

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MIND-MAP AGENT: ENHANCING COOPERATIVE TASK PLANNING THROUGH COMMUNICATION ALIGNMENT WITH LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Embodied agents that collaborate with humans through natural language have become an active area of research, offering flexibility in cooperative planning and execution. Debate-based approaches often depend on repeated consensus procedures, which can increase dialogue frequency and risk over-communication. At the same time, LLMs are prone to hallucination during dialogue processing, sometimes causing confabulation and reducing consistency in long-term strategies. We introduce the Mind-Map Agent, an approach that guides reasoning with explicit cooperative strategies while maintaining structured long-term memory to disentangle dialogue, task state, and planning context. The generated Mind-Maps support coherent long-horizon planning, reduce redundant dialogue, and enhance interpretability in multi-agent interaction. Evaluations on Communicative Watch-and-Help and ThreeDWorld Multi-Agent Transport indicate that the Mind-Map Agent achieves more stable efficiency compared to classical planners and LLM agents across different model scales and environments. Our results suggest that Mind-Map reasoning enables cooperative agents to accomplish tasks with fewer conversations while sustaining effective collaboration.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have enabled new paradigms in multi-agent embodied tasks, particularly in natural language-based reasoning, planning, and decision-making [Brohan et al. (2023); Jain et al. (2020)]. Traditional multi-agent systems, while reliable under predefined communication protocols [Stone & Veloso (2000)], often struggle in decentralized collaboration where agents must infer teammates' intentions [Chang et al. (2023); Zhang et al. (2024)] and dynamically coordinate without centralized control. The challenge becomes even more pronounced in human–robot cooperation, where free-form human communication frequently exceeds the capability of protocol-bound robot agents [Wan et al. (2022); Mandi et al. (2024)]. To address these issues, recent research has explored LLM-powered agents that communicate through natural language, with the Cooperative Embodied Language Agent (CoELA) framework serving as a representative example [Zhang et al. (2024)].

CoELA advances multi-agent interaction by enabling free-form dialogue, but its decision-making largely focuses on immediate, single-step actions without maintaining structured long-term plans. In contrast, Cooperative Plan Optimization (CaPo) [Liu et al. (2025)] introduces meta-planning to enhance coordination, but relies on rigid, rule-based communication protocols. In such protocols, robots communicate by following predefined discussion rules or debate-like turn-taking structures, which ensures precise progress tracking in robot–robot settings [Seo et al. (2025)]. However, this rigidity creates two practical limitations. First, repeated discussion sessions can introduce substantial communication overhead [Li et al. (2025)]. Second, when interacting with humans who use free-form and informal language, these strict rules often fail to support accurate and natural communication. Effective cooperation therefore requires agents that can infer goals from unconstrained dialogue, maintain consistent long-term strategies, and adapt plans dynamically without depending on strict communication rules.

Figure 1: Comparison between confabulation and Mind-Map Reasoning in multi-agent communication. (A) Confabulation: The agent misinterprets dialogue as executed action, assuming possession of an object and leading to incomplete task execution. (B) Mind-Map Reasoning: By explicitly separating long-term plan and current state, the agent identifies missing objects and selects consistent actions, thereby mitigating confabulation and improving cooperation efficiency.

Another critical barrier emerges in hallucination and confabulation [Smith et al. \(2023\)](#); [Sui et al. \(2024\)](#), where LLMs may misinterpret dialogue history as factual state, leading to faulty inferences and redundant actions. This risk becomes more likely with unconstrained Chain of Thought (CoT) prompting [Wei et al. \(2022\)](#), where an agent may conflate spoken intentions with executed actions or assume environmental changes that have not actually occurred. For instance, as shown in Figure 1(A), an agent might treat a previous utterance as if the action had already been completed, disrupting task execution. In comparison, Figure 1(B) illustrates how a structured Mind-Map representation that separates dialogue, current state, and long-term plan can support more consistent decision-making, which in turn may reduce unnecessary retries and communication overhead [Zhang et al. \(2024\)](#); [Guo et al. \(2024\)](#).

To address these limitations, we introduce the Mind-Map Agent, an LLM-powered collaborative agent that integrates long-term planning with structured reasoning. At the core of our approach is Mind-Map reasoning, which maintains explicit representations of teammates' intentions, cooperative strategies, and communication plans. This structured representation helps agents remain consistent across interactions, mitigating confabulation and reducing redundant dialogue. By jointly capturing conversational cues and factual states, the approach is also applicable to human–robot collaboration, where agents must flexibly interpret free-form instructions without relying on rigid communication protocols.

- We introduce the Mind-Map Agent, which equips each agent with structured long-term reasoning by explicitly separating dialogue, task state, and cooperative strategies. This design enhances consistency in multi-step execution while reducing confabulation and redundant communication.
- We conduct extensive evaluation across diverse open-source LLMs, showing that Mind-Map reasoning consistently outperforms CoELA. These results demonstrate that structured reasoning provides robustness across model scales and architectures.
- Our analysis highlights both the benefits and limitations of Mind-Map reasoning. While it substantially mitigates confabulation, lightweight models remain more vulnerable in visual observation settings, underscoring ongoing challenges for current LLMs in generating reliable, grounded dialogue in collaborative tasks.

2 RELATED WORK

2.1 MULTI-AGENT COOPERATION

Research on multi-agent cooperation has developed a wide range of methods for coordination, communication, and decision-making in decentralized environments [Stone & Veloso \(2000\)](#). Early ap-

proaches such as MADDPG [Lowe et al. (2017)] introduced reinforcement learning techniques to improve strategic coordination among agents in cooperative–competitive settings [Shu & Tian (2019)]. Subsequent work explored cooperation in embodied household tasks [Jain et al. (2020)], communication efficiency [Liu et al. (2025), Patel et al. (2021)], and dialogue grounding in environmental contexts [Jain et al. (2019)]. Despite these advances, many methods still rely on opaque message-passing channels such as continuous vector embeddings [Jain et al. (2019)], which limit interpretability and adaptability across heterogeneous agents. Moreover, protocol-driven communication and centralized planning, long established in robotic systems with networked control, scale poorly to open human-facing environments. For multi-agent systems to collaborate effectively with humans, agents must make autonomous decisions under partial observability [Spaan et al. (2006); Chang et al. (2025)], coordinating tasks without globally shared knowledge or fixed communication protocols.

2.2 COOPERATION WITH NATURAL LANGUAGE COMMUNICATION

Natural language has emerged as a promising alternative for enhancing cooperation, task planning, and information sharing in embodied multi-agent systems. Frameworks such as CoELA [Zhang et al. (2024)] integrate large language models (LLMs) to support flexible dialogue between agents and humans, enabling partners to share intentions and adapt cooperative behaviors. Built on the DEC-POMDP framework [Bernstein et al. (2002); Goldman & Zilberstein (2003)] and echoing cognitive architectures such as Soar [Laird (2022)], CoELA organizes decision-making into perception, memory, communication, planning, and execution modules. While these systems benefit from the reasoning capabilities of LLMs, challenges arise when models trained on general dialogue corpora are used for situated collaboration. Agents may generate irrelevant or emotional messages (e.g., utterances with exaggerated punctuation or emoji-like expressions), hallucinate actions such as declaring that an object has been grasped before execution, or even confuse roles by redundantly performing tasks already delegated to teammates. Such forms of confabulation occur when generated text is mistaken for factual observation or when dialogue history is misinterpreted as action history, leading to failures in planning and coordination. These limitations highlight the need for methods that constrain utterances to task-relevant content and incorporate structured reasoning to ensure reliable cooperation.

2.3 OPTIMIZING COOPERATION AND COMMUNICATION STRATEGY

Beyond enabling natural language communication, another line of work has focused on optimizing the balance between communication frequency and cooperative efficiency [Liu et al. (2025); Li et al. (2025); Seo et al. (2025)]. For instance, CaPo [Liu et al. (2025)] introduces meta-planning to generate shared high-level strategies and adjust execution adaptively, while REVECA [Seo et al. (2025)] constrains dialogue through structured templates to support mutual awareness. While effective in controlled simulations, these frameworks assume rigid protocols such as always-on channels, explicit turn-taking, or repeated deliberation rounds. Such mechanisms provide transparency in robot–robot cooperation but introduce significant overhead [Li et al. (2025)] and reduce adaptability in human–robot interaction, where free-form dialogue is the norm. In practice, repeated meta-planning debates and verbose exchanges risk overwhelming both agents and human partners, especially when lightweight LLMs amplify “chattering” behavior that contaminates dialogue context and increases confabulation. These challenges highlight the need for mechanisms that support reliable, interpretable, and efficient communication without rigid protocol assumptions.

3 MIND GENERATION FOR COOPERATIVE PLANNING

3.1 MIND-MAP AGENT: SYSTEM ARCHITECTURE AND OPERATING PRINCIPLE

Figure 2 presents the overall architecture of the Mind-Map Agent. The system is composed of modular components spanning from the internal agent modules to the external task environment. At its core, the agent operates with two distinct phases of large language model (LLM) reasoning: (1) Mind-Map Generation and (2) Plan Selection. Both phases make use of two complementary memory systems. The Text Interface functions as the agent’s working memory, while the Mind-Map Memory provides a structured long-term memory that is explicitly maintained by the agent.

Figure 2: Overall architecture of the Mind-Map Agent. The system integrates two phases of LLM-based reasoning (Mind-Map Generation and Plan Selection) with complementary memory systems (Text Interface as working memory and Mind-Map Memory as structured long-term memory). The architecture supports perception-action loops while maintaining structured knowledge for long-horizon cooperative planning.

The Mind-Map Generation phase constitutes the first reasoning step. In this step, the LLM takes the current state from the Text Interface and integrates it with the stored Mind-Map Memory. The output is an updated structured mind map that may include interpretations of intentions, cooperative strategies, dialogue summaries, and long-term plans. This process combines incoming observations with previously stored task knowledge. By refreshing the Mind-Map Memory over time, the agent can maintain a stable representation that persists across interactions. This design contributes to a clearer separation between short-term environmental descriptions and the structured long-term task context, which may help reduce confusion between immediate perception and accumulated memory.

The Plan Selection phase forms the second reasoning step. In this step, the LLM references both the updated Mind-Map Memory and the Text Interface. Based on this combined context, the model determines the next action or communication. Outputs are passed to the Plan Execution Module, which translates high-level plans into primitive operations such as navigation or object manipulation. Alternatively, the Plan Selection may generate a dialogue message to be transmitted to teammates. The reliance on both working memory and long-term structured memory is intended to keep each decision connected to the immediate environment while also aligned with the broader cooperative plan.

The Text Interface serves as the working memory of the agent and includes four elements: task description, dialogue history, semantic map, and action history. This interface reflects what the agent can directly access at runtime and interacts with the task environment through the Perception Module and the Plan Execution Module. The Perception Module converts raw environment signals into symbolic observations that are stored in the Text Interface. The Plan Execution Module translates symbolic action plans into concrete operations that affect the environment and generate new observations, thereby closing the perception-action loop. In contrast, the Mind-Map Memory maintains a structured representation that is chunked and retrieved explicitly through the LLM. This long-term memory captures higher-level constructs such as inferred intentions, cooperative strategies, and reasoning outcomes. The distinction between these two memory systems is important: the working memory is transient and environment-driven, whereas the long-term memory is agent-managed and schema-based.

This dual-phase architecture draws on insights from cognitive architectures and multi-agent cooperation research, which emphasize that effective collaboration depends on the ability to infer and represent the hidden goals of others, often described as Theory of Mind (ToM) [Lim et al. \(2020\)](#); [Wu et al. \(2020\)](#); [Ying et al. \(2024\)](#). Building on these principles, the Mind-Map Agent transforms implicit intention inference into explicit structured entries that can be transparently maintained and reasoned over. This design contrasts with prior frameworks such as CoELA [Zhang et al. \(2024\)](#), which pioneered natural language based coordination in multi-agent systems but primarily relied on step-by-step reactive reasoning without durable long-term structures. Inspired by recent advances that frame LLMs as both reasoning agents and generators of structured knowledge [Xu et al. \(2024\)](#), as well as work on multi-persona collaboration for emergent reasoning [Wang et al. \(2023\)](#), the Mind-Map Agent introduces structured memory to clearly separate dialogue history, environmental state,

Figure 3: Mind-Map schema as maintained by the agent. The schema is divided into three main components: inferred others’ intentions, cooperative strategy, and communication strategy. Together, they provide a structured representation of team state and guide reasoning over multi-agent and human–robot collaboration.

and cooperative strategy. This explicit representation reduces redundant or ambiguous utterances and enables reliable tracking of completed versus pending actions, thereby supporting more robust long-horizon cooperation in both multi-agent and human–robot contexts.

3.2 MIND-MAP SCHEMA AND KEY COMPONENTS

At the core of our approach is the Mind-Map schema, a structured representation of the agent’s understanding of team state and task progress. During the Mind-Map Generation phase, the agent is guided by in-context exemplars expressed in a JSON format, ensuring that updates remain structured and consistent. The schema is dynamically updated as new observations and utterances are received. As illustrated in Figure 3, the schema consists of three main components: inferred others’ intentions, cooperative strategy, and communication strategy. Together, they enable the agent to track teammates’ goals, maintain alignment with the joint plan, and regulate communication to avoid redundant or irrelevant utterances.

Inferred Others’ Intentions This component guides the agent to interpret teammates’ utterances as explicit expressions of intent and transform them into structured entries within the mind map. In this way, natural language is not only treated as surface-level communication but also as a representation of hidden goals and action plans. By recording and organizing these inferred intentions, the agent externalizes a Theory-of-Mind perspective [Lim et al. (2020); Wu et al. (2020)], enabling it to track what others aim to achieve and why. This structured account of intent can be reused in subsequent reasoning steps, allowing the agent to anticipate teammates’ actions, align its own behavior with theirs, and reduce the need for repeated clarification. In this way, the process provides a systematic mechanism for capturing language-mediated intentions, supporting consistent interpretation of teammates’ goals and facilitating alignment in cooperative decision-making.

Cooperative Strategy This component organizes the agent’s reasoning about how to align its own role with the collective plan. It is structured into three layers: Pending Clarifications, which track unresolved issues requiring coordination with teammates; a Long-Term Plan, which outlines the global sequence of steps needed for successful task completion; and an Immediate Focus, which identifies the agent’s current local priority. These layers ensure that the agent’s decisions remain consistent across different time horizons. Pending Clarifications reduce ambiguity in teamwork by explicitly marking information gaps, while Long-Term Plans help prevent duplicated efforts through clear division of labor. Immediate Focus links ongoing execution to higher-level goals, reducing the risk of short-sighted or conflicting proposals.

Communication Strategy This component frames the agent’s process of generating utterances by embedding them in the dialogue context and requiring explicit justification before transmission. It is

270 divided into four sub-elements: Dialogue Summary, which condenses prior utterances into a concise
 271 history to prevent redundancy; Message Draft, which formulates candidate utterances grounded in
 272 the cooperative plan; and explicit reasoning fields that capture the Reason to Send and Reason not
 273 to Send. This reasoning process is integrated with the subsequent action selection phase, ensuring
 274 that the necessity of communication is evaluated before a message is produced. By discouraging
 275 unnecessary utterances, the Communication Strategy reduces coordination overhead and ensures
 276 that each message serves a clear collaborative function.

277 Building on these components, the Mind-Map Agent maintains a structured representation that
 278 guides foresight and long-horizon collaboration. Each new observation or teammate utterance up-
 279 dates the relevant fields of the schema, which in turn informs both action selection and communica-
 280 tion decisions. By integrating these structured reasoning layers, the agent gains the ability to plan
 281 over longer horizons compared to single-step reactive approaches [Zhang et al. (2024)], while reduc-
 282 ing coordination overhead that often arises in meta-plan deliberations [Liu et al. (2025)]. In contrast
 283 to goal-alignment methods that emphasize convergence on a shared overall objective [Ying et al.
 284 (2024)], the Mind-Map Agent complements this perspective by highlighting explicit and distributed
 285 articulation of sub-goals within the shared mission. To maintain coherence, updates are constrained
 286 to a JSON schema and guided by in-context exemplars, which reduces hallucinations caused by
 287 ambiguous or off-topic utterances. The schema thus functions as an externalized working memory
 288 that can be inspected to reveal the agent’s reasoning process, thereby supporting transparency and
 289 interpretability in multi-agent and human–robot cooperation.

290 4 EXPERIMENTS

291 4.1 IMPLEMENTATION AND BASELINES

294 **Benchmarks.** We evaluate our approach on two cooperative embodied AI benchmarks from the
 295 CoELA framework. The first is Communicative Watch-and-Help (C-WAH) [Puig et al. (2020, 2018)],
 296 which focuses on household tasks that require two agents to coordinate through natural language
 297 communication. The second is ThreeDWorld Multi-Agent Transport (TDW-MAT) [Gan et al. (2022)],
 298 where agents operate in a physically realistic environment to transport objects using containers.
 299 While C-WAH emphasizes communication and joint planning, TDW-MAT evaluates efficiency in
 300 collaborative object delivery.

301 **Baselines.** We compare the proposed Mind-Map Agent against both classical planning-based agents
 302 and LLM-based agents. The classical baselines include a Monte Carlo Tree Search hierarchical
 303 planner (MHP) and a rule-based hierarchical planner (RHP), both of which execute pre-defined
 304 routines without language use. The single-agent MHP setting serves as a reference for evaluating
 305 efficiency, while multi-agent MHP and RHP provide stronger non-LLM baselines. On the LLM side,
 306 we adopt the CoELA agent architecture and vary the LLMs: GPT-4o-mini, GPT-OSS-120B, Qwen-
 307 7B, and Llama3.3-70B. For each models, we evaluate both the CoELA variant and our Mind-Map
 308 variant to assess the contribution of structured reasoning. In addition, we include a Random Agent
 309 baseline which without LLM and selects randomly among plan candidates proposed by the Plan
 310 Execution Module. The Random Agent provides a lower bound and highlights the net contribution
 311 of LLM reasoning.

312 **Metrics.** For C-WAH, we measure cooperative efficiency using Average Steps (AS), defined as the
 313 number of steps required to complete all target tasks, and communication efficiency using Average
 314 Communication Steps (ACS), defined as the average number of utterances per episode. Lower values
 315 in both metrics indicate higher efficiency. To ensure robust evaluation, we repeat each experiment
 316 three times and report the mean and standard deviation. For TDW-MAT, we use Transport Rate
 317 (TR), defined as the fraction of target objects successfully delivered within 3000 timesteps, where
 318 higher values indicate better performance.

319 4.2 EXPERIMENTAL RESULTS

320 4.2.1 COMMUNICATIVE WATCH-AND-HELP

321 The results on C-WAH, summarized in Table I, indicate that the Mind-Map Agent tends to out-
 322 perform both classical planners and other LLM-based agents in terms of task completion efficiency

324
 325 Table 1: C-WAH performance across different agents. All values are reported as mean \pm standard
 326 deviation across three runs. Lower is better (\downarrow).

327	Model Type	328 Classic Agent MHP		329 GPT-4o-mini		330 GPT-OSS-120B	
		331 Single	332 Multi	333 CoELA	334 MindMap	335 CoELA	336 MindMap
330	Symbolic Obs	AS \downarrow	111	75	65.4 \pm 23	57.0 \pm 19	74.3 \pm 21
		ACS \downarrow	-	-	12.1 \pm 5.0	1.5 \pm 1.5	4.2 \pm 2.0
331	Visual Obs	AS \downarrow	141	103	113.9 \pm 37	98.1 \pm 18	125.2 \pm 40
		ACS \downarrow	-	-	15.5 \pm 6.2	2.1 \pm 1.7	3.9 \pm 2.0
333 Model Type		334 Random Agent		335 Qwen2.5 7B		336 Llama3.3 70B	
335	Symbolic Obs	336 Single		337 CoELA		338 CoELA	
		AS \downarrow	148 \pm 33	91.9 \pm 21	90.4 \pm 27	72.6 \pm 21	71.2 \pm 19
337	Visual Obs	ACS \downarrow	-	0	12.1 \pm 3.3	9.8 \pm 4.5	4.1 \pm 2.0
		AS \downarrow	186 \pm 34	128 \pm 29	174.1 \pm 25	134.3 \pm 10	128.6 \pm 39
338		ACS \downarrow	-	0	14.9 \pm 21	10.2 \pm 5.1	5.1 \pm 2.6
							339 1.3\pm1.5

340
 341 and communication cost. Beyond the quantitative outcomes, several qualitative observations can be
 342 drawn.

343
 344 First, smaller LLMs such as Qwen-7B often perform less effectively than even the non-reasoning
 345 Random Agent. This suggests that unstructured or hallucinated dialogue may in some cases interfere
 346 with coordination, resulting in less efficient task execution. For instance, we observed that Qwen2.5-
 347 7B frequently produced conversational turns containing emojis or multi-turn self-dialogues, reflect-
 348 ing tendencies from its pretraining data. Such behaviors, while natural in casual dialogue, were less
 349 suitable for cooperative task execution in this benchmark.

350
 351 Second, the Mind-Map representation appears to mitigate these issues by separating dialogue history
 352 from the factual task state. This structured reasoning helps smaller models generate more consistent
 353 plans and, in some cases, allows them to approach or surpass the performance of much larger models
 354 without structured support. Explicit schema guidance focuses the agent on relevant task elements,
 355 leading to plans that are more coherent and aligned with the environment. It is also notable that,
 356 across most models, the CoELA baseline shows performance levels comparable to the Random
 357 Agent, indicating that language reasoning alone does not necessarily improve efficiency without
 358 structured memory. In part, this may be due to the CoELA prompt design being optimized for GPT-
 359 4, which other open models did not always follow strictly, resulting in mismatched or incomplete
 360 action selection.

361
 362 Finally, Mind-Map Agents generate fewer utterances in most cases while maintaining effective co-
 363 operation. For example, with stronger LLMs such as Llama3.3-70B, the Mind-Map Agent achieves
 364 near-silent coordination once successful inference of the partner’s intentions has been established.
 365 In these cases, the agent appears to capture teammates’ goals with greater reliability and, based on
 366 environmental observations alone, can often construct long-horizon plans while monitoring the state
 367 of other agents. This enables effective collaboration with minimal reliance on explicit communi-
 368 cation. The results suggest that structured reasoning not only facilitates early alignment of plans
 369 but also supports adaptation to evolving team states. By reducing the need for repeated exchanges
 370 and redundant clarifications, the Mind-Map Agent lowers overall communication overhead while
 371 sustaining cooperative efficiency in complex multi-agent settings.

372 4.2.2 THREEEDWORLD MULTI-AGENT TRANSPORT

373
 374 The advantages of the Mind-Map approach also extend to the TDW-MAT transport challenge (Ta-
 375 ble 2). In this setting, Mind-Map agents consistently achieve higher transport success rates than
 376 the baselines by dividing labor more effectively and by leveraging containers to reduce redundant
 377 trips. Structured reasoning enables agents to exploit environment dynamics more systematically.
 While CoELA agents often rely on single-object deliveries, Mind-Map Agents employ containers
 378 to transport multiple objects at once, leading to faster progress and higher success rates within the
 379 timestep limit. Beyond task division, the Mind-Map approach also supports efficiency when agents

378

379

Table 2: TDW-MAT performance across different agents.

Transport Rate ↑	Classic Agent RHP		GPT-4o-mini		Llama3.3 70B	
	Single	Multi	CoELA	MindMap	CoELA	MindMap
Food	52%	76%	65%	86%	76%	86%
Stuff	49%	74%	76%	79%	74%	83%
Total	50%	75%	71%	82%	75%	85%

386

387

388

act independently. An agent may, for example, defer object retrieval until locating a container, or coordinate with a teammate regarding container usage. When one teammate is already carrying two objects, the other can provide information about the location of a container in a different room, thereby facilitating cooperation. These behaviors indicate that explicit schemas of intentions and strategies contribute to more stable teamwork, suggesting that the Mind-Map approach constitutes a generalizable mechanism for enhancing decentralized multi-agent collaboration.

394

395

396

4.3 ABLATION STUDY ON IN-CONTEXT EXAMPLE OF THE MIND-MAP COMPONENT

397

398

To examine which elements of the mind map contribute most to performance, we conduct an ablation study on C-WAH using GPT-4o-mini model. The agent is prompted to generate different subsets of the mind map, and performance is evaluated using Average Steps (AS) and Average Communication Steps (ACS). The tested settings include *Inf* (Inferred Others’ Intentions) only, *Coop* (Cooperative Strategy) only, *Comm* (Communication Strategy) only, and their combinations (*Inf+Coop*, *Inf+Comm*, *Coop+Comm*, and *Inf+Coop+Comm*). For this study, the key-matching process was deliberately omitted, allowing the agent to freely generate components without explicit structural constraints.

413

414

First, intention inference alone appears insufficient for effective collaboration. When relying only on inferred intentions (*Inf*), the agent exhibits higher step counts and substantial dialogue compared to the full Mind-Map agent. This suggests that predicting partner intentions without cooperative or communication planning does not provide enough structure for efficient execution.

417

418

Second, combining Cooperative Strategy and Communication Strategy (*Coop+Comm*) without explicit intention inference results in frequent overlapping behaviors. In this case, both agents often produced similar sub-plans independently, indicating that intention modeling is essential for task division and avoiding redundant effort.

422

423

Third, the *Inf+Coop* combination achieves the best numerical performance, with lower step counts than other subsets. However, in this setting, the agent did not generate the intended *Message Draft* within the mind map, instead defaulting to CoELA’s message generation. This observation suggests that refining the prompting process for Communication Strategy, perhaps with multi-phase message drafting, may further improve coordination when all components are included.

427

428

429

430

431

Finally, in the *Comm*-only setting, the agent displayed emergent flexibility by autonomously introducing additional elements beyond the predefined structure. These included tentative action plans, collaboration tactics, and shared goals, indicating that the agent adapts the reasoning structure when provided with minimal guidance. Such behavior highlights the potential value of allowing flexible mind map generation, where the model supplements missing components to support effective cooperation.

Table 3: Ablation study on different subsets of the Mind-Map component in C-WAH using GPT-4o-mini. Average Steps (AS), Average Communication Steps (ACS)

Mind-Map Example	AS ↓	ACS ↓
Inf	66.6	6.0
Coop	59.6	6.5
Comm	51.5	1.6
Inf + Coop	49.4	4.8
Inf + Comm	60.2	2.9
Coop + Comm	62.9	3.3
Inf + Coop + Comm	55.6	2.4

432 Overall, the ablation results suggest that diverse in-context examples of structured reasoning help
 433 agents organize their decision-making. Each component plays a distinct role: intention inference re-
 434 duces redundancy, cooperative strategy supports task division, and communication strategy stream-
 435 lines dialogue. When used together, they provide a balanced framework for adaptive and efficient
 436 multi-agent teamwork. Moreover, this result reveals that agents can correct and update their reason-
 437 ing across steps, effectively managing their own long-term memory to support sustained coopera-
 438 tion.

439

440 5 CONCLUSION

441

442 5.1 LIMITATIONS AND DISCUSSION

443

444 While the experimental results demonstrate clear advantages of the Mind-Map Agent, several limi-
 445 tations warrant consideration. First, our evaluation is confined to two simulation-based benchmarks
 446 that include intentionally unrealistic states (e.g., a fork placed inside a refrigerator). These settings
 447 are useful for assessing coordination efficiency in tasks with high dialogue requirements, but they
 448 also restrict the scope of validation. Second, smaller LLMs remain unstable and frequently produce
 449 noisy utterances. Their performance is highly sensitive to prompt design and schema exemplars,
 450 raising concerns about reproducibility across different model architectures. Third, the Mind-Map
 451 reduces confabulation and lowers the number of model calls but introduces additional prompt over-
 452 head. This trade-off reflects a shift from efficiency to cautious reasoning, a compromise appropriate
 453 in safety-critical domains. Finally, the robustness of Mind-Map reasoning has so far only been ex-
 454 amined in simulation-based settings. Future research should include evaluations with real human
 455 collaborators to validate the framework in interactive and open-ended cooperative scenarios.

456

457 Despite these limitations, several important insights emerge from our study. Mind-Map reasoning
 458 substantially mitigates confabulation by explicitly separating dialogue, factual state, and coopera-
 459 tive strategies, thereby improving consistency in multi-agent communication. Moreover, emergent
 460 behaviors were observed in the Comm-only setting, where the agent autonomously expanded the
 461 reasoning structure to incorporate missing elements such as collaboration tactics or shared goals.
 462 This suggests that schema-guided yet flexible reasoning enables agents to compensate adaptively
 463 when the provided structure is incomplete.

464

465 Another promising aspect lies in the transparency afforded by the Mind-Map. By externalizing hid-
 466 den goals and strategies into a structured memory, agents produce interpretable representations that
 467 can facilitate human–AI collaboration. Nevertheless, a trade-off arises: reducing explicit commu-
 468 nication can improve efficiency but may simultaneously reduce transparency for human teammates.
 469 Future research should therefore investigate how to balance communication efficiency with inter-
 470 pretability, particularly in collaborative scenarios that require mutual trust and shared situational
 471 awareness.

472

473 5.2 CONCLUSION

474

475 This work introduced the Mind-Map Agent, a framework for structured reasoning in multi-agent co-
 476 operation. By disentangling dialogue, task state, and cooperative strategies, the approach mitigates
 477 confabulation, preserves long-term consistency, and improves interpretability. Empirical evaluation
 478 across multiple LLMs and environments demonstrated consistent gains over both classical planners
 479 and unstructured LLM-based agents, underscoring the complementary value of intention inference,
 480 cooperative strategy, and communication strategy.

481

482 Beyond quantitative improvements, the findings highlight a broader implication: structured reason-
 483 ing and memory offer a principled means of reconciling rigid, protocol-driven planning with un-
 484 constrained, dialogue-based coordination. Although our study was conducted in simulation-based
 485 benchmarks, the findings suggest directions for extending reliable multi-agent interaction to real-
 486 world scenarios, including human–robot collaboration.

487

488 While open challenges remain in grounding perception, scaling to lightweight models, and adapting
 489 to open-ended human interaction, the proposed framework contributes toward the development of
 490 multi-agent systems that are not only more robust and efficient but also more transparent and better
 491 aligned with real-world cooperative demands.

486 REFERENCES
487

488 Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
489 decentralized control of markov decision processes. *Mathematics of operations research*, 27(4):
490 819–840, 2002.

491 Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
492 Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
493 language in robotic affordances. In *Conference on robot learning*, pp. 287–318. PMLR, 2023.

494

495 Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desai, Michal
496 Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, et al. Partnr:
497 A benchmark for planning and reasoning in embodied multi-agent tasks. In *Proceedings of the
498 International Conference on Learning Representations (ICLR)*, 2025.

499 Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, Abhishek Bhandwaldar, Dan Gutfreund,
500 Daniel LK Yamins, James J DiCarlo, Josh McDermott, Antonio Torralba, et al. The threedworld
501 transport challenge: A visually guided task-and-motion planning benchmark towards physically
502 realistic embodied ai. In *2022 International conference on robotics and automation (ICRA)*, pp.
503 8847–8854. IEEE, 2022.

504

505 Claudia V Goldman and Shlomo Zilberstein. Optimizing information exchange in cooperative multi-
506 agent systems. In *Proceedings of the second international joint conference on Autonomous agents
507 and multiagent systems*, pp. 137–144, 2003.

508

509 Claudia V. Goldman and Shlomo Zilberstein. Decentralized control of cooperative systems: cat-
510 egorization and complexity analysis. *J. Artif. Int. Res.*, 22(1):143–174, November 2004. ISSN
511 1076-9757.

512

513 Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang,
514 Thomas L Griffiths, and Mengdi Wang. Embodied llm agents learn to cooperate in organized
515 teams. *arXiv preprint arXiv:2403.12482*, 2024.

516

517 Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexan-
518 der G Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task comple-
519 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)*, 2019.

520

521 Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik, Aniruddha Kembhavi, and
522 Alexander Schwing. A cordial sync: Going beyond marginal policies for multi-agent embodied
523 tasks. In *ECCV*, 2020.

524

525 John E Laird. Introduction to soar. *arXiv preprint arXiv:2205.03854*, 2022.

526

527 Xinran Li, Chenjia Bai, Zijian Li, Jiakun Zheng, Ting Xiao, and Jun Zhang. Learn as individu-
528 als, evolve as a team: Multi-agent llms adaptation in embodied environments. *arXiv preprint
529 arXiv:2506.07232*, 2025.

530

531 Terence X Lim, Sidney Tio, and Desmond C Ong. Improving multi-agent cooperation using theory
532 of mind. *arXiv preprint arXiv:2007.15703*, 2020.

533

534 Jie Liu, Pan Zhou, Yingjun Du, Ah-Hwee Tan, Cees GM Snoek, Jan-Jakob Sonke, and Efstratios
535 Gavves. Capo: Cooperative plan optimization for efficient embodied multi-agent cooperation. In
536 *Proceedings of the International Conference on Learning Representations (ICLR)*, 2025.

537

538 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
539 agent actor-critic for mixed cooperative-competitive environments. *Advances in neural informa-
540 tion processing systems*, 30, 2017.

541

542 Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
543 language models. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*,
544 pp. 286–299. IEEE, 2024.

540 Shivansh Patel, Saim Wani, Unnat Jain, Alexander G Schwing, Svetlana Lazebnik, Manolis Savva,
 541 and Angel X Chang. Interpretation of emergent communication in heterogeneous collaborative
 542 embodied agents. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 543 pp. 15953–15963, 2021.

544 Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
 545 rralba. Virtualhome: Simulating household activities via programs. In *Proceedings of the IEEE*
 546 *conference on computer vision and pattern recognition*, pp. 8494–8502, 2018.

547 Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B Tenenbaum, Sanja
 548 Fidler, and Antonio Torralba. Watch-and-help: A challenge for social perception and human-ai
 549 collaboration. *arXiv preprint arXiv:2010.09890*, 2020.

550 SeungWon Seo, SeongRae Noh, Junhyeok Lee, SooBin Lim, Won Hee Lee, and Hyeong Yeop Kang.
 551 Reveca: Adaptive planning and trajectory-based validation in cooperative language agents using
 552 information relevance and relative proximity. In *Proceedings of the AAAI Conference on Artificial*
 553 *Intelligence*, volume 39, pp. 23295–23303, 2025.

554 Tianmin Shu and Yuandong Tian. M³ rl: Mind-aware multi-agent management reinforcement learn-
 555 ing. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019.

556 Andrew L Smith, Felix Greaves, and Trishan Panch. Hallucination or confabulation? neuroanatomy
 557 as metaphor in large language models. *PLOS Digital Health*, 2(11):e0000388, 2023.

558 Matthijs TJ Spaan, Geoffrey J Gordon, and Nikos Vlassis. Decentralized planning under uncertainty
 559 for teams of communicating agents. In *Proceedings of the fifth international joint conference on*
 560 *Autonomous agents and multiagent systems (AAMAS)*, 2006.

561 Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning perspec-
 562 tive. *Autonomous Robots*, 8(3):345–383, 2000.

563 Peiqi Sui, Eamon Duede, Sophie Wu, and Richard Jean So. Confabulation: The surprising value of
 564 large language model hallucinations. *arXiv preprint arXiv:2406.04175*, 2024.

565 Yanming Wan, Jiayuan Mao, and Josh Tenenbaum. Handmethat: Human-robot communication
 566 in physical and social environments. *Advances in neural information processing systems*, 35:
 567 12014–12026, 2022.

568 Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
 569 emergent cognitive synergy in large language models: A task-solving agent through multi-persona
 570 self-collaboration. *arXiv preprint arXiv:2307.05300*, 2023.

571 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 572 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 573 *neural information processing systems*, 35:24824–24837, 2022.

574 Sarah A Wu, Rose E Wang, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max
 575 Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse plan-
 576 ning. In *Proceedings of the annual meeting of the cognitive science society*, volume 42, 2020.

577 Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang
 578 Liu, and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge
 579 graph question answering. *arXiv preprint arXiv:2404.14741*, 2024.

580 Lance Ying, Kunal Jha, Shivam Aarya, Joshua B Tenenbaum, Antonio Torralba, and Tianmin Shu.
 581 Goma: Proactive embodied cooperative communication via goal-oriented mental alignment. In
 582 *2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 7099–
 583 7106. IEEE, 2024.

584 Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
 585 min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
 586 models. In *Proceedings of the International Conference on Learning Representations (ICLR)*,
 587 2024.

594 Lizheng Zu, Lin Lin, Song Fu, Na Zhao, and Pan Zhou. Collaborative tree search for enhancing em-
595 bodied multi-agent collaboration. In *Proceedings of the Computer Vision and Pattern Recognition*
596 *Conference*, pp. 29513–29522, 2025.
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647