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ABSTRACT

Quantization is one of the leading techniques to reduce the memory usage of ma-
chine learning models. It works by approximating the weights of a model by some
function with a smaller domain (e.g., replace 32-bit floats with 8-bit integers that
are coefficients in some function that maps back to 32-bit floats).
Although most quantization methods approximate weights with a linear or affine
function, the weights of current machine learning models often exhibit non-linear
behavior at the extremities. Moreover, some studies suggest that the extremities
are important for the end-to-end accuracy.
In this paper, we introduce PTNQ, a novel post-training quantization technique
that approximates weights by searching through a pool of non-linear functions.
We show that PTNQ provides significant advantages over affine functions, achiev-
ing similar accuracy while requiring 2 to 4 fewer bits per coefficient.

1 INTRODUCTION

Quantization is widely used today to reduce the cost of inference in machine learning models. While
models are usually trained with 16- or 32-bit floating-point numbers, they are typically deployed
with smaller data types. This has two important benefits: 1) reduces memory consumption so the
model fits in smaller devices, and 2) may reduce the computation cost (depending on the quantization
method).

Figure 1: Sorted values of a channel of
a weight of the OPT model. In blue, the
best-fit affine function. In red, the data
is interpolated with a non-linear func-
tion (arcsinh).

The most straightforward quantization method consists
in approximating a weight (or parts of it) using a linear
or affine function. A post-training algorithm takes the
weights of a model after training, computes the param-
eters for a linear function so it interpolates the weights in
the best way, and then replaces the weights with coeffi-
cients for that function.

Figure 1 shows the values of a channel of a weight of
the OPT model (Zhang et al., 2022), sorted by increasing
value. It also shows the fitting of an affine function. Al-
though previous work has established that extremities are
important for some models in terms of end-to-end accu-
racy (Dettmers et al., 2022), linear/affine functions do not
capture these values appropriately, as can be seen in the
example.

In this paper, we explore using non-linear functions for
quantization. For example, in Figure 1, arcsinh interpo-
lates the data much better. Non-linear functions are po-
tentially more expensive to handle at run time (e.g., to
dequantize the weights), but since memory accesses are
much more expensive than arithmetic operations, it makes sense to explore the tradeoff of shrinking
memory consumption even if that comes with a slight increase in the number of operations.

We propose a new technique, PTNQ (post-training non-linear quantization), that searches through a
pool of functions for the best fit. We focus on functions that are both invertible and differentiable so
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Figure 2: High-level view of the PTNQ process.

we can use the standard training machinery to find the best parameters for the functions (e.g., SGD
with an LR scheduler) and so we have an easy way to dequantize the weights.

We show that PTNQ outperforms affine functions considerably. PTNQ offers similar accuracy to
affine functions while requiring 2 to 4 fewer bits per coefficient. For example, PTNQ achieves the
same accuracy as an 8-bit affine function with 4 to 6 bits, which is a 25-50% weight size reduction.

2 PTNQ: POST-TRAINING NON-LINEAR QUANTIZATION

PTNQ is a technique for quantizing weights after the training process. Weights are then dequantized
during inference, and the model is executed with its original data type (e.g,, 16-bit floats).

Figure 2 gives an overview of PTNQ. At high-level, PTNQ consists of two phases:

1. Enumeration of candidate quantization methods (quantization functions and parameter se-
lection methods).

2. Evaluation of each quantization method to select the best.

The key motivation for this pipeline is that there is no one-size-fits-all quantization method. There-
fore, PTNQ searches through a list of quantization methods and selects the best one. It is often a
good tradeoff to have a slower quantization process if we get to fit a model in a smaller device. The
cost of quantization is largely outweigh by the cost of training and inference.

In the next sections we detail the process of generating candidates and evaluating them.

2.1 GENERATION OF QUANTIZATION METHODS

The first stage involves generating quantization methods. Each method has three components: a non-
linear function, a method for initializing the function’s parameters, and a parameter optimization
algorithm. It is crucial to have a diverse pool of each of the three components so we can find the
best combination for each model.

2.1.1 NON-LINEAR FUNCTION GENERATION

We first assume that there is a predefined list of primitive non-linear functions. These are combined
up to a user-defined depth k using basic arithmetic operations (e.g., addition and multiplication) and
by composing the functions with each other. The process is illustrated in Figure 3.

The set of generated functions is then filtered so that non-invertible functions are dropped. This
restriction has two motivations. The first is that we need to dequantize the weights during inference.
Having the inverse function guarantees that we can do it efficiently and accurately. The second is
that it simplifies the optimization of the function parameters (next section).

In our implementation we use SymPy1 to generate the inverse functions. The final set of functions
and their inverses is then translated into PyTorch code, implementing both the quantization and
dequantization functions.

1https://www.sympy.org/en/index.html
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Figure 3: Function generation process. We start with a user-defined list of primitive functions. These
are combined with each other up to a specified depth. The non-invertible functions are discarded.
Finally, we generate PyTorch code for the final set of functions and their inverses, which is used for
parameter selection and inference.

Many of the non-linear functions we use, such as logarithms and trigonometric functions, have re-
stricted domains. Outside of their domain, they can produce undefined values that lead to instability
in training and inference. To address this, when generating PyTorch code, we wrap such functions
so that their input is clipped to stay within the domain. The list of all the domain guards we used is
given in Table 1.

2.1.2 INITIALIZATION AND APPROXIMATION OF QUANTIZATION PARAMETERS

Each quantization function has a set of parameters that needs to be selected somehow. For example,
for the candidate function cos(a · x) · s, x is a value of a weight to be quantized, and a and s are
parameters. We use a different set of parameters per channel.

For each function, we try different algorithms for initializing the parameters and then approximating
them. We will show later that a good initialization strategy is critical to achieve good performance.
We implemented three initialization strategies: 1) initialize all parameters as ones, 2) randomly draw
from a standard normal distribution with range [−1, 1], and 3) a technique we call space search. The
motivation behind space search stems from the observation that certain functions require initial
values outside the typical range of [−1, 1] supported by the other two methods.

Space search approximates parameters through an iterative process. The algorithm begins by gener-
ating random parameters with a large range of values as initial candidates. It evaluates these by cal-
culating the MSE between the original weights and their quantized-dequantized versions, after which
the top 10% are kept. From this group, the algorithm computes the average and maximum values for
each channel to generate new parameters within the narrower range [−(max+avg),max+avg]. The
whole process is repeated 50 times and, in the final step, the best parameters from the last iteration
are chosen as the optimal solution.

Each function has a special, and important, scale parameter s. This parameter scales the output
of functions to ensure they range over the full domain of the chosen quantization bitwidth. The
initialization of s follows the standard procedure for affine functions, i.e., it is the ratio between the
input data range and the quantized output data range.

Optionally, after initialization, we can further refine the parameters by using non-linear regression.
We sort the weight values and try to to fit the candidate function better by adjusting the parameters.

2.1.3 TRAINING QUANTIZATION PARAMETERS

Following initialization of the parameters, we then train them. The training proceess aims
to minimize the layer-wise mean squared error (MSE) between the original weights and their
quantized-dequantized counterparts, potentially improving the end-to-end model performance post-
quantization.

We support three different training strategies, each with a different learning rate (LR) scheduler.
The rationale behind focusing on LR schedulers stems from our initial setup, where the parameters
are initially well-approximated. A poorly-tuned LR, especially if set too high, can destabilize the
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Table 1: Domain guards for common non-linear functions. The input to these functions is clipped
to stay within the allowed domain.

Function Domain Guard
log(x) x ≥ 1× 10−5

√
x x ≥ 0.1

arccos(x) −0.99999 ≤ x ≤ 0.99999

arcsin(x) −0.99999 ≤ x ≤ 0.99999

tan(x) Sets the input to ±1 when x = ±∞ to prevent infinite outputs.
arctanh(x) −0.9999 ≤ x ≤ 0.9999

arccosh(x) x ≥ 1

xy x ≥ 0 ∨ y ≥ 1

training and cause parameter divergence. Therefore, it is essential to carefully adjust the LR to
maintain stability and prevent the model from deviating from its favorable starting point.

The three learning rate schedulers supported are:

1. Linear learning rate scheduler, which gradually decreases the learning rate over time.
Specifically, the LR of each parameter group is decayed by a small multiplicative factor
linearly until a predefined milestone epoch is reached. The idea behind this approach is
to provide the training process with enough initial momentum to quickly approach an op-
timal solution, while progressively reducing the learning rate to prevent overshooting or
divergence.

2. Cosine annealing with warm restarts (Loshchilov & Hutter, 2017), in which the learning
rate follows a cosine function, gradually decreasing to a minimum before restarting at a
higher value. The warm restarts allow the model to escape local minima and explore the
solution space more thoroughly. This technique is particularly useful in scenarios where
the model might benefit from periodic boosts to the learning rate to refine the optimization
process.

3. No learning rate scheduler, in which the learning rate is kept constant throughout the train-
ing process, using the initial value from the setup.

The initial learning rate was tuned to avoid disrupting the starting loss value, especially when the
initial parameters were already a good approximation. The initial learning rate we use is 10E/2−1,
where E is exponent of the initial loss. This approach preserves good initializations by using a
smaller learning rate, while allowing poor approximations to start with a higher learning rate so they
converge faster.

2.2 EVALUATION AND SELECTION OF QUANTIZATION METHODS

The last step consists in evaluating each of the quantization methods and selecting the best one,
Each method is benchmarked against commonly used domain-specific metrics, such as accuracy,
perplexity, or word error rate (WER), depending on the task.

We test quantization methods by starting with the highest bitwidth (e.g., 8 bits) and reducing it
one-by-one. To reduce the resources used by the process, PTNQ employs a pruning strategy: if
a quantization method fails at a higher bitwidth (e.g., achieving zero accuracy), it is not evaluated
again at lower bitwidths, as it is unlikely to yield good results.

3 EVALUATION

The goal of this evaluation is to assess whether non-linear functions offer a tangible benefit when
compared with the standard affine functions for quantization. To that end, we implemented a post-
training algorithm on top of PyTorch 2.2.2 and instantiated it with both affine and non-linear func-
tions so we have the same setup for both kinds of functions. To ensure that our implementation of
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Table 2: Models used for evaluation, their number of parameters, and memory required to hold the
weights with 32-bit floats (the baseline). For each model, we also indicate the GPU used for the
experiments, as well as their memory capacity.

Model Parameters Memory GPU vRAM
ViT (Dosovitskiy et al., 2021) 307.0M 1.23 GB Nvidia RTX 3070 8 GB
Wav2Vec (Schneider et al., 2019) 317.0M 1.27 GB Nvidia RTX 3070 8 GB
OPT (Zhang et al., 2022) 350.0M 1.4 GB Nvidia RTX 3070 8 GB
TinyLLama (Zhang et al., 2024) 1.1B 4.40 GB Nvidia RTX 3090 24 GB
Phi-2 (et al., 2023) 2.7B 10.80 GB Nvidia RTX A6000 48 GB
Llama3 et al. (2024) 8.0B 32.00 GB Nvidia A100 80 GB

affine functions is reasonable, we benchmark torchao2 (version 0.3.1) as well, which is the official
PyTorch quantization package. Both our implementation and torchao do quantization per channel.

For 8-bit integer quantization, torchao uses the standard affine technique. However, for 4-bit integer
quantization, it uses piecewise affine functions (Shen et al., 2020), and thus is is potentially more
precise than if using a single affine function, at the expense of increased memory consumption, since
it requires more parameters per channel. We use the default group size (128), which regulates the
granularity of the piecewise function.

We evaluate PTNQ with several state-of-the-art models, as listed in Table 2. We used the smallest
GPU for each model to save costs.

3.1 QUANTIZATION FUNCTIONS

Below is the list of the 19 functions we considered for quantization, where a and s (scale) are learned
parameters. We do not consider combinations of these functions (i.e., k = 0).

x · s log(x · a) · s cos(x · a) · s tanh(x · a) · s arcsinh(x · a) · s
x2 · s

√
x · a · s tan(x · a) · s arcsin(x · a) · s arccosh(x · a) · s

x3 · s 3
√
x · a · s sinh(x · a) · s arccos(x · a) · s arctanh(x · a) · s

ex·a · s sin(x · a) · s cosh(x · a) · s arctan(x · a) · s

3.2 END-TO-END ACCURACY

Table 3 shows the end-to-end accuracy/perplexity/WER (as appropriate) for each of the models and
quantization techniques. We observe that PTNQ outperforms affine in every case. This is expected
since we include an affine function in the pool, which will be picked in the cases where it is the best
option. When compared with torchao, PTNQ outperforms in all but two cases, while having less
parameters and thus requiring less memory.

The key result is that we obtain an accuracy similar to baseline (FP32 weights) with only 4 to 6 bits.
In contrast, affine functions need 6 to 8 bits to achieve the same results, except for the ViT model,
where affine performs reasonably well with 4 bits.

In summary, PTNQ enables a 25% reduction in weight memory usage on average.

3.3 SELECTED FUNCTIONS FOR QUANTIZATION

We used a pool of 19 functions for the experiments, from which PTNQ selects the best function for
the whole model. The parameters of the function (a, s) are selected per channel.

We now investigate how many of these functions are used in practice and whether the usage varies
across models. Figure 4 shows the distribution of the functions selected for quantization for two
models (across all bitwidths), two bitwidths (across all models), and overall. We show the results

2https://github.com/pytorch/ao
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Table 3: Perplexity∗/Accuracy†/WER‡ for each model per method and bitwidth.

Model Baseline Method Bits

4 5 6 7 8

Llama3∗
PTNQ 5.833 5.181 5.163 5.205 5.202

5.223 affine 6.163 5.449 5.193 5.249 5.208
torchao 5.358 – – – 5.208

OPT∗
PTNQ 8.197 8.017 7.770 7.886 7.872

7.935 affine 8.903 8.223 7.806 7.905 7.916
torchao 8.768 – – – 7.917

Phi2∗
PTNQ 5.778 5.710 5.761 5.723 5.694

5.910 affine 6.484 5.969 5.950 5.903 5.907
torchao 5.995 – – – 5.907

TinyLlama∗
PTNQ 7.418 6.898 6.469 6.653 6.564

6.596 affine 7.655 6.966 6.502 6.663 6.605
torchao 7.043 – – – 6.606

ViT†
PTNQ 0.801 0.803 0.806 0.805 0.804

0.801 affine 0.789 0.799 0.805 0.800 0.802
torchao 0.795 – – – 0.802

wav2vec‡
PTNQ 0.02418 0.02327 0.02328 0.02317 0.02290

0.02395 affine 0.02689 0.02373 0.02340 0.02340 0.02397
torchao crash – – – 0.02397

(a) Llama3

(b) ViT

(c) Overall
(d) 8 bits

(e) 4 bits

Figure 4: Distribution of the functions selected for quantization for particular models (4 to 8 bits),
bitwidths (across all models), and overall.

for the best initialization mode for each combination of model and bitwidth only. Each model was
quantized from 4 to 8 bits.

The first thing we note is that only 8 functions are used out of the 19 in the pool. This includes
the affine function, but which is used only for 10% of the cases, showing that the traditionally-used
affine functions are usually not the best choice.

Another interesting observation is that the set of selected functions is very different across models
and bitwidths. For example, for the ViT model we use a different function per bitwidth, repeating
only once. This means that it makes sense to instantiate PTNQ with a large pool of functions so it
can select the best for each case since there is no one-size-fits-all function.
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(a) Llama3 (b) OPT (c) Phi2

(d) TinyLlama (e) ViT (f) Wav2Vec

Figure 5: Comparison of the accuracy/perplexity/WER for 4-bit PTNQ between the best 8 functions.
In blue, we mark the % of improvement between the best and second best functions. In red, we mark
the improvement against the worst function.

We now investigate what is the contribution of each of the 8 functions to the quantization perfor-
mance. For example, is the accuracy between non-linear functions similar and thus we can shrink
the pool of functions? What is the additional accuracy that each function brings?

Figure 5 shows the comparison between the 8 functions. The results refer to PTNQ with 4 bits, and
to the best initialization method for each function. TinyLlama is very interesting: the best function
(arcsin) is over 8% better than the second best. On the other hand, arcsin is almost 14% worse than
the best function for Phi2. We conclude that each function in the pool can have a substantial impact
in the accuracy, and therefore the pool should be kept as large as possible.

We note that the exponential function did not yield meaningful results for 4 bits, as witnessed by
the missing bars in Figure 5. However, it was the best function for almost 7% of the cases of higher
bitwidths (Figure 4).

3.4 IMPACT OF INITIALIZATION AND TRAINING ALTERNATIVES

We now investigate the impact of the initialization method on the accuracy, as well as whether
the training step is beneficial. Figure 6 summarizes the results for 4-bit PTNQ. The ‘nlr’ column
corresponds to the best of the three initialization methods followed by an approximation using non-
linear regression.

In general, we observe that the training step is beneficial, with just one exception (TinyLlama). For
the initialization method, all the four are the best for some model. Differences in accuracy between
different initialization methods are substantial, which suggests that trying multiple methods is a
good strategy.

3.5 INFERENCE PERFORMANCE AND MEMORY USAGE

Table 4 shows the time and memory usage for inference per query (batch size of 1). For PTNQ,
we only show one set of numbers since they are the same for all bitwidths. This is because our
prototype uses 8-bit integers always (setting the leftover bits to zero). Obviously, a production-ready
implementation would pack the bits more tightly and would likely use custom kernels.
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(a) Llama3 (b) OPT (c) Phi

(d) TinyLlama (e) ViT (f) Wav2Vec

Figure 6: Comparison of the accuracy/perplexity/WER for 4-bit PTNQ for different initialization
methods with and without training.

Table 4: Inference time (ms) and memory (GB) for each model per quantization method with a batch
size of 1.

PTNQ Affine torchao 4-bit torchao 8-bit Baseline (FP32)

Model Time Mem Time Mem Time Mem Time Mem Time Mem

Llama3 144 13.5 96 13.9 39 5.4 52 11.8 27 32.2
OPT 45 0.6 21 0.7 17 0.3 15 0.6 10 1.3
Phi2 105 4.2 62 4.3 30 1.9 29 3.8 19 11.1
TinyLlama 41 1.8 20 1.9 22 0.7 19 1.6 15 4.4
ViT 40 0.4 19 0.4 13 0.2 16 0.3 10 1.2
wav2vec 36 0.6 21 0.6 crash – 20 0.6 18 1.5

This data allow us to compare the performance between affine and non-linear functions, as well
as to extrapolate the possible memory savings by comparing with torchao (which packs two 4-bit
coefficients per byte).

First, we observe that PTNQ is slower than using affine functions. Since we use functions that are
less commonly used in ML models, this is to be expected. Frameworks, compilers, and even possibly
the hardware, may need changes to bring the performance of PTNQ on par with affine functions.

Secondly, we note that the memory consumption of PTNQ and affine functions is roughly the same,
despite PTNQ having better accuracy. On the other hand, torchao is obviously faster and consumes
less memory since it has a production-quality implementation. We include the results for torchao as
our implementation of affine functions is directly comparable with torchao 8-bits, thus enabling the
extrapolation of results for PTNQ.

3.6 QUANTIZATION TIME

Figure 7 shows the average quantization time (in minutes) for each model for a single quantization
method (function and parameter initialization method). We further break down the time into the
three main steps of PTNQ: initialization, approximation, and training.

Note that the figure shows the time for a single run of each model. In our experiments, we tested 19
functions, 4 initialization methods, 3 training methods, and 5 bitwidths yielding a total of 1140 runs
per model. Nevertheless, these trials can all be run in parallel.

To reduce the used resources, we implemented an heuristic to prune early functions that showed no
promise of working. Overall, 691 (10.1%) of the trial runs were cut short. Trigonometric functions
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Figure 7: Quantization time per model and time per quantization step. Initialization of of p0 values;
Approximation methods such as NLR; Training time. This is an average value over multiple runs

had the lowest pruning rate (as low as 1.4%). The functions that exceed 10% were: log, x2, x3, and
3
√
x. Perhaps unsurprisingly, as can be seen in Figure 4, these functions were never selected.

4 RELATED WORK

The field of machine learning model quantization is vast, encompassing a wide array of techniques.
For a comprehensive overview, we direct readers to recent surveys (Gholami et al., 2022; Rokh et al.,
2023; Li et al., 2024) that provide a thorough exploration of the broader landscape. Here, we focus
specifically on non-linear post-training quantization, addressing limitations of traditional methods
in handling complex distributions.

Earlier approaches, such as those proposed by Dettmers et al. (2022); Kim et al. (2024b), attempted
to handle outliers by isolating them and processing them separately using sparse algebra. How-
ever, more recent research has shifted towards methods that aim to reduce the impact of outliers
without the need for separate processing. Techniques like QuaRot (Ashkboos et al., 2024) and Spin-
Quant (Liu et al., 2024) propose rotating matrices to effectively eliminate outliers. While these
methods show promise in maintaining model accuracy, they come at the cost of increased computa-
tional overhead due to the additional transformations required during inference.

Lookup table (LUT) quantization has emerged as a flexible alternative to the uniform quantization
techniques, offering the ability to map intervals to arbitrary values. This approach, explored by Wang
et al. (2022) and further developed by FLUTE (Guo et al., 2024), allows for better preservation of
outlier information compared to uniform quantization. LUTs can potentially capture the distribution
of weights more accurately, leading to improved model performance. However, the learning process
for these lookup tables is challenging since LUTs are not differentiable, thus requiring sophisticated
optimization techniques. Additionally, models quantized with LUTs consume more memory when
compared to PTNQ due to the need to store the whole function mapping.

In this work we focus on the quantization of linear layers, which differs from the quantization of
non-linear layers such as Softmax, GELU, or LayerNorm, which has also been explored in recent
years. For example, Kim et al. (2024a) propose an approach that leverages layer-wise sensitivity
analysis through SQNR to determine the optimal quantization method for each of these layers from
a predefined pool of sub methods (Lin et al., 2022; Kim et al., 2021; Li & Gu, 2023).

Quantization with non-linear functions remains relatively unexplored, with logarithmic representa-
tions being the primary focus. Miyashita et al. (2016); Cai et al. (2018) proposed a base-two loga-
rithmic quantization method for low-resolution representation of weights and activations. Building
on this concept, Yan et al. (2024) introduced an integer-only scalar Power-of-Two (PoT) quantiza-
tion scheme that quantizes both weights and activations into PoT representations at low precision. In
this paper, we show that using a broad pool of functions provides increased accuracy and performs
better in a wider range of scenarios.
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Jiang et al. (2024) explore efficient hardware implementations in FPGAs for logarithm-based quan-
tization functions. We believe similar techniques can be be used to optimize inference with the
majority of the functions used in our pool.

5 CONCLUSION AND FUTURE WORK

We presented PTNQ, a post-training quantization technique that searches for the best non-linear
quantization function from a pool. Our results show that PTNQ achieves similar accuracy to affine
functions while using up to 50% fewer bits.

For future work, we plan to explore the use of different functions per layer or even per channel
and assess the impact on accuracy and quantization time. Additionally, we will investigate other
non-linear functions, such as more complex polynomials and combinations of functions from our
test pool. We also aim to develop custom kernels to accelerate inference and study whether further
hardware extensions could enhance inference performance.
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