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Abstract

Graph Neural Networks (GNNs) have shown superior performance in node clas-
sification. However, GNNs perform poorly in the Few-Shot Node Classification
(FSNC) task that requires robust generalization to make accurate predictions for
unseen classes with limited labels. To tackle the challenge, we propose the integra-
tion of Sharpness-Aware Minimization (SAM)—a technique designed to enhance
model generalization by finding a flat minimum of the loss landscape—into GNN
training. The standard SAM approach, however, consists of two forward-backward
steps in each training iteration, doubling the computational cost compared to the
base optimizer (e.g., Adam). To mitigate this drawback, we introduce a novel
algorithm, Fast Graph Sharpness-Aware Minimization (FGSAM), that integrates
the rapid training of Multi-Layer Perceptrons (MLPs) with the superior perfor-
mance of GNNs. Specifically, we utilize GNNs for parameter perturbation while
employing MLPs to minimize the perturbed loss so that we can find a flat mini-
mum with good generalization more efficiently. Moreover, our method reutilizes
the gradient from the perturbation phase to incorporate graph topology into the
minimization process at almost zero additional cost. To further enhance train-
ing efficiency, we develop FGSAM+ that executes exact perturbations periodi-
cally. Extensive experiments demonstrate that our proposed algorithm outperforms
the standard SAM with lower computational costs in FSNC tasks. In particu-
lar, our FGSAM+ as a SAM variant offers a faster optimization than the base
optimizer in most cases. In addition to FSNC, our proposed methods also demon-
strate competitive performance in the standard node classification task for het-
erophilic graphs, highlighting the broad applicability. The code is available at
https://github.com/draym28/FGSAM_NeurIPS24.

1 Introduction
Graph Neural Networks (GNNs) have received significant interest in recent years due to their powerful
ability in various graph learning tasks, e.g., node classification. Numerous GNNs have been developed
accordingly [14, 19, 34]. Despite their successes, GNNs, like traditional neural networks, tend to
be over-parameterized, often requiring extensive labeled data for training to ensure generalization.
However, in real-world networks, many node classes have few labeled instances, which can lead
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to GNNs overfitting, resulting in poor generalization in these limited labeled classes. Recently,
an increasing amount of research is focusing on developing superior GNNs, e.g., Meta-GCN [41],
AMM-GNN [36], GPN [7] and TENT [37], for Few-Shot Node Classification (FSNC) which aims to
classify nodes from new classes with limited labelled instances.

Intuitively, training GNNs for FSNC requires robust model generalization ability for recognizing
unseen classes from a small number of labelled examples. Motivated by the success of the recently
proposed Sharpness-Aware Minimization (SAM) for improving models’ generalization in the vision
domain [11], we suggest incorporating SAM into training GNNs for addressing FSNC tasks. The
core idea of SAM is to perturb the model parameters to find flat minima of the loss landscape,
thereby making the model more generalizable. However, a key drawback of SAM is that it requires
executing two forward-backward steps to complete one optimization step, resulting in twice the time
consumption compared to general optimizers like Adam. Some works [8, 9, 22] have been proposed
to accelerate SAM, but none of them are crafted for graphs, i.e., not leveraging the graph properties
for accelerating SAM.

Figure 1: Comparison of average accuracy and
training time across datasets on different GNNs.
The closer to the top left corner, the better.

This paper mainly focuses on efficient GNN train-
ing in FSNC scenarios by leveraging SAM for
improving the generalization of GNNs on unseen
classes. To tackle the high training cost issue of
SAM, we utilize the connection between GNNs
and MLPs—GNNs discarding Message-Passing
(MP) are equivalent to MLPs with faster training
and worse performance in general—to acceler-
ate training. Specifically, we propose Fast Graph
Sharpness-Aware Minimization (FGSAM) that
uses GNNs for perturbing parameters and employs
MLPs (i.e., GNNs discarding MP) to minimize
perturbed training loss. This speeds up training at
the cost of dropping graph topology information during minimizing the perturbed loss. Interestingly,
we find that the gradient computed in parameter perturbation can be reused when minimizing loss to
explicitly reintroduce topology information with negligible extra cost. Moreover, we can add back
MP during inference to improve performance. To further reduce the computational cost, we propose
FGSAM+ which conducts an exact FGSAM-update at every k steps. As shown in Fig. 1, empirical
results in FSNC tasks show that our proposed FGSAM and FGSAM+ methods outperform both
Adam and SAM, and meanwhile FGSAM+ is even faster than Adam. In addition, we evaluate the
proposed methods in node classification, showing strong results, especially in heterophilic graphs
which are known to be challenging for GNNs [6, 29]. This indicates that our proposed methods can
effectively improve the GNN’s generalization capability for better performance.

The contributions of this paper can be summarized as follows.

• We study the application of SAM in FSNC tasks.
• We propose FGSAM that improves generalization in an efficient way by leveraging GNNs for

sharpness-aware perturbation parameters and employing MLPs to expedite training.
• We further propose an enhanced version named FGSAM+, which conducts the actual FGSAM

at every k steps and approximates it in the intermediate steps.
• We demonstrate strong empirical results of the proposed methods across tasks.

2 Preliminary
Graph Neural Networks. Let G = (V, E) denotes an undirected graph, V = {vi}ni=1 is the node
set and E ⊆ V × V is the edge set. A ∈ Rn×n is the adjacency matrix. Let X = {xi}ni=1 ∈ Rn×d0

be the initial node feature matrix, where d0 is the initial dimension, and Y = {yi}ni=1 ∈ Rn×C

denotes the ground-truth node label matrix, where C denotes the number of classes and yi is the
one-hot encoding of node vi’s label yi. Let H(L) be the output of the last layer of an L-layer GCN,
the prediction probability matrix Ŷ = softmax

(
H(L)

)
is the final output of node classification.

Few-Shot Node Classification. In the FSNC task, the entire set of node classes C can be divided into
two disjoint subsets: base classes set Cbase and novel classes set Cnovel, such that C = Cbase ∪Cnovel and
Cbase ∩ Cnovel = ∅. There are sufficient labeled nodes in Cbase, while there are only a limited number
of labeled nodes in Cnovel. FSNC task aims to learn a model using the sufficient labeled nodes from
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(a) Visualization of Loss Landscape (b) Visualization of Loss Curve
Figure 2: (a): Loss landscape visualization of GNN across tasks and optimizers. (b): Loss of GNN,
MLP and its PeerMLP on the test set over the training process. In these experiments, MLP and
PeerMLP share the same weight space as GNN but are trained without message-passing.

Cbase, enabling it to accurately predict unlabeled nodes (i.e., query nodes Q) in Cnovel, with limited
labeled instances (i.e., support nodes S) from Cnovel.

Sharpness-Aware Minimization (SAM). SAM [11] is an effective method to improve model’s
generalization. Let Dtr = {(xi,yi)}ni=1 be the training dataset, following distribution D. Given a
model parameterized by w and a commonly used loss function (e.g., cross-entropy loss) ℓ, instead
of directly minimizing training loss LDtr(w) = 1

n

∑n
i=1 ℓ(xi,yi;w), SAM aims to minimize the

population loss LD(w) = E(x,y)∼D[ℓ(x,y;w)] by minimizing the vanilla training loss as well as
the loss sharpness (i.e., find parameters whose neighbors within the ℓp ball also have low training
loss LDtr ) as follows:

w∗ = argmin
w

{
max

∥ϵ∥p≤ρ

[
LDtr(w + ϵ)− LDtr(w)

]
+ LDtr(w) + λ∥w∥22

}
= argmin

w

{
max

∥ϵ∥p≤ρ
LDtr(w + ϵ) + λ∥w∥22

}
,

(1)

where ρ is the radius of the ℓp ball, and p ≥ 0 (usually p = 2). In this way, the model can converge to
flat minima in loss landscape (w∗), making the model more generalizable [11]. For efficiency, SAM
applies first-order Taylor expansion and classical dual norm problem to obtain the approximation:

ϵ̂ = ρ
∇wLDtr(w)

∥∇wLDtr(w)∥
≈ argmax

∥ϵ∥p≤ρ

LDtr(w + ϵ). (2)

Finally, SAM computes the gradient w.r.t. perturbed model w + ϵ̂ for update w in Eq. (1):

∇w max
∥ϵ∥p≤ρ

LDtr(w + ϵ) ≈ ∇wLDtr(w + ϵ̂) ≈ ∇wLDtr(w)|w+ϵ̂. (3)

Additional Related Works. The effectiveness of SAMs and its variants have been widely verified in
computer vision area [1, 8, 9, 11, 20, 22, 42]. Specifically, LookSAM [22] speeds up the SAM by
periodically conducting exact perturbation, and Sharp-MAML [1] firstly focusing on meta-learning
tasks. However, there is limited work on developing SAM for graphs. WT-AWP [38] is the first
SAM-like work that applied to GNN and gives a theoretical analysis of generalization bound on
graphs. Compared to these works, our proposed FGSAM is crafted for graphs by its unique property,
enabling the first SAM-like algorithm that can be faster than the base optimizer. Our work also shares
some similarities with existing works [16, 39] that explore the connection between GNNs and MLPs.
However, they attributed the claim that introducing MP to MLP can improve performance during
evaluation to the powerful generalization ability of MP. In contrast, we prove that for the linear case
with synthetic graphs, whether there is MP or not, both will converge to the same optimal solution,
taking a solid step toward understanding the underlying reasons.

3 Methodology
In this section, we propose Fast Graph Sharpness-Aware Minimization (FGSAM), an efficient version
of SAM for GNNs, aiming to reduce the training time when using SAM in FSNC tasks while
improving model’s generalization.

3.1 Motivating Analysis
SAMs are a series of new general training scheme used to improve the model’s generalization, thus it
is intuitive to use SAM in FSNC tasks. However, there is no work studying how to apply SAM to
FSNC tasks. So our first question is: Q1: Can SAM benefit few-shot node classification tasks?
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Table 1: Time consumption of 200 episodes training (sec.) of baseline w/ and w/o MP (only consider
feed-forward and -backward).

CoraFull DBLP ogbn-A
Bseline Backbone 5N3K 10N3K 5N3K 10N3K 5N3K 10N3K

Meta-GCN GNN 9.56 9.38 17.61 17.50 41.09 40.96
PeerMLP 1.11 1.17 1.35 1.54 1.02 1.17

A key property of FSNC is that the GNNs need to be generalized to unseen classes (i.e., novel classes),
and the GNNs often converge to a relatively low loss on the training set, but the final performance
depends on the GNNs’ generalization ability. To demonstrate this intuitively, we plot the GNN’s loss
landscape of novel classes under the FSNC setting and of the test set under the NC setting (Fig. 2a),
following previous work [21]. The loss landscape of GNN under the FSNC setting is sharp and not
smooth, with many local minima, in contrast to the flat and smooth loss landscape of GNN under the
NC setting. This to some extent indicates that the FSNC setting poses a greater challenge to GNNs,
which is consistent with our prior knowledge. Hence, applying SAM-like techniques can intuitively
improve the generalization of GNN and enhance its performance.

However, another problem arises: training GNN on FSNC is already slow, and the core drawback of
SAM is that it requires twice the training cost compared to Adam or SGD. Q2: Can we find a way
to reduce the SAM training cost based on GNN properties?

It is well known that the training speed of GNNs is slower than MLPs, mainly due to the notorious
MP that causes significant time consumption, yet MP is essential for improving GNN performance.
Removing the MP from GNNs fgnn({X,A};w) turns them into MLPs fmlp(X;w), which is an
intriguing connection. As shown in Tab. 1 and Fig. 2b, MLPs without the burden of MP demonstrate
a substantial training time advantage under the same settings as GNNs and can achieve nearly the
same performance as GNNs on the training set, however, they perform significantly worse on the test
set, revealing their poor generalization performance.

Inspired by previous work [16], it is appealing to remove MP during training, but reintroduce it in
inference (PeerMLP). Although reintroducing MP after training can improve the performance, it still
cannot surpass GNNs’ (Fig. 2b). This may be because of the lack of graph topology information in
training. Hence, we propose minimizing training loss on PeerMLPs but minimizing the sharpness
according to GNNs, implicitly incorporating the graph topology information in training. This allows
the model to quickly converge to the vicinity of local minima and further converge to flat GNN local
minima through a GNN’s sharpness-aware approach. By doing so, we not only introduce SAM to
enhance the model’s generalization ability and the information w.r.t graph topology but also leverage
the intriguing connection between MLPs and GNNs to improve training speed.

3.2 FGSAM

We elaborate our proposed method Fast Graph Sharpness-Aware Minimization (FGSAM). For
the ease of reference, Fig. 3a visualizes the framework of FGSAM, so does to its enhanced version
FGSAM+. There are two forward-backward steps in the FGSAM-update.

Step 1: Graph sharpness-aware perturbation. The first forward-backward step is served for
computing the maximum perturbation ϵ̂ (Eq. (2)), where we propose to perturb parameters with MP
(GNN), i.e.,

ϵ̂ = ρ
ggnn

∥ggnn∥
= ρ

∇wLG(w; fgnn)

∥∇wLG(w; fgnn)∥
= ρ

∇wL(fgnn(G;w),Y)

∥∇wL(fgnn(G;w),Y)∥
(4)

Step 2: Minimizing perturbed loss. We propose to minimize the perturbed loss by removing the
MP (PeerMLP) to speed up training, i.e.,

w∗ = argmin
w

LX(w + ϵ̂; fmlp) = argmin
w

L(fmlp(X;w + ϵ̂),Y)

= argmin
w

L(fgnn(Ĝ = {X, I};w + ϵ̂),Y).
(5)

It is clear that minimizing the loss on PeerMLPs is equivalent to minimizing the loss on GNNs
ignoring the topology information. As demonstrated in Sec. 3.1, intuitively the proposed approach
can make model convergence near the local minima easily due to the connection between MLPs and
GNNs, and perturbing parameters with MP can find the good flat minima of GNNs (see Fig. 2a).

Reintroducing Graph Topology in Minimization with Free Lunch. While reintroducing the MP
in evaluation can improve performance, its absence during the minimization process may result in
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(a) Visualization of FGSAM and FGSAM+ (b) Gradient difference curves

Figure 3: Left (a): The solid line indicates that the gradient is computed on the corresponding
model, while the dashed line indicates the opposite. Right (b): The difference of gradients (i.e.,
∥gt+1 − gt∥2). It can be seen that gv and gG change much slower than gs and gh across the training
process, thus can be reused in the intermediate steps.

sub-optimal results. Incorporating MP directly into the minimization is computationally expensive,
leading us to employ MLP to minimize the perturbed loss. Fortuitously, the gradient w.r.t. MP
is computed during the perturbation step, offering an opportunity for computational savings. We
propose to capitalize on the already available gradient information from the first step by reusing it in
the optimization procedure, as formalized in the following optimization target:

w∗ = argmin
w

{
λ× LG(w; fgnn) + LX(w + ϵ̂; fmlp)

}
, λ ≥ 0. (6)

This formulation implies that the computational cost of involving MP in the optimization is mitigated
since the forward and backward passes are precomputed in the initial step. Thus, we effectively inte-
grate graph topology into the minimization process almost without incurring additional computational
expense, akin to receiving a free lunch. See detailed FGSAM in Algorithm 1.

Adaptation to MAML Models. Model-Agnostic Meta-Learning (MAML) [10] is widely used in
FSNC tasks [7, 37], involving two separate update steps in one MAML-update: i) pre-training for
learning task-relevant knowledge, and ii) meta-update for task-irrelevant update. This is different from
standard gradient descent. Hence for integrating the FGSAM into the MAML models, we propose
treating the MAML-update process as a single entity, and applying the FGSAM-update only once
simplifies the implementation. This contrasts with the Sharp-MAML [1], where the SAM-update is
applied separately in the two stages.

3.3 FGSAM+

Although the training time of FGSAM can be largely faster than naïve SAM by ignoring the MP in
minimizing perturbed loss, it still requires a full forward-backward step of GNN, which makes our
approach need an extra computation cost for a forward-backward step of PeerMLP, compared to the
base optimizer.

Fortunately, the forward-backward step of GNN is mainly for perturbing parameters in FGSAM, thus
we can further reduce the training time while maintaining performance, by employing FGSAM-update
at every k step (i.e., perturb parameters at every k step) and reusing the preserved gradients from
parameters perturbation into the intermediate steps [22]. Eq. (3) can be rewritten as:

∇wLDtr(w)|w+ϵ̂ ≈ ∇wLDtr(w + ϵ̂) ≈ ∇w

[
LDtr(w) + ρ∥∇wLDtr(w)∥

]
. (7)

In this way, SAM-gradient gs is composed by the vanilla gradient∇wLDtr(w) and the gradient of
the ℓ2-norm of vanilla gradient∇w∥∇wLDtr(w)∥.
This suggests that SAM-gradient gs = ∇wLDtr(w)|w+ϵ̂ can be divided into two orthogonal
parts [22]: gh (in the direction of vanilla gradient g = ∇wLDtr(w) ) is used to minimize the
loss value, and flatness-gradient gv is used to adjust the updates towards a flat region. So gh and gv
can be easily obtained if gs and g are given:

gh = ∥gs∥ cos θ
g

∥g∥
= ∥gs∥

gs · g
∥gs∥∥g∥

g

∥g∥
, gv = gs − gh, (8)

where θ is the angle between gs and gh. As illustrated in [22], gv changes much slower than gs
and gh, thus we can compute and preserve gv at every k steps, and reuse it to approximate gs in
intermediate steps.
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However, in our case, there exists a clear gap between the model used for perturbing (GNN) and for
minimizing (PeerMLP). This is different from the approach in [22], which uses the same model for
both. Thus we use an extra PeerMLP forward-backward step to get another gmlp for computing gv to
reduce the gap:

gmlp = ∇wL(fmlp(X;w)) = ∇wL(w; fmlp), gs = ∇wL(w; fmlp)|w+ϵ̂. (9)

Note that the ϵ̂ is obtained by perturbing parameters with MP Eq. (4), gs and gmlp are obtained
without MP, thus there still exists a gap.

Moreover, since we reintroduce graph topology (Eq. (6)) in minimization, we propose to further use
the extra PeerMLP step to reuse graph topology for better performance. Specifically, we conduct the
gradient w.r.t. topology information by projection as follows:

gG = ggnn − ∥ggnn∥ cos(θ′) gmlp

∥gmlp∥
, (10)

where θ′ is the angle between ggnn and gmlp. This can be reused in a similar way as gv when
approximating FGSAM-update in the intermediate steps. We further conduct experiments to verify
whether the gG and gv will change slowly so that they can be reused for speed up in our approach.
We plot the change of gs, gh, gv and gG (Fig. 3b) and the results show that the projected gradient
both gv and gG on parameters perturbed with MP shows a much more stable pattern and slower
changes than gs and gh, indicating the feasibility of updating gv and gG every k steps and reusing it
for the intermediate steps. We present the detailed FGSAM+ in Algorithm 1 in Appendix B.

Since we need an extra PeerMLP forward-backward step at every k step, the overall computation cost
of our approach, FGSAM+, will be 1

k× the computation cost of GNNs plus (1+ 1
k )× the computation

cost of MLPs on average.

4 Analysis of Toy Case
In this section, we employ the Contextual Stochastic Block Model (CSBM) to analyze why minimizing
perturbed training loss without MP can work to some extent, which is the underlying mechanism of
FGSAM. The CSBM has been widely used to analyze of the properties of GNN [25, 26].

Specifically, we focus on a CSBM model that contains K distinct classes c1, c2, . . . , cK . The
nodes within the resulting graphs are grouped into n non-overlapping sets C1, C2, . . . , CK , each set
representing one of the K classes. The generation of edges is governed by a probability p within
the same class and a probability q between different classes. For any given node i, we sample its
initial features xi ∈ Rl from a Gaussian distribution denoted by xi ∼ N (µ, I), where the mean
µ = µk ∈ Rl corresponds to node i belonging to set CK , and k is an element of {1, 2, . . . ,K}.
Furthermore, the condition ||µi − µj ||2 = D holds true for all i, j belonging to {1, 2, . . . ,K}, with
D being a positive constant. Graphs that arise from this specified CSBM model are referred to as
K-classes CSBM. After applying a MP operation, the resultant features for node i are denoted by hi.

The neighborhood label distribution Di of node i is a K-dimensions vector, where Di[j] = I(i ∈
Cj)p+ (1− I(i ∈ Cj))q. Based on the neighborhood label distribution, consider the MP operation

as hi = 1
deg(i)

∑
j∈N (i) xi, we have: hi ∼ N

(
(p−q)µk+qKµ̄

p+(K−1)q , I
deg(i)

)
, where i ∈ Ck and µ̄ =∑K

j=1 µj

K . Based on the distribution of hi and xi, we can obtain following theorem:
Theorem 4.1 (The effectiveness of removing MP in minimization). Consider a K-classes CSBM, the
optimal linear classifiers for both original features xi and filtered features hi are the same.

Detailed proof is in Appendix C. The theorem tells us that under the linear case, whether the MP
layer is used or not, the optimal decision bound is the same. Hence, this encourages us to learn the
weight of transformation layers without MP to speed up training. However, the real graph is more
complex and we do not use a linear classifier, thus we propose to perform the graph sharpness-aware
perturbation which implicitly involves the information of neighbors.

5 Experiments
We verify the effectiveness of our proposed FGSAM and FGSAM+ in this section. We first conduct
experiments to demonstrate that our proposed algorithms achieve better performance compared to
SAM which requires twice the training time. Then we show that our proposed algorithms can achieve
faster training speed compared to base optimizers (e.g., Adam). Next, we also conduct extra studies
and an extra task to show the robustness and potential applications of our proposed algorithms.
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Table 2: Accuracy and Time consumption on the baseline with different optimizer. The best and the
runner-up are denoted as boldface and underlined, respectively. ‘5N3K’ denotes 5-way 3-shot setting.
Time consumption of 200 episodes of training (sec., only consider forward-backward) is also shown.

Setting Corafull Avg DBLP Avg ogbn-arXiv Avg
5N3K 5N5K 10N3K 10N5K acc time 5N3K 5N5K 10N3K 10N5K acc time 5N3K 5N5K 10N3K 10N5K acc time

MAML models

Meta-GCN 70.25 77.00 51.19 58.85 64.32 9.48 82.60 85.20 65.96 70.85 76.15 17.57 49.32 54.37 30.68 28.20 40.64 40.99
w/ SAM 70.23 75.82 54.77 58.18 64.75 19.03 82.50 85.04 68.31 71.22 76.77 35.30 54.80 55.19 25.10 31.79 41.72 82.54
w/ FGSAM 70.97 77.64 55.53 59.30 65.86 10.83 82.66 85.26 69.22 71.80 77.24 19.15 52.45 57.05 28.92 31.03 42.36 42.48
w/ FGSAM+ 71.54 78.97 58.73 61.61 67.71 6.51 82.40 84.24 68.97 72.18 76.95 10.62 52.98 58.08 31.09 33.38 43.88 22.11
AMM-GNN 72.92 80.44 57.58 57.29 67.06 15.00 81.02 83.48 66.40 71.31 75.55 26.73 51.95 57.79 28.71 26.74 41.30 42.33
w/ SAM 68.47 74.10 52.43 57.94 63.24 30.83 80.54 83.45 66.29 71.50 75.45 54.76 49.42 50.75 30.57 32.42 40.79 84.93
w/ FGSAM 71.67 77.72 60.15 62.11 67.91 17.60 84.01 85.32 67.12 71.70 77.04 30.16 48.69 55.89 35.59 32.57 43.19 44.41
w/ FGSAM+ 72.79 79.18 59.59 62.61 68.54 10.00 81.24 85.07 70.37 71.32 77.00 16.26 51.02 50.49 33.60 34.05 42.29 23.19

non-MAML models

GPN 65.23 65.67 50.48 51.23 58.15 1.89 76.05 75.02 65.41 64.52 70.25 3.28 55.35 57.50 42.72 41.54 49.28 7.70
w/ SAM 67.28 65.02 55.06 52.30 59.92 3.62 79.44 77.66 67.88 67.78 73.19 6.78 56.18 58.65 39.91 39.92 48.67 15.98
w/ FGSAM 69.54 69.37 57.85 56.49 63.31 2.33 80.10 79.61 68.50 69.44 74.41 4.00 57.58 58.23 47.67 48.20 52.92 8.57
w/ FGSAM+ 69.40 69.96 57.74 56.10 63.30 1.83 80.02 79.69 68.94 69.51 74.54 2.56 57.39 58.04 46.59 49.49 52.88 4.66
TENT 71.24 75.49 57.29 60.35 66.09 10.88 80.67 82.74 69.04 71.79 76.06 11.36 60.44 67.34 47.14 54.88 57.45 12.90
w/ SAM 71.38 75.29 56.86 61.85 66.35 22.03 82.13 85.10 68.96 73.62 77.45 22.86 63.58 69.30 50.79 55.21 59.72 26.43
w/ FGSAM 71.10 76.72 57.86 63.71 67.35 20.28 82.99 86.13 70.31 73.41 78.21 20.95 63.88 71.15 53.32 57.08 61.36 23.40
w/ FGSAM+ 72.85 77.77 58.37 63.04 68.01 15.10 83.64 85.97 71.15 73.72 78.62 15.58 66.20 69.14 50.66 53.56 59.89 16.86

Table 3: Comparison between SAM variants regarding accuracy and time consumption (10N3K).
Settings CoraFull DBLP ogbn-arXiv Avg5N3K 10N3K 5N3K 10N3K 5N3K 10N3K

Baseline Backbone Optimizer acc (%) t (s) acc (%) t (s) acc (%) t (s) acc (%) t (s) acc (%) t (s) acc (%) t (s) acc (%) t (s)

GPN
GNN

Adam 65.23 1.84 50.48 1.87 76.05 3.26 65.41 3.29 55.35 7.67 42.72 7.67 59.21 4.27
SAM 67.28 3.68 55.06 3.55 79.44 6.76 67.88 6.76 56.18 15.90 39.91 15.95 60.96 8.77
ESAM 67.32 3.75 53.99 3.60 77.58 6.83 66.54 6.83 54.51 16.03 36.68 16.14 59.44 8.86
LookSAM 68.38 2.91 54.26 2.85 79.24 5.29 69.32 5.29 56.33 12.23 45.42 12.19 62.16 6.79
AE-SAM 67.48 2.93 51.27 2.81 79.84 5.17 67.23 5.24 56.43 12.26 43.51 12.28 60.96 6.78
FGSAM 69.54 2.33 57.85 2.40 80.10 3.97 68.50 4.03 57.58 8.56 47.67 8.58 63.54 4.98
FGSAM+ 69.40 1.62 57.74 2.06 80.02 2.43 68.94 2.59 57.39 4.68 46.59 4.64 63.35 3.00

PeerMLP Adam 65.80 0.45 49.87 0.43 76.41 0.39 65.00 0.47 49.09 0.33 35.98 0.36 57.03 0.41
SAM 66.18 0.74 51.69 1.01 77.20 0.71 65.39 0.76 51.75 0.69 42.79 0.81 59.17 0.79

5.1 Experiment Settings

Baseline. We evaluate our proposed FGSAM and FGSAM+ on SOTA models. The existing models
can be divided into two main categories: MAML and non-MAML methods. Two representative
models are selected from each category, respectively, as baselines for evaluation (Meta-GCN [41]
and AMM-GNN [36] for MAML models, and GPN [7] and TENT [37] for non-MAML models).

Datasets. We conduct evaluations on three widely used real-world benchmark node classification
datasets: CoraFull [5], DBLP and ogbn-arXiv [17], and we use the train/val/test split as in [33]
and [23]. The comprehensive statistics of datasets are shown in Tab. 5 in Appendix D.1.

Implementation Details. We implement our model by PyTorch [28] and conduct experiments on an
RTX-3090Ti. We use Optuna [2] to search the hyper-parameters for each setting. See Appendix D.2
for detailed FSNC learning protocol.

5.2 Evaluation on Real-World Datasets

The results of different models across datasets are summarized in Tab. 2. All the models share a 2-
layers architecture with 16 hidden channels. It can be seen that our proposed algorithms FGSAM and
FGSAM+ provide better performance than Adam in most cases, and provide comparable performance
with SAM. These results support our claim that FGSAM and FGSAM+ can find local minima with
better generalization properties. Note that message-passing is only used in perturbing parameters,
not involved in parameters update (i.e., MLPs). The results further indicate that implicitly involving
graph topology in training can make PeerMLPs outperform GNNs. See Appendix D.3 for details.

5.3 Time Consumption

To demonstrate the training speed advantage of our proposed algorithm, we summarize the training
time for different models using various optimization methods across three datasets (Tab. 2). The
results indicate that our proposed algorithm FGSAM demonstrates only a slight increase in training
cost compared to Adam in most cases. Furthermore, our enhanced version FGSAM+ outperforms
Adam in terms of speed in the majority of scenarios. It is worth mentioning that our proposed
algorithms achieve superior or comparable performance when compared to both Adam and SAM.
See Appendix D.4 for detailed results.

Limitation. For models composed of many non-GNN components (e.g., TENT), the training time
on FGSAM+ may be still longer than that on Adam, since it is hardly further reduced.

7



Figure 4: Performance of GPN trained by Adam and FGSAM+ with different settings. Left: Results
with various hidden channels. Middle Left: Results with various model depths. Middle Right:
Results with features perturbed by noise of varying standard deviations. Right: Results with edges
subjected to various noise ratios.

5.4 Comparison of the Variants of SAM
Training with Different Optimizer. We compare the performance of Meta-GNN and GPN training
with different variants of SAM, including original SAM, ESAM [8], LookSAM [22], AE-SAM [18],
our proposed FGSAM and FGSAM+ (Tab. 3). We observe an anomalous phenomenon where ESAM,
as an efficient variant of SAM, actually trains slower than SAM. This is because ESAM sorts the
sample losses and selects a suitable subset at each iteration, an operation that is negligible for image
tasks; however, for graph tasks, since GNNs are relatively smaller, the proportion of time consumed
by the sorting step is significant, leading to an increase in training time. As shown in Tab. 3, our
proposed method greatly reduces the training time, based on the relationship between GNN and MLP,
while maintaining and even achieving superior performance, compared to other optimizers, indicating
ours’ high efficiency and effectiveness.

The Impact of Perturbing Parameters with Message-Passing. A key point of our work is that we
perform parameter perturbation using GNNs, while PeerMLPs (i.e., without message-passing) are
used to minimize the perturbed loss. This is significantly distinct from previous SAM methods which
shared the same model for both parameter perturbation and loss minimization. So a natural question
arises: to what extent does our approach benefit from performing parameter perturbation using
GNNs? We thus compare our approach to PeerMLPs training with Adam and vanilla SAM. Note
that message-passing would be reintroduced during validation and test. From Tab. 3, although the
training time of PeerMLPs is shorter than that of GNNs, GNNs outperform their PeerMLPs in most
cases. Despite that using PeerMLPs can accelerate the training of GNNs, the topology information
is still very important for learning node representations. Thus our proposed FGSAM+ is a better
solution, achieving a better trade-off between efficiency and performance.

5.5 Ablation Studies
We further verify the consistent effectiveness of our method compared to Adam across different
settings regarding model implementation and graph property. Due to the computational resource
restriction, all experiments here were conducted using GPN on the CoraFull with the 5-way 3-shot
setting. We provide additional experiments (e.g., the effect of update interval k) in the Appendix E.

The Impact of Network Structure. Here we investigate the effect of hidden dimension and the
number of layers on the performance (on the left of Fig. 4). GPN with Adam requires a higher hidden
dimension (128) to achieve relatively high accuracy, whereas GPN with FGSAM+ can attain SOTA
even with a small hidden dimension (16). With respect to the number of layers, GPN with FGSAM+
consistently performs better within the range of 1∼8 compared to GPN with Adam, demonstrating
the effectiveness of our proposed method (middle left of Fig. 4).

The Impact of Noisy Features and Edges. Here we investigate the effect of randomly adding
Gaussian noise to features and randomly adding edges during testing (on the middle right and the
right of Fig. 4). Specifically, for noisy features, we randomly add Gaussian noise with varying
standard deviations to the node features. Meanwhile, for noisy edges, we uniformly and randomly
introduce additional edges into the original structure. The results show that GPN with FGSAM+
method can still achieve relatively high performance, compared to GPN with Adam. These results
effectively verify the robustness of our proposed method.

5.6 Additional Task on Conventional Node Classfication
Our proposed FGSAM+ also has the potential to be extended to other domains. To demonstrate
this, we evaluate the performance of the FGSAM+ on the standard node classification task on both
homophilic and heterophilic graphs. For homophilic graphs, we utilize three well-established citation
networks: Cora, Citeseer, and Pubmed [12, 31]. For heterophilic graphs, we include page-page
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Table 4: Results on nine real-world node classification benchmark datasets: Mean accuracy (%).
Model Optimizer Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Texas Wisconsin Avg

GCN

Adam 88.36 77.25 88.71 65.04 52.49 28.54 61.08 60.27 55.29 64.11
SAM 88.42 77.30 88.79 65.57 52.51 28.59 61.89 62.70 54.51 64.48
FGSAM (ours) 88.36 77.60 89.36 66.16 53.95 29.88 67.30 63.24 55.69 65.73
FGSAM+ (ours) 88.32 77.52 89.13 64.56 51.14 29.66 68.11 61.62 54.71 64.97

GraphSAGE

Adam 87.67 76.09 89.15 50.33 37.61 33.74 78.11 78.38 84.51 68.40
SAM 87.69 76.44 89.25 50.92 37.44 33.83 78.92 80.27 84.31 68.79
FGSAM (ours) 88.36 77.13 89.75 51.34 39.12 34.53 82.43 81.35 86.47 70.05
FGSAM+ (ours) 88.16 77.21 89.71 50.94 38.87 34.70 81.35 79.46 86.47 69.65

GAT

Adam 88.32 76.37 87.48 46.51 31.46 29.45 59.19 62.16 55.49 59.60
SAM 88.49 76.78 87.24 46.82 31.61 29.49 59.46 62.16 55.29 59.70
FGSAM (ours) 88.60 76.98 87.63 47.87 32.35 30.41 61.89 65.95 59.41 61.23
FGSAM+ (ours) 88.70 77.10 87.74 48.07 32.69 30.60 62.16 64.86 58.04 61.11

networks from Wikipedia, specifically the Chameleon and Squirrel datasets [30], actor-network,
namely Actor [29], and web pages networks, namely Cornell, Texas and Wisconsin [29]. See
Appendix E.1 for statistics of these datasets. We use data splits (48%/32%/20%) provided by [29],
and set k = 2 for FGSAM+. We select three representative baselines, namely the classical GCN [19],
GAT [34] with learnable MP operation, and GraphSAGE [15] with complex MP operation, to
demonstrate the effectiveness of FGSAM and FGSAM+.

As shown in Tab. 4, both FGSAM and FGSAM+ generally outperform Adam and SAM across base
models, indicating the potential wide application of our method. We observed that the proposed
method achieves greater improvement on heterophilic graphs compared to homophilic graphs, and
heterophilic graphs are generally considered more challenging. This indicates that our method can
effectively enhance the generalization capability of GNNs. We also provide additional experiments
of integrating FGSAM+ with prompt-based FSNC [32] in the Appendix E.3.

5.7 Additional Study

Figure 5: Training loss curves related to differ-
ent ρ across optimizers.

We observe that both FGSAM and FGSAM+ gen-
erally outperform the standard SAM across tasks
(FSNC and standard node classification). This is an
interesting finding, as our FGSAM and FGSAM+
algorithm remove message-passing during the min-
imization of the perturbed loss, which is expected
to hurt performance. We attribute these counter-
intuitive results to the mitigation of the imbalance
adversarial game. The training process of SAM-like
algorithms entails an adversarial game similar to that in Generative Adversarial Nets (GANs) [13].
Prior studies [3, 4, 27] have demonstrated that imbalanced adversarial games in GANs can give rise to
worse results. Both FGSAM and FGSAM+ employ distinct models for perturbation and minimization,
which can help alleviate the extent of imbalance. These factors may explain the observed performance
discrepancies among the compared algorithms. To verify the explanation, we conduct experiments
varying the hyper-parameter ρ. Specifically, we graphically illustrate the comparative training loss
of SAM and FGSAM+ over a range of ρ values in Fig. 5, which reveals that while SAM struggles
to converge with higher ρ values, FGSAM+ consistently achieves convergence. Moreover, it is
established that a higher ρ value is conducive to a tighter generalization bound, suggesting that a
larger ρ could potentially enhance performance. Consequently, FGSAM+ is capable of mitigating the
imbalanced games issue and tolerating a larger ρ, which contributes to its enhanced performance.

6 Conclusion
In this work, we study the application of Sharpness-Aware Minimization (SAM) in FSNC to improve
model’s generalization, since the key for FSNC is to generalize the model to unseen samples. In order
to alleviate the heavy computation cost of SAM, we utilize the connection between MLPs and GNNs
and use MLPs to accelerate the training of GNNs. However, the low generalization and lack of using
graph topology of MLPs also limit its performance. Hence we propose to apply GNNs to perturb
parameters for generalization and use MLPs to minimize the perturbed training loss for conducting
the proposed FGSAM. Moreover, we reuse the GNN gradient in perturbation in minimization for
better including topology information. We further reduce the training time by conducting exact
FGSAM update at every k steps and approximate FGSAM’s gradient with reusing information in the
intermediate steps. Finally, the extensive experiments demonstrate the effectiveness and efficiency of
our proposed methods.
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A Potential Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

B Algorithm

Algorithm 1 Training with FGSAM and FGSAM+.

Require: G, Cbase, learning rate η, radius ρ, FGSAM update interval k, adaptive ratio α.
Ensure: A flat minimum solution ŵ. rang

Initialize weights w0;
for t← 0 to T − 1 do

Sample training task Tt from G and Cbase;
### only for FGSAM
Vanilla grad ggnn = ∇wt

LTt
(wt; fgnn);

Perturbed weights ϵ̂ = ρ ggnn

∥ggnn∥ ;
FGSAM-grad gFGSAM = λggnn +∇wtLTt(wt; fmlp)|wt+ϵ̂;

### only for FGSAM+
if t%k = 0 then
# the actual FGSAM-update
Vanilla grad ggnn = ∇wtLTt(wt; fgnn);
Vanilla grad gmlp = ∇wtLTt(wt; fmlp);
Perturbed weights ϵ̂ = ρ ggnn

∥ggnn∥ ;

Topology-grad gG = ggnn − ∥ggnn∥ ggnn·gmlp

∥ggnn∥∥gmlp∥
gmlp

∥gmlp∥ ;
SAM-grad gs = ∇wt

LTt
(wt; fmlp)|wt+ϵ̂;

Flatness-grad gv = gs − ∥gs∥ gmlp·gs

∥gmlp∥∥gs∥
gmlp

∥gmlp∥ ;
FGSAM-grad gFGSAM = λggnn + gs;

else
# approximate FGSAM-gradient
Vanilla grad gmlp = ∇wt

LTt
(wt; fmlp);

Approx gnn-grad ĝgnn = gmlp + gG
||gmlp||
||gG ||

Approx FGSAM-grad gFGSAM = gmlp + αgv
∥gmlp∥
∥gv∥ + λĝgnn;

end if
Update weights: wt+1 ← wt − η · gFGSAM;

end for
ŵ ← wT .

C Proof

The linear classifier for K-classification problems can be formulated as K(K−1)
2 binary classification

problems.

Hence we study the classification between class Co and Cp without loss of generality.

The distribution of original features from different classes follows:

xi ∼ N (µo, I) , i ∈ Co

xi ∼ N (µp, I) , i ∈ Cp
(11)

13



The distribution of filtered features from different classes follows:

hi ∼ N
(
(p− q)µo + qKµ̄

p+ (K − 1) q
,

I

deg (i)

)
, i ∈ Co,

hi ∼ N
(
(p− q)µp + qKµ̄

p+ (K − 1) q
,

I

deg (i)

)
, i ∈ Cp,

(12)

For simplicity, we denote µ̃0 = (p−q)µo+qKµ̄
p+(K−1)q and µ̃p =

(p−q)µp+qKµ̄
p+(K−1)q .

Following [26], the optimal classifier of original features constructs a decision bound P = {x|wTx−
wT b}, where w =

µo−µp

2 /||µo−µp

2 ||, b =
µo+µp

2 . Similarly, the optimal classifier of filtered
features constructs a decision bound P ′ = {h|w′Th − w′T b}, where w′ =

µ̃o−µ̃p

2 /|| µ̃o−µ̃p

2 ||,
b′ =

µ̃o+µ̃p

2 .

And we have µ̃o − µ̃p = p−q
p+(K−1)q (µo − µp), hence we have w = w′. Then we verify whether

wT b = w′T b′:

w′T b′ = w′T
(
µ̃o + µ̃p

2

)
= wT 1

2

(
(p− q)µo + qKµ̄

p+ (K − 1) q
+

(p− q)µp + qKµ̄

p+ (K − 1) q

)
= wT

(
λ

2
(µo + µp) + (1− λ) µ̄

)
= wT

(
λ

2
(µo + µp)

+ (1− λ)
1

2
(µ̄− µo + µ̄− µp + µo + µp)

)

= wT

(
1

2
(µo + µp) + (1− λ)

(
µ̄− µo + µp

2

))
= wT

(
1

2
(µo + µp)

)
+ (1− λ)wT

(
µ̄− µo + µp

2

)
,

(13)

where λ = p−q
p+(K−1)q .

Then we show (µo − µp)
T
(
µ̄− µo+µp

2

)
= 0.

From ||µi − µj ||2 = D, we have:
||µo − µ̄||2 = ||µp − µ̄||2, (14)

which gives:
(µo − µ̄)

T
(µo − µ̄) = (µp − µ̄)

T
(µp − µ̄)

µT
o µo − 2µT

o µ̄+ µ̄T µ̄ = µT
p µo − 2µT

p µ̄+ µ̄T µ̄

µT
o µo − 2µT

o µ̄ = µT
p µo − 2µT

p µ̄

(15)

Hence we have:

(µo − µp)
T

(
µ̄− µo + µp

2

)
= µT

o µ̄− µT
o

µo + µp

2
− µT

p µ̄+ µT
p

µo + µp

2

= µT
o µ̄−

1

2
µT

o µo −
(
µT

p µ̄−
1

2
µT

p µp

)
= 0

(16)

Combining Eq. (13) and Eq. (16), we have:
w′T b′ = wT b, (17)

which means P = P ′.

This completes the proof.

14



Table 5: Statistics of evaluation datasets
Datasets # Nodes # Edges # Features # Classes Class Split

CoraFull 19,793 63,421 8,710 70 40/15/15
DBLP 40,672 288,270 7,202 137 80/27/30
ogbn-arXiv 169,343 1,157,799 128 40 20/10/10

Table 6: Hyper-parameters Search Space.
Hyper-parameter Search Space

MAML-based models:
learning rate {0.05, 0.01, 0.001, 0.0001}
weight decay {0.0, 0.001, 0.0005}
dropout {0.0, 0.1, 0.3, 0.5, 0.7, 0.9}
ρ {0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 0.8, 1.0, 1.2}
α {0.5, 0.7, 0.9}

non-MAML models:
learning rate finetune {0.5, 0.1, 0.01, 0.001}
learning rate meta {0.05, 0.01, 0.003, 0.001, 0.0001}
weight decay {0.0, 0.001, 0.0005}
dropout {0.0, 0.1, 0.3, 0.5, 0.7, 0.9}
ρ {0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 0.8, 1.0, 1.2}
α {0.5, 0.7, 0.9}

D Experiments details

D.1 Datasets Description

• CoraFull is an extension of the prevalent dataset ‘Cora’ [40], a citation network dataset.
On this graph, nodes represent papers and edges represent citation links. The nodes are
labeled on the paper topics. Node attributes are obtained using bag-of-words for the title
and abstract of the paper.

• DBLP is also a citation network, where nodes represent papers and edges represent the
citation between papers. Specifically, the node attributes are generated by the abstract and
the node labels are based on the paper venues.

• ogbn-arXiv is a citation network among all Computer Science arXiv papers based on
MAG [35]. Node represent papers and edges are citations links. The node attributes are
obtained using skip-gram on abstract of papers. The nodes are labeled by the subject area.

D.2 Implementation Details

Specifically, we implement our model by PyTorch [28] and conduct experiments on 24GB Nvidia
RTX3090Ti, according to the training protocol Algorithm 2. Repeat number R = 5, patience P = 10,
SAM update interval k = 2, validation interval I = 10, validation number V = 20, test number
W = 100. For MAML models max epochs T = 500, and for non-MAML model max epochs
T = 1000. We evaluate our method under various settings, i.e., N = {5, 10}, K = {3, 5}, but we
set N = {2, 5} for Coauthor-CS dataset. We use Optuna [2] for hyper-parameters searching for all
models with various optimizers, the search space is shown in Tab. 6.

Note that we further split Cbase into two disjoint class set: training class set Ctr and validation class
set Cval, such that Cbase = Ctr ∪ Cval and Ctr ∩ Cval = Ø. Overall, we use Ctr and Cval for train and
validation in the meta-training stage, respectively, and use Cnovel for meta-test. We split C into Ctr, Cval
and Cnovel according to the class split ratio in Tab. 5.
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Algorithm 2 Training Protocol of FSNC Task

Require: G, Ctr, Cval, Cnovel, repeat number R, max epochs T , patience P , validation interval I ,
validation number V , test number W .

Ensure: A trained model f̂ , model’s accuracy ŝ.
Initialize f , s← {}.
# repeat R times
for r ← 0 to R− 1 do

Initialize sbest ← 0, stest ← {}, p← 0;
# meta-training
for t← 0 to T − 1 do
# training
Sample training task Tt = {St,Qt} from Ctr;
Optimize model f on Tt;
# validation
if t%I = 0 then

Sample V validation tasks Tval from Cval;
Compute mean accuracy sval onTval by f ;
if sval > sbest then
sbest ← sval, p← 0;

else
p← p+ 1;

end if
# early-stop
if p = P then

break;
end if

end if
end for
# meta-test
Sample W test tasks Ttest from Cnovel;
Compute mean accuracy stest on these tasks using model f ;
s = s ∪ stest;

end for
f̂ ← f , ŝ← mean(s).

Table 7: Accuracy on the baseline with different optimizer. ‘5N3K’ denotes 5-way 3-shot setting.

Corafull DBLP ogbn-arXiv
5N3K 5N5K 10N3K 10N5K 5N3K 5N5K 10N3K 10N5K 5N3K 5N5K 10N3K 10N5K

Meta-GCN 70.25±2.09 77.00±2.36 51.19±2.86 58.85±2.61 82.60±1.32 85.20±3.41 65.96±4.16 70.85±1.89 49.32±3.26 54.37±6.27 30.68±3.06 28.20±10.09

w/ SAM 70.23±5.48 75.82±2.58 54.77±5.69 58.18±3.17 82.50±1.33 85.04±3.38 68.31±3.22 71.22±1.16 54.80±4.71 55.19±6.76 25.10±7.53 31.79±4.90

w/ FGSAM 70.97±3.15 77.64±2.00 55.53±4.35 59.30±2.96 82.66±1.34 85.26±3.36 69.22±2.87 71.80±1.91 52.45±3.33 57.05±4.67 28.92±10.19 31.03±5.04

w/ FGSAM+ 71.54±4.22 78.97±2.62 58.73±5.47 61.61±6.23 82.40±1.29 84.24±2.89 68.97±1.63 72.18±1.58 52.98±4.20 58.08±5.90 31.09±3.66 33.38±2.22

AMM-GNN 72.92±4.67 80.44±3.63 57.58±5.46 57.29±3.39 81.02±2.61 83.48±1.95 66.40±2.70 71.31±2.95 51.95±1.34 57.79±2.62 28.71±8.82 26.74±9.02

w/ SAM 68.47±3.02 74.10±2.82 52.43±2.78 57.94±3.69 80.54±2.50 83.45±2.03 66.29±2.71 71.50±3.02 49.42±5.06 50.75±6.84 30.57±6.25 32.42±4.42

w/ FGSAM 71.67±5.96 77.72±3.09 60.15±4.10 62.11±4.47 84.01±1.29 85.32±0.86 67.12±2.91 71.70±1.83 48.69±8.40 55.89±5.51 35.59±5.22 32.57±3.98

w/ FGSAM+ 72.79±4.44 79.18±2.19 59.59±6.05 62.61±3.99 81.24±1.66 85.07±2.26 70.37±4.86 71.32±0.84 51.02±6.38 50.49±9.12 33.60±3.32 34.05±3.47

GPN 65.23±1.30 65.67±3.40 50.48±3.24 51.23±5.72 76.05±1.19 75.02±3.53 65.41±3.03 64.52±3.22 55.35±5.01 57.50±4.72 42.72±5.10 41.54±7.95

w/ SAM 67.28±4.31 65.02±1.57 55.06±2.90 52.30±4.60 79.44±2.90 77.66±1.76 67.88±1.28 67.78±2.59 56.18±1.86 58.65±4.34 39.91±6.81 39.92±2.99

w/ FGSAM 69.54±3.11 69.37±3.07 57.85±5.03 56.49±4.42 80.10±2.69 79.61±2.27 68.50±2.22 69.44±1.78 57.58±4.56 58.23±3.95 47.67±3.97 48.20±3.73

w/ FGSAM+ 69.40±4.57 69.96±2.95 57.74±4.17 56.10±3.36 80.02±1.89 79.69±2.24 68.94±1.99 69.51±2.54 57.39±3.36 58.04±2.40 46.59±3.24 49.49±3.74

TENT 71.24±2.05 75.49±1.88 57.29±4.20 60.35±2.80 80.67±3.19 82.74±1.84 69.04±2.45 71.79±2.68 60.44±5.48 67.34±2.15 47.14±4.25 54.88±4.97

w/ SAM 71.38±2.47 75.29±4.09 56.86±2.28 61.85±2.89 82.13±2.02 85.10±0.54 68.96±3.85 73.62±1.56 63.58±2.18 69.30±3.48 50.79±3.15 55.21±2.57

w/ FGSAM 71.10±4.79 76.72±3.00 57.86±3.26 63.71±4.32 82.99±2.25 86.13±0.52 70.31±1.92 73.41±1.45 63.88±1.64 71.15±2.43 53.32±1.94 57.08±3.52

w/ FGSAM+ 72.85±4.14 77.77±3.44 58.37±4.13 63.04±3.56 83.64±1.55 85.97±0.56 71.15±2.43 73.72±1.05 66.20±4.41 69.14±1.96 50.66±1.68 53.56±1.93

D.3 Evaluation Results with Standard Deviation

In Tab. 7 and Tab. 8 we present the detailed results of Tab. 2 and Tab. 7 with standard deviation,
respectively.
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Table 8: Results on nine real-world node classification benchmark datasets: Mean accuracy (%). The
best results are denoted as boldface.

Model Optimizer Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Texas Wisconsin

GCN

Adam 88.36±1.50 77.25±0.80 88.71±0.45 65.04±2.87 52.49±2.30 28.54±0.88 61.08±5.57 60.27±3.51 55.29±2.75

SAM 88.42±1.35 77.30±0.85 88.79±0.45 65.57±2.29 52.51±2.07 28.59±0.75 61.89±2.02 62.70±4.99 54.51±4.42

FGSAM 88.36±1.51 77.60±0.69 89.36±0.49 66.16±2.96 53.95±1.48 29.88±1.06 67.30±3.83 63.24±5.10 55.69±4.31

FGSAM+ 88.32±1.48 77.52±0.96 89.13±0.44 64.56±2.56 51.14±2.36 29.66±0.78 68.11±4.37 61.62±6.22 54.71±5.48

GraphSAGE

Adam 87.67±1.96 76.09±1.43 89.15±0.57 50.33±1.97 37.61±1.18 33.74±1.16 78.11±5.95 78.38±5.47 84.51±3.51

SAM 87.69±1.71 76.44±1.21 89.25±0.51 50.92±2.26 37.44±1.08 33.83±1.09 78.92±4.40 80.27±4.71 84.31±4.42

FGSAM 88.36±1.51 77.13±0.69 89.75±0.49 51.34±2.96 39.12±1.48 34.53±1.06 82.43±3.83 81.35±5.10 86.47±4.31

FGSAM+ 88.16±1.85 77.21±1.26 89.71±0.39 50.94±1.94 38.87±1.81 34.70±0.82 81.35±5.54 79.46±4.65 86.47±4.34

GAT

Adam 88.32±1.59 76.37±0.90 87.48±0.37 46.51±2.96 31.46±1.01 29.45±0.82 59.19±3.63 62.16±4.43 55.49±5.49

SAM 88.49±1.74 76.78±0.84 87.24±0.53 46.82±2.80 31.61±1.35 29.49±0.78 59.46±4.02 62.16±4.26 55.29±6.93

FGSAM 88.60±1.51 76.98±0.69 87.63±0.49 47.87±2.96 32.35±1.48 30.41±1.06 61.89±3.83 65.95±5.10 59.41±4.31

FGSAM+ 88.70±1.82 77.10±1.12 87.74±0.56 48.07±3.25 32.69±2.34 30.60±0.99 62.16±2.91 64.86±5.95 58.04±5.05

Table 9: Time consumption comparison. The results stands for the time (sec.) consumed in 200
episodes training (only consider the feed-forward and -backward).

Setting Corafull DBLP ogbn-arXiv
5N3K 5N5K 10N3K 10N5K 5N3K 5N5K 10N3K 10N5K 5N3K 5N5K 10N3K 10N5K

Meta-GCN 9.56 9.58 9.38 9.40 17.61 17.60 17.50 17.59 41.09 40.98 40.96 40.92
w/ SAM 19.12 19.16 18.84 18.99 35.38 35.38 35.17 35.28 82.54 82.65 82.40 82.58
w/ FGSAM 10.91 10.82 10.79 10.80 19.15 19.22 19.11 19.12 42.50 42.54 42.45 42.45
w/ FGSAM+ 6.58 6.48 6.51 6.48 10.77 10.77 10.51 10.44 22.17 22.21 22.02 22.06

AMM-GNN 15.03 15.04 14.94 15.00 26.71 26.74 26.72 26.76 42.27 42.39 42.30 42.37
w/ SAM 30.91 30.93 30.66 30.83 54.63 54.85 54.69 54.87 84.71 85.12 84.77 85.13
w/ FGSAM 17.55 17.89 17.51 17.44 30.08 30.13 30.28 30.16 44.32 44.45 44.43 44.46
w/ FGSAM+ 9.99 10.05 9.97 9.99 16.14 16.44 16.25 16.22 23.24 23.24 23.13 23.15

GPN 1.84 1.93 1.87 1.92 3.26 3.26 3.29 3.29 7.67 7.74 7.67 7.73
w/ SAM 3.68 3.69 3.55 3.58 6.76 6.80 6.76 6.81 15.90 16.02 15.95 16.06
w/ FGSAM 2.33 2.19 2.40 2.39 3.97 3.95 4.03 4.04 8.56 8.58 8.58 8.58
w/ FGSAM+ 1.62 1.48 2.06 2.14 2.43 2.51 2.59 2.70 4.68 4.66 4.64 4.65

TENT 7.58 8.29 13.14 14.49 7.79 8.70 13.65 15.30 9.21 9.98 15.53 16.87
w/ SAM 15.05 16.89 26.67 29.50 15.98 17.49 27.70 30.25 19.28 20.53 31.78 34.12
w/ FGSAM 14.85 14.63 25.97 25.68 15.28 15.40 26.52 26.59 17.57 17.60 29.08 29.34
w/ FGSAM+ 11.13 11.04 19.10 19.15 11.47 11.50 19.69 19.64 12.53 12.61 21.14 21.15

D.4 The Full Results of Time Consumption

Here we present the detailed results of training time consumption of different optimizers across
various datasets. Tab. 9 indicates that our proposed algorithm FGSAM demonstrates only a slight
increase in training cost compared to Adam in most cases. Furthermore, our enhanced version
FGSAM+ outperforms Adam in terms of speed in the majority of scenarios. It is worth mentioning
that our proposed algorithms achieve superior or comparable performance when compared to both
Adam and SAM.

As mentioned before, for models composed of many non-GNN components (e.g. TENT), the training
time on FGSAM+ may be still longer than that on Adam, since it is hardly further reduced.

E Additional Experiments

E.1 Statistics Of Benchmark Datasets In Node Classification

Table 10: Benchmark datasets statistics for node classification

Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Texas Wisconsin
# Nodes 2708 3327 19717 2277 5201 7600 183 183 251
# Edges 5278 4552 44324 18050 108536 15009 149 162 257

# Classes 7 6 3 5 5 5 5 5 5
# Features 1433 3703 500 2325 2089 932 1703 1703 1703
H(G) 0.81 0.74 0.80 0.28 0.24 0.38 0.57 0.41 0.45
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Table 11: Performance of different update interval k.
Corafull DBLP

acc (%) time (s) acc (%) time (s)

GPN w/ FGSAM 69.54 2.33 80.10 3.97

GPN w/ FGSAM+
2 69.40 1.62 80.02 2.43
5 70.02 0.93 78.10 1.49
10 67.03 0.69 75.91 1.24

Table 12: Performance of prompt-based FSNC on Citeseer.

Setting 3 shots 5 shots
acc (%) F1 acc (%) F1

ProG [32] 59.50 57.75 76.50 76.61
FGSAM+ 60.33 58.43 77.00 77.21

E.2 The Effect of Update Interval k in FGSAM+

Here we study the effect of update interval k in FGSAM+. It can be observed from Tab. 11 that as
k increases, the performance decreases, but meanwhile training time also decreases. This indicates
that the possibility of choosing k to achieve a better trade-off between performance and efficiency.
We note that the performance drop with increasing k seems to be larger compared to LookSAM [22]
in computer vision tasks. This indicates the importance of the perturbation step in FGSAM+, as it
not only introduces information about flat minima, but also incorporates neighbor information in
training. Therefore, we recommend setting k = 2 as the prior optimal update interval to avoid large
information loss.

E.3 Integrating with Prompt-Based FSNC

Recently, there are many prompt-based methods [24, 32] have been developed, showing promising
performance in FSNC. Hence, we investigate how our method performs in such a prompt-based
FSNC task. Note that under this setting, the proposed method is used in prompt tuning instead of
training. As shown in Tab. 12, our method improves the baseline [32] with a remarkable margin.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed some limitations about the proposed FGSAM+ in Sec. 5.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]



Justification: We have provided assumptions and proofs in the main body and appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Necessary information is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Data is publicly available and code is also available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed are provided in the paper (main body and appendix).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Due to the page limit, the standard deviation is provided in the appendix
(Tab. 7).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
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