
Graph Reasoning with Large Language Models via Pseudo-code Prompting

Anonymous ACL submission

Abstract

Large language models (LLMs) have recently001
achieved remarkable success in various reason-002
ing tasks in the field of natural language pro-003
cessing. This success of LLMs has also moti-004
vated their use in graph-related tasks. Among005
others, recent work has explored whether006
LLMs can solve graph problems such as count-007
ing the number of connected components of008
a graph or computing the shortest path dis-009
tance between two nodes. Although LLMs pos-010
sess preliminary graph reasoning abilities, they011
might still struggle to solve some seemingly012
simple problems. In this paper, we investigate013
whether prompting via pseudo-code instruc-014
tions can improve the performance of LLMs015
in solving graph problems. This approach not016
only aligns the model’s reasoning with algorith-017
mic logic but also imposes a structured, mod-018
ular approach to problem-solving that is inher-019
ently transparent and interpretable. Our experi-020
ments demonstrate that using pseudo-code in-021
structions generally improves the performance022
of all considered LLMs. The graphs, pseudo-023
code prompts, and evaluation code are publicly024
available1.025

1 Introduction026

Recently, the artificial intelligence community has027

witnessed great advancements in the field of large028

language models (LLMs) (Devlin et al., 2019;029

Brown et al., 2020; Ouyang et al., 2022). Those030

models have captured intense public and academic031

interest, while the success of LLMs in different032

domains such as in medicine (Thirunavukarasu033

et al., 2023) and in software engineering (Poesia034

et al., 2022) has boosted hopes that these models035

could potentially pave the way for the development036

of Artificial General Intelligence (Bubeck et al.,037

2023). These advancements have been made pos-038

sible not only due to breakthroughs in the field of039

1https://anonymous.4open.science/r/
graph-reasoning-llms-7D70

machine learning, such as the introduction of the 040

Transformer (Vaswani et al., 2017), but also due to 041

the availability of massive amounts of data and the 042

increase of computational power. 043

While LLMs were originally designed for tex- 044

tual data, they have already been utilized in settings 045

that go beyond their initial application context. In 046

several of those settings, a graph structure is explic- 047

itly or implicitly involved. For example, in world 048

modeling, LLMs are commonly employed to gen- 049

erate knowledge graphs for text games in order to 050

improve an agent’s ability to efficiently operate in 051

complex environments (Ammanabrolu and Riedl, 052

2021). However, LLMs rely on unstructured text, 053

and in those settings, they might fail to properly 054

encode the different entities and their relationships. 055

This might lead to different issues, e.g. the mod- 056

els might fail to deduce some logical entailments 057

or they might hallucinate, i.e. generate plausible- 058

sounding responses that are factually incorrect. 059

Despite the preliminary success of LLMs in the 060

aforementioned settings, it is still not entirely clear 061

whether those models exhibit fundamental limi- 062

tations that might constrain their applicability in 063

those domains. Some recent studies shed some 064

light on this issue by investigating whether LLMs 065

can actually reason with graphs (Wang et al., 2023a; 066

Fatemi et al., 2024). In fact, those studies inves- 067

tigated whether LLMs can solve graph problems 068

fed to them as natural language prompts. The two 069

studies employed different LLMs, and the reported 070

results are somewhat ambivalent. While in one 071

study, it was shown that LLMs possess preliminary 072

graph reasoning abilities (Wang et al., 2023a), in 073

the other study, LLMs failed to solve basic graph 074

tasks (e.g., count the number of edges of a graph). 075

In this paper, we study whether prompt engineer- 076

ing can help us improve the performance of LLMs 077

in solving graph algorithm problems. Natural lan- 078

guage instructions can be ambiguous and under- 079

specified, and this might prevent models from re- 080

1

https://anonymous.4open.science/r/graph-reasoning-llms-7D70
https://anonymous.4open.science/r/graph-reasoning-llms-7D70


Function CountEdges(edgelist):
// Initialize the count of edges
edgeCount = 0
// Iterate through the list of edges
for edge in edgelist:

// edgeCount increases by 1
edgeCount = edgeCount + 1

return edgeCount
Let G be a graph. The edgelist of 
graph G is the following: [(0,1), 
(1,2), (2,3), (3,4), (4,0), (1,5), 
(2,5)]. What is the number of edges 
of graph G? Follow the provided 
pseudocode step-by-step.

Let G be a graph. The edgelist of graph G is 
the following: [(0,1), (1,2), (2,3), (3,4), (4,0), 
(1,5), (2,5)]. What is the number of edges of 

graph G? 

Function CountEdges(edgelist):
// Initialize the count of edges
edgeCount = 0
// Iterate through the list of edges
for edge in edgelist:

// edgeCount increases by 1
edgeCount = edgeCount + 1

return edgeCount

Graph 
task

+

Let's follow the pseudocode:
Initialize edgeCount to 0:
edgeCount = 0 
Iterate through each edge in the edgelist:
For edge (0,1):
edgeCount = edgeCount + 1 
edgeCount = 1 
…
For edge (2,5):
edgeCount = edgeCount + 1 
edgeCount = 7 
Conclusion
Following the pseudocode step-by-step, 
the number of edges in graph G is: 7

Pseudocode

OutputFinal promptPrompt

4

3 2

1
0

5

Figure 1: An illustration of our proposed method for graph reasoning using pseudo-code instructions.

turning the most accurate answer possible. Further-081

more, very detailed instructions might increase the082

complexity of reasoning and harm the model’s per-083

formance. Therefore, prompt engineering can sig-084

nificantly contribute to enhancing the capabilities085

of pre-trained LLMs. (Liu et al., 2023). Different086

prompting strategies have been developed so far.087

The idea to use prompts that encourage multi-step088

reasoning led to very successful methods such as089

the chain-of-thought (CoT) reasoning in few-shot090

settings (Wei et al., 2022), while it was also shown091

that LLMs can become decent zero-shot reason-092

ers by just adding the prompt “Let’s think step by093

step” (Kojima et al., 2022). Here, we investigate094

whether the use of pseudo-code instructions for095

prompting can enhance the performance of LLMs096

in solving graph algorithm problems. Pseudo-code097

can reduce the ambiguity present in natural lan-098

guage, but it also provides explicit and clear in-099

structions on how to solve a problem. An exam-100

ple of the proposed approach for prompting with101

pseudo-code is illustrated in Figure 1. We study102

performance in 10 graph reasoning tasks on two103

LLM families (GPT and Mixtral). The obtained104

results indicate that the proposed method improves105

the performance of LLM mainly in tasks that they106

struggle to solve.107

In summary, our paper makes the following con-108

tributions:109

• We release a new benchmark dataset of110

pseudo-code prompts for different graph prob-111

lems to test the reasoning abilities of LLMs.112

• We study the impact of these prompts on the113

performance of three LLMs in 10 graph rea-114

soning tasks.115

• The experimental results demonstrate that aug-116

menting prompts with pseudo-code can be117

useful for solving both simple, but also com-118

plex graph reasoning tasks. 119

2 Related Work 120

Large Language Models and graphs. Graph 121

neural networks (GNNs) have been established as 122

the standard neural architecture for performing ma- 123

chine learning on graphs since these models are 124

invariant to permutations of the nodes of the in- 125

put graph (Zhou et al., 2020). Other common ar- 126

chitectures, such as the family of recurrent neural 127

networks, do not enjoy this property. However, 128

permutation-sensitive models such as the Trans- 129

former architecture (Vaswani et al., 2017) can also 130

deal with graph learning problems. For example, it 131

was shown in (Kim et al., 2022) that if we treat both 132

nodes and edges as independent tokens, augment 133

them with token embeddings, and feed them to a 134

Transformer, we obtain a powerful graph learner. 135

Some node classification datasets where the nodes 136

are annotated with textual content have been treated 137

as text classification datasets by ignoring the graph 138

structure, and LLMs have been leveraged to clas- 139

sify the textual content (Chen et al., 2024). It was 140

found that LLMs achieve good zero-shot perfor- 141

mance on certain datasets. Similar conclusions 142

were also reached by other works (Hu et al., 2023). 143

Real-world data is noisy and this also applies to 144

graphs. Thus, some works have leveraged LLMs to 145

refine graphs (Sun et al., 2023; Guo et al., 2024). In 146

the GraphEdit method, the LLM is responsible for 147

identifying noisy connections between irrelevant 148

nodes and for discovering implicit dependencies 149

between nodes based on the textual data associated 150

with them (Guo et al., 2024). Several works have in- 151

vestigated the potential of LLMs to enhance the per- 152

formance of GNNs on text-attributed graphs (Duan 153

et al., 2023; Chen et al., 2024; He et al., 2024). For 154

instance, TAPE uses an LLM to extract predictions 155

2



and explanations from the input text which serve as156

supplementary features for the downstream GNN157

model (He et al., 2024). The works closest to ours158

in this domain are the ones reported in (Wang et al.,159

2023a) and in (Fatemi et al., 2024), which inves-160

tigate whether LLMs can solve graph algorithm161

problems in natural language. In this paper, we go162

one step further and study whether prompting with163

pseudo-code instructions can help LLMs better un-164

derstand how to solve graph problems.165

Not only LLMs have emerged as useful tools in166

graph learning tasks, but it turns out that the oppo-167

site is also true, i.e., graphs can enhance LLMs (Pan168

et al., 2024). Even though LLMs have achieved169

great success in the past years, they still might suf-170

fer from different problems such as hallucinations,171

reduced factuality awareness, and limited explain-172

ability. Knowledge graphs can help LLMs deal173

with those issues since they store extensive high-174

quality and reliable factual knowledge. Therefore,175

to mitigate the aforementioned issues, knowledge176

graphs have been recently incorporated to improve177

the reasoning ability of LLMs (Guan et al., 2024;178

Luo et al., 2024).179

Prompt engineering. Prompt engineering seeks180

for the best way to describe a task such that an LLM181

can solve the task using its autoregressive token-182

based mechanism for generating text. Prompt en-183

gineering is a resource-efficient approach in the184

sense that it does not require access to the inter-185

nals of the model (e.g., its parameters). We can186

thus provide the model with a task description and187

ask it to solve the task even if it has never been188

trained on it. Few-shot prompting aims to teach189

the language model how to solve a task by pro-190

viding it with a small number of example tasks191

with solutions (Brown et al., 2020). The model192

then learns from these examples and can solve sim-193

ilar tasks. Chain-of-Thought (CoT) is a prompting194

technique, in which one includes a series of inter-195

mediate natural language reasoning steps that lead196

to the desired output (Wei et al., 2022). CoT was197

shown to significantly improve the capability of198

LLMs to solve problems. Zero-shot-CoT, another199

approach for prompting, simply adds the prompt200

“Let’s think step by step” before each answer to fa-201

cilitate step-by-step thinking (Kojima et al., 2022).202

Zero-shot-CoT turned out to be the strongest zero-203

shot baseline, while LLMs were shown to be de-204

cent zero-shot reasoners. However, Zero-shot-CoT205

might fail in some cases because of missing reason-206

ing steps. Prompting via pseudo-code instructions 207

has also been recently explored for solving natu- 208

ral language processing tasks (Mishra et al., 2023). 209

Program-of-thoughts prompting generates code to 210

solve a task (Chen et al., 2023). It uses Python 211

code to describe reasoning steps, and the compu- 212

tation is accomplished by a Python interpreter. To 213

improve the LLMs reasoning ability, some works 214

have employed multiple rounds of prompting (Jung 215

et al., 2022). For instance, least-to-most prompting 216

teaches language models how to solve a complex 217

problem by decomposing it into a series of sim- 218

pler subproblems which are solved one after the 219

other (Zhou et al., 2023). Self-Consistency is a 220

scheme where multiple CoTs are generated and one 221

of them is finally chosen (Wang et al., 2023b). Tree 222

of Thoughts (ToT) (Yao et al., 2023) and Graph 223

of Thoughts (GoT) (Besta et al., 2024) are two 224

schemes that model the LLM reasoning process 225

with a tree and a graph, respectively. 226

When LLMs are leveraged to solve graph tasks, 227

different graph encoding schemes can be utilized 228

to transform graph-structured data into text (e.g., 229

list of edges, adjacency matrix, graph description 230

language, etc.). It was recently shown that input 231

design indeed has a significant impact on the final 232

result (Guo et al., 2023). GraphText constructs a 233

graph-syntax tree from the input graph, and then, 234

the traversal of the graph-syntax tree leads to a 235

prompt in natural language which can be fed to 236

the LLM to perform graph reasoning. (Zhao et al., 237

2023). More recently, continuous graph represen- 238

tations have been explored (Perozzi et al., 2024). 239

The graph is mapped into a continuous vector via a 240

GNN and this vector serves as input for the LLM. 241

3 Proposed Methodology 242

To investigate whether prompting with pseudo- 243

code instructions can improve the capability of 244

language models in reasoning with graphs, we fo- 245

cus on a wide range of graph tasks, we construct 246

instances of those tasks and present them along 247

with the pseudo-code that solves them as natural 248

language queries to the language models. We next 249

give more details about the different graph tasks 250

we consider in this paper and how the different 251

problem instances are generated. 252

Graph tasks. There exist many decision and op- 253

timization problems on graphs. Several of those 254

problems are hard to solve (e.g., finding a clique 255

with the largest possible number of nodes is known 256

3



Q: Let G be a graph. The 
edgelist of graph G is the 
following: [(1,2), (2,3), 
(2,4), (3,4), (4,5)]. What 
is the number of nodes? 
A: 5

Q: Let G be a graph. The 
edgelist of graph G is 
the following: [(1,2), 
(2,3), (2,4), (4,5), (1,5)]. 
What is the number of 
edges? A: 6

2 3

1
4

5
2 4

1

3

5

2 41

3

5

Q: Let G be a graph. 
The edgelist of graph 
G is the following: 
[(1,2), (2,3), (2,4), 
(3,4), (4,5)]. What is 
degree of node 2? A: 3

Q: Let G be a graph. The 
edgelist of graph G is the 
following: [(1,2), (2,3), 
(2,4), (3,4), (4.5)]. What 
are the neighbors of 
node 2? A: [1, 3, 4]

2 3
1

4
5

Q: Let G be a graph. The 
edgelist of graph G is the 
following: [(1,2), (2,3), 
(4,5)]. What is the 
number of connected 
components? A: 2

Q: Let G be a graph. The 
edgelist of graph G is the 
following: [(1,2), (2,3), 
(3,4), (1,4), (2,4), (4,5)]. 
Is there a cycle in G? 
A: Yes

Q: Let G be a graph. 
The edgelist of graph G 
is the following: [(1,2), 
(1,3), (1,4), (2,3), (3,4)]. 
What is the mst of G? 
A: [(1, 2), (2, 3), (3, 4)]

Q: Let G be a graph. 
The edgelist of graph G 
is the following: [(1,2), 
(2,3), (3,4), (1,4), (4,5)]. 
What is the shortest path 
length from node 1 to 
node 5? A: 2

Q: Let G be a graph. 
The edgelist of graph 
G is the following: 
[(1,5), (2,4), (3,4)]. Is 
G bipartite? A: Yes

2 3

1
4

2 4

1

3

5

2
4

1

3
5

Q: Let G be a dag. The 
edgelist of graph G is the 
following: [(1,2), (1,2), 
(2,3), (2,5), (1,4), (4,5)]. 
What is a topological 
sorting of G? 

A: [1, 2, 4, 3, 5]

2 3

4
5

12 3

1
4

5

2 3

1
4

5

Node 
count

Edge 
count

Node 
degree

Neighbors Connected 
components

Cycle
check

Minimum 
spanning 

tree

Shortest 
path 

length

Bipartite 
check

Topo-
logical 
sorting

Figure 2: The proposed graph dataset.

to be an NP-hard problem). We cannot expect an257

LLM to be able to solve such problems in a short258

amount of time even when the input graphs are259

relatively small. Thus, here we focus on problems260

that can be solved in polynomial time in the worst261

case by some graph algorithm. We list below the262

10 considered graph problems.263

1. Node count - Count the number of nodes.264

2. Edge count - Count the number of edges.265

3. Node degree - Calculate the degree of a node.266

4. Neighbors - Find all nodes that are adjacent to a267

given node.268

5. Connected components - Count the number of269

connected components.270

6. Cycle check - Check if a graph contains a cycle.271

7. Minimum spanning tree (MST) - Find the mini-272

mum cardinality subset of edges of a given graph273

that connects all the vertices together, without274

any cycles.275

8. Shortest path - Calculate the shortest path276

length between two nodes in a graph.277

9. Bipartite check - Check if a graph is bipartite.278

10. Topological sorting - Calculate a linear ordering279

of the nodes of a given directed acyclic graph280

such that for every directed edge (u, v) from281

node u to node v, u comes before v in the order-282

ing.283

Note that some tasks are easier, while others are284

more complex. For example, given the list of edges285

of the graph, Edge count requires just counting the286

number of elements of the list, while Shortest path287

is a more complex task since it generally requires288

further algorithmic steps to be performed to reach289

the solution.290

Generated graphs. Even though the provided 291

source code allows one to generate different types 292

of graphs (e.g., Erdős–Rényi graphs, Barabási– 293

Albert graphs, star graphs, etc.), in this study, due to 294

monetary costs, we focus mainly on Erdős–Rényi 295

graphs. Therefore, for all tasks except Bipartite 296

check and Topological sorting, the graphs about 297

which the LLM is asked to reason are Erdős–Rényi 298

graphs. To construct such a graph, we need to 299

choose the number of nodes n and the edge prob- 300

ability p. As will be discussed later, we construct 301

datasets of varying complexity, and the value of n 302

depends on the type of the dataset. Hyperparame- 303

ter p is sampled from [0, 1] with uniform probabil- 304

ity. For the Topological sorting task, we construct 305

Erdős–Rényi graphs and we transform them into 306

directed acyclic graphs. This is achieved by first 307

mapping the nodes to integers, i.e., {1, . . . , n}, and 308

then assigning direction to all edges such that they 309

point from lower nodes to higher nodes. Finally, for 310

Bipartite check, we either construct Erdős–Rényi 311

graphs or random bipartite graphs. To construct 312

a random bipartite graph, we create two sets of 313

nodes such that no set is empty and such that the 314

sum of their cardinalities is n, and then edges be- 315

tween nodes of one set and nodes of the other are 316

included in the graph with probability p (where p 317

is sampled from [0, 1]). 318

Generated problems. For each task, we con- 319

struct three different datasets. The difference be- 320

tween those datasets lies in the number of nodes 321

of the produced graphs. One dataset consists of 322

small graphs, one consists of medium-sized graphs, 323

4



Methods
Tasks Node

count
Edge
count

Node
degree

Neighbors

S

0-SHOT 99 78 75 90
1-SHOT 100 76 72 67

BAG 67 57 73 78
0-COT 82 67 70 77

PSEUDO 87 90 56 75
PSEUDO+1-SHOT 95 82 60 68

M

0-SHOT 88 16 24 42
1-SHOT 100 22 28 29

BAG 50 11 31 44
0-COT 62 13 46 51

PSEUDO 79 34 18 37
PSEUDO+1-SHOT 63 18 43 30

L

0-SHOT 100 2 6 12
1-SHOT 96 1 0 9

BAG 72 0 7 13
0-COT 7 2 13 12

PSEUDO 62 9 6 13
PSEUDO+1-SHOT 20 2 13 13

Table 1: Model GPT-3.5-Turbo-0125 results on simple
tasks. Bold indicates best results.

and the last one consists of large graphs. We de-324

note those three datasets by S, M, and L, respec-325

tively. The number of nodes of the graphs con-326

tained in those three datasets range between 5 and327

11 nodes for S, 11 and 21 nodes for M, and 21 and328

51 nodes for L. The different tasks do not share329

the same datasets of graphs. A different dataset330

is constructed for each task. Note that dataset L331

consists of graphs significantly larger than the ones332

considered in prior work (i.e., all graphs had 5 and333

35 nodes in (Wang et al., 2023a) and between 5 and334

20 nodes in (Fatemi et al., 2024)). Our results thus335

also provide insights into the capabiblity of LLMs336

to perform reasoning tasks on larger graphs than337

the ones considered in previous studies. Once the338

graphs are generated, we create the prompts and339

we add to them pseudo-code instructions. We have340

created such instructions for all 10 considered tasks.341

An overview of the proposed graph reasoning tasks342

is shown in Figure 2.343

Note that besides Node degree, Neighbors and344

Shortest path, the rest of the tasks correspond to345

graph-level properties. For each one of those seven346

tasks and for each graph size (i.e., S, M or L), we347

construct 100 problems. This gives rise to 2, 100348

problems in total. The Node degree and Neighbors349

tasks capture node-level properties of graphs. For350

those tasks and for each graph size, we create 100351

graphs and from each one of those graphs, we ran-352

domly choose 5 nodes to create problems. This353

leads to 3, 000 more problems. Finally, the Short-354

est path task is defined between pairs of nodes. 355

Once again, for each graph size, we create 100 356

graphs and from each one of those graphs, we ran- 357

domly choose 5 pairs of nodes that both belong to 358

the same connected component to create problems. 359

This results into 1, 500 more problems. Overall, 360

our dataset contains 6, 600 problems. 361

4 Experiments 362

Baselines. We compare the proposed method 363

against the following three prompting approaches: 364

(1) zero-shot prompting (0-SHOT); (2) one-shot 365

in-context learning (1-SHOT) (Brown et al., 2020); 366

(3) Build-a-Graph prompting (BAG) (Wang et al., 367

2023a); and (4) zero-shot chain-of-thought (0- 368

COT) (Kojima et al., 2022). 0-SHOT constructs 369

a prompt that describes the task and asks the LLM 370

to solve the task, without any prior training on the 371

task. Besides just a description of the task, 1-SHOT 372

also provides the model with one example of the 373

task, along with the desired output. BAG adds the 374

sentence “Let’s construct a graph with the nodes 375

and edges first” to the task description. Last, 0- 376

COT adds the sentence “Let’s think step by step” 377

to the task description to let the model generate its 378

own Chain-of-Thoughts. 379

Models and Settings. We evaluate two popular 380

LLMs, namely GPT-3.5-Turbo and Mixtral 7x8B, 381

thus representing both proprietary and open source 382

LLMs. For all baselines we set the parameter tem- 383

perature = 0 in order to make results more determin- 384

istic and avoid randomness. As discussed above, 385

we evaluate LLMs and various prompting tech- 386

niques mainly on Erdős–Rényi graphs due to mon- 387

etary costs, while we plan to evaluate the proposed 388

method on other types of graphs in the future. We 389

use two different variants of the proposed method. 390

In the first variant (PSEUDO), we provide the LLM 391

with the task description and the pseudocode to 392

solve it, while in the second variant (PSEUDO + 393

1-SHOT), we also provide the model with one ex- 394

ample of the task, along with the desired output. 395

Previous works have found that graph encoding 396

functions (i.e., how to represent the graph in natural 397

language) have a significant impact on the perfor- 398

mance of LLMs in the different graph tasks (Guo 399

et al., 2023; Fatemi et al., 2024). In this paper, 400

we choose to represent each graph by its list of 401

edges since it was shown that it outperforms other 402

common representations (Guo et al., 2023). 403

5



Methods
Tasks Connected

components
Cycle
check

MST
Shortest

path
Bipartite

check
Topological

sorting

S

0-SHOT 45 43 61 42 31 88
1-SHOT 86 44 47 73 61 77

BAG 4 23 19 18 48 88
0-COT 30 47 16 25 51 62

PSEUDO 76 76 61 50 52 72
PSEUDO+1-SHOT 69 79 64 59 61 81

M

0-SHOT 57 7 23 15 51 59
1-SHOT 91 46 6 61 51 33

BAG 3 8 7 8 26 34
0-COT 2 39 0 7 45 25

PSEUDO 66 47 17 35 48 55
PSEUDO+1-SHOT 47 47 27 51 42 36

L

0-SHOT 85 34 2 7 43 28
1-SHOT 40 21 1 27 42 13

BAG 2 1 4 14 17 8
0-COT 0 6 0 2 48 6

PSEUDO 49 71 10 22 49 14
PSEUDO+1-SHOT 22 23 27 34 31 9

Table 2: Model GPT-3.5-Turbo-0125 results on the complex graph reasoning tasks. Results present accuracy in
percentage (%). Bold indicates best results.

Evaluation metric. In all considered tasks, we404

are interested in finding whether the LLM provides405

the correct answer to a given query. We thus mea-406

sure performance by computing the accuracy, i.e.,407

correct answers/total queries.408

Performance on graph tasks. We first split the409

10 different graph reasoning tasks into simpler410

tasks and more complex tasks. In the first part411

of our analysis, we focus on the simple tasks412

(i.e., Node count, Edge count, Node degree and413

Neighbors). We evaluate the different prompting414

approaches and initially employ GPT-3.5-Turbo-415

0125 as our LLM. Table 1 illustrates the results416

for these experiments. We observe that 0-SHOT417

and 1-SHOT prompting can accurately count the418

number of nodes of a graph even if the graph is419

large. Quite surprisingly, pseudo-code prompting420

fails to achieve similar levels of performance in421

this task. However, PSEUDO is the best-performing422

method in the Edge count task. In the Node degree423

and Neighbors tasks, no method outperforms con-424

sistently all the other methods. For small graphs,425

the LLM correctly answers more than half of the426

queries no matter the prompting technique. Besides427

the Neighbors task, 0-COT generally does not lead428

to improvements. As expected, the performance429

of the model decreases as the size of graphs in-430

creases. Overall, we observe that when the size of431

graphs is small, GPT3.5 performs quite well in the432

4 simple reasoning tasks even when no examples 433

or assistance is provided. 434

We next evaluate the GPT-3.5 model in the re- 435

maining 6 tasks (i.e., Connected components, Cy- 436

cle check, MST, Shortest path, Bipartite check and 437

Topological sorting). The results for these experi- 438

ments are shown in Table 2. While one would ex- 439

pect the 0-SHOT approach to fail in all these tasks, 440

we observe that it excels in Topological sorting. 441

The example that the 1-SHOT method provides to 442

the LLM seems to have a significant impact in some 443

tasks, such as in identifying connected components 444

and in computing shortest path distances. The 0- 445

COT method is the worst-performing prompting 446

technique, likely due to its inability to generate the 447

actual reasoning steps needed to solve the problem. 448

Incorporating pseudo-code into the prompt yields 449

considerable improvements in some tasks, such as 450

in computing shortest path lengths and in checking 451

whether graph contain cycles where it provides the 452

highest accuracy. The PSEUDO+1-SHOT approach 453

is the best-performing prompting technique in the 454

MST task and in computing shortest path lengths in 455

large graphs. Surprisingly, in the Connected com- 456

ponents and Bipartite check tasks, the size of the 457

graphs does not seem to have any impact on the 458

performance of the GPT-3.5 model. 459

We also experiment with the open-source Mix- 460

tral 7x8B model. The obtained results for the sim- 461

pler tasks are shown in Figure 3. We observe 462

6



Methods
Tasks Node

count
Edge
count

Node
degree

Neighbors

S

0-SHOT 92 56 56 65
1-SHOT 90 31 39 68

BAG 92 51 64 60
0-COT 88 42 70 75

PSEUDO 89 83 63 63
PSEUDO+1-SHOT 97 99 73 64

M

0-SHOT 89 8 23 27
1-SHOT 88 9 7 31

BAG 92 9 29 27
0-COT 93 3 34 37

PSEUDO 84 29 27 28
PSEUDO+1-SHOT 81 89 31 27

L

0-SHOT 65 1 9 7
1-SHOT 86 0 1 8

BAG 90 0 12 7
0-COT 83 2 11 10

PSEUDO 80 7 7 7
PSEUDO+1-SHOT 56 14 8 5

Table 3: Mixtral results on simple tasks. Results present
accuracy in percentage (%). Bold indicates best results.

that no matter what prompting method we use,463

the model can always quite accurately count the464

number of nodes of the input graphs. However,465

in the rest of the tasks, 0-SHOT and 1-SHOT fail466

to achieve high levels of accuracy, especially for467

medium-sized and large graphs. In the Edge count468

task, these methods return a correct answer for less469

than 10% of the queries when the input graphs are470

not small. The results also suggest that 0-COT and471

BAG lead to performance improvements in most472

cases. Pseudo-code prompting also leads to signifi-473

cant performance gains in most cases. For example,474

PSEUDO+1-SHOT achieves the highest accuracy475

in the Node count, Edge count, and Node degree476

tasks, thus demonstrating how useful pseudo-code477

prompting is for less powerful LLMs. Specifically,478

in the Edge count and Node degree tasks and for479

small graphs, PSEUDO+1-SHOT led to a respec-480

tive relative increase of 76.8% and 30.4% in accu-481

racy over 0-SHOT. Furthermore, in the Edge count482

task and for medium-sized graphs, PSEUDO+1-483

SHOT resulted in an impressive relative increase of484

1012.5% in accuracy. Finally, we should note that485

in most tasks, Mixtral’s performance also decreases486

as the size of graphs increases.487

The results for the more complex graph reason-488

ing tasks are illustrated in Table 4. We observe489

that when pseudo-code is added to the prompt, it490

becomes harder for Mixtral to detect whether the491

input graph contains any cycle. However, the use492

of pseudo-code proves crucial for some other tasks493

0-shot 1-shot 2-shot 5-shot
20

30

40

50

60

Ac
cu

ra
cy

 (%
) Default shots S

Pseudo shots S

0-shot 1-shot 2-shot 5-shot
#-shot

10

15

20

25

Ac
cu

ra
cy

 (%
) Default shots M

Pseudo shots M

Figure 3: #-shot results in minimum spanning tree.

such as Connected components. Interestingly, for 494

small graphs, the PSEUDO+1-SHOT approach re- 495

sults in a relative increase of 114.3%, 75% and 496

16.7% in accuracy over 0-SHOT in the Connected 497

components, MST and Shortest path tasks, respec- 498

tively. Likewise, for medium-sized graphs, the use 499

of pseudo-code use leads to a relative increase of 500

57.5% in accuracy over 0-SHOT in Connected com- 501

ponents. These findings clearly indicate that aug- 502

menting the prompt with pseudo-code instructions 503

and corresponding examples can significantly en- 504

hance accuracy in both simple and complex graph 505

reasoning tasks. 506

1 2 3

MST 31 24 29
Neighbors 40 63 46

Table 5: Results with differ-
ent pseudo-code styles.

Pseudo-code style. 507

We next investigated 508

what is the impact of 509

the type of utilized 510

pseudo-code on the 511

performance of the 512

LLM. Table 5 il- 513

lustrates the results 514

with different pseudo-code styles on Mixtral (1: 515

Python, 2: Pseudo, 3: Complex). We observe that 516

the results are mixed. Plain pseudo-code outper- 517

forms the rest in the Neighbors task, while Python 518

code achieves the highest accuracy in the MST task. 519

The pseudo-code that consists of multiple functions 520

instead of a single one is the second-best method in 521

both tasks. We should also mention that by examin- 522

ing the results, we observed that the LLM struggles 523

when presented with nested loops and recursive 524

functions. 525

One vs. few examples. We also investigated 526

whether we can obtain performance gains by in- 527

creasing the number of examples provided to the 528

7



Methods
Tasks Connected

components
Cycle
check

MST
Shortest

path
Bipartite

check
Topological

sorting

S

0-SHOT 35 85 24 48 44 39
1-SHOT 47 77 18 52 47 57

BAG 78 82 19 28 39 51
0-COT 70 90 27 55 58 35

PSEUDO 62 33 24 50 47 40
PSEUDO+1-SHOT 75 51 42 56 53 47

M

0-SHOT 40 93 6 30 42 6
1-SHOT 31 75 7 50 50 11

BAG 65 86 8 28 53 9
0-COT 57 90 8 35 42 8

PSEUDO 63 36 5 27 47 12
PSEUDO+1-SHOT 42 40 5 40 48 18

L

0-SHOT 34 86 1 17 51 4
1-SHOT 29 69 1 25 48 11

BAG 25 77 1 10 45 2
0-COT 27 92 1 15 53 2

PSEUDO 41 31 1 13 44 5
PSEUDO+1-SHOT 18 35 1 24 41 10

Table 4: Mixtral 8x7B results on the complex graph reasoning tasks. The results present accuracy in percentage (%).
Bold indicates best results.

model. Figure 3 illustrates performance of GPT-3.5529

in the small subset of the MSE task as a function of530

the number of examples. The results suggest that531

in case pseudo-code is present, a single example532

suffices. Unlike the 0-SHOT method, where adding533

more examples enhances the reasoning abilities of534

the LLM, our approach does not seem to benefit535

from multiple examples. Therefore, the proposed536

method appears to be more cost-efficient that other537

prompting techniques, as one example is enough to538

lead to performance improvements. Creating multi-539

ple examples, particularly in the context of graphs,540

can be time-consuming and resource-intensive.541

Summary. We next present our main findings:542

• For most tasks, the size of the input graphs543

has a significant impact on the LLMs’ perfor-544

mance. With the exception of Node count, Con-545

nected components and Bipartite check, in all546

other tasks, performance decreases significantly547

as the size of the graphs increases.548

• LLMs can count nodes, but they cannot count549

edges. While LLMs could quite accurately count550

the number of nodes of all graphs, no method551

achieved an accuracy greater than 14% in count-552

ing the number of edges of large graphs.553

• Pseudo-code is useful for tasks that LLMs554

struggle to solve. Pseudo-code offered signifi-555

cant improvements in the Edge count and MST556

tasks, where the failure rate of LLMs is high.557

• There exist tasks where pseudo-code might im- 558

prove the performance of one LLM, but lead 559

another LLM to lower levels of performance. 560

PSEUDO significantly outperforms 0-SHOT in 561

the Cycle check task when using GPT-3.5. On 562

the other hand, PSEUDO is significantly outper- 563

formed by 0-SHOT in the same task with Mixtral. 564

• Carefully designed prompting can improve 565

the performance of LLMs. In almost all our ex- 566

periments, 0-SHOT was outperformed by the rest 567

of the prompting techniques. This direction is 568

computationally less demanding than fine-tuning 569

pre-trained LLMs. 570

• In the presence of pseudo-code, a single exam- 571

ple is enough. Even in complex graph reasoning 572

tasks, prompting with pseudo-code does not need 573

several examples to reach its full potential. 574

5 Conclusion 575

In this work, we explored whether prompting with 576

pseudo-code instructions can enhance LLMs’ rea- 577

soning on simple and complex graph tasks. Experi- 578

ments with GPT-3.5 and Mixtral show that pseudo- 579

code prompts improve performance across various 580

graph tasks. However, performance declines as 581

graph size increases. This highlights the need for 582

further research on prompting techniques for large 583

graphs. Our focus is on improving both reasoning 584

and interpretability, showing LLMs can solve prob- 585

lems while making their reasoning steps explicit. 586

8



Limitations587

Pseudo-code prompts need to be carefully de-588

signed or might not be available. To get the589

most out of pseudo-code, careful design is needed.590

Simple coding is preferred and complex structures591

such as nested loops or recursive functions should592

be avoided. We assume that pseudo-code is either593

directly available or there is access to the technical594

expertise required to write it.595

Evaluation Automatically evaluating the perfor-596

mance of LLMs is by definition a hard task. In597

order to measure the performance, we search for598

the result in the LLM output. Therefore, some599

degree of ambiguity, variation in phrasing, and dif-600

ferences in reasoning approaches are inevitable. As601

a result, certain errors are expected when aligning602

the generated output with predefined answers or603

benchmarks."604

References605

Prithviraj Ammanabrolu and Mark Riedl. 2021. Learn-606
ing Knowledge Graph-based World Models of Tex-607
tual Environments. In Advances in Neural Informa-608
tion Processing Systems, pages 3720–3731.609

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-610
stenberger, Michal Podstawski, Lukas Gianinazzi,611
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-612
ski, Piotr Nyczyk, et al. 2024. Graph of Thoughts:613
Solving Elaborate Problems with Large Language614
Models. In Proceedings of the 38th AAAI Confer-615
ence on Artificial Intelligence, pages 17682–17690.616

Tom Brown, Benjamin Mann, Nick Ryder, Melanie617
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind618
Neelakantan, Pranav Shyam, Girish Sastry, Amanda619
Askell, et al. 2020. Language Models are Few-Shot620
Learners. In Advances in Neural Information Pro-621
cessing Systems, pages 1877–1901.622

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-623
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,624
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-625
berg, et al. 2023. Sparks of Artificial General In-626
telligence: Early experiments with GPT-4. arXiv627
preprint arXiv:2303.12712.628

Wenhu Chen, Xueguang Ma, Xinyi Wang, and629
William W Cohen. 2023. Program of Thoughts630
Prompting: Disentangling Computation from Rea-631
soning for Numerical Reasoning Tasks. Transactions632
on Machine Learning Research.633

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi634
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,635
Wenqi Fan, Hui Liu, et al. 2024. Exploring the Poten-636
tial of Large Language Models (LLMs) in Learning637

on Graphs. ACM SIGKDD Explorations Newsletter, 638
25(2):42–61. 639

Jacob Devlin, Chang Ming-Wei, Kenton Lee, and 640
Kristina Toutanova. 2019. BERT: Pre-training of 641
Deep Bidirectional Transformers for Language Un- 642
derstanding. In Proceedings of NAACL-HLT, pages 643
4171–4186. 644

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng 645
Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian He. 646
2023. SimTeG: A Frustratingly Simple Approach 647
Improves Textual Graph Learning. arXiv preprint 648
arXiv:2308.02565. 649

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 650
2024. Talk like a Graph: Encoding Graphs for Large 651
Language Models. In The 12th International Confer- 652
ence on Learning Representations. 653

Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, 654
Ben He, Xianpei Han, and Le Sun. 2024. Mitigat- 655
ing Large Language Model Hallucinations via Au- 656
tonomous Knowledge Graph-Based Retrofitting. In 657
Proceedings of the 38th AAAI Conference on Artifi- 658
cial Intelligence, pages 18126–18134. 659

Jiayan Guo, Lun Du, and Hengyu Liu. 2023. 660
GPT4Graph: Can Large Language Models Un- 661
derstand Graph Structured Data? An Empirical 662
Evaluation and Benchmarking. arXiv preprint 663
arXiv:2305.15066. 664

Zirui Guo, Lianghao Xia, Yanhua Yu, Yuling Wang, 665
Zixuan Yang, Wei Wei, Liang Pang, Tat-Seng Chua, 666
and Chao Huang. 2024. GraphEdit: Large Language 667
Models for Graph Structure Learning. arXiv preprint 668
arXiv:2402.15183. 669

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam 670
Perold, Yann LeCun, and Bryan Hooi. 2024. Harness- 671
ing Explanations: LLM-to-LM Interpreter for En- 672
hanced Text-Attributed Graph Representation Learn- 673
ing. In The 12th International Conference on Learn- 674
ing Representations. 675

Yuntong Hu, Zheng Zhang, and Liang Zhao. 2023. 676
Beyond Text: A Deep Dive into Large Language 677
Models’ Ability on Understanding Graph Data. In 678
NeurIPS 2023 Workshop: New Frontiers in Graph 679
Learning. 680

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brah- 681
man, Chandra Bhagavatula, Ronan Le Bras, and 682
Yejin Choi. 2022. Maieutic Prompting: Logically 683
Consistent Reasoning with Recursive Explanations. 684
In Proceedings of the 2022 Conference on Empiri- 685
cal Methods in Natural Language Processing, pages 686
1266–1279. 687

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, 688
Moontae Lee, Honglak Lee, and Seunghoon Hong. 689
2022. Pure Transformers are Powerful Graph Learn- 690
ers. In Advances in Neural Information Processing 691
Systems, pages 14582–14595. 692

9



Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-693
taka Matsuo, and Yusuke Iwasawa. 2022. Large694
Language Models are Zero-Shot Reasoners. pages695
22199–22213.696

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,697
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-698
train, Prompt, and Predict: A Systematic Survey of699
Prompting Methods in Natural Language Processing.700
ACM Computing Surveys, 55(9):1–35.701

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and702
Shirui Pan. 2024. Reasoning on Graphs: Faithful703
and Interpretable Large Language Model Reasoning.704
In The 12th International Conference on Learning705
Representations.706

Mayank Mishra, Prince Kumar, Riyaz Bhat, Rudra707
Murthy, Danish Contractor, and Srikanth Tamilsel-708
vam. 2023. Prompting with Pseudo-Code Instruc-709
tions. In Proceedings of the 2023 Conference on710
Empirical Methods in Natural Language Processing,711
pages 15178–15197.712

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,713
Carroll Wainwright, Pamela Mishkin, Chong Zhang,714
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.715
2022. Training language models to follow instruc-716
tions with human feedback. In Advances in Neu-717
ral Information Processing Systems, pages 27730–718
27744.719

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu720
Wang, and Xindong Wu. 2024. Unifying Large Lan-721
guage Models and Knowledge Graphs: A Roadmap.722
IEEE Transactions on Knowledge and Data Engi-723
neering.724

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-725
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan726
Halcrow. 2024. Let Your Graph Do the Talking: En-727
coding Structured Data for LLMs. arXiv preprint728
arXiv:2402.05862.729

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-730
wari, Gustavo Soares, Christopher Meek, and Sumit731
Gulwani. 2022. Synchromesh: Reliable Code Gen-732
eration from Pre-trained Language Models. In The733
10th International Conference on Learning Represen-734
tations.735

Shengyin Sun, Yuxiang Ren, Chen Ma, and Xuecang736
Zhang. 2023. Large Language Models as Topologi-737
cal Structure Enhancers for Text-Attributed Graphs.738
arXiv preprint arXiv:2311.14324.739

Arun James Thirunavukarasu, Darren Shu Jeng Ting,740
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,741
and Daniel Shu Wei Ting. 2023. Large language742
models in medicine. Nature medicine, 29(8):1930–743
1940.744

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob745
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz746
Kaiser, and Illia Polosukhin. 2017. Attention Is All747
You Need. In Advances in Neural Information Pro-748
cessing Systems.749

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan 750
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2023a. 751
Can Language Models Solve Graph Problems in Nat- 752
ural Language? In Advances in Neural Information 753
Processing Systems. 754

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 755
Ed H Chi, Sharan Narang, Aakanksha Chowdhery, 756
and Denny Zhou. 2023b. Self-Consistency Improves 757
Chain of Thought Reasoning in Language Models. 758
In The 11th International Conference on Learning 759
Representations. 760

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 761
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 762
et al. 2022. Chain-of-Thought Prompting Elicits Rea- 763
soning in Large Language Models. In Advances 764
in Neural Information Processing Systems, pages 765
24824–24837. 766

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom 767
Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. 768
Tree of Thoughts: Deliberate Problem Solving with 769
Large Language Models. In Advances in Neural 770
Information Processing Systems. 771

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, 772
Michael Bronstein, Zhaocheng Zhu, and Jian Tang. 773
2023. GraphText: Graph Reasoning in Text Space. 774
arXiv preprint arXiv:2310.01089. 775

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 776
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 777
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2023. 778
Least-to-Most Prompting Enables Complex Reason- 779
ing in Large Language Models. In The 11th Interna- 780
tional Conference on Learning Representations. 781

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan 782
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, 783
Changcheng Li, and Maosong Sun. 2020. Graph 784
neural networks: A review of methods and applica- 785
tions. AI Open, 1:57–81. 786

10


	Introduction
	Related Work
	Proposed Methodology
	Experiments
	Conclusion

