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ABSTRACT

The rapid advancements in Large Language Models (LLMs) have revolutionized
various natural language processing tasks. However, the substantial size of LLMs
presents significant challenges in training or fine-tuning. While parameter-efficient
approaches such as low-rank adaptation (LoRA) have gained popularity, they of-
ten compromise performance compared to full-rank fine-tuning. In this paper,
we propose Outlier-weighed Layerwise Sampled Low-Rank Projection (OwLore),
a new memory-efficient fine-tuning approach, inspired by the layerwise outlier
distribution of LLMs. Unlike LoRA, which adds extra adapters to all layers,
OwLore strategically assigns higher sampling probabilities to layers with more
outliers, selectively sampling only a few layers and fine-tuning their pre-trained
weights. To further increase the number of fine-tuned layers without a propor-
tional rise in memory costs, we incorporate gradient low-rank projection, further
boosting the approach’s performance. Our extensive experiments across vari-
ous architectures, including LLaMa2, LLaMa3, and Mistral, demonstrate that
OwLore consistently outperforms baseline approaches, including full fine-tuning.
Specifically, it achieves up to a 1.1% average accuracy gain on the Commonsense
Reasoning benchmark, a 3.0% improvement on MMLU, and a notable 10% boost
on MT-Bench, while being more memory efficient. OwLore allows us to fine-tune
LLaMa2-7B with only 21GB of memory. Our code is submitted.

1 INTRODUCTION

The rapid advancements in artificial intelligence (AI) driven by Large Language Models (LLMs) have
fundamentally transformed how people work and communicate. The impressive language capabilities
of LLMs enable a single model to handle various tasks simultaneously, including but not limited to
natural language understanding (Brown et al., 2020; Touvron et al., 2023), text generation (Kocoń
et al., 2023; Anil et al., 2023), machine translation (Jiao et al., 2023), and programming (Surameery &
Shakor, 2023; Tian et al., 2023). However, the massive size of LLMs presents significant challenges
for practical applications and deployment.

To address these challenges, various parameter-efficient approaches have been proposed, including
prompt tuning (Lester et al., 2021; Liu et al., 2021a), adaptors (Houlsby et al., 2019; He et al.,
2021), and low-rank adaptation (LoRA) (Hu et al., 2021; Dettmers et al., 2024). These approaches
enable the fine-tuning of pre-trained LLMs with substantially fewer trainable parameters, making
LLM fine-tuning more feasible in practice. Among these, LoRA (Hu et al., 2021) stands out for its
re-parameterization technique of the pre-trained weight matrix W ∈ Rm×n, expressed as W0 +AB,
where A ∈ Rm×r, B ∈ Rr×n, and r ≪ min(m,n). By fine-tuning only the low-rank adaptor AB
while keeping the pre-trained weight W0 frozen, LoRA significantly reduces the memory usage
and computational costs associated with fine-tuning LLMs, rapidly becoming the preferred method
for such tasks. Despite its efficiency, recent research has highlighted the inferior performance of
low-rank reparameterization compared to full-rank updates in both fine-tuning scenarios (Xia et al.,
2024; Biderman et al., 2024) and pre-training contexts (Lialin et al., 2023b; Zhao et al., 2024). These
findings underscore the need for further exploration into balancing training efficiency with model
performance, particularly in the context of large-scale language models.

In a parallel vein, layerwise sampling for LLM fine-tuning appears to be a promising alternative
for more effectively preserving the full fine-tuning trajectory. Pan et al. (2024) introduced LISA, a
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Figure 1: The comparison among Full Fine-tuning, training with LoRA, and Owlore. Blue modules
are frozen, while orange modules are activated. OwLore non-uniformly samples layers to fine-tune
models with low-rank gradients.

novel fine-tuning approach for LLMs that integrates the concept of importance sampling (Kloek &
Van Dijk, 1978; Zhao & Zhang, 2015) into the fine-tuning process. Instead of using extra adaptors
for all layers, LISA only samples a couple of layers and directly fine-tunes their pre-trained weights,
demonstrating compelling performance gain over LoRA. For simplicity, we refer to approaches that
fine-tune by sampling layers as sampling-based fine-tuning throughout this paper.

However, it remains a challenge to find an optimal layerwise sampling method for pre-trained LLMs.
For instance, our preliminary investigation reveals the following intriguing observations: ❶ the
sampling strategy used by LISA is sub-optimal, failing to compete with a very simple baseline, i.e.
monotonic decreasing sampling probabilities from top to bottom layers as shown in Table 1; ❷ The
sampled layers are fine-tuned in a full-rank manner, which means that increasing the number of
unfrozen layers will significantly raise the memory overhead, as shown in Table 2. As noted in Pan
et al. (2024), LISA’s performance improves with higher rank levels. Therefore, full-rank training
constrains the potential performance gains of LISA. Although memory-efficient low-rank training
methods like GaLore (Zhao et al., 2024) have shown promising results in pre-training, it performs
no better than LoRA in the scenario of fine-tuning (Zhao et al., 2024). These observations motivate
further exploration into more principled methodologies for sample-based fine-tuning, aiming to
enhance both performance and memory efficiency.

Overview. In this paper, we introduce Outlier-weighted Layerwise Sampled Low-Rank Projection
(OwLore), a novel memory-efficient method for fine-tuning large language models (LLMs). Our
approach leverages the unique characteristic of LLMs where certain features and weights—referred
to as outliers—have significantly larger magnitudes than the rest (Kovaleva et al., 2021; Puccetti et al.,
2022; Dettmers et al., 2022; Yin et al., 2024). Based on the principle that layers with more outliers
are more critical for fine-tuning, we assign higher sampling probabilities to layers with a greater
concentration of outliers, essentially forming a rich-get-richer phenomenon, substantially improving
the fine-tuning performance. Our results verify that our outlier-weighted layerwise importance score
outperforms previous layerwise importance scores such as Relative Magnitude (Samragh et al., 2023)
and Block Influence (Men et al., 2024). To further increase the number of fine-tuned layers without a
proportional rise in memory costs, we incorporate gradient low-rank projection (Zhao et al., 2024),
which further provides a performance boost to our approach. The combination of sampling-based
fine-tuning with gradient low-rank projection not only enhances the performance-memory trade-off
of sampling-based fine-tuning but also boosts the effectiveness of gradient low-rank projection in
fine-tuning.

Our extensive experiments across various architectures including LLaMa2 (Touvron et al., 2023),
LLaMa3 (Meta, 2024), and Mistral (Jiang et al., 2023) demonstrate that OwLore consistently
outperforms its baseline approaches including full-parameter fine-tuning. OwLore achieves up to
a 1.1% average accuracy gain on the Commonsense Reasoning benchmark, a 3.0% improvement
on MMLU, and a notable 10% boost on MT-Bench, while being more memory efficient. Notably,
OwLore allows fine-tuning LLaMa2-7B with only 21GB of memory. Note that different from
LoRA which adds additional adaptors, OwLore directly fine-tunes the original pre-trained weights,
preserving the original optimization trajectory while being more memory-efficient.
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2 RELATED WORK

Parameter-Effieient Fine-Tuning (PEFT). PEFT is proposed to reduce the prohibitive cost of LLM
fine-tuning. Various techniques have been proposed in this dynamic field. For instance, prompt
tuning only optimizes input tokens or embeddings while keeping the rest of the model frozen, as
demonstrated in studies (Lester et al., 2021; Li & Liang, 2021; Hambardzumyan et al., 2021; Zhong
et al., 2021). Layer-freezing techniques (Liu et al., 2021b; Brock et al., 2017; Li et al., 2024) enhance
training and fine-tuning efficiency by freezing parts of the layers. Adapter methods (Houlsby et al.,
2019; He et al., 2021; Mahabadi et al., 2021; Diao et al., 2022), incorporate a small auxiliary module
within the model’s architecture, which becomes the exclusive focus of updates during training, thus
minimizing the number of trainable parameters and optimizer states. Among these techniques, Low-
Rank Adaptation (LoRA) (Hu et al., 2021) gains massive attention by applying low-rank matrices to
approximate weight changes during fine-tuning, which can be merged into the pre-trained weights,
leading to no inference overhead. LoRA has been enhanced through various modifications (Zhang
et al., 2023; Renduchintala et al., 2023; Sheng et al., 2023; Liu et al., 2024; Kopiczko et al., 2023;
Dettmers et al., 2024; Zhao et al., 2024) aimed at improving performance and efficiency. Recently,
low-rank has also been explored to pre-train LLM from scratch (Lialin et al., 2023a; Zhao et al., 2024).
GaLore (Zhao et al., 2024) projects the gradient into a low-rank subspace for the update to enable
full-parameter learning while significantly reducing memory usage during optimization. BAdam (Luo
et al., 2024) partitions the entire model into distinct blocks and utilizes a block coordinate descent
framework to update each block individually, either in a deterministic or random sequence.

Layerwise Sampling for LLM Fine-tuning. Importance sampling is a powerful statistical technique
used in machine learning to estimate properties of a particular distribution by sampling from a
different, more convenient distribution. Recently, Pan et al. (2024) explored the idea of importance
sampling to LLM fine-tuning, with the key idea of sampling only γ layers at each step to fine-tuning
while keeping the rest of layers frozen. The proposed method, Layerwise Importance Sampled
AdamW (LISA), outperforms LoRA by a large margin on various benchmarks and even outperforms
full parameters training under certain settings. Inspired by LISA, our paper advances the performance
of layerwise sampling for LLM fine-tuning, by addressing a couple of shortfalls of LISA.

3 LIMITATIONS OF LAYERWISE IMPORTANCE SAMPLED ADAMW (LISA)

In this section, we first introduce LISA’s algorithm and then present our findings of two key limitations
of LISA: the shortcomings of its sampling approach and the significant memory overhead associated
with the sampled layers.

Layerwise Importance Sampled AdamW (LISA). Pan et al. (2024) conducted an in-depth analysis
of LoRA’s training dynamics across layers and revealed an unusual skew in the distribution of
layerwise weight norms, particularly towards the top layer and/or the bottom layer 1, where the norms
are significantly larger compared to other layers. Building upon this insight, the authors proposed
LISA, a novel fine-tuning approach for LLMs, which incorporates the concept of importance sampling
(Kloek & Van Dijk, 1978; Zhao & Zhang, 2015) into the fine-tuning process. In LISA, layers of
the base model are sampled to be unfrozen during training based on a prescribed probability, with
the exception of the top and bottom layers, which remain activated throughout the process. Given a
network with NL layers, the sampling probability of layer ℓ is given as follows:

pℓ =

{
1.0, if ℓ = 1 or ℓ = NL,
γ/NL else.

(1)

where γ controls the expected number of unfrozen layers during optimization. Since LISA does not
require additional adaptors and only fine-tunes an expected γ layers, it notably reduces the memory
usage of LLM fine-tuning.

1Please note that in LISA, the terms ’top’ and ’bottom’ layers refer to the embedding layer and the LLM
head layer, respectively, rather than the first and last Transformer blocks.
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3.1 LIMITATIONS OF LISA

While demonstrating promising results, we observe that the LISA algorithm inherently has two
shortcomings that constrain its memory-performance trade-off:

i. The middle layers of LISA are sampled uniformly, which can result in suboptimal perfor-
mance. To verify this point, we conduct a small experiment where we replace the uniform sampling
with a very simple baseline, i.e. monotonic decreasing sampling, where the sample probability is
monotonically decreasing from shallow layers to deep layers (noted as LISA-D). Table 1 shows that
this simple sampling method often outperforms uniform sampling, verifying our concern.

Table 1: Fine-tuning performance of LLaMA2-7B with various dataset.
Model Method BoolQ PIQA SIQA HellaSwag WinoGrande OBQA Average
Llama2-7B LISA 82.0 79.9 33.5 59.7 79.6 38.8 62.25
Llama2-7B LISA-D 85.1 79.9 33.8 59.8 79.7 38.4 62.78

ii. The sampled layers of LISA are fine-tuned in a full-rank manner, causing a significant
memory increase as the number of sampled layers increases. To illustrate this, we fine-tune
LLaMA2-7B on the GSM8K training set and report the GSM8K score and memory usage of LISA
with various numbers of sampled layers γ, as shown in Table 2. The memory requirement of LISA
rises significantly from 23GB to 36GB as γ increases from 1 to 12. Similarly, the performance
improves consistently with the increase in sampled layers. Since sampling more layers results in
stronger fine-tuning performance, it is crucial to reduce the associated memory overhead as the
number of sampled layers grows.

Table 2: GSM8K scores/memory usage for fine-tuning LLaMA2-7B with various expected sampled
layers γ.

Model Method γ = 1 γ = 2 γ = 4 γ = 8 γ = 12

LLaMA2-7B LISA 16.8/23G 18.8/25G 19.8/27G 19.9/32G 21.7/36G
LLaMA2-7B OwLore 20.0/21G 21.9/22G 23.5/23G 25.7/25G 27.8/27G

4 OUTLIER-WEIGHED LAYERWISE LOW-RANK PROJECTION (OWLORE)

In this section, we introduce our approach, Outlier-weighed Layerwise Low-Rank Projection
(OwLore). We will discuss the underlying rationales, present preliminary results, and detail the
algorithm design.
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Figure 2: OWS Layerwise outlier distribution of LLaMa2 of Equation 2.

The above findings shed light on a principle for designing non-uniform layerwise sampling for LLM
fine-tuning: layers with higher outlier ratios should be prioritized during the fine-tuning process. This
forms the foundation of our proposed method, Outlier-weighed Layerwise Low-Rank Projection
(OwLore), which we will present in detail.

Outlier-Weighed Sampling (OWS). Although LISA-D achieves good performance, it is more
desirable to seek a more principled approach to determine the layerwise sampling probability. In the
context of LLMs, we get inspiration from the unique characteristic of LLMs, outliers, defined as
features and weights exhibiting significantly larger magnitudes compared to the majority of others
(Kovaleva et al., 2021; Puccetti et al., 2022; Dettmers et al., 2022; Sun et al., 2023; Yin et al., 2024).
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Our motivation stems from the crucial role outliers play in optimizing the performance of LLMs.
We believe that layers containing more outliers are more important for fine-tuning. Therefore, we
assign higher sampling probabilities to layers with more outliers during fine-tuning, leading to a
substantial improvement in performance. To formulate, let us consider the input of a layer as X with
dimensions (N×L,Cin), where N and L represent the batch and sequence dimensions, respectively;
and the weight matrix W has dimensions (Cout, Cin). Outlier score of weight Wij is computed as
Aij = ∥Xj∥2 · |Wij|. Here, ∥Xj∥2 is the ℓ2 norm of input feature connected to the weight.

We first calculate the layerwise outlier distribution of a NL-layer as [D1, D2, ..., DNL
], where Dℓ

characterizes the outlier ratio of layer ℓ:

Dℓ =

∑Cout

i=1

∑Cin

j=1 I(Aℓ
ij > τ · Āℓ)

CinCout
, (2)

where Āℓ is the mean of Aℓ and I(·) is the indicator function, returning 1 if Aℓ
ij is larger than τ · Āℓ,

else 0. The layerwise outlier distribution essentially counts up weights whose outlier score is τ 2 times
greater than that layer’s average outlier score. Larger D means more outliers are presented in the
corresponding layer. The sampling probability pℓ of layer ℓ is then calculated as pℓ = γDℓ/

∑NL

i=1Di,
where γ is the hyperparameter inherited from LISA to control the expected number of unfreeze
layers during optimization. At each iteration, only the sampled layers will be fine-tuned, while the
remaining layers are kept frozen. OWS naturally leads to a rich-get-richer3 phenomenon, where
layers containing more outliers during pre-training are sampled and fine-tuned more frequently. The
visualization of layerwise outlier distribution of OWS is illustrated in Figure 2.

Table 3: Fine-tuning performance of LLaMA2-7B with various sampling approaches.
Model Sampling Method BoolQ PIQA SIQA HellaSwag WinoGrande OBQA Average
LlaMa2-7B Uniform (Pan et al., 2024) 82.0 79.9 33.5 59.7 79.6 38.8 62.25
LlaMa2-7B BI (Men et al., 2024) 82.8 79.6 33.2 60.3 80.4 36.6 62.15
LlaMa2-7B RM (Samragh et al., 2023) 83.4 80.4 33.1 57.7 79.8 37.4 61.97
LlaMa2-7B OWS (ours) 85.1 80.3 34.5 59.8 80.5 39.2 63.23

We compare OWS with other layerwise importance scores for sampling-based fine-tuning, including
Uniform (Pan et al., 2024), Relative Magnitude (RM) (Samragh et al., 2023) and Block Influence (BI)
(Men et al., 2024) in Table 3. OWS consistently performs better than other layer importance scores.

Gradient Low-rank Projection. Outlier-weighed sampling addresses our first research question:
how to optimally sample layers for sampling-based LLM fine-tuning. To tackle the second issue of
the substantial memory cost associated with an increasing number of unfrozen layers, we propose to
integrate outlier-weighed sampling with gradient low-rank training. In this approach, the sampled
layers are updated in a low-rank manner. Specifically, we adopt GaLore proposed in Zhao et al.
(2024), wherein for each sampled layer, the gradient matrix is projected into a low-rank subspace
using Singular Value Decomposition (SVD). The optimizer states are subsequently updated in the
corresponding low-rank subspace with a rank level of r, significantly reducing the memory cost of
optimization. We update the gradient subspace every 200 iterations to better capture the dynamic
trajectory of fine-tuning. It is important to note that, while GaLore itself is not a novel approach, we
are the first to demonstrate its effectiveness in the context of sampling-based fine-tuning. Combining
sampling-based fine-tuning with gradient low-rank projection not only enhances the performance-
memory trade-off of sampling-based fine-tuning but also boosts the effectiveness of gradient low-rank
projection in LLM fine-tuning, which is beyond the scope of the original paper.

The above two innovations significantly boost the memory efficiency of OwLore, unlocking the
performance-memory trade-off of sampling-based fine-tuning. At the macro level, we dynamically
sample a limited number of layers to fine-tune at each iteration. At the micro level, each sampled
layers are updated with low-rank gradients. Since the sampled layers are updated in the low-rank
subspace, we can efficiently increase the number of sampled layers γ with only a marginal increase
in memory cost compared to LISA. Additionally, as we sample only a few layers at each fine-tuning

2We empirically find τ = 13 consistently works well and choose it for all experiments in this paper.
3Here, the "rich-get-richer" phenomenon refers to layers with higher initial outlier scores being sampled

more frequently for fine-tuning, which leads to these layers being better trained. However, this does not imply
that these layers will accumulate more outliers over time as a result of the fine-tuning process.
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Algorithm 1: Outlier-weighed Layerwise Low-Rank Projection (OwLore)
Require: number of layers NL, number of training iterations T , sampling period K, sampled layers γ, rank

level r, and U(0, 1) refers to a uniform sampling.
for ℓ← 1 to NL do

Calculate outlier ratio Dj using the Equation 2
pℓ ← γDℓ∑NL

j=1 Dj

▷ Mapping layerwise outlier distribution to sampling probability.

for i← 0 to T/K − 1 do
for ℓ← 1 to NL do

if U(0, 1) > pℓ then
Freeze layer ℓ

if Owlore-Full then
Run AdamW for K iterations ▷ For Owlore-Full, we use the default AdamW optimizer with full

ranks.

if Owlore then
Run gradient low-rank update for K iterations using GaLore Zhao et al. (2024) ▷ For OwLore, we

use GaLore Zhao et al. (2024) with low-rank gradients as shown in Algorithm A.

iteration, we can increase the rank levels r without significantly raising the memory requirements
compared to LoRA. Memory usage analysis is given in Section 5.3. We perform a small search and
find that γ = 5 and r = 128 consistently give us robust performance across models and downstream
tasks. Therefore, we choose γ = 5 and r = 128 as our default settings. We present our algorithm in
Algorithm 1.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the effectiveness of OwLore on multiple
fine-tuning tasks. Details are provided below.

5.1 EXPERIMENTAL SETUP

Pre-trained LLMs. We choose multiple open-source LLMs that are widely used in research and
practice, such as LLaMa2-7B (Touvron et al., 2023), LLaMa3-8B (Dubey et al., 2024), and Mistral-7B
(Jiang et al., 2023).

Fine-tuning Tasks. We choose an extensive range of fine-tuning tasks aiming to provide a thorough
evaluation of OwLore . Our fine-tuning tasks cover three categories: (i) Commonsense Reasoning
(Hu et al., 2023), which includes 8 reasoning tasks including BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), HellaSWag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-e (Clark et al., 2018), ARC-c (Clark et al., 2018), and OBQA (Mihaylov et al., 2018).
(ii) MT-Bench (Zheng et al., 2024), a challenging multi-turn question set to assess the conversational
and instruction-following abilities of models, including 8 common categories: writing, roleplay,
extraction, reasoning, math, coding, STEM, and humanities. We apply GPT-3.5-turbo and GPT-4o as
the judge for MT-Bench; (iii) MMLU (Hendrycks et al., 2020), a massive multitask test consisting of
multiple-choice questions from various branches of knowledge. The test spans 57 tasks including
elementary mathematics, US history, computer science, law, and more. We adopt the 5-shot setting
for MMLU. For Commonsense Reasoning, all models are first fine-tuned on commonsense170k
and then evaluated separately on different tasks, following Hu et al. (2023); For MT-Bench, we first
fine-tune models on the Alpaca GPT-4 dataset (Peng et al., 2023) and then evaluate on MT-Bench
following LISA. The results of MMLU are fine-tuned on the auxiliary training dataset and then
evaluated on MMLU with 5 shots.

PEFT Baselines. We mainly consider four state-of-the-art baselines that are closely related to our
approach: (i) Full fine-tuning (Full FT): all parameters of pre-trained models are fine-tuned. Weights,
gradients, and optimization states are maintained with full rank; (ii) LoRA Hu et al. (2021): LoRA
introduces additional low-rank adaptors and only fine-tunes adaptors, while maintaining pre-trained
weights frozen during training; (iii) GaLore Zhao et al. (2024): pre-trained LLMs are fine-tuned with

6
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low-rank gradient projection. We follow Zhao et al. (2024) and set the rank level to 8 for both GaLore
and LoRA in all fine-tuning tasks; (iv) LISA Pan et al. (2024): LISA is a sampling-based LLM
fine-tuning method, which by default samples 2 layers to fine-tune with full rank at each iteration.
Similar to our approach, both GaLore and LISA directly fine-tune pre-trained weights without adding
additional adaptors.

To provide a comprehensive evaluation of our approach, we introduce two variants: (1) OwLore,
the complete version of our method, and (2) OwLore (Full-Rank), which only adopts OWS and
excludes Gradient Low-Rank Projection. For a fair comparison, OwLore (Full-Rank) strictly adheres
to the settings of LISA, unfreezing γ = 2 layers per iteration and updating them in full-rank. In
contrast, OwLore leverages its memory efficiency by setting γ = 5 and r = 128.

Hyperparameter Tuning. Regarding the hyperparameters of the baselines, we have conducted
extensive hyperparameter tuning for all baselines with LLaMa2-7B and LLaMa3-8B, and report the
results with the best ones. For Mistral-7B, we directly use best hyperparameters of LLaMa3-8B.
Specifically, for the learning rate, we performed a hyperparameter sweep over [1e-4, 3e-4, 7e-5, 5e-5,
1e-5, 5e-6] for each method. For GaLore, we tested several update frequencies for the subspace
[50, 100, 200, 500] and found that 200 works best, consistent with GaLore’s reports. To ensure
a fair comparison, we followed GaLore’s approach and set the rank level to 8 for GaLore and
LoRA, resulting in approximately 24GB memory usage for all methods. Additionally, we thoroughly
analyzed the effect of two hyperparameters, such as rank level and sampled layers, as shown in Figure
3, where our approach consistently demonstrates superior memory benefits. More configurations
details are reported in Appendix C.

5.2 EXPERIMENTAL RESULTS

In this section, we present the empirical results of OwLore in comparison to other baseline methods.

Commonsense Reasoning Benchmark. We first evaluate with 8 commonsense reasoning tasks. The
results are reported in Table 4. Overall, OwLore and OwLore (Full-Rank) consistently outperform Full
FT and other PEFT baselines by a large margin across various LLMs, demonstrating the superiority
of OwLore in LLM fine-tuning. We summarize our key observations below:

Table 4: Fine-tuning performance of LLaMa2-7B, Mistral-7B, and LLaMa3-8B with various ap-
proaches on commonsense reasoning datasets.
Method Mem. BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMa2-7B
Full FT 61G 87.3 79.5 32.7 56.7 80.2 78.5 49.0 40.8 63.1
LoRA 26G 79.7 79.7 34.4 59.9 79.8 79.5 49.7 36.6 62.4
GaLore 36G 81.8 79.4 32.9 60.7 79.6 79.8 49.4 37.6 62.7
LISA 24G 82.0 79.9 33.5 59.7 79.6 80.4 51.1 38.8 63.1
OwLore (Full-Rank) 24G 85.1 80.3 34.5 59.8 80.5 80.1 51.5 39.2 63.9
OwLore 23G 85.4 80.7 34.2 60.3 82.2 80.6 51.0 39.1 64.2

LLaMa3-8B
Full FT 61G 86.8 82.5 33.6 63.1 83.1 83.6 53.3 37.4 65.4
LoRA 26G 87.2 81.0 33.7 62.9 83.3 82.2 54.2 37.0 65.2
GaLore 36G 85.0 81.8 33.1 61.9 83.6 83.5 52.8 38.8 65.1
LISA 24G 87.3 81.6 33.7 61.7 83.6 82.7 54.4 38.8 65.5
OwLore (Full-Rank) 24G 86.8 81.6 34.2 62.9 84.1 81.9 53.3 40.2 65.6
OwLore 23G 86.6 82.3 33.8 63.0 83.5 83.2 55.3 38.6 65.8

Mistral-7B
Full FT 61G 86.5 84.3 33.5 65.1 87.1 83.8 57.5 41.2 67.4
LoRA 26G 87.2 81.0 33.7 62.9 83.3 82.2 54.2 37.0 65.2
GaLore 36G 84.8 82.5 34.4 63.5 85.6 82.5 53.9 37.8 65.6
LISA 24G 84.7 82.9 33.4 64.2 85.8 83.4 54.4 40.5 66.2
OwLore (Full-Rank) 24G 87.3 83.8 33.7 66.1 84.9 83.7 55.3 38.2 66.7
OwLore 23G 87.8 83.9 34.0 66.4 85.6 84.1 57.9 40.4 67.5

1 OwLore approaches significantly outperform other efficient fine-tuning approaches by a
large margin. Applying OWS to LISA (i.e., OwLore (Full-Rank)) achieves a notable average
accuracy boost over LISA on LLaMA2-7B, i.e., 0.8%. Moreover, the low-rank operation further
improves the performance-memory trade-off of OwLore, achieving a 0.3% and 0.8% average accuracy
gain with LLaMa2-7B and Mistral-7B, respectively.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 OwLore approaches consistently outperform full fine-tuning across tasks on LLaMa. We
can observe that both OwLore and OwLore (Full-Rank) can outperform the performance of full
fine-tuning with all models. LISA can match the performance of full fine-tuning for LLaMa models,
whereas GaLore and LoRA perform no better than full fine-tuning. However, only OwLore is able to
match the performance of full fine-tuning with Mistral-7B and all other baselines fail to do so.

3 LLaMa3-8B consistently outperforms LLaMa2-7B on Commonsense Reasoning. As the most
advanced variant of LLaMa, LLaMa3-8B consistently outperforms its previous version. Interestingly,
performance variance between different fine-tuning approaches of LLaMa3 is smaller than LLaMa2.

MT-Bench. We next evaluate OwLore on a more comprehensive benchmark, MT-Bench, featuring
80 high-quality, multi-turn questions designed to assess LLMs on 8 common categories. Results are
presented in Table 5. We can observe that the benefits of OwLore over other PEFT approaches are
more pronounced. All other baselines fail to match the performance of full fine-tuning on MT-Bench
with scores below 6.0, whereas OwLore (Full-Rank) and OwLore both outperform the full fine-tuning
by a large margin. OwLore (Full-Rank) significantly boosts the average score of LISA from 5.92 to
6.46 by solely applying OWS, highlighting the effectiveness of our outlier-inspired sampling.

Table 5: Fine-tuning performance of LLaMa2-7B with various approaches on MT-Bench using
GPT-3.5-turbo as a judge.
Method Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Avg.
Full-FT 7.11 8.11 4.90 2.85 3.75 6.50 7.80 8.10 6.14
LoRA 7.21 7.05 4.95 3.25 3.90 5.70 7.90 7.65 5.95
GaLore 7.05 7.79 3.55 2.89 3.15 6.25 8.30 7.63 5.83
LISA 6.75 7.35 4.35 3.00 3.85 6.85 7.74 7.47 5.92
OwLore (Full-Rank) 7.53 8.00 4.93 3.25 4.53 6.33 8.50 8.57 6.46
OwLore 8.00 7.65 4.95 3.25 4.15 7.45 8.25 8.45 6.52

For MT-bench, we also evaluate the models using GPT-4 as the judge, which is a more commonly
used choice. The results are shown in Table 6. As observed, the performance trend when using
GPT-4 is very similar to that of GPT-3.5-turbo, although the scores evaluated by GPT-4 are generally
lower. Notably, only OwLore (Full-Rank) and OwLore outperform full fine-tuning, with the complete
version of OwLore achieving a significantly higher margin over full fine-tuning.

Table 6: Mean score of LLaMA-2-7B on MT-Bench fine-tuned by six fine-tuning methods over three
seeds using GPT-4o as the judge.
Model Judge Full-FT LoRA GaLore LISA OwLore (Full-Rank) OwLore
LLaMa-2-7B GPT-3.5-turbo 6.14 5.95 5.83 5.92 6.46 6.52
LLaMa-2-7B GPT-4o 4.91 4.58 4.73 4.81 4.95 5.10

Table 7: Fine-tuning performance of LLaMa2-7B with various approaches on MMLU benchmark.
Method Humanities STEM Social Sciences Other Avg.
Full-FT 49.9 41.7 57.5 57.0 51.5
LoRA 46.1 40.8 56.6 56.2 49.9
GaLore 45.4 41.7 55.8 56.0 49.7
LISA 44.9 41.2 54.7 57.6 49.6
OwLore (Full-Rank) 49.1 41.3 58.8 59.1 52.1
OwLore 49.8 42.1 58.6 59.7 52.6

MMLU Benchmark. To draw a more solid conclusion, we also test another widely used benchmark,
i.e., MMLU. The results are shown in Table 7. Our findings highlight that OwLore consistently
outperforms Full FT, while other PEFT methods fall short of dense fine-tuning. Specifically, OwLore
achieves an average score of 52.6, demonstrating significant improvements across various domains
such as Humanities, STEM, Social Sciences, and Others. These results underscore OwLore’s efficacy
beyond full fine-tuning while maintaining superior memory efficiency.

5.3 FINE-TUNING MEMORY USAGE

Thanks to its layerwise sampling and low-rank characteristics, OwLore significantly improves the
memory efficiency of LLM fine-tuning. To verify this, we report the memory cost of various
approaches when used to fine-tune LLaMa2-7B, with a token batch size of 1, as shown in Figure 3.
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Figure 3: Fine-tuning memory usage of using various with LLaMa2-7B. Left: varying sampled
layers. In this scenario, we also vary the rank of LoRA and OwLore from 4 to 128 to provide a
comprehensive analysis. OwLore consistently demonstrates superior memory efficiency across all
configurations. Notably, LISA’s memory advantage over LoRA diminishes as the number of sampled
layers increases. Right: varying ranks. The sampled layer of LISA and OwLore is set as γ = 2.

On the one hand, the low-rank nature of OwLore allows us to unfreeze more layers without a
substantial increase in memory cost compared to LISA. As illustrated in Figure 3-Left, when
increasing γ from 1 to 8, LISA exhibits a notable memory growth from 23GB to 32GB, whereas
OwLore’s memory cost slightly increases from 21GB to 25GB. Compared to LoRA with r = 4,
OwLore facilitates training with a much higher rank (r = 128) while still maintaining a lower
memory cost. On the other hand, Figure 3-Right demonstrates that OwLore enables high-rank
training without significantly compromising memory efficiency, in stark contrast to LoRA. It is
important to note that we do not utilize the layer-wise weight update technique used in GaLore for
the memory measurement, hence the memory cost of GaLore is higher than reported in GaLore.

We further break down the memory usage during LLM fine-tuning, presenting the results in Figure
4-Left. For this analysis, γ is set to 2 for both LISA and OwLore, and r is set to 8 for both LoRA
and OwLore. LoRA incurs a substantial activation memory cost, although its optimizer and gradient
memory requirements are relatively small. In contrast, LISA’s optimizer memory cost is large because
each layer is trained in full rank, yet it benefits from a small activation memory cost. OwLore
effectively combines the advantages of both methods, inheriting the small activation memory of LISA
while significantly reducing the optimizer memory requirement. Notably, this benefit allows OwLore
to fine-tune LLaMa2-7B with only 22GB of memory, demonstrating its superior memory efficiency.

5.4 TRAINING LOSS CURVE
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Figure 4: Left: Mmeory breakdown of various methods using LLaMa2-7B. Right: Fine-tuning loss
of LLaMA2-7B on Alpaca GPT-4 dataset using various methods.

The training loss curve is an effective way to understand the training dynamics of various methods.
Following LISA, we present fine-tuning loss curves of LLaMa2-7B on the Alpaca-GPT4 dataset
using Full FT, LoRA, LISA, and OwLore in Figure 4-Right. At first glance, methods that directly
fine-tune pre-trained weights (i.e., LISA and OwLore) can better mimic the training landscape of full
fine-tuning, compared to LoRA.
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It is worth noting that while OwLore initially falls short of LISA in the early phase of training, it
gradually catches up after 60 iterations and eventually outperforms LISA with a lower loss. We
conjecture that the underlying reason here is that the low-rank update of OwLore is less accurate
than the full-rank update of LISA at the beginning. However, as training progresses, OwLore keeps
updating the subspace, leading to an optimal one.

6 CONCLUSION

In this paper, we study the sampling-based LLM fine-tuning, where at each iteration, only a few layers
are sampled and fine-tuned, instead of the whole model. Specifically, we delve into recently-proposed
LISA (Pan et al., 2024) and unveil two shortcomings that constrain its memory-performance trade-off:
(1) The middle layers of LISA are sampled uniformly, which can result in suboptimal performance.
(2) The sampled layers of LISA are fine-tuned in a full-rank manner, causing a significant memory
increase as the number of sampled layers increases. To solve these problems, we introduce OwLore,
a novel fine-tuning method that assigns higher sampling probabilities to these outlier-rich layers.
This innovative technique enhances fine-tuning performance while maintaining higher memory
efficiency compared to traditional full-rank fine-tuning. The memory efficiency of OwLore could
be further improved by incorporating Low-Rank gradient projection. Combining sampling-based
fine-tuning with gradient low-rank projection not only enhances the performance-memory trade-off
of sampling-based fine-tuning but also boosts the effectiveness of gradient low-rank projection in
LLM fine-tuning, Our experiments across various architectures, including LLaMa2, LLaMa3, and
Mistral, demonstrate that OwLore achieves significant performance improvements while maintaining
higher memory efficiency compared to traditional full-rank fine-tuning.

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Freezeout: Accelerate training
by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems
(NeurIPs), 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, Yong Lin, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language models. arXiv preprint arXiv:2201.08531,
2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121, 2021.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing Wang, Shuming Shi, and Zhaopeng Tu. Is
chatgpt a good translator? yes with gpt-4 as the engine. arXiv preprint arXiv:2301.08745, 2023.

Teun Kloek and Herman K Van Dijk. Bayesian estimates of equation system parameters: an
application of integration by monte carlo. Econometrica: Journal of the Econometric Society, pp.
1–19, 1978.
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A PSEUDOCODE OF GALORE

Following we present the pseudocode for Galore (Zhao et al., 2024). As part of the Owlore algorithm,
the low-rank updating nature of Galore could help to further improve the memory efficiency.

Algorithm 2: GaLore
Input: A layer weight matrix W ∈ Rm×n with m ≤ n. Step size η, scale factor α, decay rates β1, β2,

rank r, subspace change frequency T .
Output: Updated weight matrix Wt.
Initialize first-order moment M0 ∈ Rn×r ← 0

Initialize second-order moment V0 ∈ Rn×r ← 0
Initialize step t← 0
while convergence criteria not met do

Gt ∈ Rm×n ← −∇Wϕt(Wt)
if t mod T = 0 then

U, S, V ← SVD(Gt)
Pt ← U [:, : r] ▷ Initialize left projector as m ≤ n

else
Pt ← Pt−1 ▷ Reuse the previous projector

Rt ← P⊤
t Gt ▷ Project gradient into compact space

Update (Rt) by Adam
Mt ← β1 ·Mt−1 + (1− β1) ·Rt

Vt ← β2 · Vt−1 + (1− β2) ·R2
t

Mt ←Mt/(1− βt
1)

Vt ← Vt/(1− βt
2)

Nt ←Mt/(
√
Vt + ϵ)

G̃t ← α · PNt ▷ Project back to original space
Wt ←Wt−1 + η · G̃t

t← t+ 1

return Wt

B HYPERPARAMETER ANALYSIS
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Figure 5: Fine-tuning loss of LLaMA2-7B using method OwLore on the GSM-8K dataset with
various sampled layers.

τ is the key hyperparameter to obtain the outlier ratio and sampling layers γ is also crucial to OwLore
To obtain intuitive and empirical guidance on these hyperparameter choices, we conduct ablation
studies using LLaMA2-7B models with the GSM-8K dataset and report the results below.
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Table 8: GSM scores for different τ values

Setting τ = 3 τ = 5 τ = 7 τ = 9 τ = 11 τ = 13 τ = 15 τ = 17 τ = 19

GSM Scores 19.18 19.41 20.04 20.62 21.15 20.24 20.17 20.47 19.79

We found that mid-range values of τ , such as 9, 11 and 13, generally lead to better performance. This
may stem from the fact that the outliers screened by these values are more indicative of heavy-tailed
properties. By default, we choose τ = 13 for all experiments of OwLore.

As for the sampling layer γ, it is not surprising that performance improves consistently with the
sampling of more layers. OwLore outperforms LISA with less memory usage across all sampling
layer counts. This is attributed to OwLore’s allocation of higher sampling probabilities to layers
abundant in outliers, combined with its efficient low-rank gradient updating technique.

The training curve across different values of γ is depicted in Figure 5. Notably, fine-tuning with a
higher γ leads to faster convergence and lower loss.

C TRAINING CONFIGURATIONS OF OWLORE

Table 9: Hyperparamters used of OwLore for fine-tuning LLaMa2-7B, LLaMa3-8B, and Mistral-7B
on the Commonsense Reasoning Benchmark.

Hyperparameter LLaMa2-7B LLaMa3-8B Mistral-7B

Batch Size 16 16 16
Max. Sequence Length 512 512 512

Learning Rate 3e-4 7e-5 3e-5
Schedular linear linear linear

Training Epoch 1 1 1
Warmup Steps 0 0 0

dtype bfloat16 bfloat16 bfloat16

Table 10: Hyperparamters used of OwLore for fine-tuning LLaMa2-7B on various benchmarks.

Benchmarks Commonsense Reasoning MT-Bench MMLU GSM8K

Train Samples 170K 52K 99.8K 7.4K
Test Samples 22.4K Alpaca-GPT4 (3.3K) 14K 1.3K
Batch Size 16 16 16 16

Max_length 512 512 512 512
Training Epoch 1 1 1 1
Learning Rate 3e-4 3e-4 3e-4 3e-4
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