
Physically Embodied Gaussian Splatting: A Visually
Learnt and Physically Grounded 3D Representation

for Robotics

Jad Abou-Chakra
Queensland University of Technology

Krishan Rana
Queensland University of Technology

Feras Dayoub
The University of Adelaide

Niko Sünderhauf
Queensland University of Technology

Abstract: For robots to robustly understand and interact with the physical world,
it is highly beneficial to have a comprehensive representation – modelling geom-
etry, physics, and visual observations – that informs perception, planning, and
control algorithms. We propose a novel dual “Gaussian-Particle” representation
that models the physical world while (i) enabling predictive simulation of future
states and (ii) allowing online correction from visual observations in a dynamic
world. Our representation comprises particles that capture the geometrical aspect
of objects in the world and can be used alongside a particle-based physics sys-
tem to anticipate physically plausible future states. Attached to these particles are
3D Gaussians that render images from any viewpoint through a splatting process
thus capturing the visual state. By comparing the predicted and observed images,
our approach generates “visual forces” that correct the particle positions while re-
specting known physical constraints. By integrating predictive physical modeling
with continuous visually-derived corrections, our unified representation reasons
about the present and future while synchronizing with reality. We validate our ap-
proach on 2D and 3D tracking tasks as well as photometric reconstruction quality.
Videos are found at https://embodied-gaussians.github.io/.

1 INTRODUCTION

The real world is governed by many well-understood physical priors – matter cannot occupy the
same space, scenes comprise rigid and deformable objects, gravity acts on all objects, robots have
known kinematic structures. Incorporating such priors into a world representation can constrain how
it evolves over time, enforcing adherence to the laws of physics. However, most representations like
pointclouds, images [1], or latent descriptors [2, 3, 4] cannot explicitly encode and reason over these
priors. Consequently, their ability to predict future states lacks critical physical constraints.

Particle-based physics simulators [5, 6, 7] elegantly capture the physical priors that are often known
in robotic scenarios and enable forward simulation of dynamics. This makes them attractive for
modeling the physical world. To use them in a robotics context, we propose a method to initialize
particles from RBGD observations and to periodically correct the errors accrued over time using
only RGB observations from the real world.

To enable continuous state correction through visual feedback, we add a visual aspect to the particles
which allows a corrective force to be calculated. Recent work has shown 3D Gaussians [8, 9] are
a differentiable, performant, and expressive representation of visual state that can render images
from any viewpoint. Our contribution is to couple these Gaussians to the particles. With this dual
Gaussian-Particle representation, we can simulate future states using a physics system. We can also
predict the visual appearance by rendering the attached Gaussians. Observations are compared to
the rendered images to compute a photometric loss which drives the movement of the Gaussians
and subsequently generates “visual forces” that correct the positions of the attached particles. Our
key contributions are thus: (i) A novel dual Gaussian-Particle representation that captures geometry,
physics, and visual appearance in a unified way. (ii) A method of initializing this representation
from RGBD data and instance maps. (iii) A real-time method to correct the particle states using
visual feedback. An overview of our system is shown in Fig. 1.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://embodied-gaussians.github.io/

Particle

Bond

Gaussian

Gravity

Object

Kinematics

Collisions

1. Visual and Physical Priors 2. Dual Gaussian-Particle Representation

4. Visual Loss 5. Visual Forces3. Splatting

Figure 1: Image from a real-world experiment showing the available physical priors (1), the dual
Gaussian-Particle representation (2), the predicted visual state of the world (3), and the corrective
“visual” forces (5) being applied as a result of a visual discrepancy between the rendered state and
the image from the camera (4).

2 PRELIMINARIES

Our approach builds upon Position-Based Dynamics [5, 6] (PBD) and Gaussian Splatting [8]. This
section provides an overview of these two components separately, while the subsequent section
details our contribution that interconnects them for a robotics setting.

Particle-Based Physics Simulation PBD is a physics simulation technique well-suited for our
robotics application, which requires real-time operation and robust performance. In our formulation,
PBD acts on oriented particles where each particle i is defined by its position pi ∈ R3, velocity
vi ∈ R3, orientation qi ∈ S3, angular velocity ωi ∈ R3, external force f i ∈ R3, radius ri ∈ R+,
and mass mi ∈ R+. A particle may belong to a shape Sj and thus has its resting position p̄i as an
additional attribute.

At the core of the PBD framework are the various constraints that govern the behavior of the simu-
lation. These constraints are defined as cost functions that operate on the particle positions, ensuring
the simulation adheres to the desired physical properties. The general form of a PBD constraint is
a cost function C(p0, ...,pn, µr) ∈ R+, where µr is a relaxation factor. The constraints are min-
imized at each simulation step using a Jacobi solver. The solver iteratively updates the positions
of the particles by aggregating the required positional changes ∆p to locally satisfy the constraint.
Generally, the change required is given by:

∆pi = −µrwi
C∑

j wj |∇pj
C|2
· ∇pi

C where wi =
1

mi
(1)

In our system, we use ground, collision, and shape constraints. Their associated ∆p are outlined
below:

PBD’s ground constraint is used to prevent particles from penetrating the ground plane given by
(n, d):

∆pground
i = Cground(pi;n, d) · n, Cground(pi;n, d) = min(nTpi + d− ri, 0) (2)

2

PBD’s collision constraint which operates on a pair of particles i and j is used to model collisions:

∆pcol
i =

wi

wi + wj

pi − pj

||pi − pj ||
Ccol(pi,pj), Ccol(pi,pj) = min(||pi − pj || − ri − rj , 0) (3)

Lastly, to ensure a group of particles belonging to a particular object (either deformable or rigid)
maintain their structure throughout the simulation, we use the shape matching algorithm which is
explained in detail in [7, 10]. Briefly, the shape matching algorithm requires the computation of the
following matrix for each shape S:

AS =
∑
i∈S

1

5
miRi+pip̄

T
i −McS c̄

T
S , cS =

∑
i∈S mipi

M
, c̄S =

∑
i∈S mip̄i

M
, M =

∑
i∈S

mi (4)

where Ri ∈ SO(3) is the matrix form the quaternion qi. AS can be decomposed into RSS and
thus the changes in particles positions required to maintain structure are given by:

∆pshape
i = kS [RS(p̄i − c̄S) + c− pi] (5)

Here, kS is the stiffness parameter of the shape. Both rigid and deformable objects can be modelled
with shape matching. A rigid object is composed of a single shape. A deformable object, however,
is composed of multiple shapes where each shape is composed of a particle and its neighbours.

For a sample implementation of PBD and the shape matching algorithm, we refer the reader to [11].
In our work, we build on Warp’s [12] PBD implementation and extend it to incorporate the shape
matching algorithm. In our experiments, each physics step takes approximately 5 ms to complete.
More details on PBD can be found in our supplementary.

Gaussian Splatting Gaussian splatting [8] has emerged as a powerful rendering technique that
can capture the state of the visual world with a discrete set of 3D Gaussians. Each Gaussian i is
parameterized by its position gi ∈ R3, orientation Ri ∈ SO(3), scale si ∈ R3, opacity αi ∈ R+,
and color ci ∈ R3.

Given a viewpoint whose transform relative to the world frame is denoted by V ∈ SE(3) and
projection function from the 3D world to the view’s screenspace is defined by π(x), the color at a
pixel coordinate u can be calculated by sorting the Gaussians in increasing order of their viewspace
z-coordinate and then using the splatting formula in Eq. (6).

Crgb(u) =
∑
i∈N

ciαi(u)

i−1∏
j=1

(1− αj(u)) (6)

αi(u) = aie
−gi(u), gi(u) = xT

i Σ′−1
i xi, xi = u− π(gi)

Σ′i = JVΣiV
TJT is the covariance of the Gaussian i projected into the viewpoint’s screenspace

where J is the Jacobian of the projection function π(x) and Σi = Ridiag(s2
i)RT

i . For the full
details of this process, the reader is referred to [8].

The rendering equation is not limited to color. In our method, we also associate each Gaussian with
a segmentation id oi (as is done in [9]). Note, however, this is only needed for our initialization
scheme and not our prediction and corrective steps. Rendering segmentation is done using:

S(u) =
∑
i∈N

oiαi(u)

i−1∏
j=1

(1− αj(u)) (7)

Since the splatting process is differentiable, the attributes defining the 3D Gaussians can be learnt
to represent a specific scene by minimizing the photometric loss Lrgb between a set of groundtruth
images and their corresponding splatted renders. Our initialization procedure also makes use of Lseg.

Lrgb =
∑
u

|Crgb(u)− Cgt(u)| and Lseg =
∑
u

|S(u)− Sgt(u)| (8)

3

1. Initialize pointcloud from
posed cameras

2. Segment points with masks
and compute BBox

6. Continue training
Gaussians and connect

to nearest particles

Shape Matching

3. Fill BBox with spherical
Gaussians and remove

ones outside masks

4. Train with reconstruction
loss and collision

avoidance cosntraint

5. Initialize particles at
Gaussian locations and
create shape constraints

Bonds

Initialization Procedure Results
Doll

Mug

Ball

Figure 2: The initialization procedure (left) and example results from real-world data (right).

3 METHOD

Our method creates a model of the world that can at realtime rates be (i) forward simulated, (ii)
regularized with physical priors, and (iii) corrected through visual observations from 3 cameras.
The model comprises two tightly integrated representations: a set of N particles that represent the
physical world and are acted upon by a PBD physics system, and M Gaussians that visually depict
the world through efficient splatting-based rendering. The key novelty lies in the introduction of
“Gaussian-Particle” bonds that synergistically couple these two representations, creating a bridge
between the physical and visual aspects of the modeled environment. A bond is a rigid transform
that links a Gaussian to its parent particle. In Sec. 3.1, we describe how to initialize the particles,
Gaussians, and their interconnecting bonds. In Sec. 3.2, we describe how the simulated representa-
tion is kept synchronized with the real world using the observations from the cameras.

3.1 Initialization

To initialize the particles, we compute a loose 3D bounding box around each object using the depth
data and instance masks. The handful of instance masks required are user-generated with Cutie [13]
(a mask labelling tool) in only a few seconds with minimal effort, however this could plausibly be
automated using VLMs or SAM [14, 15, 16]. The instance and depth information is only required
at initialization. The bounding boxes are filled with evenly spaced spherical Gaussians whose radius
matches the smallest relevant geometric feature (4 to 7 mm). Gaussians that do not project into the
instance mask are pruned. The Gaussian positions, colors, and opacities are optimized by iteratively
solving for collision and ground constraints using the Jacobi solver mentioned in (Sec. 2) and min-
imizing the photometric and segmentation reconstruction loss (Eq. (8)) using Adam [17]. Thus for
this stage only, the Gaussians act as though they are also particles. Gaussians with an opacity lower
than 0.3 (emperically chosen) are pruned and their size is upper bounded to roughly the size of the
particle. Particles are initialized at the locations of the remaining Gaussians. The particles belonging
to each object are then connected to each other using shape matching constraints (2).

The user also indicates whether each object is rigid or deformable. We envision that in the future,
a VLM could automatically make this determination. These particles represent a collision-free,
ground-aligned approximation of the object geometries, filling up the observed shapes. While this
approach does not model cavities, this could be addressed in the future by incorporating depth-based
losses or by replacing the grid initialization with a more sophisticated 3D initialization scheme.

Subsequently, we continue optimizing the Gaussians without imposing collision constraints and
allow the scale to change. We also introduce new Gaussians by enabling the densification procedure
detailed in [8]. Finally, each Gaussian is parented to the closest particle and its location relative
to the particle is stored as a bond. Any Gaussian that is farther from a threshold to a particle is
discarded. This reconstruction process as well as its results are visualized in Fig. 2. A typical scene
contains around a thousand particles and ten thousand Gaussians.

4

3. Optimize Gaussians
with RGB Loss

Compute visual forces
from displacements of
Gaussians

2. Set robot joints and run PBD step1. Get latest images and joint positions

1 Physics PBD StepReal World

Prediction Visual Correction

5 Adam Steps

Visual Force
Push

Add visual forces to PBD simulator
and reset Gaussian positions

5.4.

30 Hz

Figure 3: Our real-time correction method illustrated in its different steps.

The robot is modelled similarly using renders from its known meshes and inserted into each scene.
The background elements (a white table in our experiments) are modelled only using Gaussians with
the conventional training regime [8].

3.2 Online Prediction and Correction

After the initialization phase, our approach employs a combination of Position-Based Dynamics
(PBD) and Gaussian splatting optimization to predict the current state of our representation. Our
method can be decomposed into two stages: a prediction stage and a correction stage. These two
stages are called sequentially and are illustrated in Fig. 3.

Prediction The PBD physics system acts upon the particles in our system at a rate of 30Hz. The
prediction step constitutes setting the particles associated with the robot to the positions calculated
by the forward kinematics, running a single PBD physics step that forward projects the particles
and resolves physical constraints (as described in Sec. 2), and finally rigidly moving the Gaussians
bonded to particles to their new predicted locations. In our system, this takes approximately 5 ms to
perform on an NVIDIA 3090, leaving 28 ms for the subsequent correction stage.

Correction After the physics prediction, the current state is rendered from known camera view-
points. The renders are compared to the images received from the cameras and the photometric
reconstruction loss is reduced by optimizing the parameters of the Gaussians. Note that only RGB
data is required for the optimization. All Gaussians are allowed to learn new colors and opacities at
a low learning rate. This allows shadows imposed by the robot and by the objects to be explained by
changing the colors of the Gaussians. Only Gaussians attached to objects are allowed to change their
positions and orientations. After 5 optimization steps – a number tuned to meet realtime constraints
– the desired positions of the Gaussians are stored and all Gaussians are reset to their original posi-
tion before the optimization started. The difference in the desired positions of the Gaussians and the
original positions of the Gaussians is used to compute a force which is imposed on the connected
particles. This force is calculated as f i = Kp

∑
j oj(gj − g0

j), where gj and g0
j are the final and

initial positions of the Gaussians connected to particle i, oj is the opacity, and Kp is a proportional
gain that has to be tuned (We foundKp = 60 to be a good value for our experiments). The Gaussians
are thus never directly moved by the correction step. Rather, the correction step is used to generate
corrective external forces on the particles which are ultimately resolved by the physics system. The
resulting movement of the particles, as orchestrated by the physics, causes the Gaussians bonded
to them to move. Consequently, the system is never in a physically infeasible state. Moving the
Gaussians in this manner ensures that they always remain in place relative to their bonded particles.

4 EXPERIMENTS

We rigorously evaluate the performance of our proposed system across several key metrics to deter-
mine its efficacy in dynamic object tracking and photometric reconstruction from novel viewpoints.

Datasets To evaluate our method, we utilize both a simulated dataset and a real dataset, each com-
prising a tabletop scene. The simulated dataset (Fig. 4) consists of 25 scenarios designed to highlight
various dynamic conditions, including single object pushing (5 scenes), multiple object pushing
(5 scenes), object pickup (5), object pushover (5), and pushing a deformable rope (5). The real
dataset (Fig. 5) contains 25 scenarios exhibiting similar variations in dynamic conditions. The real-
world experiments have Aruco markers attached to the objects. The markers are used to extract

5

3D
 T

ra
ck

in
g

E
rr

or
 (

cm
)

Time (s)

0
0 5 0 5 0 5 0 4 0 5

10

20

RopeMultipleSingle Falling Pickup

Ours Physics Only D3DGS

Figure 4: Tracking error on a set of points attached to moving objects on synthetic scenes showing
different dynamic conditions that include pushing, falling, picking up, and deformable objects.

Table 1: Tracking error and photometric reconstruction quality from unseen views on the simulated
dataset for our full method, physics only, augmented D3DGS and Cotracker [19]

↓ 3D Tracking error (cm) ↓ 2D Tracking error (px) ↑ PSNR

Ours Physics D3DGS* Ours Physics D3DGS* [19] Ours Physics D3DGS*

Single 0.65 9.87 4.05 5.46 81.44 36.19 29.13 17.32 14.16 16.52
Multiple 0.52 6.70 2.71 5.92 52.84 14.25 17.40 17.52 14.34 17.07
Falling 1.52 11.00 7.64 14.50 117.10 62.93 48.33 16.79 12.88 16.26
Pickup 2.25 2.58 0.93 27.61 31.49 9.95 14.24 13.88 13.17 15.84
Rope 1.02 4.50 2.71 7.08 25.55 22.50 28.75 14.63 11.97 15.47

groundtruth 2D and 3D trajectories using a combination of Aruco detection, manual labelling, and
factor-graph based optimization [18]. For both datasets, we employ 3 cameras to derive the visual
forces, while 2 cameras are used for evaluation purposes only. This diverse set of experiments allows
us to assess the performance of our method under a range of challenging scenarios, encompassing
both rigid and deformable objects, as well as interactions involving single and multiple objects.

Baselines A baseline that is realtime, correctable and serves as world model could not be found –
therefore, we compare our method with baselines that can separately track and predict. We note that
our main contribution is that we can do both at the same time. Therefore, we compare our method
as a 3D tracker against Dynamic 3D Gaussians (D3DGS) [9], a 2D tracker against Cotracker [19],
and as a forward model against only using a physics simulator [5] without visual forces.

Unlike our approach, D3DGS incorporates physical priors directly into the Gaussian optimization
process through auxiliary losses. D3DGS cannot be used as world model like our method since it
cannot project what may happen to the Gaussians if forces act on the system. It also requires a fore-
ground mask to be provided at each timestep. In [9], background subtraction is used to acquire those
masks. However, we found that under our challenging realtime constraints where only 3 cameras
are used – this leads to catastrophic failure in tracking as visualized in Fig. 6. Therefore, to make it
competitive, we augment the baseline (D3DGS*) by giving it groundtruth hand-labelled masks and
by forcing the Gaussians associated with the robot to move according to the forward kinematics of
the robot rather than through the optimization process. Furthermore, we found D3DGS auxilliary
losses make it half as slow as our visual training iteration, but we assume that optimizations can be
made to match the speed of ours and thus allow them six training iterations to match our five training
iterations and one physics step. For our method, the full parameters are listed in the supplementary.

Metrics We evaluate our method on the mean error in the 2D and 3D trajectories of known points.
We also evaluate the foreground photometric reconstruction quality (which includes only the objects
on the table) from unseen viewpoints. The predicted 3D trajectory of a query point is obtained by
tracking the frame of the Gaussian that was closest to that query at the first timestep. This procedure
is consistent with the approach used in [9]. 3D trajectories are projected into each camera to obtain
the 2D trajectories and their initial points are used to query Cotracker [19]. The trajectory error is
calculated as the mean difference between the groundtruth and the predicted trajectories of several
points sampled on the objects.

6

Single

Time (s)

3D
 T

ra
ck

in
g

E
rr

or
 (

cm
)

1040

40

20 10 20 2.5 5.0 7.5 5 10 15
0

20

20

30

Ours Physics Only D3DGS

RopeMultiple Falling Pickup

Figure 5: The tracking error on a set of points attached to moving objects is recorded on real scenes.

Table 2: Tracking error and photometric reconstruction quality from unseen views on the real
dataset for our full method, physics only, augmented D3DGS and Cotracker [19].

↓ 3D Tracking error (cm) ↓ 2D Tracking error (px) ↑ PSNR

Ours Physics D3DGS* Ours Physics D3DGS* [19] Ours Physics D3DGS*

Single 1.40 31.71 5.96 11.90 264.20 57.10 88.42 16.49 10.46 12.05
Multiple 1.84 26.07 10.09 17.00 238.42 57.75 110.79 16.99 10.64 14.18
Falling 2.06 7.80 5.90 16.51 62.56 56.98 85.33 17.05 13.56 15.87
Pickup 0.68 3.36 3.36 6.65 37.34 7.80 8.21 16.38 13.40 15.22
Rope 1.01 11.24 11.24 6.68 76.98 82.45 41.87 15.81 13.73 12.11

Results Fig. 4 and 5 show 5 of the 25 scenarios tested for each of the simulated and real datasets.
The 3D tracking error is plotted over time and shows our method robustly tracking the objects in
the scene. Tables 1 and 2 summarize our metrics over each scenario. Our method outperforms all
baselines on all experiments except the simulated Pickup tasks. The Pickup tasks are highly dynamic
environments where our physical priors were significantly different to the physics exhibited in the
simulated scene (see videos on website). This highlights an expected weakness of our system where
significantly misaligned physical priors can degrade performance. Nevertheless, our system is able
to recover and acquire the final state of the pickup task as shown in Fig. 4. In all other experiments
(45/50), physical priors significantly improve tracking performance. Fig. 6 shows qualitative results.

5 RELATED WORK

To the best of our knowledge, we are the first to create a representation consisting of both particles
and 3D Gaussians for the purposes of fusing physical and visual priors within a correctable robotics
world model. However, the use of a particle-based physics system alongside a visual component
other than Gaussians has been at the core of other works [20, 21, 22, 23]. Moreover, regularizing
Gaussian splatting with physical priors through means other than a physics framework has also been
explored [9] (the baseline used in our experiments).

ParticleNeRF [20] uses particles that are acted upon by a physics system and can be rendered from
any viewpoint using a Neural Radiance Field [24] formulation. Particles are associated with latent
features which can be decoded into a radiance field by a small neural network. While ParticleNeRF
introduced the use of a particle-based physics system (PBD) to incorporate physical constraints and
deviations from the NeRF’s reconstruction loss relative to particle positions, it only utilized collision
constraints and did not fully explore the idea of employing various physical priors to regularize the
reconstruction. In part, due to the slower NeRF formulation and the requirement of upwards of 10
cameras to constrain the optimization, ParticleNeRF could not be deployed in a real world robotics
setting with realtime constraints. In contrast, our work uses the much faster Gaussian splatting
to represent the visual world and further makes heavy use of physical priors which allow visual
corrections from as little as 3 cameras in the scene.

Particles within a PBD framework paired with corrections from observed pointclouds have been
used to model soft human tissue within the domain of surgical robotics [21, 22, 23]. Our method is
more general, realtime, and uses visual feedback achieved through the fast Gaussian splatting rather
than pointclouds and SDFs.

7

O
ur
s

G
T

P
hy
si
cs

D
3D
G
S

0s 4s 27s

Figure 6: A scene’s predicted visual state with different methods. Our method synchronizes with the
real state using a combination of physical prediction and visual correction. Physical prediction alone
can estimate the state for about 2 seconds but will eventually desynchronize. Visual correction alone
(D3DGS) allows the Gaussians to move in physically infeasible ways, creating scenarios where
objects split and Gaussians move freely within the object despite auxiliary structural losses.

D3DGS [9] adds physical priors to the Gaussian optimization process with the aim of regularizing
the movement of the Gaussians. The significant difference with our work is that the physical priors
are not strictly enforced by a physics system – rather auxiliary losses are added to the photometric
reconstruction loss. Importantly, this means that D3DGS cannot act as a world model because it
cannot be used to predict future states. Nevertheless, D3DGS has shown good tracking and recon-
struction performance when groundtruth masks are provided or when upwards of 20 well-distributed
cameras are observing the scene and the optimization is given ample time to converge. While these
requirements are difficult to achieve in a robotics setting, this visually-driven optimization serves as
our baseline and ablates the visual component of our system as well as outlines the importance of
grounding the optimization with a physics system.

6 LIMITATIONS AND CONCLUSIONS

Our method was demonstrated on a table-top scenario where heavy use of physical priors can be
made. The extension to an open-world setting is left to future work. We make an assumption that
the predicted state will be close enough to the groundtruth so that visual forces can be effective.
This assumption is broken when significant errors in modelling cause the physics system to accrue
errors at a faster rate than can be corrected. This can occur when an object is moved very quickly
by the robot. Consequently, a method of closing the loop using global visual information is needed
– plausibly using a system like [25]. We foresee that a more sophisticated initialization procedure
that uses learnt shape priors would be more powerful. Lastly, our method does not alter the physical
structure or parameters of the objects once the modelling is done. Therefore, new observations
are not used to correct modelling mistakes. A means of online structure correction and system
identification would extend this framework.

In conclusion, we have presented a hybrid representation consisting of particles and 3D Gaussians
that together represent the physical and visual state of the world. In conjunction, they can be used
to predict future states and correct the predicted state from observed data. This synergy makes
them suitable for use as a world model in future robotic works. The world model can then be used
to extract object state for a reinforcement-based or an imitation-based policy or to plan for future
actions using model predictive control.

8

ACKNOWLEDGMENT

The authors acknowledge continued support from the Queensland University of Technology (QUT)
through the Centre for Robotics. This work was partially supported by the Australian Gov-
ernment through the Australian Research Council’s Discovery Projects funding scheme (Project
DP220102398).

References
[1] C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learning for physical inter-

action through video prediction. ArXiv, abs/1605.07157, 2016. URL https://api.
semanticscholar.org/CorpusID:2659157.

[2] Y. Ze, N. Hansen, Y. Chen, M. Jain, and X. Wang. Visual reinforcement learning with self-
supervised 3d representations. IEEE Robotics and Automation Letters, 8(5):2890–2897, 2023.
doi:10.1109/LRA.2023.3259681.

[3] D. Driess, I. Schubert, P. Florence, Y. Li, and M. Toussaint. Reinforcement learning with
neural radiance fields. Advances in Neural Information Processing Systems, 35:16931–16945,
2022.

[4] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint. Learning multi-object dynamics with
compositional neural radiance fields. In Proceedings of The 6th Conference on Robot Learning,
volume 205 of Proceedings of Machine Learning Research, pages 1755–1768. PMLR, 14–18
Dec 2023.

[5] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based dynamics. Journal
of Visual Communication and Image Representation, 18(2):109–118, 2007. ISSN 1047-3203.
doi:https://doi.org/10.1016/j.jvcir.2007.01.005. URL https://www.sciencedirect.com/
science/article/pii/S1047320307000065.

[6] M. Macklin, M. Müller, and N. Chentanez. Xpbd: Position-based simulation of compliant con-
strained dynamics. In Proceedings of the 9th International Conference on Motion in Games,
MIG ’16, page 49–54, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450345927. doi:10.1145/2994258.2994272. URL https://doi.org/10.1145/
2994258.2994272.

[7] M. Müller and N. Chentanez. Solid simulation with oriented particles. ACM Trans. Graph.,
30(4), jul 2011. ISSN 0730-0301. doi:10.1145/2010324.1964987. URL https://doi.org/
10.1145/2010324.1964987.

[8] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023. URL https:
//repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

[9] J. Luiten, G. Kopanas, B. Leibe, and D. Ramanan. Dynamic 3d gaussians: Tracking by persis-
tent dynamic view synthesis. In 3DV, 2024.

[10] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations based on
shape matching. ACM Trans. Graph., 24(3):471–478, jul 2005. ISSN 0730-0301. doi:10.
1145/1073204.1073216. URL https://doi.org/10.1145/1073204.1073216.

[11] J. Bender. PositionBasedDynamics, Dec. 2022. URL https://github.com/
InteractiveComputerGraphics/PositionBasedDynamics.

[12] M. Macklin. Warp: A high-performance python framework for gpu simulation and graphics.
https://github.com/nvidia/warp, March 2022. NVIDIA GPU Technology Conference
(GTC).

[13] H. K. Cheng, S. W. Oh, B. Price, J.-Y. Lee, and A. Schwing. Putting the object back into video
object segmentation. In arXiv, 2023.

9

https://api.semanticscholar.org/CorpusID:2659157
https://api.semanticscholar.org/CorpusID:2659157
http://dx.doi.org/10.1109/LRA.2023.3259681
http://dx.doi.org/https://doi.org/10.1016/j.jvcir.2007.01.005
https://www.sciencedirect.com/science/article/pii/S1047320307000065
https://www.sciencedirect.com/science/article/pii/S1047320307000065
http://dx.doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
http://dx.doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/2010324.1964987
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
http://dx.doi.org/10.1145/1073204.1073216
http://dx.doi.org/10.1145/1073204.1073216
https://doi.org/10.1145/1073204.1073216
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://github.com/nvidia/warp

[14] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

[15] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023.

[16] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, Z. Zeng,
H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling open-
world models for diverse visual tasks, 2024.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] H. Martiros, A. Miller, N. Bucki, B. Solliday, R. Kennedy, J. Zhu, T. Dang, D. Pattison,
H. Zheng, T. Tomic, P. Henry, G. Cross, J. VanderMey, A. Sun, S. Wang, and K. Holtz. Sym-
Force: Symbolic Computation and Code Generation for Robotics. In Proceedings of Robotics:
Science and Systems, 2022. doi:10.15607/RSS.2022.XVIII.041.

[19] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht. Cotracker: It is
better to track together. arXiv:2307.07635, 2023.

[20] J. Abou-Chakra, F. Dayoub, and N. Sünderhauf. Particlenerf: A particle-based encoding for
online neural radiance fields. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pages 5975–5984, January 2024.

[21] F. Liu, Z. Li, Y. Han, J. Lu, F. Richter, and M. C. Yip. Real-to-sim registration of deformable
soft tissue with position-based dynamics for surgical robot autonomy. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 12328–12334, 2021. doi:
10.1109/ICRA48506.2021.9561177.

[22] F. Liu, E. Su, J. Lu, M. Li, and M. C. Yip. Robotic manipulation of deformable rope-like ob-
jects using differentiable compliant position-based dynamics. IEEE Robotics and Automation
Letters, 8(7):3964–3971, 2023. doi:10.1109/LRA.2023.3264766.

[23] X. Liang, F. Liu, Y. Zhang, Y. Li, S. Lin, and M. Yip. Real-to-sim deformable object manipu-
lation: Optimizing physics models with residual mappings for robotic surgery. arXiv preprint
arXiv:2309.11656, 2023.

[24] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[25] C. Doersch, Y. Yang, M. Vecerik, D. Gokay, A. Gupta, Y. Aytar, J. Carreira, and A. Zisserman.
Tapir: Tracking any point with per-frame initialization and temporal refinement. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 10061–10072,
2023.

10

http://dx.doi.org/10.15607/RSS.2022.XVIII.041
http://dx.doi.org/10.1109/ICRA48506.2021.9561177
http://dx.doi.org/10.1109/ICRA48506.2021.9561177
http://dx.doi.org/10.1109/LRA.2023.3264766

Supplementary Material
Physically Embodied Gaussian Splatting: A Visually
Learnt and Physically Grounded 3D Representation

for Robotics
Jad Abou-Chakra1, Krishan Rana2, Feras Dayoub1, Niko Sünderhauf1

1Queensland University of Technology
2University of Adelaide

A Experimental Setup

Evaluation Training

Supplementary Figure 1: The tabletop setup used
in the real experiments showing the robot, some of
the objects used in the scenarios, and the position
of the 5 cameras used.

The real-world experiments are conducted us-
ing the tabletop setup shown in Supp. Fig-
ure 1. The setup employs a Franka Emika robot
equipped with two end-effectors: a standard
gripper for pick-up scenarios and a pusher for
other scenarios. The tabletop and robot are ob-
served by five cameras: three Intel RealSense
D455 cameras and two D435 cameras. These
cameras are jointly calibrated using a hand-
eye calibration technique. During operation, all
five cameras are utilized for system initializa-
tion. However, only the three D455 cameras are
employed during the prediction and correction
stages. In all scenarios, the robot is teleoper-
ated to manipulate objects on the tabletop. The
datasets are captured by recording the image
stream from the cameras and encoding them as
HEVC videos. These videos are scaled to a
resolution of 640x360 and decoded in real-time
during evaluation to mimic live operation. Ad-
ditionally, the robot’s joint positions are times-
tamped and saved during the recording process
and replayed during the evaluation.

B Implementation

The system follows a two-step process: initialization and prediction/correction. During initializa-
tion, particles and Gaussians are generated for each detected object in the scene. Subsequently, the
system enters the prediction and correction stage, where the particles are simulated using a Position-
Based Dynamics (PBD) physics system, while corrective forces are calculated based on the Gaus-
sians attached to the particles. This section elaborates on the implementation and parameterization
details of each phase.

Static Scene Initialization The tabletop is modeled using the five RGBD cameras in the scene,
employing the standard Gaussian Splatting technique. However, to avoid interference with object
placed on the table, the Gaussians are initialized as thin disks. Additionally, the table’s pointcloud
is utilized to calculate the ground plane. The Gaussians are trained using the Adam optimizer for
500 steps, with a position learning rate of 1e−4, color learning rate of 2.5e−3, scaling learning rate
of 1e−3, opacity learning rate of 1e−2, and rotation learning rate of 1e−3. The scale is clamped
between 1 mm and 1 cm.

11

Algorithm 1 Dual Gaussian-Particle Initialization

1: Fill BBox with Spherical Gaussians
2: Prune Gaussians Not In Instance Masks
3: for n iterations do
4: for all images and masks I do . Adam step
5: L← Lrgb + Lseg
6: L.backward()
7: g, a, c = optimizer.step()
8: for k iterations do . Jacobi step
9: g = solveCollisionConstraints(g)

10: g = solveGroundConstraints(g)
11: p = g . Create particles at Gaussian locations
12: Initialize particle mass and velocities
13: Create particle shape constraints
14: for m iterations do
15: for all images and masks I do
16: Lrgb.backward()
17: g, a, c, s = optimizer.step()
18: g, a, c, s = densify(g, a, c, a)
19: for each Gaussian i do
20: gi.parent = findClosestParticle(p)

Algorithm 2 PBD Physics Step

1: for all particles i do . Integrate particles
2: p0, q0 ← pi, qi

3: pi ← pi + ∆tvi + ∆t2

mi
(f i + gravity)

4: θ ← |wi|∆t
2

5: qi ← [ωi

|ωi| sin θ, cos θ]qi

6: for k solver iterations do . Resolve constraints
7: for all particles i do
8: pi ← groundConstraints(i)
9: for all collision pairs i, j do

10: pi ← collisionConstraints(i, j)
11: for all shapes s do
12: for particles i in s do
13: pi, qi ← shapeMatching(i, s)

14: for all particles i do . Update velocities
15: vi ← (pi − p0)/∆t
16: ωi ← axis(qiq

−1
0).angle(qiq

−1
0)/∆t

Algorithm 3 Visual Forces

1: gprev ← g . Save positions
2: o = AdamOptimizer()
3: for n iterations do
4: Choose random image I
5: Lrgb(I).backward()
6: g[not objects].grad = 0
7: g, c, o,R← o.step()
8: for every Gaussian i do
9: k = gi.parent

10: if k is not None then
11: fk ← fk +Kp(gi − gprev

i)

12: g ← gprev . Reset positions

Robot Initialization The robot’s particles
are manually fitted to the links using Blender.
The link each particle belongs to is stored so
that forward kinematics can be used to ap-
propriately change its position. Furthermore,
the robot is rendered in Blender from multi-
ple viewpoints, and Gaussians are trained to
reconstruct these renders. These Gaussians
are then bonded to the closest particle on the
robot. The combination of particles, Gaus-
sians, and bonds is inserted at the start of ev-
ery scenario. The same parameters used for
training the static scene are also applied to the
robot.

Object Initialization For each object, the
3D bounding box is calculated from its point-
cloud, which is extracted from the depth and
instance masks. The initialization process is
described in Algorithm 1. We use n = 80
and m = 250. All particles are initialized
to a mass of 0.1 kg with the exception of
the real and simulated rope which are set to
0.2 kg and 0.3 kg. The higher the mass of
the particle, the less the influence of the vi-
sual force. The mass acts as both a physical
and a visual inertia. These concepts can be
separated in future work if fine-grained tun-
ing is needed. For scenarios involving rope,
the corrective forces are less reliable than that
of larger bodies because they occupy less pix-
els in the image and the physical priors are
less constraining because of the deformabil-
ity. We compensate for the increased noise in
the corrective forces by increasing the visual
inertia. Note that Algorithm 1 is repeated for
each object. Future work may choose to build
all the objects simultaneously rather than se-
quentially to reduce the overall duration of
the initialization. In the current implemen-
tation, object modeling takes approximately
20 to 40 seconds, which we found acceptable
given that it is only done once per scenario.

Prediction Step The Position-Based Dy-
namics (PBD) physics system is used to pre-
dict the locations of the particles and the
Gaussians at each timestep. It runs at a fixed
frequency of 30 Hz (33.33 ms per step). The
physics step is described in Algorithm 2. We
use 20 substeps. At each substep, the veloc-
ities and forces are integrated, and then the
constraints are solved using a Jacobi solver.
Four Jacobi iterations are employed to suf-
ficiently solve the physical constraints. Af-
ter every physics step, the particle velocities
are multiplied by 0.9 (an empirically chosen
value). This damping contributes to system
stability.

12

33.33ms

Physics
(5ms)

Visual Forces (22ms)Other
(IO, GUI, ...) Adam 1 Adam 2 Adam 3 Adam 4 Adam 5

Physics
(5ms)

VisuOther
(IO, GUI, ...) Adam 1 Adam

ms)
dam 4 Adam 5

Supplementary Figure 2: The various functions called during the prediction and the correction step
profiled. In the ‘Other’ phase, the GUI is drawn and new sensor observations are read. The physics
step takes 5 ms and is followed by approximately 22 ms of Adam optimizations that are used to
compute the visual forces.

0 1 2 3 4 5 6 7 8

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
ra

ck
in

g
E

rr
or

 (
cm

)

Effect of Physical Priors on 3D Tracking Error

Physical Priors
All
No Collisions
No Ground
No Gravity
No Robot

Collision 1 Collision 2 Collision 3

Supplementary Figure 3: An ablation showing the effect of different physical priors on the 3D
tracking error of 12 points located on two objects on a tabletop. The scene used for this ablation is
“Multiple1” from the simulated dataset. Using all physical priors produces on average the lowest
tracking error over time.

Correction Step Visual forces are computed in the correction step using Algorithm 1. Gaussian
displacements are calculated using 5 iterations of the Adam optimizer. The scales of the Gaussians
are fixed, while the positions, rotations, opacities, and colors are allowed to change. Adam’s internal
parameters are reset at every new physics step. Gaussian displacements below 2 mm are ignored to
increase stability. The position learning rate is set between 1e−3 and 3e−3 depending on the scene,
while the rotation, color, and opacity learning rates are set to 1e−4, 5e−4, and 5e−4, respectively.
Allowing colors, opacities, and rotations to change gives the system more ways to explain lighting
variations that should not be explained by the motion of the Gaussians. A Kp of 60 is used in all
scenarios.

The prediction and correction steps are profiled in Supp. Figure 2.

C Ablations

Physical Priors We evaluate the effectiveness of our system’s embedded physical priors by sim-
ulating a scene with two objects, as illustrated in Supp. Figure 3 and summarized Supp. Figure 5.
The scenarios highlight how our system’s performance is enhanced by incorporating various phys-
ical constraints: (i) With all physical priors enabled, our system accurately captures the objects’
dynamics, including collisions and interactions with the environment. (ii) When collisions between
particles are ignored, the objects’ states deviate from the ground truth, particularly during intense
collision events (Collisions 2 and 3). (iii) Disabling the ground plane and gravity causes the objects’
motions to oscillate continuously, as their movements are no longer properly regulated. (iv) Even
with the ground plane intact, disabling gravity leads to similar oscillatory behavior, as the objects
are not subjected to the expected downward force. By adding physical priors, our system achieves
better predictions that more closely match the groundtruth.

13

Supp. Figure 4 ablates (i) the number of cameras used to compute visual forces, (ii) the resolution of
the images used for the reconstruction loss, (iii) the effect of visual gain, (iv) the Gaussian position
learning rate, and (v) the number of Adam iterations. The mean tracking error across the entire
trajectory is also reported in Supp. Figure 5.

Cameras The ablations reveal that increasing the number of cameras yields diminishing returns
within our framework. We observe that higher resolutions lead to lower tracking error. There is,
however, only a slight difference between 1280x720, 640x360, 320x180. 1280x720 comes at a
significant computational cost with visual force computation taking approximately 40 ms compared
to the 20 ms for the lower resolutions. Below 640x360, the factor limiting performance is no longer
resolution and thus there is no performance gain. For these reasons, we choose the 640x360 as the
image size with which we calculate the visual forces.

0

1

2

Effect of Number of Cameras on 3D Tracking Error

Number of Cameras
1 2 3 4 5

0

2

4
Effect of Image Resolution on 3D Tracking Error

Camera RGB Resolution
1280x720 640x360 320x180 160x90

0

1

2

3

T
ra

ck
in

g
E

rr
or

 (
cm

)

Effect of Visual Gain (Kp) on 3D Tracking Error

Visual Gain (Kp)
30 60 90 120

0

2

4

6
Effect of Increasing Gaussian Position Learning Rate on 3D Tracking Error

0 5 10 15 20 25 30

Time (s)

0.5

1.0

1.5

Effect of Increasing Number of Gaussian Optimization Steps on 3D Tracking Error

Adam Iterations Per Physics Step
3 5 7 9 11

Gaussian Position Learning Rate
0.5e-3 1.0e-3 2.0e-3 3.0e-3 4.0e-3

Supplementary Figure 4: The effect of varying the parameters of our system on 3D tracking perfor-
mance.

14

Physical Priors All No Collision No Gravity No Robot No Ground

3D Tracking error (cm) 0.36±0.27 0.52±0.58 0.52±0.33 0.57±0.61 0.84±0.72

(a) Effect of Physical Priors on the 3D Tracking Error in cm reported as a mean±standard deviation.

Number of Cameras 1 2 3 4 5

3D Tracking Error (cm) 1.16 ±0.82 0.41±0.47 0.37±0.27 0.4±0.28 0.39±0.28

(b) Effect of Number of Cameras on the 3D Tracking Error in cm reported as a mean±standard deviation.

Image Resolution 1280x720 640x360 320x180 160x90

3D Tracking error (cm) 0.58±0.49 0.59±0.49 0.65±0.50 0.87±0.56

(c) Effect of Number of Cameras on the 3D Tracking Error in cm reported as a mean±standard deviation.

Visual Forces Gain 30 60 90 120

3D Tracking error (cm) 0.41±0.41 0.40±0.33 0.460±0.37 0.750±0.57

(d) Effect of Visual Gain (Kp) on the 3D Tracking Error in cm reported as a mean±standard deviation.

Learning Rate 0.5e-3 1e-3 2e-3 3e-3 4e-3

3D Tracking error (cm) 7.10±8.53 0.55±0.48 0.40±0.36 0.39±0.31 0.40±0.31

(e) Effect of Increasing Gaussian Position Learning Rate on the 3D Tracking Error in cm reported as a
mean±standard deviation.

Number of Adam Iterations 3 5 7 9 11

3D Tracking error (cm) 7.1±8.53 0.62±0.59 0.40±0.36 0.40±0.38 0.43±0.46

(f) Effect of Increasing Number of Gaussian Optimization Steps on the 3D Tracking Error in cm reported as a
mean±standard deviation.

Supplementary Figure 5: The effect of varying the parameters of our system on the mean 3D track-
ing performance.

Visual Forces Our framework uses visual forces to create the corrective actions needed to keep the
Gaussian-Particle representation synchronized. This results in smooth corrections but it also creates
dynamic effects that, without careful tuning, creates oscillations. These oscillations are similar to
the behaviour of an undamped spring system. Future work may look into removing the oscillatory
effect by possibly adding a derivative term to the visual force calculation. For this work, we tune our
system and find a balance between an acceptable amount of oscillations and tracking ability. The
ablations in Supp. Figure 4 show that a high gain (and/or a high Gaussian position learning rate)
produces high oscillation and that a low gain (and/or a low learning rate) has a detrimental effect on
tracking. The number of Adam iterations is chosen so that realtime constraints are met. The ablation
shows that reducing the number of Adam iterations is a trade off that can be made when the physics
timestep takes longer than expected without a significant impact on the overall synchronization of
the world model.

Initialization We evaluate our initialization method by comparing it with particle positions man-
ually modeled using Blender. We refer to the manual initialization as the “oracle” initialization
because the known object meshes are used to manually model the objects with particles. We show
examples of the oracle initialization alongside our method’s initialization in Supp. Figure 6. We
evaluate the tracking performance of our system using the oracle initialization and the initialization
scheme described in our method. The results, presented in Table 1, demonstrate that our automated
initialization method achieves performance comparable to the oracle.

15

Mug T-Block

Our Initialization Oracle Initialization Our Initialization Oracle Initialization

Supplementary Figure 6: Particle placements of our initialization method compared to the oracle
initialization.

Supplementary Table 1: Tracking error and photometric reconstruction quality from unseen views
from a scene from each scene category. The table compares our automatic initialization with a
manual modelling procedure (oracle), showing similar tracking errors.

2D Tracking Error (px) 3D Tracking Error (cm) PSNR (FG)
Ours Oracle Ours Oracle Ours Oracle

Single 5.31 4.27 0.54 0.44 17.69 17.74
Multiple 4.38 6.69 0.39 0.55 17.73 17.65
Falling 13.04 14.61 1.18 1.52 16.18 16.65
Pickup 25.92 28.89 2.09 2.25 15.11 14.65
Rope 10.96 9.62 1.39 1.07 14.73 15.55

D Failure Modes

The Gaussian-Particle representation can deviate from the groundtruth in several ways. If the ren-
dered state of the scene significantly differs from the groundtruth image, the visual forces will not
create meaningful corrections.

Additionally, if the physical modelling is significantly different to its real world counterpart, the
physical priors will have a detrimental effect on the tracking performance of the system. This can be
seen in the real scenario title “Pushover 5” in Supp. Figure 7 where a T-Block could not be pushed
over and thus escaped the radius of convergence of the visual forces.

In some instances, both the texture and the geometry of the object are simultaneously ambiguous.
In the simulated “Rope 1” scenario, the rope can rotate around its spine without impacting either the
geometry or the texture thus allowing for a slight steady state error to occur.

E Design Choices
The primary utility of our representation is that it can be forward simulated at faster than realtime
rates and corrected from visual observations at realtime rates. Our design choices were thus primar-
ily guided by the need to lower the computational overhead of both the prediction and the correction
step.

We opted for Position-Based Dynamics (PBD) despite its lower physical accuracy compared to
other simulators because of its superior real-time performance and stability. Additionally, we chose
Gaussian Splatting over other differentiable rendering techniques due to its status as the fastest
differentiable renderer available.

The decision to use visual forces for state correction was also driven by the need to reduce com-
putational demands. Although alternative methods, such as integrating additional shape matching
constraints between the particles and the Gaussians, could allow Gaussians to influence particle po-
sitions, these approaches would be more computationally expensive than our method. They would
require resolving constraints over multiple iterations in every PBD substep and would couple the
physics system with the correction system, making performance of the physics loop dependent on

16

GT Trajectory Tracked Trajectory

Pushover 5 Rope 1

1. Physical Prediction Failure 2. Visual Symmetries

Supplementary Figure 7: The first image shows a highly dynamic scenario where the physics failed
to push the TBlock into a location where visual forces could correct it. The second image shows a
scenario where both visual and geometrical symmetries allowed the rope to rotate around its central
axis and created a steady state error in tracking.

the number of Gaussians in the scene. In contrast, our method uses visual forces that are simple to
implement, fast, and maintain a clear separation between prediction and correction systems.

F Experimental Results

The 3D tracking performance of our system on all scenarios are shown in Supp. Figure 8.

17

0 5
0

10

Single 1

0 5
0

20

Single 2

0 5
0

10

Ours Physics Only D3DGS

Single 3

0 5
0

20

Single 4

0 5
0

20

Single 5

0 5
0

20

Multiple 1

0 5
0

10

Multiple 2

0 5
0

10
Multiple 4

0 5
0

10

Multiple 5

0 5
0

20

Pushover 1

0 5
0

10

Pushover 2

0 5
0

10

Pushover 3

0 5
0

20

Pushover 4

0 5
0

10

Pushover 5

0 5
0

5

Pickup 1

0 5
0

5

Pickup 2

0 5
0

5

Pickup 3

0 5
0

5

Pickup 4

0 5
0

5

Pickup 5

0 5
0

2

Rope 1

0 5
0.0

2.5

Rope 2

0 5
0

25

Rope 3

0 5
0

10

Rope 4

0 5
0

10

Rope 5

20 40
0

25

Single 1

10 20 30
0

50

Single 2

20 40
0

50

Single 3

10 20 30
0

50

Single 4

10 20 30
0

50

Single 5

10 20 30
0

20

Multiple 1

20 40
0

25

Multiple 2

10 20 30
0

25

Multiple 3

20 40
0

50

Multiple 4

20 40
0

50
Multiple 5

10 20
0

20

Pushover 1

5 10 15
0

10

Pushover 2

5 10
0

10

Pushover 3

10 20
0

20

Pushover 4

5 10 15
0

20

Pushover 5

2.5 5.0 7.5
0

10

Pickup 1

2.5 5.0 7.5
0

5

Pickup 2

2.5 5.0 7.5
0

5

Pickup 3

2.5 5.0 7.5
0

10

Pickup 4

2.5 5.0 7.5
0

10

Pickup 5

5 10 15
0

10

Rope 1

10 20 30
0

20

Rope 2

10 20 30
0

50

Rope 3

10 20
0

50
Rope 4

10 20 30
0

50

Rope 5

Time (s)

T
ra

ck
in

g
E

rr
or

 (
cm

)

3D Tracking Error on All Simulated and Real-World Scenarios

S
im
u
la
te
d

R
ea
l-
W
or
ld

Supplementary Figure 8: The 3D tracking performance of our system and its baselines on all sce-
narios (simulated and real)

18

	INTRODUCTION
	PRELIMINARIES
	METHOD
	Initialization
	Online Prediction and Correction

	EXPERIMENTS
	RELATED WORK
	LIMITATIONS AND CONCLUSIONS
	Experimental Setup
	Implementation
	Ablations
	Failure Modes
	Design Choices
	Experimental Results

