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Abstract

Learning from off-policy data is essential for sample-efficient reinforcement learn-
ing. In the present work, we build on the insight that the advantage function
can be understood as the causal effect of an action on the return, and show that
this allows us to decompose the return of a trajectory into parts caused by the
agent’s actions (skill) and parts outside of the agent’s control (luck). Furthermore,
this decomposition enables us to naturally extend Direct Advantage Estimation
(DAE) to off-policy settings (Off-policy DAE). The resulting method can learn
from off-policy trajectories without relying on importance sampling techniques
or truncating off-policy actions. We compare the uncorrected multi-step method,
which has shown strong empirical results despite ignoring off-policy corrections,
to DAE and Off-policy DAE, and provide intuition on when the corrections can
be omitted. Finally, we use the MinAtar environments to illustrate how ignoring
off-policy corrections can lead to suboptimal policy optimization performance.

1 Introduction

Imagine the following scenario: One day, A and B both decide to purchase a lottery ticket, hoping
to win the grand prize. Each of them chose their favorite set of numbers, but only A got lucky and
won the million-dollar prize. In this story, we are likely to say that A got lucky because, while A’s
action (picking a set of numbers) led to the reward, the expected rewards are the same for both A
and B (assuming the lottery is fair), and A was ultimately rewarded due to something outside of their
control.

This shows that, in a decision-making problem, the return is not always determined solely by the
actions of the agent, but also by the randomness of the environment. Therefore, for an agent to
correctly distribute credit among its actions, it is crucial that the agent is able to reason about the
effect of its actions on the rewards and disentangle it from factors outside its control. This is also
known as the problem of credit assignment [Minsky, 1961]. While attributing luck to the drawing
process in the lottery example may be easy, it becomes much more complex in sequential settings,
where multiple actions are involved and rewards are delayed.

The key observation of the present work is that we can treat the randomness of the environment as
actions from an imaginary agent, whose actions determine the future of the decision-making agent.
Combining this with the idea that the advantage function can be understood as the causal effect of
an action on the return [Pan et al., 2022], we show that the return can be decomposed into parts
caused by the agent (skill) and parts that are outside the agent’s control (luck). Furthermore, we
show that this decomposition admits a natural way to extend Direct Advantage Estimation (DAE), an
on-policy multi-step learning method, to off-policy settings (Off-policy DAE). The resulting method
makes minimal assumptions about the behavior (data-collecting) policy and shows strong empirical
performance.

Our contributions can be summarized as follows:
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• We draw connections between Monte-Carlo (MC) methods and DAE, and show that DAE
can be understood as a generalization of MC methods that utilizes the relationship between
states and actions to achieve better sample efficiency.

• We demonstrate that applying DAE directly to off-policy data can be biased in stochastic
environments, and propose a fix to extend DAE to off-policy settings (Off-policy DAE).

• We compare DAE, Off-policy DAE, and the uncorrected multi-step method [Hernandez-
Garcia and Sutton, 2019] and evaluate their performance empirically in both deterministic
and stochastic environments.

2 Background

In this work, we consider a discounted Markov Decision Process (S,A, p, r, γ) with finite state space
S, finite action space A, transition probability p(s′|s, a), expected reward function r : S ×A → R,
and discount factor γ ∈ [0, 1). To reduce notational cluttering, we shall omit the discount factor
in the following discussion unless otherwise stated. A policy is a function π : S → ∆(A) which
maps states to distributions over the action space. The goal of RL is to find a policy that maximizes
the expected return, π∗ = argmaxπ Eπ[G], where G = r0 + r1 + ... and rt = r(st, at). The
value function of a state is defined by V π(s) = Eπ[G|s0=s], the Q-function of a state-action pair is
similarly defined by Qπ(s, a) = Eπ[G|s0=s, a0=a] [Sutton et al., 1998]. These functions quantify
the return we can expect from a given state or state-action pair by following a given policy π, and turn
out to be useful for policy improvements. They are typically unknown and are learned via interactions
with the environment.

Direct Advantage Estimation The advantage function, defined by Aπ(s, a) = Qπ(s, a)− V π(s),
is another quantity that is useful to policy optimization. Recently, Pan et al. [2022] showed that the
advantage function can be understood as the causal effect of an action on the return, and is more
stable under policy variations (under mild assumptions) compared to the Q-function. They argued
that it might be an easier target to learn when used with function approximation, and proposed Direct
Advantage Estimation (DAE), which estimates the advantage function directly by

Aπ = argmin
Â∈Fπ

E
π

( ∞∑
t=0

(rt − Ât)

)2
 , Fπ =

{
f

∣∣∣∣∣∑
a∈A

f(s, a)π(a|s) = 0

}
(1)

where Ât = Â(st, at). The method can also be seamlessly combined with a bootstrapping target to
perform multi-step learning by iteratively minimizing the constrained squared error

L(Â, V̂ ) = E
π

(n−1∑
t=0

(rt − Ât) + Vtarget(sn)− V̂ (s0)

)2
 subject to Â ∈ Fπ, (2)

where Vtarget is the bootstrapping target, and (V̂ , Â) are estimates of the value function and the
advantage function. Policy optimization results were reported to improve upon generalized advantage
estimation [Schulman et al., 2015b], a strong baseline for on-policy methods. One major drawback
of DAE, however, is that it can only estimate the advantage function for on-policy data (note that the
expectation and the constraints share the same policy). This limits the range of applications of DAE
to on-policy scenarios, which tend to be less sample efficient.

Multi-step learning In RL, we often update estimates of the value functions using previous
estimates (e.g., TD(0), SARSA [Sutton et al., 1998]). These methods, however, can suffer from
excessive bias when the previous estimates differ significantly from the true value functions, and it
was shown that such bias can greatly impact the performance when used with function approximators
[Schulman et al., 2015b]. One remedy is to extend the backup length, that is, instead of using one-step
targets such as r(s0, a0) + γQtarget(s1, a1) (Qtarget being our previous estimate), we include more
rewards along the trajectory, i.e., r(s0, a0)+ γr(s1, a1)+ γ2r(s2, a2)+ ...+ γnQtarget(sn, an). This
way, we can diminish the impact of Qtarget by the discount factor γn. However, using the rewards
along the trajectory relies on the assumption that the samples are on-policy (i.e., the behavior policy is
the same as the target policy). To extend such methods to off-policy settings often requires techniques
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such as importance sampling [Munos et al., 2016, Rowland et al., 2020] or truncating (diminishing)
off-policy actions [Precup et al., 2000, Watkins, 1989], which can suffer from high variance or low
data utilization with long backup lengths. Surprisingly, empirical results have shown that ignoring
off-policy corrections can still lead to substantial speed-ups and is widely adapted in modern deep
RL algorithms [Hernandez-Garcia and Sutton, 2019, Hessel et al., 2018, Gruslys et al., 2017].

3 Monte-Carlo Methods and Linear Regression

To build intuition, let us first revisit Monte-Carlo (MC) methods through the lens of regression. In
a typical linear regression problem, we are given a dataset {(xi, yi) ∈ Rn × R}, and tasked to find
coefficients w ∈ Rn minimizing the error

∑
i (w · xi − yi)

2. In RL, the dataset often consists of
transitions or sequences of transitions (as in multi-step methods) and their returns, that is, (τi, Gi)
where τi has the form (s0, a0, s1, a1, ...) and Gi is the return associated with τi. However, τ may be
an abstract object which cannot be used directly for regression, and we must first map τ to a feature
vector ϕ(τ) ∈ Rn.1 For example, in MC methods, we can estimate the value of a state by rolling
out trajectories using the target policy starting from the given state and averaging the corresponding
returns, i.e., E[

∑
t≥0 rt|s0 = s] ≈

∑n
i=1 Gi/n. This is equivalent to a linear regression problem,

where we first map trajectories to a vector by ϕs(τ) = I(s0 = s) (vector of length |S| with elements
1 if the starting state is s or 0 otherwise), and minimize the squared error

L(v) =
∑
i

(∑
s

vsϕs(τi)−Gi

)2
 , (3)

where v is the vector of linear regression coefficients vs. Similarly, we can construct feature maps
such as ϕs,a(τ) = I(s0=s, a0=a) and solve the regression problem to arrive at Qπ(s, a). This
view shows that MC methods can be seen as linear regression problems with different feature maps.
Furthermore, it shows that MC methods utilize rather little information from given trajectories (only
the starting state(-action)). An interesting question is whether it is possible to construct features that
include more information about the trajectory while retaining the usefulness of the coefficients. For
example, let us consider a different feature map ϕs,a(τ) =

∑∞
t=0 I(st=s, at=a), which results in a

vector of size |S| × |A| that counts the multiplicity of each state-action pair in the trajectory. One
trivial solution to this regression problem is the coefficients cs,a = r(s, a) since∑

(s,a)∈S×A

cs,aϕs,a(τ) =
∑

(s,a)∈S×A

r(s, a)

∞∑
t=0

I(st=s, at=a) =

∞∑
t=0

r(st, at) = G. (4)

While this set of features and coefficients can fully explain the return, the coefficients are less
interesting as they do not reflect the long-term effect of the state-action pairs. However, if we add
a constraint for the coefficients cs,a requiring

∑
a cs,aπ(a|s) = 0 for all s ∈ S, then the solution

becomes cs,a = Aπ(s, a) as shown in Equation 1. This suggests DAE can be understood as a
generalization of MC methods by using more informative features.

To see how using more informative features can enhance MC methods, let us consider an example
(Figure 1) adapted from Szepesvári [2010]. Suppose the agent has visited state 2 for k times, then the
MC estimate of the value has Var[V̂ (2)] = C/k, where C is some constant. However, by the time
state 2 has k visits, state 1 would have ∼9k visits, and state 3 would have ∼10k visits. Consequently,
Var[V̂ (3)] ≈ C/10k ≪ Var[V̂ (2)]. This shows a major drawback of MC: it does not utilize the
relationship between states 2 and 3, and therefore, an accurate estimate of V̂ (3) does not improve
the estimate of V̂ (2). TD methods, on the other hand, can utilize this relationship to achieve better
estimates. Since DAE also utilizes intermediate states and actions, we expect it to have a lower
variance on the estimate of V (2) compared to MC. In Figure 1 (right), we compare the estimates
from Batch TD(0) (denoted TD(0) for simplicity) [Sutton et al., 1998], MC, and DAE (Equation 2
with n → ∞). We make the following observations: (1) Since most of the trajectories start from
s0 = 1, both TD(0) and MC share similar variance for V̂ (1). (2) The variance of V̂ (2) is much lower
for TD(0) compared to MC, since TD(0) can utilize V̂ (3). (3) DAE achieves even lower variance on

1This is not to be confused with the features of states, which are commonly used to approximate value
functions.
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Figure 1: Left: An MDP with S = {1, 2, 3, 4}. Both states 1 and 2 have only a single action with
immediate rewards 0 that leads to state 3. State 3 has two actions, u and d, that lead to the terminal
state 4 with immediate rewards 1 and 0, respectively. Right: We compare the values estimated by
three different methods: Batch TD(0), MC, and DAE. Lines and shadings represent the average and
one standard deviation of the estimated values over 1000 random seeds. The dashed line represents
the true value V (1) = V (2) = 0.5. See Appendix A for details.

both V̂ (1) and V̂ (2) compared to both TD(0) and MC. This is likely because DAE not only utilizes
the relationship between states, but also the sampling policy (constraint of Equation 2).

Here, we demonstrated that DAE can be seen as a generalized MC method that utilizes relationships
between states and actions to better estimate the return. However, it remains unclear whether the
features used by DAE are enough to fully explain the return or additional features are needed.

4 Return Decomposition

To begin, we observe that, stochasticity of the returns can come from two sources, namely, (1)
the stochastic policy employed by the agent, and (2) the stochastic transitions of the environment.
To separate their effect, we begin by studying deterministic environments where the only source
of stochasticity comes from the agent’s policy. Afterward, we demonstrate why DAE fails when
transitions are stochastic, and introduce a simple fix which generalizes DAE to off-policy settings.

4.1 The Deterministic Case

First, for deterministic environments, we have st+1 = h(st, at), where the transition probability is
replaced by a deterministic transition function h : S ×A → S . As a consequence, the Q-function of
a given policy π becomes Qπ(st, at) = r(st, at) + V π(st+1), and the advantage function becomes
Aπ(st, at) = r(st, at) + V π(st+1) − V π(st). Let’s start by examining the sum of the advantage
function along a trajectory (s0, a0, s1, a1, ...) with return G,

∞∑
t=0

Aπ(st, at) =

∞∑
t=0

r(st, at) +

∞∑
t=0

(V π(st+1)− V π(st))︸ ︷︷ ︸
telescoping series

= G− V π(s0), (5)

or, with a simple rearrangement, G = V π(s0) +
∑∞

t=0 A
π(st, at). One intuitive interpretation of

this equation is: The return of a trajectory is equal to the average return from the policy (V π) plus the
variations caused by the actions along the trajectory (Aπ). Since Equation 5 holds for any trajectory,
the following equation holds for any policy µ

E
µ

(G− ∞∑
t=0

Aπ
t − V π(s0)

)2
 = 0. (6)

This means that (V π, Aπ) is a solution to the off-policy variant of DAE

L(Â, V̂ ) = E
µ

( ∞∑
t=0

(rt − Ât)− V̂ (s0)

)2
 s.t.

∑
a∈A

π(a|s)Â(s, a) = 0 ∀s ∈ S, (7)
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... ...st

st, at

st+1

at

Step 1:
Agent picks an action
at ∼ π(·|st)

Step 2:
Nature picks a state
st+1 ∼ p(·|st, at)

Figure 2: A two-step view of the state transition process. First, we introduce an imaginary agent
nature, which controls the stochastic part of the transition process. In this view, nature lives in a
world with state space S̄ = S ×A and action space Ā = S. At each time step t, the agent chooses
its action at based on st, and, instead of transitioning directly into the next state, it transitions into
an intermediate state denoted (st, at) ∈ S̄, where nature chooses the next state st+1 ∈ Ā based on
(st, at).We use nodes and arrows to represent states and actions by the agent (red) and nature (blue).

where the expectation is now taken with respect to an arbitrary behavior policy µ instead of the target
policy π in the constraint (cf. Equation 2, with n→∞). We emphasize that this is a very general
result, as we made no assumptions on the behavior policy µ, and only sample trajectories from µ are
required to compute the squared error. However, two questions remain: (1) Is the solution unique?
(2) Does this hold for stochastic environments? We shall answer these questions in the next section.

4.2 The Stochastic Case

The major difficulty in applying the above argument to stochastic environments is that the telescoping
sum (Equation 5) no longer holds because Aπ(st, at) = r(st, at) + E[V π(st+1)|st, at]− V π(st) ̸=
r(st, at) + V π(st+1)− V π(st) and the sum of the advantage function becomes

∞∑
t=0

Aπ(st, at) =

∞∑
t=0

(r(st, at) + E [V π(st+1)|st, at]− V π(st)) = G−
∞∑
t=0

Bπ
t − V π(s0), (8)

where Bπ
t = Bπ(st, at, st+1) = V π(st+1)− E [V π(st+1)|st, at]. This shows that V π(s0) and the

sum of Aπ are not enough to fully characterize the return G (compared to Equation 5). Therefore,
applying DAE may lead to biased results when the environment is stochastic and the data is off-policy
(see Appendix B for a concrete example). In terms of the analogy we developed in Section 3, this
is due to the features being not informative enough to fully capture the variance of the return, and
one way to fix this is to include an additional feature ϕ′(τ)s,a,s′ =

∑∞
t=0 I(st=s, at=a, st+1=s′)

with corresponding coefficients Bπ(s, a, s′). But what exactly is Bπ? To understand the meaning of
Bπ, we begin by dissecting state transitions into a two-step process, see Figure 2. In this view, we
introduce an imaginary agent nature, also interacting with the environment, whose actions determine
the next states of the decision-making agent. In this setting, nature follows a stationary policy π̄
equal to the transition probability, i.e., π̄(s′|(s, a)) = p(s′|s, a). Since π̄ is fixed, we omit it in the
following discussion. The question we are interested in is, how much do nature’s actions affect the
return? We note that, while there are no immediate rewards associated with nature’s actions, they
can still influence future rewards by choosing whether we transition into high-rewarding states or
otherwise. Since the advantage function was shown to characterize the causal effect of actions on the
return, we now examine nature’s advantage function.

By definition, the advantage function is equal to Q(s, a) − V (s).We first compute both Q̄ and V̄
from nature’s point of view (we use the bar notation to differentiate between nature’s view and the
agent’s view). Since S̄ = S ×A and Ā = S , V̄ is now a function of S̄ = S ×A, and Q̄ is a function
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of S̄ × Ā = S ×A× S, taking the form

V̄ π(s, a) = E
π
[
∑
t>0

rt|s0=s, a0=a] = E[V π(s1)|s0=s, a0=a], (9)

Q̄π(s, a, s′) = E
π
[
∑
t>0

rt|s0=s, a0=a, s1=s′] = V π(s′). (10)

We thus have Āπ(s, a, s′) = Q̄π(s, a, s′)− V̄ π(s, a) = V π(s′)− E[V π(s′)|s, a], which is exactly
Bπ(s, a, s′) as introduced at the beginning of this section. Now, if we rearrange Equation 8 into

V π(s0) +

∞∑
t=0

(Aπ(st, at) +Bπ(st, at, st+1)) = G, (11)

then an intuitive interpretation emerges, which reads: The return of a trajectory can be decomposed
into the average return following the policy V π(s0), the causal effect of the agent’s actions Aπ(st, at)
(skill), and the causal effect of nature’s actions Bπ(st, at, st+1) (luck).

Furthermore, this equation admits a generalization of DAE:
Theorem 1 (Off-policy DAE). Given a behavior policy µ and a target policy π and backup length
n ≥ 0. Let Ât = Â(st, at), B̂t = B̂(st, at, st+1), and the constrained squared error

L(Â, B̂, V̂ ) = E
µ

( n∑
t=0

γt
(
rt − Ât − γB̂t

)
+ γn+1V̂ (sn+1)− V̂ (s0)

)2


subject to

{∑
a∈A Â(s, a)π(a|s) = 0 ∀s ∈ S∑
s′∈S B̂(s, a, s′)p(s′|s, a) = 0 ∀(s, a) ∈ S ×A

,

(12)

then (Aπ, Bπ, V π) is a minimizer of the above problem. Furthermore, the minimizer is unique if µ
is sufficiently explorative (i.e., non-zero probability of reaching all possible transitions (s, a, s′)).

See Appendix C for a proof. In practice, we can minimize the empirical variant of Equation 20
from samples to estimate (V π, Aπ, Bπ), which renders this an off-policy multi-step method. We
highlight two major differences between this method and other off-policy multi-step methods. (1)
Minimal assumptions on the behavior policy are made, and no knowledge of the behavior policy is
required during training (in contrast to importance sampling methods). (2) It makes use of the full
trajectory instead of truncating or diminishing future steps when off-policy actions are encountered
[Watkins, 1989, Precup et al., 2000]. We note, however, that applying this method in practice can be
non-trivial due to the constraint

∑
s′∈S B̂(s, a, s′)p(s′|s, a) = 0. This constraint is equivalent to the

Â constraint in DAE, in the sense that they both ensure the functions satisfy the centering property of
the advantage function (i.e., Ea∼π[A

π(s, a)|s] = 0). Below, we briefly discuss how to deal with this.

S ×A S

Zpθ̃(z|s, a)

pθ̃(s
′|s, a, z)

Figure 3: Graphical model of the
CVAE; Z is a discrete latent space.

Approximating the constraint As a first step, we note
that a similar constraint

∑
a∈A Â(s, a)π(a|s) = 0 can be

enforced through the following parametrization Âθ(s, a) =
fθ(s, a) −

∑
a∈A fθ(s, a)π(a|s), where fθ is the underlying

function approximator [Wang et al., 2016b]. Unfortunately,
this technique cannot be applied directly to the B̂ constraint,
because (1) it requires a sum over the state space, which is
typically too large, and (2) the transition function p(s′|s, a) is
usually unknown. To overcome these difficulties, we use a
Conditional Variational Auto-Encoder (CVAE) [Kingma and
Welling, 2013, Sohn et al., 2015] to encode transitions into a
discrete latent space Z such that the sum can be efficiently approximated, see Figure 3. The CVAE
consists of three components: (1) an approximated conditional posterior qϕ̃(z|s, a, s′) (encoder),
(2) a conditional likelihood pθ̃(s

′|s, a, z) (decoder), and (3) a conditional prior pθ̃(z|s, a). These
components can then be learned jointly by maximizing the conditional evidence lower bound (ELBO),

ELBO = −DKL(qϕ̃(z|s, a, s
′)||pθ̃(z|s, a)) + E

z∼qϕ̃(·|s,a,s′)
[log pθ̃(s

′|s, a, z)]. (13)
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Once a CVAE is learned, we can construct B(s, a, s′) from an arbitrary function gθ(s, a, z) by
B(s, a, s′) = Ez∼qϕ̃(·|s,a,s′)[gθ(s, a, z)|s, a, s

′] − Ez∼pθ̃(·|s,a)[gθ(s, a, z)|s, a], which has the prop-
erty that

∑
s′ p(s

′|s, a)B(s, a, s′) ≈ 0 because qϕ̃(z|s, a, s′) ≈ pθ̃(z|s, a, s′).

5 Connection to the Uncorrected Method

The uncorrected method (simply "Uncorrected" in the following) updates its value estimates using
the multi-step target

∑n
t=0 γ

trt + γn+1Vtarget(sn+1) without any off-policy correction. Hernandez-
Garcia and Sutton [2019] showed that Uncorrected can achieve performance competitive with true
off-policy methods in deep RL. The authors also noted that the performance of Uncorrected may be
problem-specific, although no criteria were given. Here, we examine how Off-policy DAE, DAE, and
Uncorrected relate to each other, and give a possible explanation for when Uncorrected can be used.

We first rewrite the square error of Off-policy DAE (Equation 20) into the following form (for ease of
comparison, we use a value target here):(

V̂ (s0)−
( n∑
t=0

γtrt + γn+1Vtarget(sn+1)︸ ︷︷ ︸
Uncorrected

−
n∑

t=0

γtÂt

︸ ︷︷ ︸
DAE

−
n∑

t=0

γt+1B̂t

))2
, (14)

where the underbraces indicate the updating targets of the respective method. We can see now there
is a clear hierarchy between these methods, where DAE is a special case of Off-policy DAE by
assuming B̂ ≡ 0, and Uncorrected is a special case by assuming both Â ≡ 0 and B̂ ≡ 0.

The question is, then, when is Â ≡ 0 or B̂ ≡ 0 a good assumption? Remember that, in deterministic
environments, we have Bπ ≡ 0 for any policy π; therefore, B̂ ≡ 0 is a correct estimate of Bπ in
this case. This means that DAE can be directly applied to off-policy data when the environment
is deterministic. Next, to see when Â ≡ 0 is useful, remember that the advantage function can be
interpreted as the causal effect of an action on the return. In other words, if actions in the environment
tend to have minuscule impacts on the return, then Uncorrected can work with a carefully chosen
backup length. This can partially explain why Uncorrected worked in environments like Atari games
[Bellemare et al., 2013, Gruslys et al., 2017, Hessel et al., 2018] for small backup lengths, because
the actions are fine-grained and have small impact (A ≈ 0) in general.

6 Experiments

We now compare (1) Uncorrected, (2) DAE, (3) Off-policy DAE, and (4) Tree Backup [Precup et al.,
2000] in terms of policy optimization performance using a simple off-policy actor-critic algorithm. By
comparing (1), (2), and (3), we test the importance of Â and B̂ as discussed in Section 5. Method (4)
serves as a baseline of true off-policy method, and Tree Backup was chosen because, like Off-policy
DAE, it also assumes no knowledge of the behavior policy, in contrast to importance sampling
methods. When comparing these methods, only the critic loss is adjusted based on the given method
to minimize potential confounding.

Environment We perform our experiments using the MinAtar suite [Young and Tian, 2019]. The
MinAtar suite consists of 5 environments that replicate the dynamics of a subset of environments from
the Arcade Learning Environment (ALE) [Bellemare et al., 2013] with simplified state/action spaces.
The MinAtar environments have several properties that are desirable for our study: (1) Actions tend
to have significant consequences due to the coarse discretization of its state/action spaces. This
suggests that ignoring other actions’ effects (Â), as done in Uncorrected, may have a larger impact
on its performance. (2) The MinAtar suite includes both deterministic and stochastic environments,
which allows us to probe the importance of B̂.

Agent Design Since (Off-policy) DAE’s loss function depends heavily on the target policy, we
found that having a smoothly changing target policy during training is critical, especially when
the backup length is long. Preliminary experiments indicated that using the greedy policy, i.e.,
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Figure 4: Left: Normalized training curves. Scores were first normalized using the PPO-DAE
baseline and then aggregated over all random seeds, environments, and backup lengths. Lines and
shadings represent the means and 1 standard error of the means, respectively. Right: Distributions of
the evaluation scores obtained by each method with different backup lengths. The dotted horizontal
lines represent the scores obtained by the PPO-DAE baseline.

argmaxa∈A Â(s, a), as the target policy to optimize the DAE loss can lead to divergence, which
is likely due to the phenomenon of policy churning [Schaul et al., 2022]. To mitigate this problem,
we distill a policy by maximizing Ea∼πθ

[Â(s, a)], where Â is the estimated advantage function,
and smooth it using exponential moving average (EMA). The smoothed policy πEMA is then used
as the target policy for the critic loss. Additionally, to avoid premature convergence, we include
a KL-divergence penalty between πθ and πEMA, similar to trust-region methods [Schulman et al.,
2015a]. For critic training, we also use an EMA of past value functions as the bootstrapping target.
While in theory, Off-policy DAE does not require a target network for bootstrapping, we found that
using one is much more stable in practice. In the following experiments, we use target networks for
all methods.

For Off-policy DAE, we additionally learn a CVAE model of the environment. Since learning the
dynamics of the environment may improve sample efficiency by learning a better representation
[Gelada et al., 2019, Schwarzer et al., 2020], we isolate this effect by training a separate network for
the CVAE and the agent can only query p(z|s, a, s′) (conditional posterior) and p(z|s, a) (conditional
prior) from the model, which are necessary to approximate the constraint. See Appendix D for detailed
descriptions of the hyperparameters, network architectures and the pseudocode of the algorithm.

Evaluation Each agent is trained for 10 million frames, and evaluated by averaging the undiscounted
scores of 100 rollout episodes using the trained policy. We also vary the backup length n =
{8, 16, 32}, to test its effects on the performance of different backup methods.

Results For comparison, we use the scores reported by Pan et al. [2022] as on-policy baselines,
which were trained using PPO and DAE (denoted PPO-DAE here). The results are summarized in
Figure 4. See Appendix D for numerical results and learning curves for individual environments. We
make the following observations: (1) From the training curves, we see a clear hierarchy between
Uncorrected→DAE→Off-policy DAE, suggesting that correcting for Â and B̂ are both beneficial. (2)
For deterministic environments (Breakout & Space Invaders), DAE and Off-policy DAE performed on
par with Tree Backup, suggesting that they can compete with true off-policy methods. Interestingly,
we see Off-policy DAE performing slightly better than DAE in Space Invaders, which is likely
because the environment is partially observable, and modelling the transitions as stochastic in this
case can be helpful. Uncorrected, on the other hand, tends to perform worse than other methods,
and the performance deteriorates when the backup length increases. This suggests that including
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Â in the loss can have a major impact on performance. (3) For stochastic environments (Asterix,
Freeway & Seaquest), we see Off-policy DAE outperforming DAE in Freeway and Seaquest, and on
par in Asterix. This suggests that ignoring B̂ can lead to suboptimal performance. Surprisingly, Tree
Backup underperforms the PPO-DAE baselines in these environments, suggesting that stochasticity
may have an adverse effect in this case. Uncorrected, on the other hand, significantly underperforms
other methods, except for Freeway, where it did marginally better than Tree Backup, showing the
importance of off-policy corrections.

7 Related Work

Advantage Function The advantage function was originally proposed by Baird [1994] to extend
RL to continuous time or small time-step domains. Later, it was shown that the advantage function
can be used to relate value functions of different policies [Kakade and Langford, 2002] or reduce
the variance of policy gradient methods [Greensmith et al., 2004]. These properties led to wide
adoption of the advantage function in modern policy optimization methods [Schulman et al., 2015a,b,
2017, Mnih et al., 2016]. More recently, the connection between causal effects and the advantage
function was pointed out by Corcoll and Vicente [2020] and further strengthened by Pan et al. [2022],
proposing DAE to estimate the advantage function in on-policy settings. Our work builds on DAE by
first showing that it can be understood as a generalization of MC methods, and by demonstrating how
it can be extended to off-policy settings.

Multi-step Learning Multi-step methods [Watkins, 1989, Sutton, 1988] have been widely adopted
in recent deep RL research and shown to have a strong effect on performance [Schulman et al., 2015b,
Hessel et al., 2018, Wang et al., 2016a, Gruslys et al., 2017, Espeholt et al., 2018, Hernandez-Garcia
and Sutton, 2019]. Typical off-policy multi-step methods include importance sampling [Munos
et al., 2016, Rowland et al., 2020, Precup et al., 2001], truncating (diminishing) off-policy actions
[Watkins, 1989, Precup et al., 2000], a combination of the two [De Asis et al., 2018], or simply
ignoring any correction. Our approach, on the other hand, does not require importance ratios and is
capable of utilizing the full trajectory, at the cost of having to learn the transition probabilities when
the environment is not deterministic.

Afterstates The idea of dissecting transitions into a two-step process dates at least back to Sutton
et al. [1998], where afterstates (equivalent to nature’s states in Figure 2) were introduced. It was
shown that learning the values of afterstates can be easier in some specialized problems. In the
present work, in contrast, we focus on the effect of possible outcomes from given afterstates rather
than on their values. Our use of CVAE is inspired by Stochastic MuZero [Antonoglou et al., 2021],
which combined the idea of afterstates and discrete latent representations [van den Oord et al., 2017]
to learn stochastic models with strong planning capabilities.

Luck Mesnard et al. [2021] proposed to use future-conditional value functions to capture the
effect of luck, and demonstrated that these functions can be used as baselines in policy gradient
methods to reduce variance. However, a clear definition of luck remained elusive. In this work, we
approached this problem from a causal effect perspective and provide a quantitative definition of luck
(see Equation 11).

8 Discussion

In the present work, we drew connections between MC methods and DAE, and extended DAE
to off-policy settings. This was achieved by considering advantage functions not only from the
decision-making agent, but also the stochastic transitions from the environment.Through experiments
in both stochastic and deterministic environments, we verified that the off-policy correction is crucial
for policy optimization when effects from actions or transitions are non-negligible.

Finally, we note a possible extension. In our work, we found that extending a single-agent problem
into a two-agent problem allows us to fully characterize the return. One interesting question is
whether a similar approach can be used in multi-agent RL problems [Littman, 1994].
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A Details of Figure 1

In this example, we compare the sample efficiency of MC, Batch TD(0) and DAE. We note that there
are only 4 possible trajectories in this environment, depending on the starting state (1 or 2) and the
action chosen at state 3 (u or d). We denote the number of trajectories starting from i and choosing
action a ∈ {u, d} by ni,a, and ni = ni,u + ni,d. The trajectories were sampled using the uniform
policy, i.e., π(u|3) = π(d|3) = 0.5. In the following list, we summarize the estimates from each
method.

• MC: V̂ (1) =
n1,u

n1
, V̂ (2) =

n2,u

n2

• Batch TD(0): V̂ (1) = V̂ (2) = V̂ (3) =
n1,u+n2,u

n1+n2

• DAE: The minimizer of

L(V̂ (1), V̂ (2), Â(3, u), Â(3, d)) = n1,u(1− Â(3, u)− V̂ (1))2 + n1,d(0− Â(3, d)− V̂ (1))2

+ n2,u(1− Â(3, u)− V̂ (2))2 + n2,d(0− Â(3, d)− V̂ (2))2

subject to Â(3, u) + Â(3, d) = 0 (since the sampling policy is uniform).

One can use the method of Lagrange multiplier to solve the DAE problem and arrive at the following
linear equations: (

n1,u − n1,d n1 0
n2,u − n2,d 0 n2

(n1,u + n2,u) n1,u n2,u

)Â(3, u)

V̂ (1)

V̂ (2)

 =

(
n1,u

n2,u

n1,u + n2,u

)
, (15)

Note that there are only 3 equations, since Â(3, u)+ Â(3, d) = 0. Additionally, the solution is unique
only when both n1 > 0 and n2 > 0, otherwise the first row or the second row of the matrix would be
0. For simplicity, we use the pseudoinverse to compute the solution:Â(3, u)

V̂ (1)

V̂ (2)

 =

(
n1,u − n1,d n1 0
n2,u − n2,d 0 n2

(n1,u + n2,u) n1,u n2,u

)+(
n1,u

n2,u

n1,u + n2,u

)
, (16)

where + denotes the pseudoinverse. This explains why the DAE estimates in Figure 1 are slightly
skewed towards 0 at the beginning.
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Figure 5: A simple MDP with S = {1, 2}. State 1 has only a single action, which can lead to state 2
or the terminal state with equal probabilities. State 2 has two actions u and d with rewards 1 and 0,
respectively, and both actions lead to the terminal state.

B Counterexample

In this section, we construct an example to demonstrate that naively applying DAE to off-policy data
can lead to biased results. Consider the environment in Figure 5. Suppose the data is collected with a
behavior policy µ and we wish to estimate values for a target policy π. If we apply DAE directly to
this problem without any off-policy correction, then the loss is equal to

L(Â, V̂ ) =
1

2
µ(u|2)

(
1− Â(2, u)− V̂ (1)

)2
+

1

2
µ(d|2)

(
0− Â(2, d)− V̂ (1)

)2
+

1

2
(0− V̂ (1))2,

(17)

since there are only three possible trajectories in this environment. Now, if we include the constraint
that

∑
a Â(2, a)π(a|2) = 0, then the problem can be solved by the method of Lagrange multiplier

using the following Lagrangian:

L(Â, V̂ ) + λ
∑
a

Â(2, a)π(a|2). (18)

The minimizer (A∗, V ∗) = argminL(Â, V̂ ) is given by:
V ∗(1) = π(u|2)

1+
π(u|2)2
µ(u|2) +

π(d|2)2
µ(d|2)

λ = V ∗(1)

A∗(2, u) = 1− V ∗(1)− V ∗(1)π(u|2)
µ(u|2)

A∗(2, d) = 0− V ∗(1)− V ∗(1)π(d|2)
µ(d|2)

(19)

meaning that V ∗(1) ̸= V π(1) = π(u|2)
2 , and A∗ ̸= Aπ if π ̸= µ. One can also verify that, if π = µ

(on-policy), then (V ∗, A∗) = (V π, Aπ).
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C Proof of Theorem 1

Theorem (Off-policy DAE). Given a behavior policy µ and a target policy π and backup length
n ≥ 0. Let Ât = Â(st, at), B̂t = B̂(st, at, st+1), and the constrained squared error

L(Â, B̂, V̂ ) = E
µ

( n∑
t=0

γt
(
rt − Ât − γB̂t

)
+ γn+1V̂ (sn+1)− V̂ (s0)

)2


subject to

{∑
a∈A Â(s, a)π(a|s) = 0 ∀s ∈ S∑
s′∈S B̂(s, a, s′)p(s′|s, a) = 0 ∀(s, a) ∈ S ×A

,

(20)

then (Aπ, Bπ, V π) is a minimizer of the above problem. Furthermore, the minimizer is unique if µ
is sufficiently explorative (i.e., non-zero probability of reaching all possible transitions (s, a, s′)).

Proof. Since

0 ≤ L(Aπ, Bπ, V π) = E
µ

( n∑
t=0

γt(rt −Aπ
t − γBπ

t ) + γn+1V π(sn+1)− V π(s0)

)2
 = 0,

(21)

and both
∑

a∈A π(a|s)Aπ(s, a) = 0 and
∑

s′∈S p(s′|s, a)Bπ(s, a, s′) = 0 constraints are satisfied,
(Aπ, Bπ, V π) is a minimizer of the problem. For uniqueness, we assume the behavior policy is
sufficiently explorative such that any sequence (s0, a0, r0, ...sn+1) has non-zero probability of being
visited. Now, suppose there exists (A′, B′, V ′) that also minimizes L, i.e., L(A′, B′, V ′) = 0, then
for any sequence (s0, a0, ...st+1), we must have

n∑
t=0

γt(rt −A′
t − γB′

t) + γn+1V ′(sn+1)− V ′(s0) = 0, (22)

otherwise L(A′, B′, V ′) ̸= 0. If we take the conditional expectation over (a0, s1, a1, ...sn+1) condi-
tioned on s0 using the target policy π, then

V ′(s0) = E
π
[

n∑
t=0

γt(rt −A′
t − γB′

t) + γn+1V ′(sn+1)|s0] (23)

= E
π
[

n∑
t=0

γtrt + γn+1V ′(sn+1)|s0], (24)

which means that V ′ satisfies the Bellman Equation. Therefore V ′ = V π uniquely. Similarly, if we
take the expectation over (s1, a1, ...sn+1) conditioned on s0, a0, then

A′(s0, a0) = r(s0, a0) + E
π
[

n∑
t=1

γtrt + γn+1V π(sn+1)|s0, a0]− V π(s0) = Aπ(s0, a0) (25)

Finally, if we take the expectation over (a1, s2, ..., st+1) conditioned on s0, a0, s1, then

γB′(s0, a0, s1) = r(s0, a0)−Aπ(s0, a0) + E
π
[

n∑
t=1

γt′rt′ + γt+1V π(st+1)|s0, a0, s1]− V π(s0)

(26)
= γ(V π(s1)− E[V π(s1)|s0, a0]) = γBπ(s0, a0, s1). (27)

Similarly, we get (A′, B′, V ′) = (Aπ, Bπ, V π) for all (st′ , at′ , st′+1) with 0 ≤ t′ ≤ n by taking the
expectation conditioned on s0, a0, s1, ..., st′−1 in the sequence. By the assumption that µ has non-
zero probability of visiting any sequence, we have (A′, B′, V ′) = (Aπ, Bπ, V π) for all (s, a, s′) ∈
S ×A× S.

Remarks: (1) While we used the squared error as the objective function in the theorem, it can be
replaced with an arbitrary metric in R, as the proof does not rely on properties of the squared error.
(2) For uniqueness, the condition on the behavior policy µ can be relaxed if we only care about
states/actions covered by the target policy π. In that case, we only need the coverage of µ to include
the coverage of π.
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D Details of the MinAtar Experiments

D.1 Pseudocode

The pseudocode of the proposed actor-critic method is provided in Algorithm 1. Here we note
some details about the training process. Unlike typical methods that store 1-step transitions in the
replay buffer, our buffer consists of n-step trajectories. When computing the critic loss, we also
compute the loss for each sub-trajectory as in Pan et al. [2022]. For example, if (s0, a0, ..., sn)
is a sample trajectory, we accumulate the critic loss for all sub-trajectory (si, ai, ..., sn) for all
i ∈ {0, 1, 2, ..., n− 1}. Also, to speed up training, we use parallel actors to sample transitions from
the environments.

Algorithm 1 A simple Off-policy Actor-Critic Algorithm
Require: backup ∈{Uncorrected, DAE, Off-policy DAE}
Require: n (backup length)

1: Initialize actor-critic components Aθ(s, a), Vθ(s), Bθ(s, a, z), πθ(a|s)
2: Initialize CVAE qϕ̃(z|s, a, s′), pθ̃(z|s, a), pθ̃(s′|s, a, z)
3: θEMA ← θ
4: D = {}
5: Dn = {}
6: for t = 0, 1, 2, . . . do
7: Sample transition (s, a, r, s′) with policy πθ

8: Dn ← Dn ∪ {(s, a, r, s′)}
9: if s′ is terminal or |Dn-step| = n then

10: D ← D ∪ {concatenate(Dn)}
11: Dn ← {}
12: end if
13: if t+ 1 mod steps_per_update = 0 then
14: Sample batch of trajectories batch from D
15: if backup = Off-policy DAE then
16: Train qϕ̃(z|s, a, s′), pθ̃(z|s, a), pθ̃(s′|s, a, z) using batch by Equation 13
17: Bθ(s, a, s

′)← Ez∼qϕ̃(·|s,a,s′)[Bθ(s, a, z)|s, a, s′]− Ez∼pθ̃(·|s,a)[Bθ(s, a, z)|s, a]
18: end if
19: Aθ(s, a)← Aθ(s, a)− Ea∼πθEMA

[Aθ(s, a)]
20: Compute critic loss Lcritic according to backup with Aθ, Vθ

21: Anormalized ← stop_gradient(Aθ(s, a)/
√

Var[Aθ])
22: Compute actor loss Lactor = −Ea∼πθ

[Anormalized] + βKLDKL(πθ||πθEMA)
23: Train Lcritic + Lactor with Adam [Kingma and Ba, 2014]
24: θEMA ← τθEMA + (1− τ)θ
25: end if
26: end for
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state
10× 10× n

3x3 Conv2d, 128

3x3 Conv2d, 128

Linear, 1024

Linear, 1 Linear, |A| Linear, |A| Linear, |A| × |Z|

π(a|s) B(s, a, z)A(s, a)V (s)

Figure 6: Network architecture for the actor-critic. Each layer is followed by a ReLU activation
function, except for the output layer. The dashed line indicates that gradients are stopped.

D.2 Actor-Critic Network

In our experiments, we use a convolutional neural network followed by multiple heads to approximate
Aθ, Bθ, Vθ, and πθ (see Figure 6)[Mnih et al., 2016, Wang et al., 2016b]. Since we train both the
actor and the critic using a single network simultaneously, to avoid interference between the two
losses (Lcritic and Lactor), we simply use the representation learned from by the critic to train the actor
by stopping the gradients from Lactor to the shared network. This eliminates the need to balance for
the different loss functions.
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D.3 Conditional Variational AutoEncoder (CVAE) Network

We illustrate the training process and the network architecture in Figure 7. First, we use a discrete
latent space Z which allows us to compute expectations over Z efficiently. This also alleviates
the need to use heuristics such as VQ-VAE [van den Oord et al., 2017] or Gumbel-Softmax [Jang
et al., 2016, Maddison et al., 2016], because we can now compute Ez∼qϕ̃(·|s,a,s′)[log pθ̃(s

′|s, a, z)] =∑
z∈Z qϕ̃(z|s, a, s′) log pθ̃(s′|s, a, z) exactly. Second, to eliminate the need to balance between KL-

divergence loss and the reconstruction loss, the conditional prior is trained using the representation
from the encoder with gradients stopped. This is similar to the approach in VQ-VAE where a prior is
trained separately. Finally, we observed that the posterior can sometimes collapse early in training.
To mitigate this, we add a small entropy penalty for the posterior. Combining everything together, we
have the loss function for CVAE:

LCVAE(θ̃, ϕ̃; s, a, s
′) = DKL(qϕ̃(z|s, a, s

′)||pθ̃(z|s, a))− E
z∼qϕ̃(·|s,a,s′)

[log pθ̃(s
′|s, a, z)]

−βentH(qϕ̃(·|s, a, s
′))

where H(·) is the entropy, and βent controls the strength of the entropy penalty.

D.4 Hyperparameters

In Table 1, we summarize the hyperparameters used in the MinAtar experiments. In general, the agent
was designed to have very few hyperparameters to reduce potential confounding when comparing
different backup methods. Our preliminary experiments found that the effects of the hyperparameters
to be agnostic to backup methods, except for τ which tend to have a larger impact on Off-policy DAE
and DAE, which is likely due to the heavy dependence on the policy when training with DAE-like
loss functions.

For CVAE training, we found the Adam β to have a huge impact on training stability, and using the
default β = (0.9, 0.999) often leads to divergence. Instead, we use the parameters provided by Esser
et al. [2020] and found them to be very effective.

Table 1: List of hyperparameters. Note that for Off-policy DAE, there are two separate optimizers
used for actor-critic and CVAE training. †: not used in Pan et al. [2022].

Group Parameter Value

Environment setting
Sticky Action False

Difficulty Ramping False
Maximum Episode Length† 108000 frames

Shared
(actor-critic training)

Discount γ 0.99
Parallel actors 128

Initial steps before training 25000 frames
Replay Buffer Size 1000000 frames

Backup Length 8/16/32
Optimizer Adam[Kingma and Ba, 2014]

Learning rate 0.00025 (linearly annealed to 0)
Adam β (0.9, 0.999)
Adam ϵ 10−4

Env. steps per update 32
Batch Size 1024 frames

βKL 3.0
τ (EMA weight) 0.999

Off-policy DAE only
(CVAE training)

Latent size |Z| 16
Optimizer Adam

Learning rate 0.00025
Adam β (0.5, 0.9)
Adam ϵ 10−8

βent 0.0001
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′, ŝ′)

3x3 Conv2d, 64

Residual Block

3x3 Conv2d, 128

Residual Block

Batch Norm

3x3 Conv2d

Batch Norm

3x3 Conv2d

+

SiLU

SiLU

Residual
Block

Figure 7: Network architecture and the training graph for the CVAE. Dashed lines indicate that
gradients are stopped. The Decoder uses the same architecture as the encoder with orders reversed
and convolutions replaced with transposed convolutions. Softmax is applied to both qϕ̃(z|s, a, s′)
and pθ̃(z|s, a)) to ensure they are probability distributions over Z (note the Z is a discrete space
in this case). We use binary cross entropy for the reconstruction loss, since states in the MinAtar
environments are binary images.
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Figure 8: Normalized training curves for each backup method and backup length (from left to right:
8, 16, 32). The dashed horizontal line represents the PPO-DAE baseline.

D.5 More Results

In the MinAtar experiments, normalized score were calculated by scorenorm = score−baseline
baseline , where

we use the scores reported by Pan et al. [2022] as baselines.

Table 2: Score comparison between different methods and backup lengths. Results were aggregated
over 20 random seeds. Numbers represent (mean)±(1 standard error).

Environment N Backup Method
Uncorrected DAE Off-policy DAE Tree

Asterix
8 4.5± 0.2 155.6± 5.4 161.5± 5.9 44.3± 1.1

16 2.5± 0.1 194.2± 4.8 207.0± 9.2 39.0± 1.4
32 2.0± 0.1 215.4± 8.1 268.9± 14.0 39.0± 1.3

Breakout
8 5799.9± 611.3 9573.0± 250.1 9423.3± 351.9 9411.4± 505.5

16 5220.1± 448.7 8506.1± 476.6 8887.9± 429.0 10069.0± 288.8
32 3179.3± 661.8 8119.8± 617.5 7372.1± 582.0 10139.8± 338.1

Freeway
8 5.5± 1.8 55.1± 0.1 61.9± 0.6 2.2± 0.4

16 16.8± 1.3 57.6± 0.1 62.3± 0.3 4.1± 1.0
32 8.2± 0.8 58.8± 0.1 62.9± 0.3 5.1± 0.8

Seaquest
8 13.5± 1.5 413.5± 25.1 839.4± 48.3 312.3± 16.4

16 4.1± 0.1 594.3± 36.3 1171.6± 66.6 286.4± 11.6
32 4.0± 0.1 821.6± 52.5 1225.3± 63.7 266.2± 19.1

SpaceInvaders
8 5561.5± 452.3 15116.1± 377.4 18086.9± 419.1 15615.3± 563.0

16 1180.3± 145.0 13478.7± 391.2 16756.8± 460.4 16009.6± 508.1
32 307.7± 32.0 12560.4± 441.4 14970.3± 348.9 17374.2± 584.9
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Figure 9: Training curves of each environment.
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Figure 10: Comparison between Off-policy DAE with and without target network.

D.6 With and Without Target Network

While Equation 20 suggests that a separate target network for critic training is not necessary, in
practice, we have found that using a target network leads to better performance. See Figure 10. In
general, we found the critic loss to be lower when using target networks. One possible explanation is
that using target networks results in biased, but lower variance estimates, which in turn makes the
loss easier to optimize. Further investigation is required to understand the tradeoffs.

D.7 Computational Resources

All experiments were performed on an internal cluster of NVIDIA A100 GPUs. Training an agent
takes approximately 2 hours, depending on the backup method and the environment. For Off-policy
DAE, the training time is significantly longer (approx. 15 hours) due to CVAE training.
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