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Abstract
Score-based diffusion models have proven ef-
fective in image generation and have gained
widespread usage; however, the underlying fac-
tors contributing to the performance disparity be-
tween stochastic and deterministic (i.e., the prob-
ability flow ODEs) sampling schemes remain un-
clear. We introduce a novel formulation of diffu-
sion models using Feynman’s path integral, which
is a formulation originally developed for quan-
tum physics. We find this formulation providing
comprehensive descriptions of score-based gen-
erative models, and demonstrate the derivation
of backward stochastic differential equations and
loss functions. The formulation accommodates
an interpolating parameter connecting stochastic
and deterministic sampling schemes, and we iden-
tify this parameter as a counterpart of Planck’s
constant in quantum physics. This analogy en-
ables us to apply the Wentzel–Kramers–Brillouin
(WKB) expansion, a well-established technique
in quantum physics, for evaluating the negative
log-likelihood to assess the performance dispar-
ity between stochastic and deterministic sampling
schemes.

1. Introduction
Diffusion models have demonstrated impressive perfor-
mance on image generation tasks (Dhariwal & Nichol, 2021)
and they have earned widespread adoption across various
applications (Yang et al., 2023). While the predominant con-
temporary application of diffusion models lies in conditional
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sampling driven by natural language (Rombach et al., 2022),
the mathematical framework underlying their training, i.e.,
the score-based scheme (Hyvärinen et al., 2009; Vincent,
2011; Song & Ermon, 2019) or the denoising scheme (Sohl-
Dickstein et al., 2015; Ho et al., 2020), is not inherently
dependent on prior conditions. The work (Kingma et al.,
2021) showed the equivalence of these two schemes from a
variational perspective. The work (Song et al., 2021b) devel-
oped a unified description based on stochastic differential
equations (SDEs)1. In both cases, the sampling process is
given by a Markovian stochastic process.

Another type of probabilistic models employs determin-
istic sampling schemes using ordinary differential equa-
tions (ODEs) such as the probability flow ODE (Song et al.,
2021b), which can be understood as a continuous normal-
izing flow (CNF) (Chen et al., 2018; Lipman et al., 2023).
A notable advantage of deterministic sampling schemes is
that there is a bijective map between the latent space and the
data space. This bijection not only facilitates intricate tasks
like manipulation of latent representations for image editing
(Su et al., 2023) but also enables the direct computation
of negative log-likelihoods (NLLs). Within stochastic sam-
pling processes in contrast to deterministic ones, a direct
evaluation method of the NLL remains elusive, though a
theoretical bound exists for the NLL (Kong et al., 2023).

In general, stochastic sampling schemes require more
number of function evaluations (NFE) than deterministic
schemes, and is inferior in terms of sample generation speed.
However, the beneficial impact of stochastic generation on
certain metrics, such as the Fréchet Inception Distance (FID)
(Heusel et al., 2017) is a well-known property in practice.
For example, (Karras et al., 2022) reports improvements in
these metrics with the incorporation of stochastic processes
both in Variance-Exploding and Variance-Preserving pre-
trained models in (Song et al., 2021b). Intuitively, one can
conceptualize noise within stochastic generation as pertur-
bation to propel particles out of local minima, potentially
enhancing the diversity and quality of the generated samples.
However, beyond this intuitive level, thoroughly quantita-
tive analysis or rigorous theoretical framework to explain
this phenomenon is missing.

1 See (Oksendal, 2013) for basics of SDE and (Yang et al.,
2023) for diffusion models if readers are unfamiliar with them.
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Figure 1. Schematic of the correspondence between the diffusion
model and the path integral formulation. The initial 10 points are
randomly sampled from π(xT ) and xts evolve with Eq. (9) in
which the score function is trained with a 2-Gaussian distribution.
Blue zigzag lines: “Quantum” trajectories with h = 1. Red
smooth lines: “Classical” trajectories with h = 0.

We tackle these two issues by making use of the path inte-
gral formalism2, a framework originally developed in quan-
tum physics by Feynman (Feynman, 1948; Feynman & Hi-
bbs, 1965). In classical physics, a particle’s motion draws
a trajectory, i.e., a deterministic path in space and time. To
accommodate quantum effects, the path integral formalism
generalizes the trajectory including quantum fluctuations
by comprising all possible paths, {xt}t∈[0,T ], of a particle
between two points, x0 at time t = 0 and xT at t = T ; see a
magnified panel in Fig. 1 for a counterpart in diffusion mod-
els. The quantum expectation value of observable O(xt) is
computed as a weighted sum:

∑
pathsO(xt)e

iA[xt]/ℏ, where
ℏ is Planck’s constant. In addition to quantum fluctuations,
the path integral can be extended to incorporate stochas-
tic fluctuations as well (Onsager & Machlup, 1953). We
demonstrate that diffusion models can be formulated in
terms of path integrals, which not only deepens our un-
derstanding about diffusion model formulations but also
allows for the application of various techniques advanced
in quantum physics. Importantly, this framework provides

2 For a brief introduction to the concept of the path integral and
a physical meaning of quantum fluctuations, see Appendix A.

an innovative method for calculating the NLL in stochastic
generation processes of diffusion models.

Our contributions are as follows.

• We reformulate diffusion models using path integral
techniques. We exemplify applications including a re-
derivation of the time-reversed SDE (Anderson, 1982)
and an estimate of loss functions (Song et al., 2021a)
based on Girsanov’s theorem (Oksendal, 2013).

• Following (Zhang & Chen, 2023), we introduce an in-
terpolating parameter h connecting the stochastic gen-
eration (h = 1) and the probability flow ODE (h = 0).
In the path integral language, the limit h → 0 cor-
responds to the classical limit under which quantum
fluctuations are dropped off. The path integral for-
mulation of diffusion models reveals the role of h as
Planck’s constant ℏ in quantum physics.

• We apply the Wentzel–Kramers–Brillouin (WKB) ex-
pansion (Messiah, 1970), that is formulated in terms of
Planck’s constant ℏ in quantum physics, with respect
to h to the likelihood calculation. Based on the first
order NLL expression, we quantify the merit of noise
in the sampling process by computing the NLL as well
as the 2-Wasserstein distance.

Building upon the analogy with quantum physics, these con-
tributions unveil a far more profound connection to physics
beyond a classic viewpoint of the Brownian motion.

2. Related Works
Diffusion Models Key contributions in this field of diffu-
sion models include (Sohl-Dickstein et al., 2015) and (Song
et al., 2021b) which have laid the foundational principles for
these models. Our reformulation of diffusion models by path
integrals captures the basic mathematical characteristics of
score-based diffusion models. The idea of implementing
stochastic variables to represent quantum fluctuations is
traced back to (Nelson, 1966), and mathematical foundation
has been established as stochastic quantization (Damgaard
& Hüffel, 1987). Recent works (Wang et al., 2023; Premku-
mar, 2023) suggested similarity between diffusion models
and quantum physics. However, the path integral derivation
of the basic aspects of diffusion models has not been dis-
cussed. There is no preceding work to explore the WKB
expansion applied in diffusion models.

Likelihood Calculation in Diffusion Models In deter-
ministic sampling schemes based on ODEs, one can directly
calculate log-likelihood based on the change-of-variables
formula (Chen et al., 2018; Song et al., 2021b; Lipman
et al., 2023). Once we turn on noise in the sampling process,
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only a formal expression is available from the celebrated
Feynman-Kac formula (Huang et al., 2021b). To our best
knowledge, there is no stochastic case where the values of
log-likelihood have ever been calculated. Our approach of
the perturbative expansion with respect to h can access the
log-likelihood explicitly even in the presence of noise. Note
that an exact formula for the log-likelihood has been derived
based on the information theory connecting to the Mini-
mum Mean Square Error (MMSE) regression (Kong et al.,
2023). However, this method still necessitates the computa-
tion of expectation values and cannot be implemented using
a single trajectory.

Stochastic and Deterministic Sampling Procedures The
role of stochasticity in the sampling process has been in-
vestigated in (Karras et al., 2022) through empirical studies.
The gap between the score-matching objective depending
on the sampling schemes has been pointed out in (Huang
et al., 2021a). To bridge the gap between the model dis-
tribution generated by the probability flow and the actual
data distribution, (Lu et al., 2022) introduced a higher-order
score-matching objective. Besides these efforts, (Lai et al.,
2023) derived an equation to be satisfied by a score function
and introduced a regulator in the loss function to enforce
this relation. The present approach is complementary to
these works; we employ the perturbative h-expansion and
directly evaluate the noise-strength dependence of the NLL
for pretrained models.

3. Reformulation of Diffusion Models by Path
Integral Formalism

In this section, we describe the reformulation of score-based
diffusion models in terms of path integrals.

3.1. Forward and Reverse Processes

For a given datapoint x0 sampled from an underlying data
distribution p0, the first step of a score-based diffusion
model is to gradually modify the data by adding noise via a
forward SDE,

dxt = f(xt, t)dt+ g(t)dwt. (1)

One can view this diffusion process as a collection of
stochastic trajectories, and consider the “path-probability”
P ({xt}t∈[0,T ]) associated with Eq. (1). Intuitively, it cor-
responds to the joint probability for the “path” {xt}t∈[0,T ]

(see also Fig. 1 for schematic illustration of paths). In the
path integral formulation of quantum mechanics, the expec-
tation value of observables is expressed as a summation over
all possible paths weighted by an exponential factor with
a quantity called an action. In the following proposition,
[Dxt] is defined later in Eq. (3). We observe that the process
(1) of diffusion models can be represented as a path integral:

Proposition 3.1. The path-probability P ({xt}t∈[0,T ]) can
be represented in the following path integral form:

P ({xt}t∈[0,T ]) = p0(x0)e
−A[Dxt], (2)

with A :=
∫ T

0
L(ẋt,xt)dt + J , where L(ẋt,xt) is called

Onsager–Machlup function (Onsager & Machlup, 1953)
defined by

L(ẋt,xt) :=
∥ẋt − f(xt, t)∥2

2g(t)2
,

and J is the Jacobian associated with the chosen descretiza-
tion scheme in stochastic process.

Here, the overdot indicates the time derivative. In the
physics literature, L(ẋt,xt) is called the Lagrangian and
A is the action. For a detailed derivation of Eq. (2) and the
explicit expression for J , see Appendix B.2.

Using the path probability (2), the expectation value of
any observable O(xt) depending on xt obeying Eq. (1) is
represented as E[O(xt)] =

∫
O(xt)P ({xt}t∈[0,T ]). This

expression is commonly referred to as a path integral as it
involves the summation over infinitely many paths.

Here, we present an intuitive explanation of the expres-
sion (2). Let us start from a discretized version of the SDE
(1) by Euler-Maruyama scheme:

xt+∆t = xt + f(xt, t)∆t+ g(t)
√
∆tvt, vt ∼ N (0, I),

⇔ p(xt+∆t|xt) = N (xt+∆t|xt + f(xt, t)∆t, g(t)
2∆tI),

where ∆t is time interval and I is the identity matrix. Now
the time evolution of the SDE is described by a conditional
Gaussian distribution. In the following, we take xt+∆t −
xt ≈ ẋt∆t, and deform the conditional Gaussian as

p(xt+∆t|xt) ∝ e
− ∥ẋt−f(xt,t)∥2

2g(t)2
∆t

= e−L(ẋt,xt)∆t.

Now let us consider the probability for realizing an explicit
“path” {xt} := [x0,x∆t,x2∆t, · · · ,xT ], and regarding the
summation as the Riemannian sum, we get the following
path integral expression for the path probability:

p0(x0)p(x∆t|x0) · · · p(xT |xT−∆t)
∏
t

dxt

=: p0(x0)e
−

∑T/∆t−1
n=0 L(ẋn∆t,xn∆t)∆t[Dxt]∆t,

(3)

where [Dxt]∆t contains a normalization constant depending
on the discretization step ∆t. We take the ∆t→ 0 limit at
the end of the calculation and omit ∆t in the subscript in
later discussions. In the expression (3), we need to include
an additional contribution denoted by J in Proposition 3.1,
depending on the choice of the discretization scheme (see
Appendix B.2 for details).
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The sampling process of score-based diffusion models is
realized by the time-reversed version of the forward SDE (1).
The path integral reformulation is beneficial in furnishing
an alternative derivation of the reverse-time SDE:

Proposition 3.2. Let P ({xt}t∈[0,T ]) be the path-
probability, and pt(x) be the distribution at time t de-
termined by the Fokker-Planck equation corresponding to
Eq. (1). The path-probability is written using the reverse-
time action Ã as

P ({xt}t∈[0,T ]) = e−Ã pT (xT )[Dxt],

with Ã :=
∫ T

0
L̃(ẋt,xt)dt+ J̃ , where

L̃(ẋt,xt) :=
∥ẋt − f(xt, t) + g(t)2∇ log pt(xt)∥2

2g(t)2
,

and J̃ is the Jacobian for reverse process depending on the
discretization scheme.

We provide the proof in Appendix B.3. We emphasize that
the path integral derivation does not rely on the reverse-
time SDE (Anderson, 1982). In fact, L̃ involves the score-
function ∇ log pt(xt), so that Proposition 3.2 gives us an-
other derivation of the reverse-time SDE,

dxt = [f(xt, t)− g(t)2∇ log pt(xt)]dt+ g(t)dw̄t, (4)

by inverting the discussion from Eq. (1) to Proposition 3.1.

3.2. Models and Objectives

In score-based models (Song & Ermon, 2019; Song et al.,
2021a;b), the score function ∇ log pt(xt) is approximated
by a neural network sθ(xt, t), and samplings are performed
based on

dxt = [f(xt, t)− g(t)2sθ(xt, t)]dt+ g(t)dw̄t, (5)

that is a surrogate for the reverse-time (4). By repeating the
same argument as Proposition 3.2, we can conclude that the
path-probability Qθ({xt}) corresponding to Eq. (5) takes
the following path integral representation:

Qθ({xt}) = e−Ãθπ(xT )[Dxt], (6)

where π(·) is a prior distribution, typically chosen to
be the standard normal distribution. Here, Ãθ :=∫ T

0
L̃θ(ẋt,xt)dt+ J̃θ with L̃θ the Onsager–Machlup func-

tion for the SDE (5) defined by

L̃θ(ẋt,xt) :=
∥ẋt − f(xt, t) + g(t)2sθ(xt, t)∥2

2g(t)2
, (7)

and J̃θ is the Jacobian contribution. Figure 1 depicts a
schematic picture of these reverse-time processes.

Now, we can follow the training scheme based on bound
of the log-likelihood or equivalently, KL divergence via
data-processing inequality (Song et al., 2021a):

DKL(p0∥qθ0) ≤ DKL(P∥Qθ). (8)

The r.h.s. of Eq. (8) can be calculated by using Girsanov’s
theorem (Oksendal, 2013). An equivalent computation can
also be performed in the path integral formulation:
Proposition 3.3. The KL divergence of path-probabilities
can be represented by the path integral form,

DKL(P∥Qθ) =

∫
e−ÃpT (xT ) log

e−Ã pT (xT )

e−Ãθπ(xT )
[Dxt],

and it can be computed as

DKL(P∥Qθ) = DKL(pT ∥π)

+

∫ T

0

g(t)2

2
Ept∥∇ log pt(xt)− sθ(xt, t)∥2dt.

Indeed, Proposition 3.3 yields the same contribution as
the calculation based on Girsanov’s theorem. We give the
derivation of Proposition 3.3 in Appendix B.4.

The discussion so far can be straightforwardly extended
to the cases with fixed initial conditions. One can basi-
cally make the replacement, pt(xt) → pt(xt|x0); see Ap-
pendix B.5 for details.

4. Log-Likelihood by WKB Expansion
We have so far discussed reformulation of score-based dif-
fusion models using the path integral formalism. This refor-
mulation allows for the techniques developed in quantum
physics for analyzing the properties of diffusion models. As
an illustrative example, we present the calculation of log-
likelihood in the presence of noise in the sampling process
by pretrained models.

4.1. Interpolating SDE and Probability Flow ODE

Following (Zhang & Chen, 2023), we consider a fam-
ily of generating processes defined by the following SDE
parametrized by h ∈ R≥0:

dxt =

[
f(xt, t)−

1 + h

2
g(t)2sθ(xt, t)

]
dt+

√
hg(t)dw̄t.

(9)

If we take h = 0, the noise term vanishes, and the process
reduces to the probability flow ODE (Song et al., 2021b).
The situation at h = 1 corresponds to the original SDE (5).
The path-probability corresponding to this process (9) can
be expressed as

Qh
θ({xt}t∈[0,T ]) = e−Ãh

θπ(xT )[Dxt], (10)
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Figure 2. Gray dots: training data sampled from the Swiss-roll
distribution. Colored lines: generative trajectories based on Eq. (9)
from the identical initial vector xT shown by × near the center of
the figure. The color represents the noise level h; the deepest red
corresponds to the ODE path in the h → 0 limit and the trajectories
become more stochastic with stronger blue.

with Ãh
θ :=

∫ T

0
L̃h
θ(ẋt,xt)dt+ J̃h

θ , where

L̃h
θ(ẋt,xt) :=

∥ẋt − f(xt, t) +
1+h
2 g(t)2sθ(xt, t)∥2

2hg(t)2
,

(11)
and J̃h

θ is the Jacobian contribution.

The way how h enters Eq. (11) is quite suggestive: the
action Ãh

θ is inversely proportional to h, similarly to quan-
tum mechanics where the path integral weight takes a form
of e−iA/ℏ. This structural similarity provides us with a
physical interpretation of the limit, h → 0; it realizes the
classical limit in the path integral representation. Moreover,
this analogy between h and ℏ naturally leads us to explore a
perturbative expansion in terms of h, i.e., the WKB expan-
sion, a well-established technique to treat the asymptotic
series expansion in mathematical physics.

In the classical limit of h → 0, the dominant contribution
comes from the path that minimizes the action, realizing the
principle of least action in the physics context. Since the
Lagrangian L̃h

θ of this model is nonnegative, e−Ãh
θ goes van-

ishing in the limit h→ 0 unless the path satisfies L̃h=0
θ = 0

or equivalently ẋ = fPF
θ (xt, t), where fPF

θ (xt, t) is the drift
term for the probability flow ODE defined by

fPF
θ (xt, t) := f(xt, t)−

1

2
g(t)2sθ(xt, t). (12)

Consequently, the path-probability reduces to the product
of delta functions as h→ 0:

e−Ãh
θπ(xT )[Dxt]

→

(
T∏

t=0

δ
(
ẋt − fPF

θ (xt, t)
))

e−J̃h=0
θ π(xT )[Dxt].

This limiting behavior is visualized in Fig. 2: we plot tra-
jectories generated by the SDE (9) from identical initial xT

with various hs with a pretrained model by the Swiss-roll
distribution. The trajectories are concentrated near the ODE
path when the noise level is low (h ≈ 0), which means
that the path-probability for h → 0 reduces the classical
path represented by Dirac’s delta function. In this way, the
realization of the probability flow ODE in h → 0 can be
regarded as a reminiscent of the reduction from quantum
mechanics to classical mechanics in ℏ→ 0. The 1-dim. tra-
jectories for h = 0 (classical paths) and h = 1 (“quantum”
paths) are also visualized in Fig. 1.

For h = 0, it is well-known that the log-likelihood can be
written exactly. Employing the Itô scheme, we can recover
the log-likelihood by the path integral with fixed initial
condition with x0 as

log qh=0
θ (x0)

= log

∫
x0

T∏
t=0

δ
(
ẋt − fPF

θ (xt, t)
)
e−J̃h=0

θ π(xT )[Dxt]

= log π(xT ) +

∫ T

0

∇ · fPF
θ (xt, t)dt, (13)

where xt in the last line is obtained from the solution of
ẋt = fPF

θ (xt, t) with initial condition xt=0 = x0 , and we
have used the explicit expression of J̃h=0

θ (see Appendix B).
Equation (13) is nothing but the instantaneous change-of-
variables formula of an ODE flow (Chen et al., 2018). The
computations presented here can be equivalently performed
in different discretization schemes, and it should be noted
that the final results are free from such scheme dependences.

4.2. h ̸= 0 in Path Integral

When the score estimation is imperfect, the probability dis-
tribution qh0 (x0) of a model acquires nontrivial dependency
on parameter h. This implies that the quality of sampled im-
ages varies depending on the level of noisiness parametrized
by h.

As we discussed earlier, in quantum physics, ℏ → 0 cor-
responds to the classical limit, and the effect of small but
nonzero ℏ can be taken into account as a series expansion
with respect to ℏ, commonly referred to as the WKB expan-
sion or the semi-classical approximation. In the path integral
formulation of diffusion models, h plays a role of Planck’s
constant ℏ, which quantifies the degrees of “quantumness.”
As a basis for the WKB expansion of the log-likelihood, we
have found the following result:
Theorem 4.1. The log-likelihood for the process (9) satisfies

log qh0(x0) = log π(xT )

+

∫ T

0

dt∇·
(
fPF
θ (xt, t)−

hg(t)2

2
[sθ(xt, t)−∇ log qht (xt)]

)
,

(14)
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where π(·) is a prior and xt is the solution for the modified
probability flow ODE,

ẋt = fPF
θ (xt, t)−

hg(t)2

2
[sθ(xt, t)−∇ log qht (xt)], (15)

with initial condition xt=0 = x0.

We provide the proof of this theorem in Appendix B.6

Note that Eq. (14) is valid for any value of h ∈ R≥0. The
modified probability flow ODE (15) indicates that, when the
score deviates from the ground-truth value, the deterministic
trajectory should also be modified by h ̸= 0. In Eq. (14),
the density qht (x) appears on both sides and this is a self-
consistent equation3. This relation provides us with the
basis for perturbative evaluation of the NLL in power series
of h.
Theorem 4.2. The perturbative expansion of the log-
likelihood (9) to the first order in h reads

log qh0(x0) = log qh=0
0 (x0)

+ h

(
δxT · ∇ log π(xT ) +

∫ T

0

dt∇ · δfPF
θ (xt, δxt, t)

)
,

(16)

where (xt, δxt) is the solution for the coupled probability
flow ODE,

ẋt = fPF
θ (xt, t),

˙δxt = δfPF
θ (xt, δxt, t),

(17)

with initial condition xt=0 = x0 and δxt=0 = 0, where

δfPF
θ (xt, δxt, t)

:= (δxt · ∇)fPF
θ (xt, t)−

g(t)2

2
[sθ(xt, t)−∇ log qh=0

t (xt)].

We provide the proof in Appendix B.7. Note that we treat xt

and δxt as independent variables, so the gradient∇ does not
act on δxt. Because Eq. (16) is no longer a self-consistent
equation, this theorem allows us to compute O(h1) cor-
rection of the log-likelihood based on log qh=0

t (xt), i.e.,
log-likelihood defined by the usual probability flow ODE.

A unique feature of the h-expansion in this model is that
h appears in the denominator of Eq. (11) as well as in the
numerator, which contrasts quantum physics where ℏ only
appears in the denominator as an overall factor. As a result,
once we consider finite h corrections, the “classical” path
deviates from the classical path obtained in the h→ 0 limit.
This deviation caused by h ̸= 0 is quantified by δxt, which
represents how noise influences the bijective relationship
between the data points and their latent counterparts.

3 Note that qht (xt) is obtained by replacing variable t in
∫

to τ
and all instances of 0 with t in Theorem 4.1.
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Figure 3. (Top) Negative log-likelihood (NLL) of the 1-dim. Gaus-
sian toy model. (Bottom) 2-Wasserstein metric (W2) between the
data distribution and the distribution obtained by the same model.
Both panels are plotted as a function of parameter h.

5. Experiments
5.1. Analysis of 1-dim. Gaussian Data

Let us first illustrate the results in a simple example of one-
dimensional (1-dim.) Gaussian distribution, in which every-
thing is analytically tractable. We take the data distribution
to be 1-dim. Gaussian distribution with zero mean and vari-
ance v0. For the forward process, we employ f = −βx/2
and g(t) =

√
β, which corresponds to denoising diffusion

probabilistic model (DDPM) for general β (Ho et al., 2020).
Here, we specifically take β to be constant for simplicity.
To study the relation between the imperfect score estimation
and stochasticity in the sampling process, we parametrize
the score model as s(x, t) = −x(1 + ϵ)/vt, where ϵ ∈ R
quantifies the deviation from the perfect score, and vt is
the variance of the distribution in the forward process. In
this simple model, the distribution remains Gaussian in both
forward and backward processes. When ϵ = 0, the back-
ward time evolution exactly matches the forward one, and
qt(x) = N (x|0, vt). When ϵ ̸= 0, the model distribution
qht (x) nontrivially depends on h. We evaluate qht (x) and
examine the effect of noisiness in the sampling process. In
this model, we can compute qht (x) analytically and verify
that Eq. (14) is satisfied, as we detail in Appendix D.

In Fig. 3 (Top), we plot the NLL, −Ep0
[log qh0 (x0)], as

a function of parameter h. Different lines correspond to
different values of ϵ. The NLL is computed analytically,
and we give the details in Appendix D. For nonzero ϵ, the
score estimation is imperfect and the model distribution
qh0 (x0) differs from the data distribution. In these situations
at ϵ ̸= 0, the NLL acquires nontrivial dependence on h,
meaning that the quality of generated images depends the
noise level in the sampling process. In Fig. 3 (Top), the

6
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NLLs are decreasing functions of h, and the presence of
noise improves the output quality. Depending on the choice
of ϵ, the NLL could be an increasing function of h as well.
For reference, in Fig. 3 (Bottom), we plot the 2-Wasserstein
distance, W2, between the data distribution and qh0 (x0) for
different values of ϵ. The qualitative behavior is consistent
with that of the NLL.

5.2. Experiment of 2-dim. Synthetic Data

Let us show some examples4 of log-likelihood computa-
tion for noisy generating process with pre-trained diffusion
models trained by two-dimensional (2-dim.) synthetic dis-
tributions, Swiss-roll and 25-Gaussian (see Appendix E.1).

Pretrained Models We train simple neural network:
(x, t) → concat([x, t]) →

(
Dense(128) → swish

)3 →
Dense(2) → sθ(x, t) by choosing one of the following
SDE schedulings:

SIMPLE: f(x, t) = −β
2 tx, g(t) =

√
βt, (β = 20)

COSINE: f(x, t) = −π
2 tan(π2 t)x, g(t) =

√
π tan(π2 t),

with time interval t ∈ [Tmin, Tmax], where Tmin ∈ R is small
but nonzero to avoid singular behavior around t = 0. We
take Tmin = 0.01, Tmax = 1 here. We train each model by
using the following loss function:

1

Nbatch

Nbatch∑
i=1

g(ti)
2

2

∥∥∥∥xi,t − α(ti)xi

σ(ti)2
+ sθ(xi,t, ti)

∥∥∥∥2 ,
(18)

where the signal and noise functions α(t) and σ(t) are
fixed by the chosen SDE scheduling, and ti represents dis-
cretized time. To compute the above, we take the Monte-
Carlo sampling with Nbatch batches of data according to
xi,t ∼ N (α(ti)xi, σ(ti)

2I). For more details about pre-
training with explicit forms of α(t), σ(t), ti, and Nbatch, see
explanations around Eq. (114) in Appendix E.2.

NLL Calculation Our basic strategy is based on Theo-
rem 4.2, the perturbative expansion of the log-likelihood
with respect to the parameter h. To calculate the O(h) cor-
rection, we need the values of log qh=0

t (x) and its deriva-
tives. We can obtain log qh=0

t (x) by solving the probability
flow ODE; however, there is no closed formula for its deriva-
tives. In this experiment, the dimension of x = [x, y]⊤ is
2, and this relatively low dimensionality allows us to ap-
proximate derivatives by discretized differential operators
with ∆x, a change in the value of x and y, that needs to be

4 The code to reproduce experiments here can be found
at https://github.com/AkinoriTanaka-phys/
diffusion_path_integral.

prefixed in practice:

∇̂ log qh=0
t (x)

=

[
log qh=0

t (xt+[∆x,0]⊤)−log qh=0
t (xt−[∆x,0]⊤)

2∆x
log qh=0

t (xt+[0,∆x]⊤)−log qh=0
t (xt−[0,∆x]⊤)

2∆x

]
, (19)

∇̂2 log qh=0
t (x)

=
(
log qh=0

t (xt + [∆x, 0]⊤) + log qh=0
t (xt − [∆x, 0]⊤)

+ log qh=0
t (xt + [0,∆x]⊤) + log qh=0

t (xt − [0,∆x]⊤)

− 4 log qh=0
t (xt)

)
/∆x2. (20)

There are inherent discretization errors that we need to care-
fully evaluate. More on this will be addressed later in our
analysis.

Consequently, to obtain the O(h1) correction, we need
to evaluate a nested integral. The pseudocode detailing
our calculation method is presented in Algorithm 1. We
use scipy.integrate.solve_ivp (Virtanen et al.,
2020) both in 0th-logqSolver and discrete-time up-
date in 1th-logqSolver. We take Tmin > 0 as the ini-
tial time and Tmax as the terminal time for probability flow
ODE. This amounts to calculating the NLL for generation
by SDE (9) in time interval [Tmin, Tmax], and does not affect
the sampling quality if we take sufficiently small Tmin. We
show our results in Table 1.

Numerical Errors In Algorithm 1, we made two approxi-
mations in discrete differential operators and ODE solvers.
To ensure reliability of our results, it is essential to assess
and estimate the associated errors. Let us call the numerical
value of log qh=0

t (x) calculated by 0th-logqSolver in
Algorithm 1 as N [log qh=0

t (x)], then we have two errors:

err
(
∇̂N [log qh=0

t (x)]
)
= ∇ log qh=0

t (x)−∇̂N [log qh=0
t (x)],

err
(
∇̂2N [log qh=0

t (x)]
)
= ∇2 log qh=0

t (x)−∇̂2N [log qh=0
t (x)].

(21)

Exact calculation of these values is unachievable, but nev-
ertheless, we should somehow estimate them. We propose
two estimation schemes, subtraction (Appendix F.2)
and model (Appendix F.3). Here, we show results based
on the latter method, which operates at a higher speed.

In addition, we should integrate these local errors5 to esti-
mate the error piled up in the final results. This can also be
calculated numerically by the ODE solver, and the numeri-
cal errors estimated in this way are shown in Table 1. See
Appendix F for more details.

5 Related to this, we apply certain tips to ensure stable numeri-
cal calculations in practice, such as excluding unstable solutions
that occur with negligible frequency. See README file in the
repository mentioned at Footnote 4 for more details.
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Algorithm 1 1st-logqSolver
Input: data x, a change in the value of x
and y for calculating differentials ∆x, SDE info
[f(·, t), g(t), Tmin, Tmax], solver 0th-logqSolver
Initialize: t = Tmin, xt = x, δxt = 0, δ log qt = 0
Calculate log q0 ← 0th-logqSolver(x, t = Tmin)
repeat

Calculate

log qt ← 0th-logqSolver(xt, t)

log qx+t ← 0th-logqSolver(xt + [∆x, 0]⊤, t)

log qx−t ← 0th-logqSolver(xt − [∆x, 0]⊤, t)

log qy+t ← 0th-logqSolver(xt + [0,∆x]⊤, t)

log qy−t ← 0th-logqSolver(xt − [0,∆x]⊤, t)

Calculate fPF
θ (xt, t)

Calculate δfPF
θ (xt, δxt, t) by log q

x/y±
t and (19)

Calculate∇ · δfPF
θ (xt, δxt, t) by log q

x/y±
t and (20)

Update t,xt, δxt, δ log qt by time-discretized version
(e.g. Runge-Kutta update) based on

ẋt = fPF
θ (xt, t)

˙δxt = δfPF
θ (xt, δxt, t)

˙δ log qt = ∇ · δfPF
θ (xt, δxt, t)

until t = Tmax
1st-correction = δxTmax · ∇ log π(xTmax) + δ log qTmax

Output: log q0, 1st-correction

Comparison to 2-Wasserstein We also show 2-
Wasserstein distance, W2, between validation data and gen-
erated data in Fig. 4 with stochastic SDE (9). We see that
the W2 values typically decrease especially in the small h
region, which signifies the improvement of generated data
quality. This observation is consistent with negative-valued
NLL corrections in 1ST-CORR column in Table 1. The over-
all trend is the same as the results from the analytical study
in Sec. 5.1; the tendency of enhancing sampled data qual-
ity by noise has been confirmed by our experiment even in
intricate cases where exact calculation is not accessible. In
addition, considering that the values in 1ST-CORR column
are the first-order derivative of NLL (cross-entropy) with
respect to h, one might say that the values for COSINE-SDE
are a few times larger than the values for SIMPLE-SDE,
which agrees with the behavior of the first-order derivative
near h = 0 in Fig. 4.

6. Conclusions
We presented a novel formulation of diffusion models uti-
lizing the path integral framework, originally developed

Table 1. NLL (cross-entropy) and its O(h1) corrections. We apply
∆x = 0.01 to compute (19) and (20). tol represents the value of
absolute and relative tolerances of updates in Algorithm 1. We set
absolute and relative tolerances of 0th-logqSolver as order
1e-5.

SWISS-ROLL

SDE (NLL) tol 1ST-CORR ERRORS

SIMPLE
(1.39± 0.05)

1e-3 -0.31±0.21 0.13±0.00
1e-5 -0.44±0.38 0.13±0.00

COSINE
(1.42± 0.02)

1e-3 -1.59±0.57 0.35±0.00
1e-5 -3.27±1.11 0.37±0.02

25-GAUSSIAN

SDE (NLL) tol 1ST-CORR ERRORS

SIMPLE
(-1.22± 0.01)

1e-3 -3.64±0.49 0.31±0.00
1e-5 -3.61±0.64 0.32±0.01

COSINE
(-1.71± 0.02)

1e-3 -17.57±5.56 0.70±0.01
1e-5 -19.65±17.46 0.67±0.03

in quantum physics. This formulation provides a unified
perspective on various aspects of score-based generative
models, and we gave the re-derivation of reverse-time SDEs
and loss functions for training. In particular, one can in-
troduce a continuous parameter linking different sampling
schemes: the probability flow ODEs and stochastic gener-
ation. We have performed the expansion with respect to
this parameter and perturbatively evaluated the negative log-
likelihood, which is a reminiscent of the WKB expansion
in quantum physics. In this way, this formulation has pre-
sented a new method for scrutinizing the role of noise in the
sampling process.

An interesting future direction is an extension of the analysis
based on path integral formalism for diffusion Schrödinger
bridges (De Bortoli et al., 2021), in which the prior can
be more general. Another direction is to understand the
cases mentioned in (Karras et al., 2022), where injecting
noise would rather degrade the quality of the generated
data. This is an open problem, and there is room for deeper
study in terms of log-likelihood calculations based on WKB
expansions.

Limitations Our experiments did not involve actual image
data. This omission is primarily due to the current evalu-
ation method’s limitations regarding NLLs, which are not
directly applicable to high-dimensional data such as images
on account of the uses of explicit discrete differentials6. An-

6 However, we believe this limitation can be resolved with
the following strategy. The main bottleneck was the computation
of ∇2 log qt(x) using numerical discretization. We can sidestep
this by introducing a parametrized function rθ(x, t) by a neural
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Figure 4. 2-Wasserstein metrics (W2) by POT library (Flamary
et al., 2021) between validation data and generated data via (9) with
Swiss-roll data and 25-Gaussian data with SIMPLE and COSINE
SDE scheduling. The dots and the errorbars represent the mean
values over 10 independent trials and ±std/

√
10, respectively.

other limitation is the potential of underestimated numerical
error in our computed NLLs. Although our estimated local
errors look safe (Appendix F.5), they are potentially under-
estimated because the estimation is based on score-based
model that does not match to∇ log qt(x) exactly in general.
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A. Overview of quantum mechanics and the WKB approximation
The quantum physical system is defined by the Hamiltonian H which is for example H(x,p) = p2/2 + V (x) for a
one-particle potential problem (with the mass normalized to the unity). Then, the wave function ψ should satisfy the
Schrödinger equation,

H
(
x,

ℏ
i
∇
)
ψ = −ℏ2

2
∇2ψ + V (x)ψ = iℏ

∂

∂t
ψ . (24)

We can introduce a specific form without loss of generality, ψ(x, t) = eiA(x,t)/ℏ, up to irrelevant normalization, and plug
this into Eq. (24). Then, the limit of ℏ→ 0 gives

1

2
(∇A)2 + V (x) = −∂A

∂t
, (25)

which is called the Hamilton-Jacobi equation in classical mechanics derived from the stationary condition of the action, i.e.,
δA = 0.

Importantly, the wave functions at different times, t and t0, are connected by a kernel convolution as

ψ(x, t) =

∫
dx0ψ(x0, t0)K(x, t|x0, t0) , (26)

where K(x, t|x0, t0) is given by
∑

paths e
iA[xt]/ℏ with paths with boundaries at (x, t) and (x0, t0). This representation

provides us with a useful intuition that ψ(x, t) is furiously fluctuating and canceling on average over trajectories unless
trajectories in K(x, t|x0, t0) are close enough within δA = O(ℏ). Therefore, ℏ is a parameter to characterize the magnitude
of quantum fluctuations. In our discussions in the text, what is called “Euclidean” formalism is adopted in which the
imaginary time, it, is regarded as the time, and then the weight no longer fluctuates and eiA/ℏ is replaced by e−A/ℏ. Then,
the kernel is also given an interpretation as the conditional probability which is denoted by p(xt|x0) in the text.

This strategy to expand the solution of Eq. (24) in powers of ℏ can be systematically performed, which is generally referred
to as the WKB expansion. As we discuss in the main part, in the diffusion models, a counterpart of ℏ denoted by h appears
in a slightly more complicated way than quantum mechanics, but the expansion works similarly.

B. From SDE to path integral
In this appendix, we describe the details of the path integral formulation of diffusion models.

B.1. Discretization schemes

In later discussions, we will introduce discretized summations in different ways, which do not seem apparent in their
continuum counterpart. We here introduce discretization schemes that will be used in later analyses.

Suppose we have {xt}t∈[0,T ] obeying SDE (1). We discretize the time interval [0, T ] with width ∆t and M := T/∆t, which
we take to be an integer. Let us take the following summation:

M−1∑
n=0

ftn · (xtn+∆t − xtn), (27)

where tn := n∆t and ft = f(xt, t). We will consider the continuum limit ∆t→ 0 and will refer to this as the Itô scheme,
which will be denoted by ∫

f · dx :=

∫
ft · (xt+dt − xt). (28)

A common prescription in the physics literature is the Stratonovich scheme,∫
f ◦ dx :=

∫
ft + ft+dt

2
· (xt+dt − xt), (29)

which should be understood as a short-hand notation for the following equation,

lim
∆t→0

M−1∑
n=0

ftn + ftn+∆t

2
· (xtn+∆t − xtn). (30)

12
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We also encounter the reverse-Itô scheme, which is written as∫
f ·̃dx :=

∫
f(xt+dt) · (xt+dt − xt). (31)

This can be seen as the Itô scheme in reverse time.

B.2. Derivation of the path integral expression

Here, we give a derivation of the path integral representation of a diffusion model (Proposition 3.1). We consider a forward
process described by the SDE (1). In the physics literature, Eq. (1) is commonly expressed in the following form,

ẋt = f(xt, t) + ξt, (32)

where the noise term satisfies
E[ξitξ

j
t′ ] = g(t)2δijδ(t− t′). (33)

The expectation value of a generic observable O({xt}) over noise realizations can be expressed as

EP [{xt}][O({xt})] =
∫
[Dxt][Dξt]O({xt})

(∏
t

δ(xt − xsol
t )

)
e
−

∫ T
0

1
2g(t)2

∥ξt∥2dt
p0(x0), (34)

where p0(x0) is the probability distribution of initial states (i.e., the data distribution), δ(·) is Dirac’s delta function, and xsol
t

is the solution of Eq. (32). The symbol [Dxt]∆t denotes [Dxt]∆t :=
∏M

n=0 C(∆t)dxtn , where C(∆t) is a normalization

constant, and similarly for [Dξt]. When the weight is sufficiently well-behaved (like e−
∫ T
0

1
2g(t)2

∥ξt∥2dt in Eq. (34)), the
limit ∆t→ 0 the path integral is well-defined. We will be considering this limit at the end of the calculation do not explicitly
indicate the dependence on ∆t hereafter. The delta function imposes that xt is a solution of Eq. (32) under a given noise
realization. Using the change-of-variable formula for the delta function,

δ(xt − xsol
t ) =

∣∣∣∣det δEOMt

δxt′

∣∣∣∣ δ(EOMt), (35)

where EOMt := ẋt − f(xt, t) − ξt. The Jacobian part gives a nontrivial contribution (see Appendix C for a detailed
derivation) in the case of the Stratonovich scheme,∣∣∣∣det δEOMt

δxt′

∣∣∣∣ = det(∂tδij − ∂ifj)

= det ∂t det(δij − ∂−1
t ∂ifj)

∝ e− 1
2

∫
∇·f(xt,t)dt,

(36)

while it gives a trivial factor for the Itô scheme. Writing this factor as e−J , the expectation value can now be written as

EP [{xt}][O({xt})] =
∫
[Dxt][Dξt]O({xt})e−J

(∏
t

δ(ẋt − ft − ξt)

)
e
−

∫ T
0

1
2g(t)2

∥ξt∥2dt
p0(x0). (37)

Performing the integration over ξt, we arrive at the expression

EP [{xt}][O({xt})] =
∫

[Dxt]O({xt}) e−Ap0(x0), (38)

Here, we defined the action A by

A :=

∫ T

0

L(ẋt,xt)dt+ J (39)

where L(ẋt,xt) is the Onsager-Machlup function (Onsager & Machlup, 1953; Machlup & Onsager, 1953) given by

L(ẋt,xt) =
1

2g(t)2
∥ẋt − f(xt, t)∥2, (40)
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and J is the term coming from the Jacobian, which depends on the choice of the discretization scheme:

J =


0 Itô∫ T

0
1
2∇ · ft(xt, t)dt Stratonovich∫ T

0
∇ · ft(xt, t)dt Reverse-Itô

. (41)

This concludes the derivation of Proposition 3.1. Any observable can be computed using the weight given by A. For
example, one can compute the joint probability for the variables on discrete time points {tn}n=1,...,N as

P (yt1 ,yt2 , . . . ,ytN ) =

∫
[Dxt] e

−A p0(x0)

N∏
n=1

δ(ytn − xtn). (42)

Before ending this section, let us comment on the mathematical interpretation of the Onsager-Machlup function (40).
A reader might be concerned with the meaning of the time derivative ẋt, since the paths in question are almost surely
non-differentiable. Indeed, we should note that the notation of the time derivative ẋt appearing in the action is only symbolic.
Precisely speaking, the action,

A =

∫ T

0

dt
1

2g(t)2
∥ẋt − f(xt, t)∥2, (43)

should be understood through its discretized form,

Adisc =
∑
i

∆t
1

2g(ti)2
∥(xti+∆t − xti)/∆t− f(xti , ti)∥2. (44)

The path-integral measure is obtained in the limit ∆t→ 0, i.e.,

lim
∆t→0

e−Adisc . (45)

This limit is well-defined. In this form, it is apparent that the paths do not need to be differentiable.

B.3. Time-reversed SDE

Here we present the derivation of the time-reversed dynamics in the path integral formalism (Proposition 3.2). We will use
the Itô scheme, and later comment on other discretization schemes. We start by rewriting Eq. (38) as

EP [{xt}][O({xt})] =
∫
[Dxt]O({xt}) pT (xT ) e

∫ T
0

[−L−ln pT (xT )+ln p0(x0)]dt

=

∫
[Dxt] pT (xT ) e

−Ã,

(46)

where Ã :=
∫ T

0
L̃(ẋt,xt)dt with

L̃(ẋt,xt) := L(ẋt,xt) +
d

dt
ln pt(xt). (47)

The total time derivative of ln pt(xt) is written as

d ln pt(xt) = ∂t ln pt(xt)dt+ dxt · ∇ ln pt(xt) +
1

2
g(t)2∇2 ln pt(xt)dt, (48)

where we have used Itô’s formula. For ∂tpt(xt), we use the Fokker-Planck equation,

∂tpt(x) = −∇ ·
(
f(xt, t)pt(x)−

g(t)2

2
∇pt(x)

)
, (49)

which we rewrite as

∂t ln pt(x) = −∇ · f(xt, t)− f(xt, t) · ∇ ln pt(x) +
g(t)2

2

[
∇2 ln pt(x) + (∇ ln pt(x))

2
]
. (50)
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The new Lagrangian L̃(ẋt,xt) is now written as

L̃(ẋt,xt) =
1

2g2t
(ẋ2 − 2ẋ · (f(xt, t)− g(t)2∇ ln pt(xt)) + f(xt, t)

2) +
g(t)2

2
∇2 ln pt(xt)

−∇ · f(xt, t)− f(xt, t) · ∇ ln pt(xt) +
g(t)2

2

[
∇2 ln pt(xt) + (∇ ln pt(xt))

2
]

=
1

2g2t
(ẋ− f(xt, t) + g(t)2∇ ln pt(xt))

2 −∇ ·
(
f(xt, t)− g(t)2∇ ln pt(xt)

)
.

(51)

Thus, the action Ã is given by∫ T

0

L̃(ẋt,xt)dt =

∫ T

0

[
1

2g(t)2
∥ẋt − f̃(xt, t)∥2 −∇ · f̃(xt, t)

]
dt, (52)

where
f̃(xt, t) := f(xt, t)− g(t)2∇ ln pt(xt). (53)

Note that there appears a nontrivial Jacobian term in Eq. (52). This term disappears if we rewrite the integral using the
inverse time τ in the Itô convention. The action Ã contains the following contribution,

Ã ⊃ −
∫

1

g(t)2
f̃(xt, t) · dxt. (54)

Currently, this product written in the Itô scheme. We rewrite this term in the reverse-Itô scheme,

f̃t · dxt =
[
f̃t+dt −

(
f̃t+dt − f̃t

)]
· dxt = f̃t+dt · dxt −

∑
i,j

∂i(f̃t)jdxidxj

= f̃t+dt · dxt − g(t)2∇ · f̃t dt.

(55)

The second term of this equation cancels the Jacobian term. Thus, the time-reversed action can be naturally interpreted as an
Itô integral in reverse time.

The same procedure can be also done for the Stratonovich scheme. The difference is the presence of the Jacobian term in the
original action and the total time derivative of pt(xt) is written as

d ln pt(xt) = ∂t ln pt(xt)dt+ dxt · ∇ ln pt(xt) (56)

instead of Eq. (48). Following similar steps, the time-reversed action is found to be given by

Ã =

∫ T

0

L̃(ẋt,xt)dt =

∫ T

0

[
1

2g(t)2
∥ẋt − f̃t∥2 −

1

2
∇ · f̃t

]
dt. (57)

Note that the sign of the Jacobian term is flipped compared with the original action, which allows us to interpret the process
as a time-reversed one.

B.4. Evaluation of KL divergence

We here give the derivation of Proposition 3.3. We evaluate the upper limit of the KL divergence of the data distribution and
a model,

DKL(p0(x0)∥q0(x0)) ≤ DKL(P ({xt}t∈[0,T ])∥Q({xt}t∈[0,T ])), (58)

where we used the data processing inequality. Below, we evaluate the RHS of Eq. (58).

The time-reversed action of the data distribution (in the reverse-Itô scheme) reads

Ã :=

∫ T

0

L̃(ẋt,xt)dt =

∫ T

0

[
1

2g(t)2
∥ẋt − f̃(xt, t)∥2

]
dt, (59)
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The time-reversed action of a model is given by

Ãθ :=

∫ T

0

L̃θ(ẋt,xt)dt =

∫ T

0

[
1

2g(t)2
∥ẋt − f̃θ(xt, t)∥2

]
dt, (60)

with
f̃θ(xt, t) := f(xt, t)− g(t)2sθ(xt, t). (61)

We note that, we employ the reverse-Itô scheme in the following computation and that is why there is no Jacobian term in
Eqs. (59) and (60). We rewrite the joint probability of paths as

P ({xt}t∈[0,T ]) = e−Ap0(x0) = pT (xT )e
−Ã, (62)

Q({xt}t∈[0,T ]) = e−Aθq0(x0) = qT (xT )e
−Ãθ . (63)

The KL divergence of the path-probability P ({xt}t) from Q({xt}t) is written as

DKL

(
P ({xt}t∈[0,T ])∥Q({xt}t∈[0,T ])

)
= EP ({xt})

[
ln
P ({xt}t∈[0,T ])

Q({xt}t∈[0,T ])

]
= EP ({xt}t)

[
ln
pT (xT )

qT (xT )
− Ã+ Ãθ

]
= DKL (pT (xT )∥qT (xT )) + EP ({xt}t)

[
Ãθ − Ã

]
.

(64)

The second term of the RHS can be written as

EP ({xt}t)

[
Ãθ − Ã

]
= EP ({xt}t)

∫ T

0

1

2g(t)2

[
−2ẋt̃·(f̃θ(xt, t)− f̃(xt, t)) + (f̃θ(xt, t))

2 − (f̃(xt, t))
2
]
dt

= EP ({xt}t)

∫ T

0

1

2g(t)2
[f̃θ(xt+dt, t+ dt)− f̃(xt+dt, t+ dt)] · [−2ẋt + f̃θ(xt, t) + f̃(xt, t)]dt.

(65)

We discretize this and look at the contribution from the neighboring part (t, t+∆t),

EP (xt,xt+∆t)

[
∆t

1

2g(t)2
(f̃θ,t+∆t − f̃t+∆t) ·

[
−2(xt+∆t − xt)/∆t+ f̃θ,t + f̃t

]]
= Ept(xt)

[
∆t

1

2g(t)2
(f̃θ,t+∆t − f̃t+∆t) · (−2f̃t + f̃θ,t + f̃t)

]
= Ept(xt)

[
∆t

1

2g(t)2
∥f̃θ,t − f̃t∥2 +O(∆t2)

]
,

(66)

where we performed the summation over δ = xt+∆t − xt. Summing up these contributions for [0, T ], we have

EP ({xt}t)

[
Ãθ − Ã

]
= EP ({xt}t)

[∫ T

0

1

2g(t)2
∥f̃θ(xt, t)− f̃(xt, t)∥2dt

]

= EP ({xt}t)

[∫ T

0

g(t)2

2
∥∇ ln pt(xt)− sθ(xt, t)∥2dt

]
.

(67)

Thus, we have obtained the following inequality,

DKL(p0(x0)∥q0(x0)) ≤ DKL (pT (xT )∥qT (xT )) +

∫ T

0

g(t)2

2
Ept

[
∥∇ ln pt(xt)− sθ(xt, t)∥2

]
dt. (68)

The distribution qT (xT ) is taken to be a prior, π(xT ). This concludes the proof of Proposition 3.3.
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B.5. Conditional variants

A similar argument applies to the case when the initial state is fixed. The derivation of the reverse process can be obtained
by replacing the probability densities with conditional ones on a chosen initial state x′

0. The expectation value of a general
observable in this situation can be written as

EP ({xt}t∈(0,T ]|x′
0)
[O({xt})] =

∫
[Dxt]O({xt}) e−

∫
Ldtδ(x0 − x′

0). (69)

Similarly to the previous section, we can rewrite this as

EP ({xt}t∈(0,T ]|x′
0)
[O({xt})] =

∫
[Dxt]O({xt})PT (xT |x′

0) e
−Ã(x′

0)δ(x0 − x′
0), (70)

where Ã(x′
0) :=

∫ T

0
L̃(ẋt,xt|x′

0) dt with

L̃(ẋt,xt|x′
0) := L(ẋt,xt|x′

0) +
d

dt
pt(xt|x′

0). (71)

Following similar calculations with the unconditional case, the force of the reverse process turns out to be given by

f̃(xt, t) := f(xt, t)− g(t)2∇ ln pt(xt|x′
0). (72)

One can also repeat a similar argument for the evaluation of the KL divergence with fixed x′
0, which corresponds to the

ELBO-based loss (Kingma et al., 2021; Kingma & Gao, 2023):

Proposition B.1. Let pt(x|x0) as the Markov kernel from time 0 to t determined by the Fokker-Planck equation. Determining
the Onsager–Machlup function for reverse process L̃(ẋt,xt|x′

0) to satisfy

p0(x0|x′
0)e

−
∫ T
0

L(ẋt,xt)dt+J [Dxt] = e−
∫ T
0

L̃(ẋt,xt|x′
0)dt+J̃(x′

0)pT (xT |x′
0)[Dxt], (73)

yields

L̃(ẋt,xt|x′
0) =

∥ẋt − f(xt, t) + g(t)2∇ log pt(xt|x′
0)∥2

2g(t)2
, (74)

where J̃(x′
0) is the conditional Jacobian for the reverse process depending on discretization scheme.

This representation proves to be practically valuable, especially since in most cases, we do not have access to the score
function ∇ log pt(x).

Proposition B.2. The KL divergence of path-probabilities can be represented by the path integral form,

DKL(P (·|x′
0)∥Qθ) =

∫
e−Ã(x′

0)pT (xT ) log
e−Ã(x′

0) pT (xT )

e−Ãθπ(xT )
[Dxt], (75)

where π is a prior distribution, and it can be computed as

DKL(P (·|x′
0)∥Qθ) = DKL(pT ∥π) +

∫ T

0

g(t)2

2
Ept

[
∥∇ log pt(xt|x′

0)− sθ(xt, t)∥2
]
dt. (76)

B.6. Likelihood evaluation

We here give the proof of Theorem 4.1.

The probability distribution qht (x) corresponding to the backward process (5) satisfies the following Fokker-Planck equation,

∂tq
h
t (x) = −∇ ·

[
fPF
θ (x, t)qht (x)−

hg(t)2

2
(sθ,t(x)−∇ log qht (x))q

h
t (x)

]
. (77)
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Note that qht (x) depends on h nontrivially when sθ(x, t) ̸= ∇ log qht (x). Introducing a new parameter γ ∈ R≥0, Eq. (77)
can be written as

∂tq
h
t (x) = −∇ ·

[
fPF
θ (x, t)qht (x)−

hg(t)2

2
(sθ,t(x)−∇ log qht (x))q

h
t (x)−

γg(t)2

2
∇qht (x) +

γg(t)2

2
∇qht (x)

]
= −∇ ·

[(
fPF
θ (x, t)− g(t)2

2

[
h(sθ,t(x)−∇ log qht (x)) + γ∇ log qht (x)

])
qht (x) +

γg(t)2

2
∇qht (x)

]
.

(78)

Let us define

Fh,γ(x, t) := fPF
θ (x, t)− hg(t)2

2
sθ(x, t) + (h− γ)g(t)

2

2
∇ log qht (x). (79)

We consider the path integral expression for Eq. (78). The corresponding action is given by

Ãh,γ =

∫ T

0

dt L̃h,γ(ẋt,xt) =

∫ T

0

1

2γg(t)2
∥ẋ− Fh,γ(xt, t)∥2 dt. (80)

Using the Itô scheme, one can obtain the likelihood for finite h by taking the limit γ → 0,

qh0 (x
′
0) ∝

∫  ∏
t∈[0,T ]

dxt

 δ(x0 − x′
0)e

−Ãh,γ+
∫ T
0

∇·Fh,γdtqhT (xT )

γ→0−−−→ e
∫ T
0

∇·Fh,γ=0dtqhT (xT ).

(81)

Thus, we obtain the formula for the likelihood for finite h,

log qh0 (x0) = log qhT (xT ) +

∫ T

0

∇ ·
(
fPF
θ (xt, t)−

hg(t)2

2

[
sθ(xt, t)−∇ log qht (xt)

])
dt. (82)

Since qhT (xT ) is taken to be a prior, qhT (xT ) = π(xT ), this concludes the proof of Theorem 4.1.

B.7. Likelihood up to first order of h

We here give a proof of Theorem 4.2.

First, we rename the solution for the modified probability flow ODE (15) as xh
t , i.e.

ẋh
t = fPF

θ (xh
t , t)−

hg(t)2

2

[
sθ(x

h
t , t)−∇ log qht (x

h
t )
]
, xh

t=0 = x0 (83)

and it can be represented by the formal integral

xh
t = x0 +

∫ t

0

(
fPF
θ (xh

t , t)−
hg(t)2

2

[
sθ(x

h
t , t)−∇ log qht (x

h
t )
])

dt. (84)

Next, we consider Taylor expansion of fPF
θ (xh

t , t) with h:

fPF
θ (xh

t , t) = fPF
θ (xt, t) + h ∂hf

PF
θ (xt, t)|h=0︸ ︷︷ ︸

(∂hx
h
t |h=0·∇)fPF

θ (xt,t)

+O(h2)
(85)

Now we define ∂hx
h
t |h=0 as δxt for simplicity, then by taking differential of (84), we get

δxt = ∂hx
h
t |h=0

=

∫ t

0

 ∂hf
PF
θ (xh

t , t)|h=0︸ ︷︷ ︸
(∂hx

h
t |h=0·∇)fPF

θ (xt,t)

−g(t)
2

2

[
sθ(xt, t)−∇ log qh=0

t (xt)
]dt

=

∫ t

0

(
(δxt · ∇)fPF

θ (xt, t)−
g(t)2

2

[
sθ(xt, t)−∇ log qh=0

t (xt)
])

dt,

(86)
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which is the integral of

˙δxt = (δxt · ∇)fPF
θ (xt, t)−

g(t)2

2

[
sθ(xt, t)−∇ log qh=0

t (xt)
]

︸ ︷︷ ︸
δfPF

θ (xt,δxt,t)

.
(87)

By combining it to O(h0) ODE for xt, i.e., the probability flow ODE, we get Eq. (17).

Next, we apply the generic formula that is valid with arbitrary function f(x),

f(xh
t ) = f(xt) + hδxt · ∇f(xt) +O(h2), (88)

to the right hand side of the self-consistent equation of log-likelihood in Theorem 4.1.

log qh0 (x0)

= log π(xh
T ) +

∫ T

0

∇ ·
(
fPF
θ (xh

t , t)−
hg(t)2

2
[sθ(x

h
t , t)−∇ log qht (x

h
t )]

)
dt

=
log π(xT )

+
hδxt · ∇ log π(xT )

+

∫ T

0

 ∇ · fPF
θ (xt, t)
+

h(δxt · ∇)∇ · fPF
θ (xt, t)

− hg(t)2

2
∇ · [sθ(xt, t)−∇ log qh=0

t (xt)])

+O(h2),

(89)

then, this expression is equivalent to what we wanted to prove, i.e., Eq. (16).

C. Computation of determinant
Let us detail on the computation of the determinant of an operator of the form,

det (∂t −M) . (90)

We first factorize this as det (∂t −M) = det ∂t · det
(
1− ∂−1

t M
)
. The latter factor is computed as

det
(
1− ∂−1

t M
)
= exp log det

(
1− ∂−1

t M
)
= exp tr ln

(
1− ∂−1

t M
)
= exp tr

∞∑
n=1

(
− 1

n
(∂−1

t M)n
)
. (91)

Noting that ∂−1
t δ(t− t′) = θ(t− t′), the term with n = 1 gives

exp

(
−θ(0)

∫
dt trM

)
, (92)

where θ(x) is the step function. Its value at 0 depends on the discretization scheme as

θ(0) =


0 Ito
1
2 Stratonovich
1 Reverse-Ito

. (93)

All the higher-order terms vanish. For example, the term with n = 2 reads

−
∫
θ(t− t′)θ(t′ − t)trM2 dtdt′ = 0. (94)

Thus, we have

det (∂t −M) ∝ exp

(
−θ(0)

∫
dt trM

)
, (95)

with θ(0) given by Eq. (93).
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D. Detail of the example in Sec. 5.1
We here describe the details of the simple example discussed in Sec. 5.1.

The data distribution is taken to be a one-dimensional Gaussian distribution,

P0(x0) = N (x0 | 0, v0). (96)

For the forward process, we use the following SDE,

dxt = −
1

2
βxt dt+

√
βdwt. (97)

Namely, we have chosen the force and noise strength as

f(x) = −β
2
x, g =

√
β. (98)

We here take β to be constant. In the current situation, the distribution stays Gaussian with a zero mean throughout the time
evolution, and the distribution pt(x) is fully specified by its variance. Using Ito’s formula,

d(x2t ) = 2xt dxt +
1

2
· 2(dxt)2 = −βx2t dt+ βdt. (99)

Thus, the time evolution of the variance vt is described by

dvt = −β(vt − 1)dt, (100)

which can be solved with initial condition vt=0 = v0 as

vt = 1 + e−βt(v0 − 1). (101)

The distribution at t is given by
pt(x) = N (x | 0, vt). (102)

with vt given by Eq. (101).

D.1. Likelihood evaluation

Suppose that the estimated score s(x, t) is given by

s(x, t) = ∂x log qt(x) = −
x

vt
(1 + ϵ). (103)

where ϵ ∈ R is a constant. The parameters ϵ quantifies the deviation from the ideal estimation and when ϵ = 0 we can
recover the original data distribution perfectly. If ϵ ̸= 0, the likelihood q0(x0) depends nontrivially on parameter h. The
force of the reverse process is written as

f̃h,ϵ(x) = f(x)− 1 + h

2
g2s(x, t) = −β

2
x− 1 + h

2
β

(
− x
vt
(1 + ϵt)

)
=
β

2

(
(1 + h)(1 + ϵt)

vt
− 1

)
x. (104)

Let us denote the variance of the model distribution qht (x) by v′t, which differs from vt when ϵ ̸= 0. The variance v′t obeys

dv′t = β

(
(1 + h)(1 + ϵ)

vt
− 1

)
v′tdt− hβdt. (105)

If we solve this with the boundary condition v′T = vT , we have

v′t =
1

(1 + h)(1 + ϵ)− 1

[
hvt + ϵ(1 + h)eβ(T−t)vT

(
e−β(T−t) vt

vT

)(1+h)(1+ϵ)
]
. (106)
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Note that, when ϵ = 0, we have v′t = vt and it is independent of h. For nonzero ϵ, v′0 depends on h nontrivially. The model
distribution at t is given by

qht (x) = N (x | 0, v′t). (107)

The NLL can be expressed as

−Ep0(x0)[log q
h
0 (x0)] = −

∫
dxN (x | 0, v0) logN (x | 0, v′t=0) =

1

2

[
log 2πv′t=0 +

v0
v′t=0

]
. (108)

As another measure, we can compute the 2-Wasserstein distance,

W2(p0, pT )
2 = (

√
v0 −

√
v′t=0)

2. (109)

Let us check the formula for the likelihood is satisfied. We shall check that the following formula is satisfied:

log qh0 (x0)− log qhT (xT (x0)) =

∫ T

0

∂x

[
f̃PF(xt)−

h

2
g2(s(xt, t)−∇ ln qht (xt))

]
dt, (110)

where f̃PF(x) = f̃h=0,ϵ(x). Noting that

xt =

√
v′t
v0
x0, (111)

and the LHS can be computed to give

LHS =
1

2
log

vT
v′0
. (112)

The integrand on the RHS reads

∂x

[
f̃PF(x)− h

2
g2(s(x, t)−∇ ln qht (x))

]
= ∂x

[
−β
2
x− 1 + h

2
β

(
− x
vt
(1 + ϵ)

)
+

h

2
β

(
− x
v′t

)]
=
β

2

[
(1 + h)(1 + ϵ)

vt
− 1− h

v′t

]
.

(113)

The integration can be performed analytically, and we can check that the LHS indeed coincides with the RHS.

E. Setting of the pretraining in 2d synthetic data
E.1. Data

We use synthetic data similar to the synthetic data shown in Fig. 5 used in (Petzka et al., 2018) to train our model.

Swiss-roll data is generated by sklearn.datasets.make_swiss_roll (Pedregosa et al., 2011) with noise =
0.5, hole = False. This data itself is 3-dimensional data, so we project them to 2-dimensional data by using [0,
2] axes. After getting data, we normalize it by its std (≈ 6.865) to get data with std = 1.

25-Gaussian data is generated by mixture of gaussians. We first generate gaussian distributions with mean in {−4, 2, 0, 2, 4}2,
std = 0.05, and again divide each sample vector component by its std (≈ 2.828) to get data with std = 1.

E.2. Training

We used JAX (Bradbury et al., 2018) and Flax (Heek et al., 2023) to implement our score-based models with neural networks,
and Optax (DeepMind et al., 2020) for the training.

As we write in the main part of this paper, we use simple neural network: (x, t) → concat([x, t]) →
(
Dense(128) →

swish
)3 → Dense(2) → sθ(x, t) with default initialization both in training with Swiss-roll data and 25-Gaussian data.

The loss function is calculated by Monte-Carlo sampling in each training step:

1. First we divide the time interval [Tmin, Tmax] into 1,000 equal parts in advance to get a discretized diffusion time array.
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Figure 5. (Left) 25-Gaussian data (3,000 samples), and (Right) Swiss-roll data (3,000 samples).

2. We take Nbatch = 512 batches of data {xi}i=1,2,...,Nbatch and for each data point we take a discretized diffusion time ti
uniformly from the array that we discretized in the first step.

3. We compute the signal α(ti) and noise σ(ti) at time ti, computed from the definition of SDE, and take the following
quantity as loss function

1

Nbatch

Nbatch∑
i=1

g(ti)
2

2

∥∥∥∥xi,t − α(ti)xi

σ(ti)2
+ sθ(xi,t, ti)

∥∥∥∥2 , (114)

where xi,t ∼ N (α(ti)xi, σ(ti)
2I) is the Monte-Carlo sample.

The signal and noise functions α(t) and σ(t) are:

SIMPLE: α(t) = e−
β
4 t2 , σ(t)2 = 1− e−

β
2 t2 ,

COSINE: α(t) = cos
(π
2
t
)
, σ(t)2 = 1− cos

(π
2
t
)
.

(115)

These expressions are derived from general argument of SDE. In general, once the SDE

dxt = f(t)x+ g(t)dwt (116)

is given, the conditional probability from time t = 0 to t is given by

pt|0(xt|x0) = N (xt|α(t)x0, σ(t)
2I), (117)

where

α(t) = e
∫ t
0
f(ξ)dξ, σ(t)2 = α(t)2

∫ t

0

g(ξ)2

α(ξ)2
dξ, (118)

which is essentially equivalent to the formula in (Karras et al., 2022).

In training, 3,000 data points are taken in advance, and stochastic gradients are computed based on the Monte-Carlo loss
function (114) with batch size 512 mini-batches. The gradients are used for optimization of the neural network sθ(xt, t)
with Adam-optimizer with learning rate 1e-3 and default values determined by Optax (DeepMind et al., 2020). We train
our models 16,000 epochs.

E.3. Inference

Here we show some instances on generated data by our pretrained model in Figs. 6 to 9. The figures are plotted with
identical points in discretized time, t = 1, 0.18, 0.1, 0.01.
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Figure 6. SIMPLE-SDE pretrained model on Swiss-roll data with (Left) probability flow ODE (h = 0), (Right) SDE (9) with h = 0.2.
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Figure 7. COSINE-SDE pretrained model on Swiss-roll data with (Left) probability flow ODE (h = 0), (Right) SDE (9) with h = 0.2.
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Figure 8. SIMPLE-SDE pretrained model on 25-Gaussian data with (Left) probability flow ODE (h = 0), (Right) SDE (9) with h = 0.2.
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Figure 9. COSINE-SDE pretrained model on 25-Gaussian data with (Left) probability flow ODE (h = 0), (Right) SDE (9) with h = 0.2.

F. Derivative numerical error estimations in Sec. 5.2
F.1. Estimation of the local errors (21)

For simplicity, we omit “h = 0” script here. In this notation, error of log qt(x) and local errors (21) are

err(N [log qt(x)]) = log qt(x)−N [log qt(x)],

err(∇̂N [log qt(x)]) = ∇ log qt(x)− ∇̂N [log qt(x)],

err(∇̂2N [log qt(x)]) = ∇2 log qt(x)− ∇̂2N [log qt(x)].

(119)

We use a third-party solver scipy.integrate.solve_ivp (Virtanen et al., 2020), and it has inputs atol and rtol
that control the errors in the subroutine, to make it clear, let us call the numerical value as Natol,rtol[...]. It is plausible to
expect the order of errors are same between numerical calculations based on the same order of tolerances, say

O
(

err(∇̂0 or 1 or 2N(1.1∗atol),(1.1∗rtol)[log qt(x)])
)
= O

(
err(∇̂0 or 1 or 2Natol,rtol[log qt(x)])

)
, (120)
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where O means order estimate. Based on this observation, we can estimate each error. For example,

N(1.1∗atol),(1.1∗rtol)[log qt(x)]︸ ︷︷ ︸
log qt(x)+err(N(1.1∗atol),(1.1∗rtol)[log qt(x)])

− Natol,rtol[log qt(x)]︸ ︷︷ ︸
log qt(x)+err(Natol,rtol[log qt(x)])

= err(N(1.1∗atol),(1.1∗rtol)[log qt(x)])− err(Natol,rtol[log qt(x)])

= O
(

err(Natol,rtol[log qt(x)])
)
.

(121)

F.2. subtraction: Estimation of the local errors (21) by subtraction

On the order estimations for differential operators, we have 2 choices. First choice is estimating them simply by

err(∇̂1 or 2N [log qt(x)]) = ∇̂1 or 2N(1.1∗atol),(1.1∗rtol)[log qt(x)]− ∇̂1 or 2Natol,rtol[log qt(x)] (122)

We name error estimation scheme based on this by subtraction. this method is straightforward, however, we need
doubled computation time, and we introduce more time-efficient estimation in the next section.

F.3. model: Estimation of the local errors (21) by Taylor expansion and score models

Next choice is simply based on the error

N [log qt(x)] = log qt(x) + err(N [log qt(x)]). (123)

By applying the discrete differential (19), we can get

∇̂N [log qt(x)] =

[
N [log qt(xt+[∆x,0]⊤)]−N [log qt(xt−[∆x,0]⊤)]

2∆x
N [log qt(xt+[0,∆x]⊤)]−N [log qt(xt−[0,∆x]⊤)]

2∆x

]
. (124)

It would be sufficient to show x component:

∂̂xN [log qt(x)]

=
N [log qt(x+ [∆x, 0]⊤)]−N [log qt(x− [∆x, 0]⊤)]

2∆x

=
log qt(x+ [∆x, 0]⊤)− log qt(x− [∆x, 0]⊤)

2∆x
+

err(N [log qt(x+ [∆x, 0]⊤)])− err(N [log qt(x− [∆x, 0]⊤)])

2∆x

=
∂x log qt(x)2∆x+O(∆x3)

2∆x
+
O(err(N [log qt(x)]))

∆x

= ∂x log qt(x) +O(∆x2) +
O(err(N [log qt(x)]))

∆x
,

(125)

where we use the facts: 1) O(∆x2) term vanishes from the numerator thanks to the symmetric descrete differential, 2) orders
of err(N [log qt(x))] and err(N [log qt(x± [∆x, 0]⊤)]) are same, in the 3rd line. This fact is achieved by the Runge-Kutta
integrator. Therefore, by subtracting the true value from both side, we get

err(∇̂N [log qt(x)]) = ∇ log qt(x)− ∇̂N [log qt(x)] = O(∆x2) +
O(err(N [log qt(x)]))

∆x
(126)
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We can derive the error for∇2 similarly:

∇̂2N [log qt(x)]

=
N [log qt(x+ [∆x, 0]⊤)] +N [log qt(x− [∆x, 0]⊤)] +N [log qt(x+ [0,∆x]⊤)] +N [log qt(x− [0,∆x]⊤)]− 4N [log qt(x)]

∆x2

=
log qt(x+ [∆x, 0]⊤) + log qt(x− [∆x, 0]⊤) + log qt(x+ [0,∆x]⊤) + log qt(x− [0,∆x]⊤)− 4 log qt(x)

∆x2

+

err(N [log qt(x+ [∆x, 0]⊤)]) + err(N [log qt(x− [∆x, 0]⊤)]) + err(N [log qt(x+ [0,∆x]⊤)]) + err(N [log qt(x− [0,∆x]⊤)])
−4err(N [log qt(x)])

∆x2

=
∇2 log qt(x)∆x2 +O(∆x4)

∆x2
+

O(err(N [log qt(x)]))

∆x2

= ∇2 log qt(x) +O(∆x2) +
O(err(N [log qt(x)]))

∆x2
,

(127)

where we use that O(∆x3) term in the numerator vanishes because we use the 5-point approximation of the laplacian. Now
we get

err(∇̂2N [log qt(x)]) = ∇2 log qt(x)− ∇̂2N [log qt(x)] = O(∆x2) +
O(err(N [log qt(x)]))

∆x2
(128)

In summary, we conclude each error as

err(∇̂N [log qt(x)]) = C
(1)
t (x)∆x2 +

O(err(N [log qt(x)]))1

∆x
,

err(∇̂2N [log qt(x)]) = C
(2)
t (x)∆x2 +

O(err(N [log qt(x)]))

∆x2
,

(129)

where 1 is the vector with all 1 components, and C
(1)
t (x), C

(2)
t (x) are determined by the Taylor expansion remainder terms.

Typically, these are approximated by

C
(1)
t (x) ≈ 3rd derivative of log qt(x),

C
(2)
t (x) ≈ 4th derivative of log qt(x).

(130)

Of course, we cannot access to the functions (130), however, it would be plausible to regard

O(∇ log qt(x)) = O(sθ(x, t)), (131)

because the objective of the diffusion model training is to achieve sθ(x, t) ≈ ∇ log pt(x) and in the ideal case, qt = pt. By
using this assumption, we regard

C
(1)
t (x) ≈ −∇(∇ · sθ(x, t))

C
(2)
t (x) ≈ −∇2(∇ · sθ(x, t))

(132)

and estimate the local errors by

err(∇̂N [log qt(x)]) ≈ |∇(∇ · sθ(x, t))∆x2|+
∣∣∣∣O(err(N [log qt(x)]))1

∆x

∣∣∣∣ ,
err(∇̂2N [log qt(x)]) ≈ |∇2(∇ · sθ(x, t))∆x2|+

∣∣∣∣O(err(N [log qt(x)]))

∆x2

∣∣∣∣ , (133)

where O(err(N [log qt(x)])) can be estimated by using (121). We name error estimation scheme based on this by model.

F.4. Integral of the local errors

Now we go back to Theorem 4.2 to explain our error estimation for O(h) correction to the (negative) log-likelihood. To
calculate O(h) terms, we consider the paired ODE constructed by

ẋt = fPF
θ (xt, t),

˙δxt = δfPF
θ (xt, δxt, t) (by ∇̂N [log qt(xt)]),

˙δ log qt = ∇ · δfPF
θ (xt, δxt, t) (by ∇̂2N [log qt(xt)]),

(134)
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as we wrote in Algorithm 1. In this expression, there is no numerical error in the RHS of ẋt except for the float32
precision that is the default of the deep learning framework. In the RHS of ˙δxt, we have discretization of differential ∇̂ and
numerical integral for log qh=0

t (xt), and as we noted, we omit h = 0 and call it as log qt(xt). By using the error estimation
(133), we rewrite ODE for δxt as

˙δxt = (δxt · ∇)fPF
θ (xt, t)−

g(t)2

2
(sθ(xt, t)− ∇̂N log qt(xt)︸ ︷︷ ︸

∇ log qt(xt)+err(∇̂N [log qt(xt)])

)

= (δxt · ∇)fPF
θ (xt, t)−

g(t)2

2
(sθ(xt, t)−∇ log qt(xt)) +

g(t)2

2
err(∇̂N [log qt(xt)]).

(135)

When we apply the solver, basically it discretize the system as

δxt+ϵ = δxt + ϵ
(
(δxt · ∇)fPF

θ (xt, t)−
g(t)2

2
(sθ(xt, t)−∇ log qt(xt)) +

g(t)2

2
err(∇̂N [log qt(xt)])

)
+ . . . , (136)

and truncate . . . terms up to certain finite order, and apply this recursive equation from δx0. For simplicity, we consider the
liner term only here, and split δxt = δxtrue

t + err(1)t , thenδxtrue
t+ϵ

+

err(1)t+ϵ


=

δxtrue
t

+

err(1)t

+ ϵ
(δxtrue

t

+

err(1)t

 · ∇
fPF

θ (xt, t)−
g(t)2

2
(sθ(xt, t)−∇ log qt(xt)) +

g(t)2

2
err(∇̂N [log qt(xt)])

)

=


δxtrue

t + ϵ
(
(δxtrue

t · ∇)fPF
θ (xt, t)− g(t)2

2 (sθ(xt, t)−∇ log qt(xt))
)

+

err(1)t + ϵ
(
(err(1)t · ∇)fPF

θ (xt, t) +
g(t)2

2 err(∇̂N [log qt(xt)])
)

 ,

(137)

and we get the ODE for time t error by taking continuous time limit:

˙err(1)t = (err(1)t · ∇)fPF
θ (xt, t) +

g(t)2

2
err(∇̂N [log qt(xt)]). (138)

Note that err(1)t is a vector with same dimension to xt, δxt, sθ, and fPF
θ . As same, we can get the ODE for ˙δ log qt term.

The discrete ODE is

δ log qt+ϵ

= δ log qt + ϵ
(
(δxt · ∇)∇ · fPF

θ (xt, t)−
g(t)2

2
(∇ · sθ(xt, t)−∇2 log qt(xt)) +

g(t)2

2
err(∇̂2N [log qt(xt)])

)
+ . . . ,

(139)

and as same, by splitting true value and error value, we getδ log qtrue
t+ϵ

+

err(2)t+ϵ



=


δ log qtrue

t + ϵ
(
(δxtrue

t · ∇)∇ · fPF
θ (xt, t)− g(t)2

2 (∇ · sθ(xt, t)−∇2 log qt(xt))
)

+

err(2)t + ϵ
(
(err(1)t · ∇)∇ · fPF

θ (xt, t) +
g(t)2

2 err(∇̂2N [log qt(xt)])
)

 ,

(140)

and get the ODE for err(2)t as

˙err(2)t = (err(1)t · ∇)∇ · fPF
θ (xt, t) +

g(t)2

2
err(∇̂2N [log qt(xt)]). (141)
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In summary, we get the ODE system

ẋt = fPF
θ (xt, t),

˙δxt = δfPF
θ (xt, δxt, t) (by ∇̂N [log qt(xt)]),

˙δ log qt = ∇ · δfPF
θ (xt, δxt, t) (by ∇̂2N [log qt(xt)]),

˙err(1)t = (err(1)t · ∇)fPF
θ (xt, t) +

g(t)2

2
err(∇̂N [log qt(xt)]),

˙err(2)t = (err(1)t · ∇)∇ · fPF
θ (xt, t) +

g(t)2

2
err(∇̂2N [log qt(xt)]).

(142)

The ERRORS in Table 1 are calculated by solving more conservative (or over-estimated) ODE:

˙err(1)t =
∣∣∣(err(1)t · ∇)fPF

θ (xt, t)
∣∣∣+ ∣∣∣g(t)2

2
err(∇̂N [log qt(xt)])

∣∣∣,
˙err(2)t =

∣∣∣(err(1)t · ∇)∇ · fPF
θ (xt, t)

∣∣∣+ ∣∣∣g(t)2
2

err(∇̂2N [log qt(xt)])
∣∣∣, (143)

by using approximations (133) and the error final value for log qT as

|err(1)T · ∇ log π(xT )|+ |err(2)T | (144)

F.5. Visualization of local error estimates

Of course, the degree of final error (144) strongly depends on the order of the local errors err(∇̂N [log qt(xt)]) and
err(∇̂2N [log qt(xt)]). To see its order, we plot log10 scales of the local error functions in Fig. 10.

If we believe err(N [log qt(x)]) is suppressed within the small tolerance value, we take it as 10−5 by the Runge-Kutta
algorithm, the order of local errors are depending on the coefficients of ∆x2. To check these values, we plot mean and
std values of tr∇(∇ · sθ(x, t)) and ∇2(∇ · sθ(x, t)) by sampling 500 points x ∼ Uniform(min(validation set) −
0.1,max(validation set) − 0.1) at each time t in Figs. 11 to 14. Simultaneously, we plot colored contours that
corresponds the value of local error estimates based on (132) with ∆x = 0.01, that are exactly same as the values on dashed
line in Fig. 10.

From these figures, one can see that the estimated local errors are almost located at safe region, i.e., errors are negative in
log scale. As one can see, the 25-Gaussian case Figs. 13 and 14, the maximum values are slightly inside red regions, and we
may be careful about it, but we leave further study as a future work.
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Figure 10. The order of local errors. (Left) Contour plot corresponding to err(∇̂N [log qt(xt)]). (Right) Contour plot corresponding to
err(∇̂2N [log qt(xt)]), based on (132). Blue region has negative power, and relatively safe. Red region has positive power, and dangerous.
The dotted line corresponds ∆x = 0.01 that is the value used in Table 1. The value 10−5 in the 2nd-term numerator is the typical
tolerance value of 0th-logqSolver in Algorithm 1, that corresponds to err(N [log qt(x)]).
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Figure 11. Local error mean/std plot with pretrained model with SIMPLE-SDE trained by Swiss-roll.
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Figure 12. Local error mean/std plot with pretrained model with COSINE-SDE trained by Swiss-roll.
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Figure 13. Local error mean/std plot with pretrained model with SIMPLE-SDE trained by 25-Gaussian.

0.2 0.4 0.6 0.8
t

10
−2

10
0

10
2

10
4

10
6

|tr
∇(
∇
⋅s

θ(x
,t
))|

log10 (|tr∇(∇ ⋅ sθ(x, t))|Δx2+ 10−5
Δx )

0.2 0.4 0.6 0.8
t

10
−2

10
0

10
2

10
4

10
6

|∇
2 (
∇
⋅s

θ(x
,t
))|

log10 (|∇2(∇ ⋅ sθ(x, t))|Δx2+ 10−5
Δx2 )

−3.2
−2.4
−1.6
−0.8
0.0
0.8
1.6
2.4
3.2

−1.2
−0.6
0.0
0.6
1.2
1.8
2.4
3.0
3.6

Figure 14. Local error mean/std plot with pretrained model with COSINE-SDE trained by 25-Gaussian.
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