS
Linner(θ

t
S , Ŷ

t) (12)

Then following the chain rule in in Eq.(8) and the definition of Louter in Eq.(5), we can immediately
derive:

∇ŷi
Louter =

(
∇θS
Ll

outer(θ
t+1
S )+λ∇θS

Lu
outer(θ

t+1
S )

)
·∇ŷi

θ∗
S

= −α · δ(θt+1
S ) · ∇ŷi

∇θS
Linner(θ

t
S , Ŷ ) (13)

Although it is convenient to compute the first order derivatives of the loss functions, the second
order derivative ∇ŷi

∇θS
Linner(θ

t
S , Ŷ ) is not easy to compute. We hence further leverage a finite

difference approximation method (Bottou, 2012) for the partial derivative ∇θS
Linner(θ

t
S , Ŷ ) to

provide a convenient solution to the second order derivative.

Proposition 2. Let ϵ be a very small constant. By using a finite difference approximation for
∇θS
Linner(θ

t
S , Ŷ ), we can approximate the target gradient as follows:

∇ŷi
Louter ≈

α

2ϵ

(
log(f(xu

i ;θ
+
S ))− log(f(xu

i ;θ
−
S ))

)
(14)

where θ+
S = θt

S + ϵ · δ(θt+1
S ) and θ−

S = θt
S − ϵ · δ(θt+1

S ).
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Algorithm 1 Training Algorithm for BOPL

Input: training dataset: Dl and Du; hyperparameters; initialized model parameters: θS ,θT ;
Output: learned model parameters θS

Set : θ1
S ← θS ;θ

1
T ← θT ; Ŷ = f(Xu;θ1

T )
for t = 1 to maxiters do

for minibatch Bu ∈ Du do
Compute loss Linner(θ

t
S , Ŷ ) on Bu via Eq.(2)

Calculate θt+1
S using Eq.(9)

Compute Lu
outer(θ

t+1
S ) on Bu via Eq.(4)

Set Ll
outer = 0

for minibatch Bl ∈ Dl do
Ll

outer = Ll
outer +

1
N l ℓCE(B

l;θt+1
S )

end for
Calculate δ(θt+1

S ) using Eq.(10)
Calculate gradient∇ŷi

Louter on Bu with Eq.(14)
Update Ŷ on Bu with Eq.(17) and Eq.(18)

end for
θt+1
S ← θt

S − α∇θS
Linner(θ

t
S , Ŷ ) on Du; θt+1

T ← βθt
T + (β − 1)θt+1

S

end for
Fine-tune the model parameters θS with the input data and the learned pseudo-labels Ŷ

Proof. Let’s use the following finite difference approximation for the partial derivative
∇θS
Linner(θ

t
S , Ŷ ):

∇θS
Linner(θ

t
S , Ŷ ) ≈ Linner(θ

+
S , Ŷ )− Linner(θ

−
S , Ŷ )

2ϵ · δ(θt+1
S )

(15)

By substituting this back to Eq.(11), we can express the target gradient as:

∇ŷi
Louter ≈−

α

2ϵ

(
∇ŷi
Linner(θ

+
S , Ŷ )−∇ŷi

Linner(θ
−
S , Ŷ )

)
=− α

2ϵ

(
∇ŷi

ℓCE(ŷi, f(x
u
i ,θ

+
S ))−∇ŷi

ℓCE(ŷi, f(x
u
i ,θ

−
S ))

)
=

α

2ϵ

(
log(f(xu

i ;θ
+
S ))−log(f(x

u
i ;θ

−
S ))

)
(16)

Update of Pseudo-Labels: The pseudo-labels Ŷ can be initialized by applying prediction model
with the initial teacher model parameters θ1

T , such as ŷi = f(xu
i ;θ

1
T ). Then in each iteration, we

update each pseudo-label vector ŷi with a gradient descent step. Moreover, to ensure a valid label
distribution vector, we have to renormalize each updated pseudo-label vector to satisfy the constraints
C in Eq.(7). In particular, we adopt the following gradient descent and renormalization process with a
learning rate α by deploying the ReLU operator:

ỹi =
ReLU(ŷi − α∇ŷi

Louter)∑
j ReLU(ŷi − α∇ŷi

Louter)j
(17)

where∇ŷi
Louter is calculated using Eq.(14). Furthermore, to mitigate oscillations of gradient updates

across iterations, we integrate the prediction outputs from the current teacher model to determine the
final updated pseudo-labels. For the t-th iteration, we eventually update the pseudo-labels as follows:

ŷi = γ ỹi + (1− γ) f(xu
i ,θ

t
T ), (18)

where the hyperparameter γ ∈ [0, 1] determines the linear combination weight. The overall batch-wise
training algorithm for the proposed BOPL is presented in Algorithm 1.
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Table 1: Comparison results in terms of mean test error and standard deviation using WRN-28-2 as
the backbone on CIFAR-10 and SVHN and using WRN-28-8 as the backbone on CIFAR-100.

Dataset CIFAR-10 CIFAR-100 SVHN
Number of Labeled Samples 250 1000 4000 2500 10000 1000
VAT (Miyato et al., 2018) - 18.68(0.40) 11.05(0.31) - - 5.35(0.19)
Mean Teacher (Tarvainen & Valpola, 2017) 32.32(2.30) 17.32(4.00) 10.36(0.25) 53.91(0.57) 35.83(0.24) 5.65(0.45)
ICT (Verma et al., 2022) - - 7.66(0.17) - - 3.53(0.07)
MixMatch (Berthelot et al., 2019) 11.05(0.15) 7.75(0.32) 6.24(0.06) 39.94(0.37) 28.31(0.33) 3.27(0.31)
UDA (Xie et al., 2020) 8.82(1.08) 5.87(0.13) 4.29(0.07) 33.13(0.22) 24.50(0.25) 1.89(0.01)
ReMixMatch (Berthelot et al., 2020) 5.44(0.05) 5.73(0.16) 4.72(0.04) 27.43(0.31) 23.03(0.56) 2.83(0.30)
FixMatch (Sohn et al., 2020) 5.07(0.35) - 4.26(0.05) 28.29(0.11) 22.60(0.12) 2.28(0.11)
FlexMatch (Zhang et al., 2021) 4.98(0.09) - 4.19(0.01) 26.49(0.20) 21.90(0.15) 6.72(0.01)
CoMatch (Li et al., 2021) 4.91(0.33) - 4.56(0.20) 28.37(0.35) 20.86(0.36) -
SimMatch (Zheng et al., 2022) 4.84(0.36) - 3.96(0.01) 25.07(0.32) 20.58(0.11) -
Meta-Semi (Wang et al., 2020) - 7.34(0.22) 6.10(0.10) - - -
Meta Pseudo-Labels (Pham et al., 2021) - - 3.89(0.07) - - 1.99(0.07)
BOPL (Ours) 4.65(0.27) 5.12(0.18) 3.12(0.08) 24.84(0.29) 19.92(0.27) 1.81(0.07)

BOPL+ICT (Ours) 4.12(0.26) 4.02(0.13) 3.03(0.08) 23.16(0.27) 18.12(0.24) 1.78(0.07)

4 MODEL FINE-TUNING

After bi-level optimization, we can obtain high quality pseudo-labels Ŷ for the unlabeled samples in
the training set. To ensure the model parameters are well trained given the pseudo-labels, we propose
to further fine-tune the model parameters on both the labeled and pseudo-labeled data. In particular,
we use the standard cross-entropy loss as the supervised loss Lsup on the labeled data Dl and use a
mean squared error as the pseudo-label supervised loss Lpseudo on the pseudo-labeled data (Du, Ŷ )
for model fine-tuning:

Lsup(θS) = Ll
outer(θS), Lpseudo(θS) =

1

Nu

∑Nu

i=1
∥f(xu

i ;θS)− ŷi)∥22 (19)

The mean squared error measures the stability of the model predictions on the pseudo-labeled data.

We perform model fine-tuning to maintain prediction consistency between labeled and unlabeled data
by minimizing the following joint loss function:

Lft = Lsup + ηLpseudo (20)

where η is a trade-off hyperparameter that balances the contribution of the two loss terms.

4.1 FINE-TUNING WITH ICT

Interpolation Consistency Training (ICT) (Verma et al., 2022) facilitates model training and improves
model’s robustness and generalizability by enforcing prediction consistency across interpolated
points. We extend the idea of ICT to improve our fine-tuning procedure. As part of this approach,
we generate interpolated data points by employing mix-up augmentation on unlabeled samples with
their learned pseudo-labels, (Du, Ŷ ). This involves linearly combining a pair of randomly selected
unlabeled samples xu

i and xu
j and their pseudo-labels using a mixing parameter, µ, sampled from a

Beta distribution:

xm = µ xu
i + (1− µ) xu

j , ŷm = µ ŷi + (1− µ) ŷj (21)

where xu
m and ŷm are the mix-up (or interpolated) sample and pseudo-label, respectively. By pairing

the samples inDu with a random shuffled version of it, the same number (i.e., Nu) of mix-up samples
can be generated. We then compute the mean squared consistency loss on the mix-up samples and
their corresponding pseudo-labels as follows

LICT
cons =

1

Nu

∑Nu

i=1
∥f(xm

i ;θS)− ŷm
i ∥

2
2 (22)

We fine-tune the model parameters θS by replacing the Lpseudo loss in Eq.(20) with this ICT consis-
tency loss, and refer to this extended fine-tuning approach based on BOPL as BOPL+ICT.
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Table 2: Comparison results in terms of mean test error and standard deviation by using WRN-37-2
as the backbone network on STL-10.

Π Model MeanTeacher MixMatch UDA ReMixMatch FixMatch BOPL (Ours) BOPL+ICT (Ours)
STL/1000 26.23(0.82) 21.43(2.39) 10.41(0.61) 7.66(0.56) 5.23(0.45) 5.17(0.63) 4.93(0.54) 4.11(0.52)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets: We conducted comprehensive experiments on three commonly used image classification
benchmarks: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and
STL-10 (Coates et al., 2011). Following previous works, on each dataset we randomly select a subset
of samples with equal sizes from each class as labeled data and keep the remaining samples unlabeled.
We conducted experiments on CIFAR-10 with {250, 1, 000, 2, 000, 4, 000} labeled samples, on
CIFAR-100 with 2,500, 4,000, and 10,000 labeled samples, on SVHN with 1000 and 500 labeled
samples, and on STL-10 with 1,000 images as the labeled data.

Implementation Details: We maintained a fair comparison by adopting the same backbones, training
parameters, and initial input preprocessing as prior works. Detailed implementation information is
available in Appendix A.

5.2 COMPARISON RESULTS

We compare the proposed BOPL approach with a great set of state-of-the-art SSL methods, including
Π-model (Laine & Aila, 2017), Mean Teacher (Tarvainen & Valpola, 2017), VAT MixMatch (Berthelot
et al., 2019), FixMatch (Sohn et al., 2020), ReMixMatch (Berthelot et al., 2020), FlexMatch (Zhang
et al., 2021), UDA (Xie et al., 2020), CoMatch (Li et al., 2021), SimMatch (Zheng et al., 2022),
Meta Pseudo-Labels (Pham et al., 2021), ICT (Verma et al., 2022). We use CNN-13, WRN-28-2,
WRN-28-8 and WRN-37 separately as the backbone networks to conduct comprehensive experiments
and provide fair comparisons with these previous SSL methods.

Table 1 reports the comparison results on all the three datasets by using WRN-28-2 as the backbone
network on CIFAR-10 and SVHN and using WRN-28-8 as the backbone network on CIFAR-100.
BOPL outperforms all the other state-of-the-art comparison methods such as Mean Teacher, VAT,
MixMatch, Meta-Semi, SimMatch, CoMatch, ReMixMatch and Meta Pseudo-Labels in terms of
mean test error across all cases. In particular, when using only 250 and 1000 labeled samples on
CIFAR-10, BOPL achieves impressive low test error of 4.56% and 5.12%, respectively. Furthermore,
BOPL achieves mean test errors of 24.84% and 19.92% on CIFAR-100 with 2500 and 10000 labeled
samples, respectively. Lastly, on SVHN, BOPL attains a mean test error of 1.81% using 1000 labeled
samples. These outcomes demonstrate the strong performance of BOPL across varying labeled
sample sizes and datasets.

Table 2 provides a comprehensive comparison of various SSL methods on the STL-10 dataset,
utilizing WRN-37 as the backbone network. With a fixed number of 1000 labeled samples, our
proposed method, BOPL, achieves remarkable results with a mean test error of 4.93%. These
results outperform previous state-of-the-art methods, including FixMatch, ReMixMatch, and UDA,
showcasing again the effectiveness of our proposed approach.

We have included additional experiments employing a CNN-13 backbone on the CIFAR-10, CIFAR-
100, and SVHN datasets in Appendix B for a more detailed comparative analysis.

Overall, the proposed BOPL approach outperforms the state-of-the-art SSL methods across different
experimental settings adopted in many previous works, demonstrating its effectiveness in semi-
supervised image classification tasks with limited labeled samples. The consistent superiority of
BOPL across multiple benchmark datasets underscores its potential as an effective tool for SSL.

5.3 ABLATION STUDY

We conducted an ablation study to investigate the contribution of different components of BOPL on
CIFAR-100 by using CNN-13 as the backbone network. In particular, we compared the full model
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Table 3: Ablation study results in terms of mean test error and standard deviation on CIFAR-100 by
using CNN-13 as the backbone.

BOPL −w/o EMA −w/o Lu
outer −w/o Ll

outer −w/o fine-tuning −w/o pre-training
CIFAR-100/4000 36.78(0.29) 40.01(0.54) 38.76(0.49) 45.34(0.63) 42.12(0.55) 44.15(0.57)
CIFAR-100/10000 28.92(0.18) 31.75(0.43) 30.12(0.42) 39.92(0.52) 35.80(0.45) 37.52(0.43)

Table 4: Impact of pseudo-label update methods. Results are in terms of mean test error and standard
deviation on CIFAR-100 by using CNN-13 as the backbone.

ReLU+Teacher (BOPL) ReLU Softmax Softmax+Teacher
CIFAR-100/4000 36.78(0.29) 37.11(0.38) 38.12(0.41) 37.57(0.30)
CIFAR-100/10000 28.92(0.18) 30.25(0.27) 31.95(0.39) 29.43(0.28)

BOPL with the following variants: (1) “ −w/o EMA”, which drops the teacher model parameters by
disabling the EMA update; (2) “ −w/o Lu

outer”, which drops the unlabeled data from the outer loss;
(3) “ −w/o Ll

outer”, which drops the labeled data from the outer loss; and (4) “ −w/o fine-tuning”,
which drops fine-tuning. The comparison results are reported in Table 3. We can see the variant
“ −w/o Ll

outer” produces the largest test error increase, which indicates the labeled data is critical for
assessing the quality of the pseudo-labels and ensuring prediction consistency between labeled and
pseudo-labeled data under the proposed bi-level optimization framework. Meanwhile, all the variants
have higher test errors than the full model BOPL, which suggests all the components contribute to
the effective performance of BOPL.

5.4 IMPACT OF PSEUDO-LABEL UPDATE

Our proposed bi-level optimization method aims to learn high quality pseudo-labels to support SSL.
It is important to properly update the pseudo-labels to ensure valid pseudo-label vectors along the
stochastic gradient descent training process of the BOPL framework. We conduct experiments on
CIFAR-100 with both 4000 and 10000 labeled samples by using CNN-13 as the backbone network to
investigate the impact of pseudo-label update strategies.

In particular, we considered the following pseudo-label update strategies: (1) “ReLU+Teacher”, which
is the pseudo-label update strategy we adopted for BOPL. It first applies ReLU based normalization
on the updated pseudo-label vector via Eq.(17) and then integrates the teacher model’s prediction
via Eq.(18). (2) “ReLU”, which only uses the ReLU based update in Eq.(17) and drops the teacher
model predictions. (3) “Softmax”, which uses the softmax normalization in the following form:
ŷi = softmax(τ(ŷi − α∇ŷi

Louter)), where τ is the sharpening hyper-parameter and is set to 7 in
the experiments. (4) “Softmax+Teacher”, which further integrates the teacher model’s prediction
after applying softmax normalization, similar to Eq.(18). The comparison results are reported in
Table 4. We can see integrating teacher model’s prediction can help reduce test errors in both cases—
“ReLU+Teacher” and “Softmax-Teacher”, which highlights the effectiveness of combining the learned
pseudo-labels with the teacher model predictions. Meanwhile, “ReLU” normalization works better
than “Softmax” normalization, and our proposed pseudo-label update strategy “ReLU+Teacher”
produces the best performance.

6 CONCLUSION

In this paper, we proposed BOPL, a novel bi-level optimization approach for Semi-Supervised
Learning, which produces high-quality pseudo-labels for unlabeled data by directly learning pseudo-
labels in the outer level of the bi-level optimization, while jointly optimizing model parameters
at the inner level. This approach provides a structured and principled framework for overcoming
the error accumulation problem of other pseudo-labeling techniques ensuring a more accurate and
reliable learning process. We conducted comprehensive experiments using diverse datasets, including
CIFAR-10, CIFAR-100, SVHN, and STL-10, with varying numbers of labeled samples and different
backbone networks. The proposed BOPL method produces consistent and remarkable performance
gains over a great set of previous SSL methods. These results validate the efficacy of the proposed
approach in diverse scenarios and underline its potential for practical applications.
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Table 5: Comparison of mean test error and standard deviation by using CNN-13 on CIFAR-10 and
CIFAR-100.

Dataset CIFAR-10 CIFAR-100
Number of Labeled Samples 1000 2000 4000 4000 10000
Supervised 39.95(0.75) 27.67(0.12) 20.42(0.21) 58.31(0.89) 44.56(0.30)
Supervised + MixUp (Zhang et al., 2018) 31.83(0.65) 24.22(0.15) 17.37(0.35) 54.87(0.07) 40.97(0.47)
Π-model (Laine & Aila, 2017) 28.74(0.48) 17.57(0.44) 12.36(0.17) 55.39(0.55) 38.06(0.37)
Temp-ensemble (Laine & Aila, 2017) 25.15(1.46) 15.78(0.44) 11.90(0.25) - 38.65(0.51)
Mean Teacher(Tarvainen & Valpola, 2017) 21.55(0.53) 15.73(0.31) 12.31(0.28) 45.36(0.49) 35.96(0.77)
VAT (Miyato et al., 2018) 18.12(0.82) 13.93(0.33) 11.10(0.24) - -
SNTG (Luo et al., 2018) 18.41(0.52) 13.64(0.32) 10.93(0.14) - 37.97(0.29)
Learning to Reweight (Ren et al., 2018) 11.74(0.12) - 9.44(0.17) 46.62(0.29) 37.31(0.47)
MT + Fast SWA (Athiwaratkun et al., 2019) 15.58 11.02 9.05 - 33.62(0.54)
ICT (Verma et al., 2022) 12.44(0.57) 8.69(0.15) 7.18(0.24) 40.07(0.38) 32.24(0.16)
Meta-Semi (Wang et al., 2020) 10.27(0.66) 8.42(0.30) 7.05(0.27) 37.61(0.56) 30.51(0.32)
Meta-Semi + ICT (Wang et al., 2020) 9.29(0.62) 7.05(0.12) 6.42(0.18) 37.12(0.59) 29.68(0.05)
BOPL (Ours) 8.74(0.32) 6.90(0.17) 5.98(0.16) 36.78(0.31) 28.92(0.18)

BOPL + ICT (Ours) 8.54(0.31) 6.72(0.16) 5.79(0.14) 36.44(0.29) 28.80(0.14)

Table 6: Comparison of mean test error and standard deviation by using CNN-13 on SVHN.

Dataset SVHN
Number of Labeled Samples 500 1000
VAT (Miyato et al., 2018) - 5.42(0.00)
Π-model (Laine & Aila, 2017) 6.65(0.53) 4.82(0.17)
Temp-ensemble (Laine & Aila, 2017) 5.12(0.13) 4.42(0.16)
Mean Teacher (Tarvainen & Valpola, 2017) 4.18(0.27) 3.95(0.19)
ICT (Verma et al., 2022) 4.23(0.15) 3.89(0.04)
SNTG (Luo et al., 2018) 3.99(0.24) 3.86(0.27)
Meta-Semi (Wang et al., 2020) 4.12(0.21) 3.92(0.11)
Meta-Semi + ICT (Wang et al., 2020) 3.98(0.09) 3.77(0.05)
BOPL (Ours) 3.43(0.06) 3.26(0.05)

BOPL + ICT (Ours) 3.05(0.05) 2.90(0.04)

A IMPLEMENTATION DETAILS

Following previous works (Luo et al., 2018; Tarvainen & Valpola, 2017), we adopted random 2× 2
translation and random horizontal flip to augment the training set. To maintain fair comparisons with
a great number of previous studies on the multiple datasets, we conducted comprehensive experiments
by using four types of backbone networks: a 13-layer CNN (CNN-13), a Wide-RestNet-28-2 (WRN-
28-2) (Zagoruyko & Komodakis, 2016), a Wide-RestNet-37-2 (WRN-37), and a Wide-RestNet-28-8
(WRN-28-8). The WRN models are chosen based on previous works for comparability (Berthelot
et al., 2019). For training CNN-13, we employed the SGD optimizer with a Nesterov momentum
(Nesterov, 1983) of 0.9, an L2 regularization coefficient of 1e-4 for CIFAR-10 and CIFAR-100
datasets and 5e-5 for SVHN, and an initial learning rate α of 0.1. To schedule the learning rate,
we utilized the cosine learning rate annealing technique (Loshchilov & Hutter, 2017; Verma et al.,
2022), which reduces the learning rate in a cosine-like fashion to help the model converge at better
minima. The WRN-28-2 model was trained using SGD as the optimizer as well. An L2 regularization
coefficient of 5e-4 and an initial learning rate of 0.01 were employed. For the WRN-37-2 model, the
training configuration includes the SGD optimizer, an L2 regularization coefficient of 5e-4, and an
initial learning rate of 0.01. Lastly, for the WRN-28-8 model, the training setup involves the SGD
optimizer, an L2 regularization coefficient of 1e-3, and an initial learning rate of 0.01. Specifically for
BOPL, we set the batch size to 128, λ = 1e-2, ϵ = 1e-2, γ = 0.5, β = 0.999, and η = 1. We pre-train
the model for 50 epochs using the Mean-Teacher algorithm and then proceed to train BOPL for 400
epochs. Finally, we fine-tune the model for 100 epochs using both the labeled data and the unlabeled
data with learned pseudo-labels. For each experiment, we repeat five independent runs and report the
mean test error with standard deviation.
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(a) γ (b) η (c) λ (d) ϵ

Figure 2: Sensitivity analysis for four hyper-parameters γ, η, λ and ϵ on CIFAR-100 using 10000
labeled samples.

B ADDITIONAL COMPARISON RESULTS

We have performed additional experiments using a CNN-13 backbone comparing our approach to
Supervised + MixUp (Zhang et al., 2018), Π-model (Laine & Aila, 2017), Temp-ensemble (Laine
& Aila, 2017), Mean Teacher (Tarvainen & Valpola, 2017), VAT (Miyato et al., 2018), SNTG (Luo
et al., 2018), Learning to Reweight (Ren et al., 2018), MT + Fast SWA (Pham et al., 2021), ICT
(Verma et al., 2022), and Meta-Semi and Meta-Semi + ICT (Wang et al., 2020).

Table 5 reports the comparison results on CIFAR-10 with 4000, 2000, and 1000 labeled samples and
on CIFAR-100 with 10000 and 4000 labeled samples when CNN-13 is used as the backbone network.
We can see the proposed BOPL approach outperforms all the other SSL methods on both CIFAR-10
and CIFAR-100 for all cases with different numbers of labeled samples. Compared to the state-of-
the-art method, Meta-Semi, BOPL reduces the test error by 1.53%, 1.52%, and 1.07% on CIFAR-10
with 1000, 2000, and 4000 labeled samples, respectively. On CIFAR-100 with 10000 and 4000
labeled samples, BOPL reduces the test error from Meta-Semi by 0.83% and 1.59% respectively. In
addition, BOPL + ICT further boosts the performance, while both BOPL an BOPL+ICT outperform
Meta-Semi+ICT, which benefits from the same ICT improvement technique.

Table 6 reports the comparison results on the SVHN dataset with CNN-13 as the backbone network.
BOPL achieves the lowest test error of 3.43% and 3.26% for 500 and 1000 labeled samples respec-
tively, outperforming all the other comparison SSL methods. In particular, BOPL outperforms the
second-best performing method (without the ICT extension), Meta-Semi, by 0.66% and 0.69% for
500 and 1000 labeled samples, respectively. In line with our findings on CIFAR-10 and CIFAR-100,
the extended BOPL+ICT exhibits superior performance over Meta-Semi+ICT.

C HYPER-PARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analysis for the proposed BOPL method over four hyperparameters: γ—the
trade-off hyperparameter for pseudo-label update, η—the trade-off hyperparameter for the fine-
tuning loss terms, λ—the trade-off hyperparameter in the outer loss of bi-level optimization, and
ϵ—the hyperparameter for gradient approximation in Proposition 2. We conduct experiments on
CIFAR-100 using 10000 labeled instances by testing a range of different values for each of the four
hyper-parameters independently.

As shown in Figure 2, the results indicate that the optimal value for γ is 0.5. Specifically, small
values of γ will diminish the influence of the optimization learned pseudo-labels, while large values
will reduce the impact of teacher predictions, resulting in higher test errors. It is therefore essential
to balance the impact of both the learned pseudo-labels and teacher model output by selecting an
appropriate value in the middle for γ. Our experiments also reveal that decreasing the value of η
leads to larger test errors, which further validates the effectiveness of the learned pseudo-labels for
unlabeled samples. Additionally, we observe that larger values of λ can lead to less dominant Ll

outer
and higher test errors. Conversely, very low values of λ result in a negligible contribution of Lu

outer
and increased high test errors. It is important to determine a suitable small value for λ—e.g., around
0.01—to achieve good performance. Finally, it is important to set ϵ to a suitable small value close to
zero to provide proper gradient approximation, as high values like 0.1 can cause significant errors
and very small values can cause numerical gradient issues and high test errors as well.
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Figure 3: The outer loss values v.s. the training iterations on CIFAR-100 and CIFAR-10.

D EMPIRICAL CONVERGENCE ANALYSIS

Figure 3 presents the curves of the outer loss values, i.e., the validation loss on the training data, with
the increasing of the training iterations on CIFAR-100 and CIFAR-10. The CIFAR-100 dataset shows
a higher initial loss, indicating the more challenging nature of this dataset. We can see that as training
progresses, the outer loss for the bi-level optimization decreases on both datasets. After about 50
iterations, the loss values become very flat, demonstrating empirical convergence.
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