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Abstract

The relationship between inverse reinforcement learning (IRL) and inverse optimization (IO)
for Markov decision processes (MDPs) has been relatively underexplored in the literature,
despite addressing the same problem. In this work, we revisit the relationship between the IO
framework for MDPs, IRL, and apprenticeship learning (AL). We incorporate prior beliefs
on the structure of the cost function into the IRL and AL problems, and demonstrate that
the convex-analytic view of the AL formalism (Kamoutsi et al., 2021) emerges as a relaxation
of our framework. Notably, the AL formalism is a special case in our framework when the
regularization term is absent. Focusing on the suboptimal expert setting, we formulate the
AL problem as a regularized min-max problem. The regularizer plays a key role in addressing
the ill-posedness of IRL by guiding the search for plausible cost functions. To solve the
resulting regularized-convex-concave-min-max problem, we use stochastic mirror descent
(SMD) and establish convergence bounds for the proposed method. Numerical experiments
highlight the critical role of regularization in learning cost vectors and apprentice policies.

1 Introduction

In scenarios where an agent must learn to navigate in a random or uncertain environment, it is a common
practice to model the situation as a Markov decision process (MDP) and apply reinforcement learning (RL).
The goal in RL is to find a policy that minimizes the total expected discounted cost for the agent. Usually,
it is assumed that the cost function is known; however, specifying this function is difficult for most real-
life scenarios (Ng & Russell, 2000). Moreover, an incorrect specification of the cost function can lead to
unintended and potentially detrimental effects on the agent’s behavior (Amodei et al., 2016; Hadfield-Menell
et al., 2020). Consider the problem of driving: should the agent be rewarded for arriving quickly, safely, or
cheaply, and how should the importance of each factor be balanced?

Inverse reinforcement learning (IRL) tackles this problem by reducing the work of manually designing the cost
function and using observations of an expert agent’s actions. Specifically, IRL aims to infer the cost function
that the expert is optimizing based on recorded behavior and a model of the environment. Returning to the
driving example, this approach involves observing an expert driver’s behavior and deducing the underlying
objective that guides their decisions. However, the goal extends beyond identifying the cost function; in
many cases, there is a desire to emulate the expert’s actions, much like a student assimilating knowledge
from a mentor. For instance, when children learn to run, they are not explicitly given a cost function to
optimize, but an expert shows them demonstrations of how they should run. Building on this idea, learning
from demonstrations (LfD) and imitation learning (IL) seek to derive a policy that matches or surpasses the
expert’s performance.

IRL was first informally proposed by Russell (1998), and Ng & Russell (2000) introduced three algorithms
for different scenarios: (1) when the policy, transition dynamics, and a finite state space are known; (2)
when the state space is infinite; and (3) when the policy is unknown, but sample trajectories are available.
Several methods have since been proposed, including a maximum margin approach (Ratliff et al., 2006),
Bayesian frameworks (Ramachandran & Amir, 2007), and maximum entropy techniques (Ziebart et al.,
2008). However, all of these methods rely on RL as a subroutine within an inner loop, leading to significant
computational expenses.
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Furthermore, the IRL problem is ill-posed (Ng & Russell, 2000), as multiple cost functions can explain
an agent’s behavior. This challenge has garnered increasing attention in the literature, with several works
focusing on identifying the set of feasible cost functions that account for the expert’s behavior (Metelli et al.,
2021; Lindner et al., 2022). For our analysis, it is important to note that the work of Metelli et al. (2021;
2023); Lazzati et al. (2025) assumes access to a generative-model oracle for both the transition dynamics of
the MDP and the expert’s policy. A key finding in this body of work is that learning the feasible cost set is
inefficient and infeasible for large state spaces, as the sample complexity scales heavily with the size of the
state space.

In the context of LfD or IL, the literature often adopts the apprenticeship learning (AL) formalism proposed
by Abbeel & Ng (2004), which assumes access to a set of expert demonstrations and that the unknown true
cost function belongs to a specific class of functions. Consequently, this assumption requires identifying these
basis functions in advance, which can be nontrivial. There are two main classes of cost functions considered:
(1) linear combinations of known basis functions called features (Abbeel & Ng, 2004; Syed & Schapire, 2007;
Ziebart et al., 2008) and (2) convex combinations of a set of vectors (Syed et al., 2008; Kamoutsi et al.,
2021). Building on the AL formalism, Syed & Schapire (2007) presented a game-theoretic view of AL and
solved it using a multiplicative weights algorithm. Later, Syed et al. (2008) proposed a linear programming
approach to solve the AL problem without employing IRL or RL as a subroutine. This marked an initial
step toward leveraging the tools of mathematical optimization to address the LfD problem. Following this
direction, Kamoutsi et al. (2021) introduced a convex-analytic approach to the LfD problem within the
AL formalism using a generative-model oracle for the MDP’s transitions. They formulated a bilinear min-
max problem using Lagrangian duality and solved it using stochastic mirror descent (SMD). Moreover,
Ho & Ermon (2016) solved the LfD problem for a general class of cost functions C = RS×A, solving an
entropy-regularized-min-max problem, and connected their approach with generative adversarial networks.
Nevertheless, this min-max problem is nonconvex-nonconcave, limiting its theoretical understanding.

Contribution. We revisit IO’s tools for IRL and present the inverse problem for estimating the cost func-
tion of an MDP given an optimal policy IRL-IO (Erkin et al., 2010; Chan et al., 2023) and incorporate
prior beliefs on the structure of the cost function IRL-IOĉ. Through this approach, we revisit the proof that
the inverse-feasible set of this inverse problem is equivalent to the dual problem derived by Kamoutsi et al.
(2021) and extend it to a general class of cost functions. Furthermore, we propose a new problem for AL tai-
lored for suboptimal experts IO-ALα and provide results that allow us to interpret optimal solutions. Using
Lagrangian duality, we derive a regularized-convex-concave-min-max problem RLfDα for solving IO-ALα,
which reduces to previous formulations (Kamoutsi et al., 2021) when the regularization term is null. Ad-
ditionally, we show that the stochastic mirror descent algorithm proposed in Jin & Sidford (2020) to solve
ℓ∞-ℓ1 games naturally adapts to our problem, and we provide theoretical convergence bounds.

1.1 Notation

We denote the cardinality of a set S as |S|. The probability simplex over |S| elements is given by ∆|S| ={
x ∈ R|S| | xi ≥ 0,

∑|S|
i=1 xi = 1

}
and boxes are denoted by Bn

b = {x ∈ Rn | ∥x∥∞ ≤ b}. The canonical basis
vectors are denoted by ei = {x ∈ Rn | ei = 1 and ej = 0 ∀j ̸= i}. The Kronecker delta is denoted by δij .
Component-wise multiplication between two vectors x, y is denoted by x◦y. The nonnegative real numbers
are denoted by R≥0. Finally, we use the same notation as Kamoutsi et al. (2021), with minor modifications,
to highlight the strong connections to their work.

2 Preliminaries and problem formulation

In this section, we establish the foundational concepts necessary for our study. We begin by defining the
structure of infinite-horizon MDPs. We then introduce the IRL problem and discuss the LfD problem through
the AL formalism. Finally, we provide an overview of IO and formally state our problem.
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2.1 Infinite Horizon MDPs

A finite MDP is defined as a tuple (S,A, P, ν0, c, γ) where S is a finite state space, A a finite action space,
and P is a transition law P = (P (· | s, a))s,a where P (· | s, a) ∈ ∆|S|. The initial state distribution is denoted
by ν0 ∈ ∆|S| and satisfies ν0(s) > 0 for every s ∈ S. The cost vector is defined as c ∈ C ⊆ B|S||A|

1 and the
discount factor is given by γ ∈ (0, 1).

A stationary Markov policy is a collection of distributions, indexed by s ∈ S and denoted by (π(· | s))s∈S ,
where π(· |s) ∈ ∆|A|. We denote the space of stationary Markov policies by Π0. In this framework, the MDP
begins with an initial state s0 ∼ ν0. At each time-step t, where the current state is st: the agent selects an
action according to at ∼ π(· | st), the next state is determined by the transition law st+1 ∼ P (· | st, at), and
a cost c(st, at) is incurred. Note that in an infinite horizon model, the process continues indefinitely.

The normalized value function V π
c ∈ R|S| of a policy π given a cost c is given by

V π
c (s) = (1− γ)Eπ

s

[ ∞∑
t=0

γtc(st, at)
]

where Eπ
s [·] denotes the expectation with respect to the trajectories generated by π when starting from the

state s. While we refer to it as a function, any function from a finite set to the reals can be naturally
represented as a vector. The fundamental goal of RL is to find a policy π such that the process ((st, at))t

minimizes the total expected cost:

ρ∗
c = min

π∈Π0
ρc(π) (RLc)

= min
π∈Π0

(1− γ)Eπ
ν0

[ ∞∑
t=0

γtc(st, at)
]

.

where ρc(π) = ⟨ν0, V π
c ⟩. Notice that we explicitly highlight the dependence of equation RLc on the cost

vector c. Furthermore, we denote V ∗
c as the value function corresponding to the optimal policy for RLc.

The normalized occupancy measure µπ ∈ ∆|S||A| of a policy π is defined as

µπ(s, a) = (1− γ)
∞∑

t=0
γtPπ

ν0
[st = s, at = a],

where Pπ
ν0

[·] represents the probability of an event when starting from s ∼ ν0 and following π. The occupancy
measure of a state-action pair can be interpreted as the discounted visitation frequency of the pair when
following a particular policy. Hence, we can also write ρ∗

c = minπ∈Π0⟨µπ, c⟩.

We define the transition matrix P ∈ R|S|×|S||A| where Ps′,(s,a) = P (s′ | s, a) and the polyhedron F = {µ ∈
R|S||A| | Tγµ = ν0, µ ≥ 0} where T ∈ R|S|×|S||A|, Ts′,(s,a) = δs′,s − γPs′,(s,a), and Tγ = 1

(1−γ) T . An
alternative expression for Tγ that is useful for computing gradient estimators is Tγµ = 1

(1−γ) (B − γP )µ
where B is a binary matrix that satisfies Bs′,(s,a) = 1 if s′ = s and Bs′,(s,a) = 0 otherwise.
Proposition 1 (Puterman (1994)). It holds that, F = {µπ | π ∈ Π0}. For every π ∈ Π0, we have that
µπ ∈ F . Moreover, for every feasible solution µ ∈ F , we can obtain a stationary Markov policy πµ ∈ Π0 by
πµ(a | x) = µ(x,a)∑

a′∈A
µ(x,a′)

. Then, the induced occupancy measure is exactly µ.

Proposition 1 provides a correspondence between the elements of F and occupancy measures given by
stationary Markov policies. Note that the condition Tγµ = ν0 can be interpreted as the Markov property
of the process under Pπ

ν0
[·]. Hence, the MDP linear programming approach consists of solving the MDP-Pc

problem

ρ∗
c = min

µ∈∆|S||A|
⟨µ, c⟩

s.t Tγµ = ν0, (MDP-Pc)
µ ≥ 0.
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Note that the constraints enforce that µ ∈ F , therefore an optimal µ corresponds to an optimal policy. The
corresponding dual problem is given by

max
u∈R|S|

{ ⟨ν0, u⟩ | c− T ⊤
γ u ≥ 0}, (MDP-Dc)

where an optimal u represents the optimal value function V ∗
c .

2.2 Inverse reinforcement learning

The IRL problem aims to uncover the true cost function that an expert agent is optimizing given some
information about the expert’s behavior: sample trajectories, its real policy, or an estimate of its policy
(Ng & Russell, 2000). Formally, given an MDP without a cost vector and with access to information about
an expert’s policy πE , which could be the actual policy, an estimate, or a set of demonstrations, the IRL
problem is defined by the tuple (S,A, P, ν0, πE , γ). The goal of the IRL problem is to determine a cost
vector c for which the policy πE is optimal for RLc within the MDP (S,A, P, ν0, c, γ).

2.3 Learning from demonstrations and the apprenticeship learning formalism

The goal of learning from demonstrations is to learn a policy that matches or outperforms the expert’s
policy πE for an unknown true cost vector ctrue. The apprenticeship learning formalism (Abbeel & Ng,
2004) has been routinely used in literature for addressing the LfD problem. The AL formalism assumes that
the unknown true cost function ctrue belongs to a class of functions C and searches for a policy that solves
the following min-max problem

β∗ := min
π∈Π0

max
c∈C
⟨µπ, c⟩ − ⟨µπE

, c⟩ = min
π∈Π0

max
c∈C
⟨µπ − µπE

, c⟩, (LfDπE
)

An optimal solution to LfDπE
is called an apprentice policy πA and satisfies

⟨µπA
, ctrue⟩ ≤ ⟨µπE

, ctrue⟩+ β∗.

In optimization-focused approaches to LfD, the ctrue is assumed to belong to a convex hull

C = Cconv :=
{

cw :=
nc∑

i=1
wici

∣∣∣ wi ≥ 0,

nc∑
i=1

wi = 1
}

(Syed et al., 2008; Kamoutsi et al., 2021) of a set of vectors {ci}nc
i=1 ⊆ R|S||A| where ∥ci∥∞ ≤ 1 for each

i = 1, ..., nc. It is assumed that this set of vectors is known; however, in practice, an initial estimation step
is required to determine this set, a task that is generally nontrivial.

2.4 A primer on inverse optimization

Inverse optimization is a mathematical framework that fits optimization models to decision data. Given
an observed optimal solution, it seeks to learn the objectives and constraints of the underlying model. For
example, IRL can be thought of as an inverse optimization problem, as it searches for the cost function that
an optimal agent is optimizing.

Consider the general forward optimization problem FOPθ for a given parameter θ in the parameter space Γ:

min
x∈Rn

{f(x, θ) | x ∈ X(θ)}, (FOPθ)

where X(θ) denotes the feasible set for x, which depends on θ. Given an optimal solution x̂, the inverse
optimization problem consists of finding a θ∗ ∈ Γ that makes x̂ optimal for FOPθ with θ = θ∗ and is optimal
in some way. For this purpose, define the optimal solution set Xopt(θ) := arg minx{f(x, θ) | x ∈ X(θ)} and
the inverse-feasible set Θinv(x̂) := {θ ∈ Γ| x̂ ∈ Xopt(θ)}. Naturally, we want to find a θ ∈ Θinv(x̂), but
rather than selecting an arbitrary θ from this set, we aim for one that minimizes a certain criterion.
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Hence, the inverse optimization problem INV-OPT is defined as:

min
θ∈Γ
{F (θ) | θ ∈ Θinv(x̂)}, (INV-OPT)

where F should convey information about the quality of θ given some prior knowledge, and the search space
Γ should be appropriately chosen for each instance of the problem.

2.5 Our problem

Suppose that the environment is modeled as an MDP where only the state space S, action space A, and
discount factor γ are known. We assume that the learner has access to a generative-model oracle for the
MDP’s transition dynamics, as well as a generative-model oracle of an expert’s occupancy measure µπE

(not
necessarily optimal), and a prior belief ĉ of the cost function the expert is trying to optimize for. We aim
to learn a cost function cA and an apprentice policy πA, such that πA is optimal for RLcA

, and cA remains
close to the prior ĉ while πA performs similarly to πE under cA (see IO-ALα).

3 The inverse optimization viewpoint

In this section, we show how the IRL problem can be addressed with the tools of IO. We establish the
equivalence between the AL problem formulation presented in Kamoutsi et al. (2021) and the inverse-feasible
set of the problem IRL-IO. Additionally, we demonstrate how prior beliefs about the structure of the cost
vector can be incorporated into both the IRL formulation IRL-IOĉ and the AL setting IO-ALα.

3.1 IRL via IO

We will use the ideas of Subsection 2.4 applied to the forward optimization problem MDP-Pctrue , where the
parameter θ corresponds to the true cost vector ctrue the expert is optimizing for. Note that we assume
the existence of ctrue because the IRL problem assumes that the expert is optimal for some cost function.
Therefore, let us suppose that ctrue lies in a convex class of cost functions C and that the expert’s policy πE is
optimal for RLctrue , which means that its corresponding occupancy measure µπE

is optimal for MDP-Pctrue .
The following proposition follows from complementary slackness for linear problems (Bertsimas & Tsitsiklis,
1997).
Proposition 2 (Complementary slackness). An element µπ is an optimal solution to MDP-Pc if and only
if there exists a vector u ∈ R|S| such that c− T ⊤

γ u ≥ 0 and ⟨µπ, c− T ⊤
γ u⟩ = 0.

Remember that u is the dual variable for the equality constraint in MDP-Pc and represents the value
function. Therefore, the inverse-feasible set for µπE

consists of the cost functions in C for which such a u
exists

Θinv(µπE
) := {c ∈ C | ∃u ∈ R|S| : c− T ⊤

γ u ≥ 0, ⟨µπE
, c− T ⊤

γ u⟩ = 0}.

Substituting for the inverse-feasible set in INV-OPT and choosing an appropriate function F for comparing
cost vectors, we arrive to the inverse reinforcement learning problem through inverse optimization (Erkin
et al., 2010; Chan et al., 2023)

min
c∈C,u∈R|S|

F (c)

s.t c− T ⊤
γ u ≥ 0, (IRL-IO)

⟨µπE
, c− T ⊤

γ u⟩ = 0.

3.2 Connections to LfD and the AL formalism

Kamoutsi et al. (2021) considered the LfD problem under the assumption that the true cost function ctrue
belongs to the convex hull Cconv of a given set of vectors. By applying an epigraphic transformation to
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LfDπE
, where the validity of this transformation depends on the previous assumption on ctrue, and deriving

its dual, they arrived to the optimization problem DπE
:

max
c,u
{⟨µπE

, T ⊤
γ u− c⟩ | c ∈ Cconv, c− T ⊤

γ u ≥ 0}. (DπE
)

They focus on this problem and optimize its unconstrained version derived through Lagrangian duality,
where the dual variable corresponding to the constraint c− T ⊤

γ u ≥ 0 represents the apprentice state-action
visitation probability.
Theorem 1 (cf. Proposition 2 in Kamoutsi et al. (2021)). Suppose that µπE

is an optimal solution for
MDP-Pc where c ∈ C. Then the following equality holds:

Θinv(µπE
) = Π1

(
arg max

(c,u)
{⟨µπE

, T ⊤
γ u− c⟩ | c ∈ C, c− T ⊤

γ u ≥ 0}
)

where Π1 denotes the projection in the first component.

This implies that the dual problem DπE
serves as an alternative representation of the inverse-feasible set

Θinv(µπE
). In contrast, in problem IRL-IO we choose an element within the inverse-feasible set that mini-

mizes F . In this sense, under the assumption of expert’s optimality and that ctrue ∈ Cconv, the AL formalism
finds an arbitrary element of the inverse-feasible set, whereas IRL-IO has a criterion for searching within
this space and considers a general convex class of cost functions C.

3.3 Incorporating prior beliefs

Suppose we are given a proxy cost vector ĉ that reflects our prior beliefs about the structure of the true cost
vector, which are not necessarily accurate. Leveraging this information, we aim to guide the search within
the inverse feasible set in problem IRL-IO. To this end, we project ĉ onto Θinv(µπE

) by solving the following
optimization problem:

min
c∈C,u∈R|S|

∥c− ĉ∥2
2

s.t c− T ⊤
γ u ≥ 0, (IRL-IOĉ)

⟨µπE
, c− T ⊤

γ u⟩ = 0.

Figure 1 illustrates the setting for problem IRL-IOĉ. The polyhedral region in fuchsia represents the set of
all occupancy measures F . In particular, if we assume that the expert is optimal and the induced policy is
deterministic, then µπE

is a vertex of F and the true cost vector ctrue, in green, is within the inverse-feasible
set Θinv(µπE

). The proxy cost vector ĉ, in red, is not necessarily inside the inverse-feasible set and will be
projected onto the inverse-feasible set by solving Problem IRL-IOĉ.

ĉ

ctrue

Θinv(µπE )

•
µπE

F

Figure 1: Illustration of the incorporation of ĉ.

Since we are still selecting an element from the inverse-feasible set, we can derive results similar to those
presented by Kamoutsi et al. (2021) for solutions to Problem IRL-IOĉ under the assumption of expert
optimality. The following corollary follows directly from the proof of Theorem 1 (see Appendix A.2):
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Corollary 1 (Optimal expert). Assume that πE is optimal for RLctrue . A pair (cA, uA) is optimal for
Problem IRL-IOĉ if and only if πE is optimal for RLcA

and uA = V ∗
cA

. In particular, the cost vector cA is
the projection of ĉ onto the inverse feasible set and πE is optimal for cA.

It is important to note that when the expert is suboptimal, Problem IRL-IOĉ is infeasible, as the complemen-
tary slackness equality cannot be satisfied. To account for the possibility of suboptimal expert behavior, we
can relax the complementary slackness condition in IRL-IO. Weighing the beliefs of the expert’s optimality
and the quality of the cost function estimate with parameter α ∈ R≥0, we arrive to problem IO-ALα:

min
c∈C,u∈R|S|

α∥c− ĉ∥2
2 + ⟨µπE

, c− T ⊤
γ u⟩

s.t c− T ⊤
γ u ≥ 0. (IO-ALα)

Proposition 3 (Suboptimal expert). A pair (cA, uA) is optimal for IO-ALα if and only if the apprentice
policy πA is optimal for RLcA

and uA = V ∗
cA

. Furthermore, the optimal value corresponds to α∥cA − ĉ∥2
2 +

ρcA
(πE)− ρcA

(πA).

Proposition 3 states that the apprentice policy πA, i.e. the dual variable for the constraint c− T ⊤
γ u ≥ 0, is

optimal for the RL problem with cost vector cA. Solutions to IO-ALα can be viewed as a way to balance
the distance between the cost vector cA and the estimate ĉ, while ensuring that the total expected cost of
πE and πA are similar under cA and that πA is optimal for RLcA

.

ĉ

ĉ

•
µπA

•µπ′
A

µπE
•

F

Figure 2: Illustration of IO-ALα.

Figure 2 illustrates IO-ALα using the same notation as Figure 1. In this scenario, the suboptimal expert lies
within the occupancy measure set F rather than at a vertex. The apprentice policy πA provides a better
explanation of the expert’s behavior, as it corresponds to the closest vertex, while π′

A better aligns with the
proxy cost vector ĉ. The parameter α governs this trade-off: when α increases, the optimization problem
selects µπ′

A
, whereas for values closer to zero, it selects µπA

.

This is our alternative to the AL formalism: instead of identifying the set of vectors {ci}nc
i=1 that define

Cconv and choosing an arbitrary cost vector within the inverse-feasible set, we search over a general convex
class of cost vectors C and define an estimate ĉ to guide the search. In practice, obtaining information about
optimal experts is challenging (Brown et al., 2019; Chen et al., 2021; Wang et al., 2021). Furthermore, given
an expert’s policy or demonstrations, it is difficult to determine whether it is optimal. Nonetheless, we still
aim to leverage suboptimal experts’ information and comprehend its actions by solving IO-ALα.

3.4 Min-max formulation

We aim to reformulate IO-ALα as a convex-concave-min-max problem and solve this unconstrained opti-
mization problem using stochastic mirror descent. To this end, we compute its Lagrangian:

L(c, u, µ) = α∥c− ĉ∥2
2 + ⟨µπE

− µ, c− T ⊤
γ u⟩
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where µ ∈ R|S||A| and µ ≥ 0. Observe that L(c, u, µ) is convex on (c, u) and concave on µ. Thus, IO-ALα

is equivalent to the min-max problem

min
c∈C,u∈R|S|

max
µ≥0
L(c, u, µ).

In our setting, we assume that C = B|S||A|
1 , which is not restrictive because we can scale any cost vector to

lie within this set. Therefore, we know that ∥V π
c ∥∞ ≤ 1 for any policy π ∈ Π0 and c ∈ C (see Lemma 3

in the Appendix). Hence, we can search for (c, u) within the box B|S||A|
1 × B|S|

1 . Moreover, as all feasible
solutions for MDP-Pc belong to the simplex ∆|S||A|, we can restrict the search for µ to the same simplex.

min
(c,u)∈B|S||A|

1 ×B|S|
1

max
µ∈∆|S||A|

α∥c− ĉ∥2
2 + ⟨µπE

− µ, c− T ⊤
γ u⟩. (RLfDα)

Observe that this formulation closely resembles previous min-max formulations of the LfD problem (Kamoutsi
et al., 2021). It can be interpreted as a regularized version of this problem, where the search for c is conducted
within a general class of cost functions rather than being restricted to a previously specified convex hull.

4 Algorithm

Revisiting the assumptions for our problem, we assume that we have access to a generative-model oracle of
the expert’s occupancy measure µπE

, as well as a generative-model oracle for the MDP’s transition law. In
this section, we will focus on solving RLfDα via stochastic mirror descent. Before attempting to solve this
problem, we must first define what constitutes a good solution. We define an ϵ-approximate solution as a
pair (c, u), µ such that their duality gap is bounded by ϵ > 0.
Definition 1 (ϵ-approximate solution). Given ϵ > 0, an ϵ-approximate solution of RLfDα is a pair of feasible
solutions ((cϵ, uϵ), µϵ) ∈

(
B|S||A|

1 × B|S|
1

)
×∆|S||A| that satisfy

Gap((cϵ, uϵ), µϵ) = max
µ′∈∆|S||A|

L((cϵ, uϵ), µ′)− min
(c′,u′)∈B|S||A|

1 ×B|S|
1

L((c′, u′), µϵ) ≤ ϵ.

To minimize the duality gap, we require descent and ascent directions. The gradients of L((c, u), µ) at a
given iterate ((ct, ut), µt) ∈ (B|S||A|

1 × B|S|
1 )×∆|S||A| are given by

g(c,u)((ct, ut), µt) =
(

2α(ct − ĉ) + µπE
− µt

Tγµt − TγµπE

)
,

gµ((ct, ut), µt) = −(−ct + T ⊤
γ ut) = ct − T ⊤

γ ut,

where g(c,u)((ct, ut), µt) = ∇(c,u)L((ct, ut), µt) and gµ((ct, ut), µt) = −∇µL((ct, ut), µt). Since explicit
access to Tγ and µπE

is unavailable, it is necessary to develop gradient estimators that are compatible with
oracle-based queries.
Definition 2 (bounded estimator). Given the following properties on mean, scale, and variance of an
estimator:

i. unbiasedness: E[g̃] = g.

ii. bounded maximum entry: ∥g̃∥∞ ≤ z with probability 1.

iii. bounded second-moment: E[∥g̃∥2] ≤ v

we call g̃ a (v, ∥ · ∥)-bounded estimator if it satisfies (i) and (iii) and a (z, v, ∥ · ∥∆m)-bounded estimator if it
satisfies (i), (ii), (iii) with local norm ∥ · ∥y for all y ∈ ∆m.
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With this in mind, define the gradient estimator for the (c, u) side through the following procedure

sample (s, a) ∼ 1
|S||A|

, (st, at) ∼ µt, s′
t ∼ P (· | st, at), (sE , aE) ∼ µπE

, s′
E ∼ P (· | sE , aE),

set g̃(c,u)((ct, ut), µt) =

|S||A| · 2α
(
ct(s, a)e(s,a) − ĉ(s, a)e(s,a))+ e(sE ,aE) − e(st,at)

1
(1−γ)

(
est − γes′

t − (esE − γes′
E )
)  . (1)

In Lemma 1, we show that this estimator is unbiased and provides a bound for its second moment.

Lemma 1. Gradient estimator g̃(c,u)((ct, ut), µt) is a (v(c,u), ∥ · ∥2)-bounded estimator, with

v(c,u) = 64α2 · |S||A|+ 4(1 + γ2)
(1− γ)2 + 8.

For the µ side, define the gradient estimator by

sample (s, a) ∼ 1
|S||A|

, s′ ∼ P (· | s, a),

set g̃µ((ct, ut), µt) = |S||A|
(

ct(s, a)e(s,a) − 1
(1− γ) (ut(s)e(s,a) − γut(s′)e(s,a))

)
(2)

As before, we will demonstrate unbiasedness and bound its second moment; however, this time we will also
calculate a bound on its maximum entry.

Lemma 2. Gradient estimator g̃µ((ct, ut), µt) is a (zµ, vµ, ∥ · ∥2)-bounded estimator, with

zµ = 2|S||A|
(1− γ) and vµ = |S||A|

(
2 + 4(1 + γ2)

(1− γ)2

)
.

Using these gradient estimators and the bounds established above, we adapt the SMD algorithm orig-
inally designed for solving MDPs in Jin & Sidford (2020). Algorithm 1 presents the SMD method
for IRL. This algorithm iteratively computes bounded gradient estimators (Lines 3 and 5) by sam-
pling from the occupancy measures and querying the oracle (Lines 2 and 4). The updates are
then obtained using mirror descent steps followed by a projection (Lines 6 and 7). After T it-

9
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erations, the algorithm returns the average of the iterates as an ϵ-approximate solution to RLfDα.
Algorithm 1: Stochastic Mirror Descent for Inverse Reinforcement Learning
Parameters: Step-size η(c,u), ηµ, number of iterations T , accuracy level ϵ.
Input: State space S, action space A, transition oracle P , occupancy measure oracle µπE

, initial state
distribution ν0, discount factor γ, initial ((c0, u0), µ0) ∈ B|S||A|

1 ×∆|S||A|.
Output: An expected ϵ-approximate solution ((cϵ, uϵ), µϵ) for RLfDα.

1 for t← 0 to T − 1 do
/* (c, u) gradient estimation */

2 Sample (st, at) ∼ µt, s′
t ∼ P (· | st, at), (sE , aE) ∼ µπE

, s′
E ∼ P (· | sE , aE)

3 Compute:

g̃(c,u)((ct, ut), µt) =
( 2α(ct − ĉ) + µπE

− µt

1
(1−γ)

(
est − γes′

t − (esE − γes′
E )
))

/* µ gradient estimation */
4 Sample (s, a) ∼ 1

|S||A| , s′ ∼ P (· | s, a)
5 Compute:

g̃µ((ct, ut), µt) = |S||A|
(

ct(s, a)e(s,a) − 1
(1− γ) (ut(s)e(s,a) − γut(s′)e(s,a))

)
/* Mirror descent steps */

6 (ct, ut)← ΠB|S||A|
1 ×B|S|

1

(
(ct−1, ut−1)− η(c,u)g̃(c,u)((ct−1, ut−1), µt−1)

)
7 µt ← Π∆|S||A| (µt−1 ◦ exp(−ηµg̃µ((ct−1, ut−1), µt−1)))
8 return ((cϵ, uϵ), µϵ)← 1

T

∑T
t=1((ct, ut), µt)

Theorem 2. Given ϵ ∈ (0, 1), Algorithm 1 with step-size

η(c,u) = ϵ

4v(c,u) , ηµ = ϵ

4vµ
,

and gradient estimators defined in equations 1 and 2 finds an expected ϵ-approximate solution

E [Gap((cϵ, uϵ), µϵ)] ≤ ϵ,

within any iteration number

T ≥ max
{
O
(

α2|S|3|A|2

ϵ2

)
, O

(
|S||A| log(|S||A|)

ϵ2

)}
.

The number of iterations scales quadratically with the number of actions and cubically with the number of
states. Theoretically, the number of iterations required depends on the parameter α ∈ R≥0. When α = 0, the
number of iterations decreases significantly as the |S|3 and |A|2 terms vanish from the initial expression. This
suggests that introducing the regularization α∥c− ĉ∥2

2 increases the complexity of the problem. Nevertheless,
we will see in the next section that the regularization term helps to guide the search to uncover the true cost
function.
Proposition 4. Let ((cϵ, uϵ)µϵ) be an expected ϵ-approximate solution for RLfDα, such that µϵ induces a
policy πµϵ ∈ Π0 defined by πµϵ(a|s) = µ(a,s)∑

a′ µ(s,a)
. It then holds that

E
[
α∥cϵ − ĉ∥2

2 + ρcϵ(πE)− ρcϵ(πA)
]
≤ ϵ + α∥cA − ĉ∥2

2 + ρcA
(πE)− ρ∗

cA
,

where ((cA, uA), µA) denotes the optimal solution for RLfDα and πA is the policy induced by µA.

Proposition 4 establishes a connection between expected ϵ-approximate solutions for RLfDα and its optimal
solution. Specifically, it shows that an expected ϵ-approximate solution achieves an objective value that is
at most ϵ worse than that of the optimal solution. Note that we assume that µϵ induces a policy, which is
not always the case for an arbitrary µ ∈ ∆|S||A|.

10
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5 Numerical experiments

We use a standard H×W Gridworld environment (Figure 3(a)), where each cell is a unique state. Obstacles
(shown in red) incur a cost of 1, terminal cells (shown in green) incur a cost of −1, and all other cells
(shown in white) incur a cost of 0. The action set is {up, down, left, right}, but a “wind” introduces a 20%
chance of drifting left or otherwise altering the intended move. If the resulting move is out of bounds, the
agent remains in the same cell. The discount factor is 0.7, and initial states are chosen uniformly. We solve
the corresponding MDP-Pc with a linear solver to obtain the optimal occupancy measure (Figure 3(b)).
To construct a suboptimal expert, we terminate the solver early and use the resulting µ as the expert’s
occupancy measure (Figure 3(c)). To visualize the policies induced by these occupancy measures, we extract
the most likely action at each state by computing arg maxa∈A µ(s, a) and display it in the corresponding
cell.

(a) Gridworld environment. (b) Optimal policy. (c) Expert’s policy.

Figure 3: Illustration of the Gridworld environment, the optimal policy, and the expert’s policy.

5.1 Implementation details

We executed Algorithm 1 N times with randomly generated initial values for T iterations and averaged the
resulting outputs. With reproducibility in mind, we provide a Python package (see supplementary material)
with a framework that can handle general discounted Markov decision processes.

5.2 Regularization effect

We study the effect of the regularization term α∥c − ĉ∥2
2 in solving problem RLfDα via SMD. To this end,

we define a cost vector ĉ that is zero everywhere except for a randomly selected subset of obstacle and goal
states. This choice was made based on practical considerations, as in most real-world scenarios, we rarely
have access to a highly accurate estimate of the cost vector. Specifically, for obstacles, ĉ is set to 1 for a
randomly selected 50% of the obstacle states, while for goal states, ĉ is set to −1 for a randomly chosen 50%
of them. Moreover, regarding the algorithm’s parameters, we chose N = 20, T = 105, and both step-sizes as
10−2.

Figure 4 depicts the learned cost vectors for each action {up, down, left, right} under varying levels of regu-
larization α. As α increases, the cost vectors display more white regions, indicating near-zero cost values,
and more accurately highlight the main obstacles. In turn, this leads to a better approximation of the true
cost structure. However, when the regularization is too strong, it may overly penalize costs associated with
obstacle areas that are less frequently demonstrated, thereby ignoring parts of the environment that do not
appear in the demonstration data. Consequently, selecting an appropriate α is crucial to achieve a cost
vector that balances fidelity to the true environment and robustness in identifying cost structures that are
not present in the estimate ĉ.

11
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α = 0.1 α = 0.005 α = 0.001 α = 0

Up

Down

Left

Right

Figure 4: Effect of the regularization on the cost vector.

Figure 5 displays the apprentice policy obtained using SMD for various values of α. Notably, when α is
set to 0.005 or 0.001, the apprentice policy closely resembles the one derived by exclusively weighting the
expert’s policy (i.e., α = 0). This observation is significant, as the previous analysis demonstrated that
incorporating regularization yields a cost vector for the apprentice policies that aligns more closely with the
true cost vector.

α = 0.1 α = 0.005 α = 0.001 α = 0

Figure 5: Effect of regularization on the apprentice policy.

12
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5.3 Convergence

In the same experimental setting, we examined the convergence of the solutions up to iteration t < T by
computing the L1-norm of the difference between the solutions at iterations t and t−1. We plotted this norm
for each of the α values considered in the previous experiments. According to this sense of convergence, all
α values exhibit comparable convergence rates for u and µ. However, for c, the convergence rate at α = 0.1
is faster than that observed for smaller values of α. This behavior aligns with the increased penalty imposed
for deviating from ĉ under stronger regularization, thereby accelerating convergence for c.

α = 0.1 α = 0.005 α = 0.001 α = 0

Figure 6: Effect of regularization on the difference of solutions found between iterations.

However, it is important to note that Theorem 2 characterizes convergence in terms of the duality gap. In
Figure 7, we compute the duality gap of the solution every 25 iterations, using IPOPT (Wächter & Biegler,
2006). The algorithm parameters remain unchanged, except that, due to computational constraints, we
reduce the grid size to 6× 6 and limit the execution to T = 104 iterations. As expected from the results of
Theorem 2, stronger regularization leads to slower convergence of the duality gap, a trend illustrated in this
figure. While we did not use the theoretically prescribed step sizes due to their small magnitude, the figure
still offers valuable insights into how regularization affects the convergence behavior.

α = 0.25 α = 0.1 α = 0

Figure 7: Duality gap convergence.
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A Appendix

A.1 MDPs

Lemma 3. Given a DMDP with discount factor γ ∈ (0, 1), then the value function satisfies

V π
c (s) ≤ ∥c∥∞ = 1

for any policy π ∈ Π0 and any state s ∈ S.

Proof. Given a policy π ∈ Π0 and a state s ∈ S the value function

V π
c (s) = (1− γ)Eπ

s

[ ∞∑
t=0

γtc(st, at)
]

≤ (1− γ)Eπ
s

[ ∞∑
t=0

γt∥c∥∞

]

= (1− γ) 1
(1− γ)∥c∥∞

= 1.
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A.2 IO, LfD, and AL

Theorem 1. Suppose that µπE
is an optimal solution for equation MDP-Pc where c ∈ C. Then the following

equality holds:

Θinv(µπE
) = Π1

(
arg max

(c,u)
{⟨µπE

, T ⊤
γ u− c⟩ | c ∈ C, c− T ⊤

γ u ≥ 0}
)

where Π1 denotes the projection in the first component.

Proof. Note that

arg max
(c,u)

{⟨µπE
, T ⊤

γ u− c⟩ | c ∈ C, c− T ⊤
γ u ≥ 0}

= arg min
(c,u)

{⟨µπE
, c− T ⊤

γ u⟩ | c ∈ C, c− T ⊤
γ u ≥ 0},

thus, we will prove that

Θinv(µπE
) = Π1

(
arg min

(c,u)
{⟨µπE

, c− T ⊤
γ u⟩ | c ∈ C, c− T ⊤

γ u ≥ 0}
)

.

If µπE
∈ F , then µπE

≥ 0. Using the restriction c− T ⊤
γ u ≥ 0, we have that

min
(c,u)
{⟨µπE

, c− T ⊤
γ u⟩ | c ∈ C, c− T ⊤

γ u ≥ 0} ≥ 0.

If c0 ∈ Θinv(µπE
), then there exists u0 ∈ R|S| that satisfies c0−T ⊤

γ u0 ≥ 0 and ⟨µπE
, c0−T ⊤

γ u0⟩ = 0. This
implies that

(c0, u0) ∈ arg min
(c,u)

{⟨µπE
, c− T ⊤

γ u⟩ | c ∈ C, c− T ⊤
γ u ≥ 0}.

On the other hand, if c∗ ∈ Π1

(
arg min(c,u){⟨µπE

, c− T ⊤
γ u⟩ | c ∈ C, c− T ⊤

γ u ≥ 0}
)

, then c∗ ∈ C and there
exists u∗ such that

c∗ − T ⊤
γ u∗ ≥ 0 and ⟨µπE

, c∗ − T ⊤
γ u∗⟩ ≤ ⟨µπE

, c− T ⊤
γ u⟩,

for every pair (c, u) such that c ∈ C and c − T ⊤
γ u ≥ 0. In particular, this is true for (ĉ, û) where µπE

is
optimal for MDP-Pĉ and û is its dual optimal. Therefore, by complementary slackness we have that

0 ≤ ⟨µπE
, c∗ − T ⊤

γ u∗⟩ ≤ ⟨µπE
, ĉ− T ⊤

γ û⟩ = 0,

and we conclude that c∗ ∈ Θinv(µπE
).

Proposition 3. A pair (cA, uA) is optimal for IO-ALα if and only if the apprentice policy πA is optimal
for RLcA

and uA = V ∗
cA

. Furthermore, the optimal value corresponds to α∥cA − ĉ∥2
2 + ρcA

(πE)− ρ∗
cA

.

Proof. Observe that IO-ALα is a convex optimization problem. Therefore, a pair (cA, uA) is optimal for
IO-ALα if and only if the KKT conditions are satisfied. In particular, it satisfies complementary slackness
⟨µπA

, cA − T ⊤
γ uA⟩ = 0 and the stationarity condition TγµπA

= TγµπE
= ν0, which implies that µπA

∈ F .
Then, by Proposition 2 πA is optimal for RLcA

with uA = V ∗
cA

. Moreover, if (cA, uA) are optimal we have
that

α∥cA − ĉ∥2
2 + ⟨µπE

, cA − T ⊤
γ uA⟩ = α∥cA − ĉ∥2

2 + ⟨µπE
, cA⟩ − ⟨µπE

, T ⊤
γ uA⟩

= α∥cA − ĉ∥2
2 + ρcA

(πE)− ⟨ν0, uA⟩
= α∥cA − ĉ∥2

2 + ρcA
(πE)− ρ∗

cA
.
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A.3 Gradient estimation

Lemma 1. Gradient estimator g̃(c,u)((ct, ut), µt) is a (v(c,u), ∥ · ∥2)-bounded estimator, with

v(c,u) = 64α2 · |S||A|+ 4(1 + γ2)
(1− γ)2 + 8.

Proof. The unbiasedness follows from the following observations∑
s,a

|S||A|
|S||A|

· 2α
(

ct(s, a)e(s,a) − ĉ(s, a)e(s,a)
)

+
∑

sE ,aE

µπE
(sE , aE)e(sE ,aE) −

∑
st,at

µt(st, at)e(st,at)

= 2α(ct − ĉ) + µπE
− µt

and
1

(1− γ)
∑

s′
t,at,st

µt(st, at)P (s′
t | st, at)(e(st) − γe(s′

t))

= 1
(1− γ)

∑
st,at

µt(st, at)e(st) − γ
∑

s′
t,at,st

µt(st, at)P (s′
t | st, at)e(s′

t)


= 1

(1− γ) (Bµ− γP µ)

= Tγµ.

Thus, we obtain

E
[
g̃(c,u)((c, u), µ)

]
=
(

2α(ct − ĉ) + µπE
− µt

Tγµ− TγµπE

)
.

For proving the bound on the second-moment, note that

E
[∥∥∥|S||A| · 2α

(
ct(s, a)e(s,a) − ĉ(s, a)e(s,a)

)
+ e(sE ,aE) − e(st,at)

∥∥∥2

2

]
≤ 2E

[
4|S||A|α2

∥∥∥ct(s, a)e(s,a) − ĉ(s, a)e(s,a)
∥∥∥2

2
+
∥∥∥e(sE ,aE) − e(st,at)

∥∥∥2

2

]
≤ 2E

[
4|S||A|α2 · 4 + 2

]
= 32|S||A|α2 + 4,

and

E
[∥∥∥ 1

(1− γ)

(
e(st) − γe(s′

t) − (e(sE) − γe(s′
E))
)∥∥∥2

2

]
≤ E

[
2(1 + γ2)
(1− γ)2

]
= 2(1 + γ2)

(1− γ)2 .

Hence, we can provide the bound

E
[∥∥g̃(c,u)((c, u), µ)

∥∥2
2

] (i)
≤ 2

[
32|S||A|α2 + 4 + 2(1 + γ2)

(1− γ)2

]
= 64α2 · |S||A|+ 4(1 + γ2)

(1− γ)2 + 8.

where in (i) we used ∥x + y∥2 ≤ 2[∥x∥2 + ∥y∥2].
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Lemma 2. Gradient estimator g̃µ((ct, ut), µt) is a (zµ, vµ, ∥ · ∥2)-bounded estimator, with

zµ = 2|S||A|
(1− γ) and vµ = |S||A|

(
2 + 4(1 + γ2)

(1− γ)2

)
.

Proof. The unbiasedness follows from

E[g̃µ((ct, ut), µt)] =
∑

s,a,s′

1
|S||A|

P (s′ | s, a) · |S||A|
(

ct(s, a)e(s,a) − 1
(1− γ) (ut(s)e(s,a) − γut(s′)e(s,a))

)

=
∑
s,a

ct(s, a)e(s,a) − 1
(1− γ)

(∑
s,a

ut(s)e(s,a) − γ
∑
s,a

(∑
s′

P (s′ | s, a)ut(s′)
)

e(s,a)

)

= ct −
1

(1− γ)
(
B⊤u− γP ⊤u

)
= ct − T ⊤

γ u.

For the bound on the maximum entry observe that

∥g̃µ((ct, ut), µt)∥∞ = |S||A|max
s,a,s′

{∣∣∣∣ct(s, a)− ut(s)− γut(s′)
(1− γ)

∣∣∣∣}
≤ |S||A|

(
∥ct∥∞ + ∥ut∥∞

(1 + γ)
(1− γ)

)
= 2|S||A|

(1− γ)

Finally, the bound on the second-moment can be obtained by:

E
[
∥g̃(µ)((ct, ut), µt)∥2

µ′

] (i)
≤ |S|2|A|2 · E

[
2∥ct(s, a)e(s,a)∥2

µ′ + 4
(1− γ)2 (∥ut(s)e(s,a)∥2

µ′ + ∥γut(s′)e(s,a)∥2
µ′)
]

= |S|2|A|2 · E
[
µ′(s, a)

(
2(ct(s, a))2 + 4

(1− γ)2 (ut(s))2 + 4γ2

(1− γ)2 (ut(s′))2
)]

= |S||A|
[∑

s,a

µ′(s, a)
(

2(ct(s, a))2 + 4
(1− γ)2 (ut(s))2

)

+
∑

s′,s,a

µ′(s, a)P (s′ | s, a) 4γ2

(1− γ)2 (ut(s′))2

]

(ii)
≤ |S||A|

(2 + 4
(1− γ)2

)∑
s,a

µ′(s, a) + 4γ2

(1− γ)2

∑
s′,s,a

µ′(s, a)P (s′ | s, a)


= |S||A|

(
2 + 4(1 + γ2)

(1− γ)2

)
,

where we used ∥x + y∥2 ≤ 2[∥x∥2 + ∥y∥2] two times for (i) and that (ct, ut) ∈ B|S||A|
1 × B|S|

1 for (ii).

A.4 Algorithm convergence

We will follow Jin & Sidford (2020) and show how their results accommodates to our problem.
Definition 3 (ℓ∞-ℓ1 convex-concave min-max problem). Let f : Rn × Rm → R be a differentiable function
that is convex in x ∈ Rn and concave in y ∈ Rm. We define the ℓ∞-ℓ1 convex-concave min-max problem as

min
x∈Bn

b

max
y∈∆m

f(x, y).

18
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Furthermore, define the operator

G(z) = G(x, y) = [∇xf(x, y),−∇yf(x, y)] = [gx(x, y), gy(x, y)].

Lemma 3 (cf. Appendix A.1 in Carmon et al. (2019)). For every z1, ..., zK ∈ Z = Bn
b ×∆m it holds that

Gap
(

1
K

K∑
k=1

zk

)
≤ sup

u∈Z

1
K

K∑
k=1
⟨G(zk), zk − u⟩.

Proof. For all z ∈ Z, f(zx, uy) is concave in uy and −f(ux, zy) is concave in ux. Therefore, gap(z, u) is
concave in u for every z and we have

gap(z, u) ≤ gap(z, z) + ⟨∇ugap(z, z), u− z⟩
= ⟨∇ugap(z, z), u− z⟩
= ⟨−G(z), u− z⟩
= ⟨G(z), z − u⟩.

Similarly, gap(z; u) is convex in z for every u. Therefore,

gap
(

1
K

K∑
k=1

zk; u

)
≤ 1

K

K∑
k=1

gap(zk; u) ≤ 1
K

K∑
k=1
⟨G(zk), zk − u⟩,

where the first inequality follows from convexity in z and the second inequality from above’s result. Taking
the supremum over the inequality yields the result.

The two divergences that we will use in the stochastic mirror descent algorithm for the ℓ∞-ℓ1 convex-concave
min-max problem are the following:

1. given the euclidean distance h(x) = 1
2∥x∥

2
2, we obtain the divergence Vx(x′) = 1

2∥x− x′∥2
2;

2. given h(y) =
∑

i yi log yi, we obtain the Kullback-Leibler divergence Vy(y′) =
∑

yi log
(

y′
i

yi

)
.

Theorem 3. Given a ℓ∞-ℓ1 convex-concave-min-max problem 3, desired accuracy ϵ, (vx, ∥ · ∥2)-bounded
estimators g̃x of gx, and ( 2vy

ϵ , vy, ∥ · ∥2
∆m)-bounded estimators g̃y of gy. Algorithm 1 with choice of pa-

rameters ηx ≤ ϵ
4vx , ηy ≤ ϵ

4vy outputs an ϵ-approximate optimal solution within any iteration number
T ≥ max{ 16nb2

ϵηx
, 8 log(m)

ϵηy
}.

Proof. Note that Vx is 1-strongly convex. Since ηy ≤ ϵ
4vy , we have that

∥ηy g̃y
t ∥∞ ≤

ϵ

4vy
· ∥g̃y

t ∥∞ ≤
ϵ

4vy
· 2vy

ϵ
= 1

2 .

Hence, by Lemma 1 and Lemma 2 in Jin & Sidford (2020) we know that∑
t∈[T ]

⟨ηxg̃x
t , xt − x⟩ ≤ Vx1(x) + ηx2

2
∑

t∈[T ]

∥g̃x
t ∥2

2,

∑
t∈[T ]

⟨ηy g̃y
t , yt − y⟩ ≤ Vy1(y) + ηy2

2
∑

t∈[T ]

∥g̃y
t ∥2

yt
.

Now, define ĝx
t := gx

t − g̃x
t , ĝy

t := gy
t − g̃y

t , and the sequences x̂1, ..., x̂T and ŷ1, ..., ŷT by

x̂1 = x1, x̂t+1 = arg min
x∈Bn

b

⟨ηxĝx
t , x⟩+ Vx̂t

(x),

ŷ1 = y1, ŷt+1 = arg min
y∈∆m

⟨ηy ĝy
t , y⟩+ Vŷt(y).

19



Under review as submission to TMLR

In a similar way to ηygy
t , we can bound the ℓ∞-norm of ηy ĝy

t

∥ηy ĝy
t ∥∞ ≤ ∥ηy g̃y

t ∥∞ + ∥ηygy
t ∥∞ = ∥ηy g̃y

t ∥∞ + ∥E[ηy g̃y
t ]∥∞ ≤ 2∥ηy g̃y

t ∥∞ ≤ 1.

Therefore, using the lemmas as above we get

∑
t∈[T ]

⟨ηxĝx
t , xt − x⟩ ≤ Vx1(x) + ηx2

2
∑

t∈[T ]

∥ĝx
t ∥2

2,

∑
t∈[T ]

⟨ηy ĝy
t , yt − y⟩ ≤ Vy1(y) + ηy2

2
∑

t∈[T ]

∥ĝy
t ∥2

yt
.

Since gx
t = ĝx

t + g̃x
t and gy

t = ĝy
t + g̃y

t ,

∑
t∈[T ]

[⟨gx
t , xt − x⟩+ ⟨gy

t , yt − y⟩]

=
∑

t∈[T ]

[
1

ηx
⟨ηxg̃x

t , xt − x⟩+ 1
ηy
⟨ηy g̃y

t , yt − y⟩
]

+
∑

t∈[T ]

[
1

ηx
⟨ηxĝx

t , x̂t − x⟩+ 1
ηy
⟨ηy ĝy

t , ŷt − y⟩
]

+
∑

t∈[T ]

[⟨ĝx
t , xt − x̂t⟩+ ⟨ĝy

t , yt − ŷt⟩]

= 1
ηx

∑
t∈[T ]

[⟨ηxg̃x
t , xt − x⟩] + 1

ηx

∑
t∈[T ]

[⟨ηxĝx
t , x̂t − x⟩] + 1

ηy

∑
t∈[T ]

[⟨ηy g̃y
t , yt − y⟩] + 1

ηy

∑
t∈[T ]

[⟨ηy ĝy
t , ŷt − y⟩]

+
∑

t∈[T ]

[⟨ĝx
t , xt − x̂t⟩+ ⟨ĝy

t , yt − ŷt⟩]

≤ 2
ηx

Vx1(x) + ηx

2
∑

t∈[T ]

[
∥g̃x

t ∥2
2 + ∥ĝx

t ∥2
2
]

+
∑

t∈[T ]

⟨ĝx
t , xt − x̂t⟩

+ 2
ηy

Vy1(y) + ηy

2
∑

t∈[T ]

[
∥g̃y

t ∥2
yt

+ ∥ĝy
t ∥2

yt

]
+
∑

t∈[T ]

⟨ĝy
t , yt − ŷt⟩.

Consider the operator G(z) := [gx(x, y),−gy(x, y)]. As min-max problem 3 is convex in its first argument
and concave in its second argument, by Lemma 3, if we show that

sup
u∈Z

1
T

∑
t∈[T ]

⟨G(zt), zt − u⟩ ≤ ϵ,
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we obtain that Gap( 1
T

T∑
t=1

zt) ≤ ϵ. Now take the expectation on both sides:

E sup
u∈Z

1
T

∑
t∈[T ]

⟨G(zt), zt − u⟩ = E
1
T

sup
(x,y)

∑
t∈[T ]

⟨gx(x, y), xt − x⟩+
∑

t∈[T ]

⟨gy(x, y), yt − y⟩


(i)
≤ 1

T
E sup

(x,y)

[
2

ηx
Vx1(x) + ηx

2
∑

t∈[T ]

[
∥g̃x

t ∥2
2 + ∥ĝx

t ∥2
2
]

+ 2
ηy

Vy1(y) + ηy

2
∑

t∈[T ]

[
∥g̃y

t ∥2
2 + ∥ĝy

t ∥2
2
] ]

(ii)
≤ 1

T
E sup

(x,y)

[
2

ηx
Vx1(x) + ηx

∑
t∈[T ]

∥g̃x
t ∥2

2 + 2
ηy

Vy1(y) + ηy
∑

t∈[T ]

∥g̃y
t ∥2

2

]
(iii)
≤ sup

x

2
ηxT

Vx1(x) + ηxvx + sup
y

2
ηyT

Vy1(y) + ηyvy

(iv)
≤ 4nb2

ηxT
+ ηxvx + 2 log m

ηyT
+ ηyvy

(v)
≤ ϵ,

where in (i) we used that E[⟨ĝx
t , xt − x̂t⟩ | 1, ..., T ] = E[⟨ĝy

t , yt − ŷt⟩ | 1, ..., T ] = 0; (ii) E[∥ĝx
t ∥2

2] ≤ E[∥g̃x
t ∥2

2]
and E[

∑
i[ŷt]i[ĝy

t ]2i ] ≤ E[
∑

i[ŷt]i[g̃y
t ]2i ] due to E[(X − E[X])2] ≤ E[X2]; (iii) due to the assumptions on the

estimators; (iv) by properties of KL-divergence and that 1
2∥x − x0∥2

2 ≤ 2nb2; (v) the choice of ηx = ϵ
4vx ,

ηy = ϵ
4vy , and T ≥ max{ 16nb2

ϵηx , 8 log m
ϵηy }.

Theorem 2. Given ϵ ∈ (0, 1), Algorithm 1 with step-size

η(c,u) = ϵ

4v(c,u) , ηµ = ϵ

4vµ
,

and gradient estimators defined in equation 1 and 2 finds an expected ϵ-approximate solution within any
iteration number

T ≥ max
{
O
(

α2|S|3|A|2

ϵ2

)
, O

(
|S||A| log(|S||A|)

ϵ2

)}
.

Proof. This follows directly from the bounds of the gradient estimators and Theorem 3.

B ϵ-approximate solutions

Proposition 4. Let ((cϵ, uϵ)µϵ) be an ϵ-approximate solution for RLfDα, where µϵ induces a policy πµϵ ∈ Π0

defined by πµϵ(a|s) = µ(a,s)∑
a′ µ(s,a)

. It then holds that

E
[
α∥cϵ − ĉ∥2

2 + ρcϵ(πE)− ρcϵ(πA)
]
≤ ϵ + α∥cA − ĉ∥2

2 + ρcA
(πE)− ρ∗

cA
,

where ((cA, uA), µA) denotes the optimal solution for RLfDα and πA is the policy induced by µA.

Proof. As ((cϵ, uϵ)µϵ) is an ϵ-approximate solution we know that

E
[
L((cϵ, uϵ), µA)− L((cA, V

πµϵ

cA ), µϵ)
]
≤ ϵ.
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Moreover,

L((cϵ, uϵ), µA)− L((cA, V
πµϵ

cA ), µϵ)
=α∥cϵ − ĉ∥2

2 − α∥cA − ĉ∥2
2 + ⟨µπE

− µA, cϵ − T ⊤
γ uϵ⟩ − ⟨µπE

− µϵ, cA − T ⊤
γ V

πµϵ

cA ⟩
(i)=α∥cϵ − ĉ∥2

2 − α∥cA − ĉ∥2
2 + ρcϵ(πE)− ρcϵ(πA)− ρcA

(πE) + ρcA
(πµϵ)

(ii)
≥ α∥cϵ − ĉ∥2

2 − α∥cA − ĉ∥2
2 + ρcϵ(πE)− ρcϵ(πA)− ρcA

(πE) + ρcA
(πA),

where (i) follows from ⟨µ1 −µ2,−T ⊤
γ u⟩ = ⟨ν0, u⟩ − ⟨ν0, u⟩ = 0 and Lemma 2 (Appendix B.1) in Kamoutsi

et al. (2021) and (ii) from ρ∗
cA

= ρcA
(πA) ≤ ρcA

(π) for any policy π ∈ Π0. Rearranging these terms we
arrive to

E
[
α∥cϵ − ĉ∥2

2 + ρcϵ(πE)− ρcϵ(πA)
]
≤ ϵ + α∥cA − ĉ∥2

2 + ρcA
(πE)− ρ∗

cA
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