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Abstract
Recent advances in visual generation have made
significant strides in producing content of excep-
tional quality. However, most methods suffer
from a fundamental problem - a bottleneck of
inference computational efficiency. Most of these
algorithms involve multiple passes over a trans-
former model to generate tokens or denoise in-
puts. However, the model size is kept consistent
throughout all iterations, which makes it com-
putationally expensive. In this work, we aim
to address this issue primarily through two key
ideas - (a) not all parts of the generation process
need equal compute, and we design a decode time
model scaling schedule to utilize compute effec-
tively, and (b) we can cache and reuse some of the
computation. Combining these two ideas leads
to using smaller models to process more tokens
while large models process fewer tokens. These
different-sized models do not increase the param-
eter size, as they share parameters. We rigorously
experiment with ImageNet256×256 , UCF101,
and Kinetics600 to showcase the efficacy of the
proposed method for image/video generation and
frame prediction. Our experiments show that with
almost 3× less compute than baseline, our model
obtains competitive performance.

1. Introduction
The last decade has witnessed tremendous progress in image
andvideo generation, under diverse paradigms - Generative
Adversarial Networks (Brock, 2018; Sauer et al., 2022), de-
noising processes such as diffusion models (Ho et al., 2020;
2022b; Dhariwal & Nichol, 2021; Rombach et al., 2022;
Gu et al., 2022), image generation via vector quantized tok-
enization (Razavi et al., 2019; Esser et al., 2021; Ge et al.,
2022; Van Den Oord et al., 2017), and so on. In recent
years, diffusion models and modeling visual tokens as lan-
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guage have been the de-facto processes used to generate
high-quality images. While initially proposed with a CNN
or U-Net based architectures (Rombach et al., 2022; Saharia
et al., 2022), transformer models have become the norm now
for these methods (Peebles & Xie, 2023; Yu et al., 2023a).

The recent advancements in visual generation can be cat-
egorized along two axes – (a) different types of denoising
processes in the continuous latent space (Ho et al., 2020;
Nichol & Dhariwal, 2021b), discrete space (Gu et al., 2022;
Lou et al.) or masking in the discrete space (Yu et al., 2023a;
Chang et al., 2022), continuous space (Li et al., 2024a) (b)
modeling tokens either auto-regressively (Kondratyuk et al.,
2024; Esser et al., 2021; Yu et al., 2021) with causal atten-
tion or parallel decoding with bi-directional attention (Gu
et al., 2022; Yu et al., 2023a; Chang et al., 2022; Zheng et al.,
2022). To achieve a high synthesis fidelity, both, denoising
in diffusion models, and raster scan based auto-regressive
token modeling require several iterations.

Recently, parallel decoding of discrete tokens have shown
promise in generating high quality images with few itera-
tions - MaskGIT (Chang et al., 2022), MAGVIT (Yu et al.,
2023a), MUSE (Chang et al., 2023), MaskBIT (Weber et al.,
2024), TiTok (Yu et al., 2024b). These models are trained
with Masked Language Modeling (MLM) type losses, and
the generation process involves unmasking a few confident
tokens every decoding iteration, starting from all masked
tokens. They can even surpass diffusion models, given a
good visual tokenizer (Yu et al., 2023b; Weber et al., 2024).

Although MaskGIT reduces decode complexity signifi-
cantly, parallel decoding still includes several redundant
computations. First, the need for same capacity model for
all steps needs to be investigated. Second, unlike auto-
regressive models, which cache its computation in all steps,
parallel decoding models perform re-computation for all to-
kens. We empirically find that a smaller model can generate
good-quality images but its performance saturates after a
point with more decoding iterations. A bigger model can
perform finer refinement and generate better-quality images.

Motivated by these observations, we present Masked
Generate Nested Transformers with Decode Time Scaling
(MaGNeTS). We design a model size curriculum over the
decoding process, which efficiently utilize compute. MaG-
NeTS gradually scales the model size up to the full model
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MaskGIT++ (FID=2.3)               MaGNeTS (FID=2.9)~3x FLOPs Reduction

Figure 1: Class-conditional image generation on ImageNet256x256.. Comparing MaskGIT++ and MaGNeTS (size: L).

size over the decoding iterations instead of using a single
large model throughout. Operating on discrete tokens, we
cache key-value pairs of unmasked tokens and reuse them
in later iterations. A combined effect of these two tech-
niques leads to processing more tokens with smaller and
fewer tokens with larger models. The heterogenous sized
models share parameters, sequentially occupying larger and
larger subspaces of the parameter space, as in MatFormer
(Kudugunta et al., 2023). We build MaGNeTS on top of
MaskGIT. We find that MaskGIT can be drastically im-
proved using classifier-free guidance, specifically when
trained with it. We call this MaskGIT++ and use this as
the improved baseline, presenting all results on top of it.

On ImageNet, with ∼ 3× less compute, MaGNeTS generates
images of similar quality as MaskGIT++ (see Figure 1). It
is also comparable to state-of-the-art methods, which need
orders of magnitude more compute. We also show MaG-
NeTS’s efficacy on video datasets like UCF101 (Soomro
et al., 2012) and Kinetics600 (Carreira et al., 2018). To
summarize, the main contributions of this work are:

• We introduce the concept of model size scheduling
during the generation process to significantly reduce
compute requirements.

• We show that like auto-regressive models, KV-caching
can also be used in parallel decoding, which can effec-

tively reuse computation when refreshed appropriately.

• We introduce nested modeling in image/video genera-
tion to exploit the above ideas effectively.

• Extensive experiments show that MaGNeTS offers 2.5
- 3.7× compute gains across tasks.

2. Related Work
Efficient Visual Generation. Image generation literature
has seen significant improvements in the past years - Gen-
erative Adversarial Networks (Brock, 2018; Sauer et al.,
2022), discrete token based models (Chang et al., 2022;
Yu et al., 2023a), diffusion-based models (Kingma & Gao,
2023; Hoogeboom et al., 2023), and more recently hybrid
models (Peebles & Xie, 2023; Yu et al., 2024c), but they
often guzzle computing power. Researchers tackle this bot-
tleneck of computational costs with efficient model archi-
tectures and smarter sampling strategies.

In diffusion model literature, there have been some work
to reduce the number of sampling steps, by treating the
sampling process like ordinary differential equations (Song
et al., 2022; Lu et al., 2022; Liu et al., 2022), incorporating
additional training process (Kong & Ping, 2021; Nichol
& Dhariwal, 2021a; Salimans & Ho, 2022; Song et al.,
2023), sampling step distillation (Salimans & Ho, 2022;
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Song et al., 2023; Berthelot et al., 2023; Meng et al., 2023;
Feng et al., 2024), sampling and training formulation mod-
ifications (Esser et al., 2024; Song et al., 2023), and more.
Recently, there has been growing interest in understanding
how each step in the diffusion sampling process contributes
(Choi et al., 2022; Park et al., 2023; Lee et al., 2024). These
approaches analyze sampling steps leveraging distance met-
rics such as LPIPS, Fourier analysis, and spectral density
analysis. Building on these explorations researchers have
designed methods based on optimal sampling steps (Watson
et al., 2022; Lee et al., 2024), weighted training loss (Choi
et al., 2022), and step-specific models (Li et al., 2023; Yang
et al., 2024; Lee et al., 2023). These step-specific models use
computationally expensive evolutionary search algorithms,
directly optimizing the quality metric, FID. Concurrently,
researchers are actively addressing the inherent architectural
costs of diffusion models, particularly those associated with
transformer attention mechanisms (Yuan et al., 2024; Yan
et al., 2024).

On the other hand, certain works focus on building better to-
kenizers. Rombach et al. (2022) took diffusion models from
pixel to compressed latent space for efficient and scalable
generation. (Yu et al., 2023b; Weber et al., 2024) explore cer-
tain vector quantizers in the tokenization process to improve
generation quality. Tian et al. (2024) explore multi-scale
tokenizer to improve quality while Yu et al. (2024b) looks at
1D tokenizers to reduce the number of compressed tokens.
Instead of sampling or tokenization process optimization,
we tackle an orthogonal problem of efficient compute allo-
cation over the multi-step generation process. This makes
our approach usable with a variety of tokenizers, model
architectures and sampling schemes.

Nested Models. Rippel et al. (2014) introduced nested
dropout to learn ordered representations of data that improve
retrieval speed and adaptive data compression. Matryoshka
Learning (Kusupati et al., 2022) introduces the concept of
nested structures into embedding dimensions of the trans-
former, making them flexible. MatFormer (Kudugunta et al.,
2023) applies the same concept to the MLP hidden layer
in each transformer block. Recent methods like (Cai et al.,
2024a; Hu et al., 2024) explore the idea of nested models
in multimodal large language models. MoNE (Jain et al.,
2024) and Flextron (Cai et al., 2024b) learn to route tokens
to variable sized nested models leading to compute efficient
processing. In this work, we show how different parts of a
multi-step task like image generation, can be modeled by
different sized nested models instead of always decoding
via the full model, thus significantly reducing computations.

3. Preliminaries
Parallel Decoding for Image Generation. Masked Gen-
erative Image Transformer (MaskGIT) (Chang et al., 2022)

introduces a novel approach to image generation that sig-
nificantly differs from traditional autoregressive models. In
autoregressive decoding, images are generated sequentially,
one pixel/token at a time, following a raster scan order
(Esser et al., 2021; Kondratyuk et al., 2024; Wang et al.,
2024; Yu et al., 2024a; Li et al., 2024b). This sequential
approach can be computationally inefficient, as each token
is conditioned only on the previously generated tokens, lead-
ing to a bottleneck in processing time. MaskGIT generates
all tokens of an image simultaneously and then iteratively
refines them. This method enables significant acceleration
in the decoding process. The tokens are discrete and ob-
tained using Vector Quantized (VQ) autoencoders, learned
with self-reconstruction and photo-realism losses (Yu et al.,
2023a). The iterative parallel decoding process can be rep-
resented as:

Xk ←Mask ○ Sample(M(Xk−1, c), k) (1)

where X ∈ ZN
≥0, are the input tokens, N is the number of

tokens, k ∈ [1,K] denote the iteration number, with K be-
ing the total number of iterations, X0 is either completely
masked for full generation, and partially masked for condi-
tional generation tasks like frame prediction, c is the cate-
gory of image/video under generation. The Sample function
utilizes logits predicted by the model M(.), introduces cer-
tain randomness, and sorts them by confidence, unmasking
only top-k tokens while masking the rest. We follow this
process as in (Chang et al., 2022; Yu et al., 2023a).

Nested Models. The core of our algorithm for inference-
efficient decoding relies on variable-sized nested models for
efficient parameter-sharing and hence feature space. We use
MatFormer’s (Kudugunta et al., 2023) modeling approach
to extract multiple nested models, from a single model,
without increasing the total parameter count. Given a full
transformer model M , MatFormer defines nested models
{m1, . . . ,mC}, such that m1 ⊂ m2 ⋅ ⋅ ⋅ ⊂ mC = M . Each
mi has fewer parameters and reduced compute. The core
idea of extracting nested models is that in a transformer
block, a reduced computation using a parameter subspace
can be performed via a sliced matrix multiplication. As-
suming a parameter matrix W ∈ Rd′×d and feature vector
x ∈ Rd, then the computation y = Wx can be partially
obtained by computing y

[∶ d
′

p ]
=W

[∶ d
′

p ,∶]x, if y is desired to
be partial and y =W[∶,∶ dp ]

x[∶ dp ]
, if input x is partial. Nested

models can be obtained via partial computations throughout
the network.

While MatFormer (Kudugunta et al., 2023) obtained sub-
models with partial computation only in the MLP layer, we
also do it in the Self-Attention layer, specifically in obtaining
the Q,K,V features. These features are of dimension nh ×
dh

p
, where nh is the number of attention heads, dh is the

head feature dimension, and p is the model downscaling
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Figure 2: MaGNeTS Decoding. We start from the smallest nested model with an empty cache and gradually move to bigger models
over the decoding iterations. We iterate using a particular sized model for a few iterations, before moving onto the next model size. As we
cache the key-value pairs for the unmasked tokens, the KV cache size also increases over time. We also refresh the cache when we switch
models, hence its dimension also increases over decoding iterations.
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Figure 3: Unmasked Token Density visualization in each decoding iteration averaged over 50k generated samples on ImageNet. Yellow
represents higher density. Each pixel represent a token from 16×16 latent token space. (See Appendix A for category-wise token density).

factor. We choose four downscaled models C = 4, with
p ∈ {1,2,4,8} in this work. After attention computation,
this gives us features that are also p times downscaled. Then,
it is projected back to the full model dimension d using
partial computation, as the input features are partial. The
same strategy is applied to the MLP layer. This process
gives us models with close to linear reduction in parameter
count and inference compute with the downscaling factor p.

4. Method
Given the preliminaries, here we introduce the core algo-
rithm. We first discuss the idea of scheduling models of
different sizes over decode iters of MaskGIT. Then, we dis-
cuss the process of caching key-value in parallel decoding,
followed by how to refresh them to improve performance.
We finally discuss the nested model training method. A
pictorial overview of our method is presented in Figure 2.

Decode Time Model Schedule. In iterative parallel decod-
ing (Chang et al., 2022; Yu et al., 2023a), the same-sized
model is used for all steps, starting with all tokens being
masked. However, we hypothesize that certain stages of the
generation process might be easier than others. For example,
in the initial steps, the model only needs to capture coarse
global structures, which can be achieved efficiently using

smaller models. In the later steps, the model must refine
finer details, which requires larger models. This hypothesis
is bolstered with Figure 3, which shows that the generation
process starts unmasking tokens from the background and
shifts to the middle of the image in the later iterations (more
categorical examples in Appendix Figure 8).
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Figure 4: Nested Models at different decoding iterations. Dif-
ferent values of the downscaling factor p correspond to the nested
models. The diameter of the blobs indicates #iterations.

Our hypothesis is further motivated by Figure 4, which
presents the generation quality (FID) over iterations of paral-
lel decoding for different-sized models. The smallest model
reaches a reasonably good FID score with very low FLOPs
compared to the biggest model. However, it saturates after
a point, and the larger models surpasses the smaller ones
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in performance, demonstrating their ability to capture finer
details and generate higher-quality images when provided
with sufficient compute. This trend suggests that dynami-
cally scaling the model size during decoding can exploit the
varying task difficulty and achieve compute efficiency.

We use nested models to extract multiple models rather
than using models with disjoint parameters. Nested models
do not increase the parameter count and it also helps in
better alignment of hypothesis when we shift model size
over decode steps. The decode time model schedules can be
generalized and represented as making the model choice in
Equation (1) dependent on the iteration index as follows:

Xk ←Mask ○ Sample(Mk(Xk−1, c), k)

M = {(mp1)
k1 , (mp2)

k2 , . . . , (mpn)kn}, s.t.
n

∑
i

ki =K (2)

where p1, p2, . . . , pn denoting the downscaling factors of
the corresponding nested models, and (m)k denotes that
model m will be executed for k iterations. K represents the
total number of iterations. We can think of different model
schedules - downscaling (starting with the full model and
then gradually moving to the smallest model), upscaling,
intermittently switching among a few models, and so on.
We can also modify the integers ki to choose the number
of times we stick to a model before switching. However,
as intuitively discussed before, we empirically validate that
gradually upscaling the model size gets the best trade-off
between the compute and generation quality.

Cached Parallel Decoding. Inspired by caching key-value
pairs in auto-regressive models, we explore caching in par-
allel decoding, which retains relevant computations and
enhances efficiency. In auto-regressive models, caching
progressively happens in one fixed direction. However, in
parallel decoding, caching must depend on which tokens
are unmasked over the iterations.

Concretely, starting from an empty cached set, we keep
adding keys and values to the set for the tokens that are
unmasked after the Mask ○ Sample steps (see Section 3).
We do not update the predicted token indices for these un-
masked tokens. Hence, the cached key and values for the
unmasked tokens are the only features the other masked
tokens need; hence, we do not need any further computation.
In every decoding iteration, we can categorize tokens into
three main categories: unmasked tokens (for which we have
cached KV), tokens that can be unmasked during the current
iteration, and the rest of the tokens. Note that the KV cache
for the second category tokens cannot be used in the next
iteration but only in the iteration after that once we know
their token indices after the forward pass. We cache them in
the next iteration for use in the immediately next iteration.

Caching is even more useful for decode time model sched-
ules. For a schedule that progressively scales up the model

size as decoding progresses, smaller models process more to-
kens, while the larger models process fewer tokens, leading
to an efficient yet good quality image generation process.

Algorithm 1 MaGNeTS Decoding Algorithm
Input: X0 (Initial Tokens), K (#steps), N (#tokens),M (Nested Model Schedule), c (class),
Initialize: k ← 0; cache← {};
Note: X0 is a list of token ids (Mask token id = −1)
while step k <K do

if k > 0 andMk ≠Mk−1 then
Clear cache

end
Get uncached tokens: Xk

uc ← {xi ∣ xi ∈Xk; i ∉ cache}
Compute prediction probabilities and key-values: pk, (kv)←Mk(Xk

uc; cache)
Sample tokens using current predictions pk , without modifying previous predictions,

X
k+1 ← MaskGIT-Sample(pk)

New indices to cache: C ← {i ∣ i ∉ cache, Xk+1
i ≠ −1}

Update the kv cache: cache← cache ⋃ {i ∶ (kv)i ∣ i ∈ C}
k ← k + 1

end
return XK

Intermittent Cache Refresh. Caching the key-value pairs
for the unmasked tokens helps reduce computation, but it
can slightly degrade performance. This happens because -
(a) when we cache, the unmasked tokens are not updated
in the subsequent iterations. (b) when we shift model size
during generation, in the attention layer, the query size dif-
fers from the cached KV (see Section 3). While technically,
we can zero-pad the KV to be compatible with the current
model’s query dimension, the model remains unfamiliar of
such feature discrepancies between query and key-value.

To remedy this, we strategically refresh the cache while
changing the model size. Refreshing involves discarding
the cached KV for that iteration and caching a newly com-
puted KV for the immediate next iteration. We empirically
find that it bridges the performance gap that arises due to
caching. The proposed decode time model scaling algo-
rithm is presented in Algorithm 1, which uses MaskGIT’s
sampling strategy (Chang et al., 2022; Yu et al., 2023a) to
sample tokens from logits predicted by the network.

Training Nested Models. MatFormer (Kudugunta et al.,
2023) opts for a joint optimization of losses w.r.t. ground-
truth from all models with equal weights. While this mode
of training works for a small range of model downscaling,
we found it to hurt performance with larger downscaling
factors p. We introduce a combination of ground truth and
distillation loss to address this issue. We perform online
distillation progressively, where the teacher for model mi

is model mi+1. The full model mN(= M) is trained with
only ground truth loss. This provides a simpler optimiza-
tion for the smaller nested models while maintaining the
overall objective. Progressive distillation also reduces the
teacher-student size gap, which can otherwise hurt distilla-
tion performance (Stanton et al., 2021; Beyer et al., 2022;
Mirzadeh et al., 2019). Given input X, ground truth label Y
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Model AR FID ↓ IS ↑ Prec ↑ Rec ↑ # params # steps # Gflops

DCTransformer◻ (Nash et al., 2021) 36.5 - 36 67 738M ≥1024 -
BigGAN-deep◻ (Brock, 2018) 7.0 171.4 87 28 160M 1 -
StyleGAN-XL◻g (Sauer et al., 2022) 2.3 265.1 - - 166M 1 -

Improved DDPM◻ (Nichol & Dhariwal, 2021b) 12.3 - 70 62 280M 250 >5B
ADM + Upsample◻g (Dhariwal & Nichol, 2021) 4.6 186.7 82 52 554M 250 240k
LDM-4◻g∗ (Rombach et al., 2022) 3.6 247.7 - - 400M 250 52k
DiT-XL/2◻g∗ (Peebles & Xie, 2023) 2.3 278.2 83 57 675M 250 >59k
Binary latent diffusion◻ (Wang et al., 2023) 8.2 162.3 - - 172M 64 -
MDT◻g∗ (Gao et al., 2023) 1.8 283.0 81 61 676M 250 >59k
MaskDiT◻g∗ (Zheng et al., 2023) 2.3 276.6 80 61 736M 250 >28k
CDM◻ (Ho et al., 2022a) 4.9 158.7 - - - 8100 -
RIN◻ (Jabri et al., 2022) 3.4 182.0 - - 410M 1000 334k
Simple Diffusion◻g (Hoogeboom et al., 2023) 2.4 256.3 - - 2B 512 -
VDM++◻g (Kingma & Gao, 2023) 2.1 267.7 - - 2B 512 -
MAR◻g (Li et al., 2024b) ✓ 1.8 296.0 81 60 479M 128 -

VQVAE-2◻ (Razavi et al., 2019) ✓ 31.1 ∼45 36 57 13.5B 5120 -
VQGAN◻ (Esser et al., 2021) ✓ 15.8 78.3 - - 1.4B 256 -
VQGAN (architecture) +MaskGIT (setup)◻ 18.7 80.4 78 26 303M 256 -
MaskGIT◻(Chang et al., 2022) 6.2 182.1 80 51 303M 8 647
Mo-VQGAN◻ (Zheng et al., 2022) 7.2 130.1 72 55 389M 12 ∼1k
MaskBit◻g (Weber et al., 2024) 1.7 341.8 - - 305M 64 10.3k
PAR-4×◻ (Wang et al., 2024) ✓ 3.8 218.9 84 50 343M 147 -
PAR-16×◻ (Wang et al., 2024) ✓ 2.9 262.5 82 56 3.1B 51 -

MaskGIT++g4 2.5 260.3 83 54 303M 12 1.3k
MaskGIT++g6 2.3 280.6 84 51 303M 16 1.8k
MaGNeTS (ours)g4 3.1 254.8 85 50 303M 12 490
MaGNeTS (ours)g6 2.9 253.1 84 51 303M 16 608

Table 1: Class-conditional Image Generation on ImageNet 256 × 256. “# steps”
refers to the number of neural network runs. ◻ denotes values taken from prior
publications. ∗ indicates usage of extra training data. g denotes use of classifier-
free guidance (Ho & Salimans, 2022) for all steps. gx represents use of guidance
only for final x steps.
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Figure 6: Compute Scaling Curve. Genera-
tion performance vs compute for different model
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and loss function L, our training loss can be expressed as:

Ltrain =
1

N
(L(mN(X),Y) +

N−1

∑
i=1

αiL(mi(X),Y) + (1 − αi)L(mi(X),mi+1(X)))

(3)

where αi controls the weight between the distillation and
ground truth loss, which is linearly decayed from 1 to 0
as training progresses. Note that a stop gradient is applied
during distillation on mi+1 in the third term of the equation.

Classifier-Free Guidance. Following literature (Ho & Sali-
mans, 2022; Yu et al., 2023b), we also utilize classifier-free
guidance during the generation process. Following the same
motivation as decode time model scaling discussed above,
which shows that the initial decoding iterations focus on
the background region, and gradually moves to the main
object/region of interest in the final decoding iterations, we
experiment with applying guidance to only to a few final de-
coding iterations. We find that adding guidance only to few
final iterations offers similar quality images as applying to
all (refer Figure 9b). See Appendix B for detailed analysis.

5. Experiments and Results
We conduct extensive experiments to demonstrate the ef-
ficacy of our approach on three distinct tasks: class-

conditional image generation, class-conditional video gen-
eration, and frame prediction.

Datasets. We evaluate our model on ImageNet 256 × 256
(Deng et al., 2009) for image generation, UCF101 (Soomro
et al., 2012) for video generation and Kinetics600 (Carreira
et al., 2018) for frame prediction (5-frame condition).

Implementation Details. We utilize the pretrained tok-
enizers from MaskGIT (Chang et al., 2022) (for images)
and MAGVIT (Yu et al., 2023a) (for videos) with the code-
book size of 1024 tokens. We train models for image size
256 × 256. The tokenizer compresses it to 16 × 16 discrete
tokens. For videos, we learn models for 16 × 128 × 128,
where the tokenizer outputs 4 × 16 × 16 tokens. Following
MaskGIT, we utilize the Bert model (Devlin et al., 2019)
as a transformer backbone. We perform experiments at sev-
eral model scales to understand the scaling behaviors of our
algorithm. We utilize the same training hyper-parameters
to train our nested models as these baselines. We train our
model for 270 epochs for all the experiments. Unless oth-
erwise mentioned, throughout the paper, we employ same
number of steps per model before switching to the next
model, i.e., k1 = k2 = .... = kn. We follow a cosine schedule
of unmasking tokens during inference. For image genera-
tion and frame prediction, we use classifier-free guidance
for both MaGNeTS and respective baselines. Following
literature, we drop input class condition labels for 10% of
the training batches in image generation. We mention the
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details of sampling hyperparameters in Appendix B.

Evaluation Metrics. Following previous baselines, we
use Fréchet Inception Distance (FID) (Heusel et al., 2017;
Dhariwal & Nichol, 2021) for image generation, Fréchet
Video Distance (FVD) (Unterthiner et al., 2019) for the
video generation tasks, Inception Score (Salimans et al.,
2016) for both tasks, as well as precision and recall for
image generation. We compare algorithms using inference-
time GFLOPs. Refer Appendix D for GFLOPs computation
details.

5.1. Image Generation

Comparison with Baselines. In this section, we compare
MaGNeTS with state-of-the-art methods in the literature
for image generation. We list the results in Table 1 for
256×256 image generation on ImageNet-1k. Table 1 shows
that MaGNeTS can speed up the generation process by
2.65 − 3× (depending on total step count), with a negligible
drop in FID. Refer Appendix D for real-time gains. Figure 5
illustrates that MaGNeTS significantly accelerates parallel
decoding, which gets more pronounced as image resolution
grows. Figure 1 and Figure 10 show generated images from
MaskGIT++ and MaGNeTS (ours). As shown before in
Yu et al. (2023b); Weber et al. (2024), using a superior
tokenizer can further boost MaGNeTS’s performance. Note
that several recent diffusion-based works only report results
on the low-resolution of ImageNet (typically 64×64), and
therefore a direct comparison is not possible.

Scaling Analysis. To understand the scaling properties of
MaGNeTS we train models of different sizes - S (22M),
B (86M), L (303M) and XL (450M) for both the baseline
as well as nested models needed for our algorithm. We
use the same hyper-parameters for all, such as learning rate,
epochs, weight decay, etc. We present the results in Figure 6.
It shows the compute vs performance of different models,
with the blob size denoting the model size. For a certain
parameter count, the baseline uses the full model for all 12
decoding steps, while the scheduled routines use a sequence
of nested models with downsampling factors p = 8,4,2,1
for 3 steps each. It can be seen that scaling up model size
lead to much cheaper compute scaling of MaGNeTS than
the baseline, with almost 3× compute reduction.

5.2. Video Generation

We use the MAGVIT (Yu et al., 2023a) framework to train
parallel decoding based video generation and frame predic-
tion models. Figure 11 shows generated videos of UCF101.
We summarize the results for class-conditional video gen-
eration on UCF101 in Table 2 and for frame prediction on
Kinetics600 in Table 3. Despite the challenging nature of
video generation relative to image generation, results indi-

Method Class FVD ↓ IS↑ # params # steps # GFlops

RaMViD◻∗ (Höppe et al., 2022) - 21.71 ± 0.21 308M 500 -
StyleGAN-V◻∗(Skorokhodov et al., 2022) - 23.94 ± 0.73 - 1 -
DIGAN◻ (Yu et al., 2022) 577±21 32.70± 0.35 - 1 ∼148
DVD-GAN◻ (Clark et al., 2019) ✓ - 32.97± 1.70 - 1 -
Video Diffusion◻∗ (Ho et al., 2022b) 57.00± 0.62 1.1B 256 -
TATS◻ (Ge et al., 2022) 420± 18 57.63± 0.24 321M 1024 -
CCVS+StyleGAN◻ (Le Moing et al., 2021) 386± 15 24.47± 0.13 - - -
Make-A-Video◻∗ (Singer et al., 2022) ✓ 367 33.00 - - -
TATS◻ (Ge et al., 2022) ✓ 332± 18 79.28± 0.38 321M 1024 -

CogVideo◻∗ (Hong et al., 2022) ✓ 626 50.46 9.4B - -
Make-A-Video◻∗ (Singer et al., 2022) ✓ 81 82.55 ≫3.5B ≫250 -
PAR-4×◻ (Wang et al., 2024) ✓ 99.5 - 792M 323 -
PAR-16×◻ (Wang et al., 2024) ✓ 103.4 - 792M 95 -

MAGVIT-B◻ (Yu et al., 2023a) ✓ 159± 2 83.55± 0.14 87M 12 ∼1.3k
MAGVIT-L (Yu et al., 2023a) ✓ 74.4± 2 89.54± 0.21 306M 12 ∼4.3k
MaGNeTS (ours) ✓ 96.4±2 88.53±0.20 306M 12 ∼1.7k

Table 2: Class-conditional Video Generation on UCF-101.
Methods in gray are pretrained on additional large video data.
Methods with✓ in the Class column are class-conditional, while
the others are unconditional. Methods marked with ∗ use custom
resolutions, while the others are at 128×128. ◻ denotes values
taken from prior publications. No guidance is used for UCF101.

cate that the decode time scaling of model size holds true
even for video generation. MaGNeTS remains competi-
tive to MAGVIT for frame prediction with ∼ 3.7× lower
compute.

Method FVD ↓ IS ↑ # params # steps # GFlops

CogVideo◻ (Hong et al., 2022) 109.2 - 9.4B - -
CCVS◻ (Le Moing et al., 2021) 55.0±1.0 - - - -
Phenaki◻ (Villegas et al., 2022) 36.4 ± 0.2 - 1.8B 48 -
TrIVD-GAN-FP◻ (Luc et al., 2020) 25.7 ± 0.7 12.54 ± 0.06 - 1 -
Transframer◻ (Nash et al., 2022) 25.4 - 662M - -
RaMViD◻ (Höppe et al., 2022) 16.5 - 308M 500 -
Video Diffusion◻ (Ho et al., 2022b) 16.2 ± 0.3 15.64 1.1B 128 -

MAGVIT-B◻ 24.5± 0.9 - 87M 12 ∼1.3k
MAGVIT-L 7.2 ± 0.1 16.48 ± 0.01 306M 12 ∼ 4.3k
MAGVIT-Lg2 6.6 ± 0.1 16.29 ± 0.01 306M 12 ∼ 5.1k
MaGNeTS (ours) 10.8 ± 0.1 16.25 ± 0.02 306M 12 ∼1.2k
MaGNeTS (ours)g2 9.6 ± 0.1 16.25 ± 0.01 306M 12 ∼1.4k

Table 3: Frame prediction on K600. ◻ denotes values taken
from papers. gx denotes use of guidance only for final x steps.

5.3. Ablation Studies

Impact of Decode Time Model Schedule. We study the
effect of different model scheduling choices. As discussed
previously, we can think of different model schedules - scal-
ing up model size, scaling down, periodic scaling up and
down, and so on. For this analysis, we consider the L-sized
model, with three nested models within it with parameter
reduction by roughly 1

2
, 1
4
, 1
8

. We can denote the number
of times these four models are called during decoding as
(k1, k2, k3, k4), s.t.,∑4

i=1 ki = 12. We drop the model no-
tation of mp in Equation (2) for simplicity and explicitly
mention the model names in the text, as discussed next.

First, we evaluate all combinations of ki for which we al-
ways scale up in Figure 7a in red and scale down in Figure 7b
in blue. The green curve shows the performance of the indi-
vidual nested models. We have the following observations -
(1) for a certain compute budget, the scheduling of models
over generation iterations (red dots) can offer better perfor-
mance than using a single nested models (green curve) for
all steps. (2) Models that have smoother transitions in nested
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Figure 7: Scheduling Options. (a) This shows the compute-performance trade-off for different schedule options while always scaling up
model size over generation iters. The four numbers for each point denote the number of iters each model size operates in the order of
downsampling factor p = (8,4,2,1). (b) This shows the benefit of scaling up model size compared to scaling it down during decoding.

models, such as (3,3,3,3) or (0,0,8,4), offer much better
performance than the ones which has abrupt model transi-
tion such as (6,0,0,6) or (3,0,0,9), i.e., directly jumping
from the smallest to the biggest model. (3) Figure 7b shows
that scaling up nested model size offers much better per-
formance than scaling down model size. This shows that
bigger models are better utilized in the later iters.

Impact of Caching and Refresh. We now discuss the im-
pact of caching and its refresh. For this analysis, we use
a uniform model schedule: k1 = k2 = k3 = k4 = 3. We
also perform caching and refresh on the baseline model,
which has not been trained with any nesting and has the
same model applied for all iterations. We also refresh the
cache at exactly the same steps as the scheduled model
for the baseline. We present the results in Table 4. The
columns “Baseline” and “Scheduled” do not involve any
cache. While caching degrades the performance a bit, re-
freshing it intermittently can avoid the degradation. While
refresh does have some compute overhead, it does help sig-
nificantly. Scheduling of models with caching and refresh
has the best compute-performance trade-off.

Algorithm Baseline + Cache + Refresh Scheduled + Cache + Refresh

FID 2.5 3.4 2.6 3.1 4.8 3.1
FLOP Gains (times) 1.0 1.3 1.2 2.1 3.5 3.0

Table 4: Caching Ablation. As we can see, adding caching
does take a hit in performance, which can be regained by cache
refresh. Scheduling of models (scaling up) with caching and its
intermittent refresh offers the best compute-performance trade-off.
These results are on ImageNet256×256 with model size L.

The efficiency of using nested models. In MaGNeTS we
use nested models instead of separately trained smaller sized
models. This has two advantages - (a) parameter sharing,
which limits the number of parameters to just that of the
full model, compared to 1.875 × (= 1 + 1/2 + 1/4 + 1/8)

for disjoint models. Increasing the parameter count will
increase memory requirements. (b) Nested models can be
trained efficiently in just a single training run. When trained
with distillation, they generate better models than training
standalone models (refer Appendix C) of the same size as
the nested models. For performance comparison, we trained
standalone (L-sized) models of the same size as the nested
models for both UCF101 and ImageNet. The results are
presented in Table 5. Nested models can efficiently share
parameters without loss in performance (ImageNet) and
offer constraints that help in better performance (UCF101)
than using standalone models.

Dataset Nested Models Standalone Models

ImageNet (FID) 3.1 3.1
UCF101 (FVD) 96.4 115.0

Table 5: Nested vs Standalone Models. This table presents
the performance comparison between using nested models vs.
standalone, independent models without parameter sharing in the
decode-time scheduling algorithm of MaGNeTS.

6. Conclusion
In this paper, we propose MaGNeTS, a novel approach
for allocating different compute to different steps of the
image/video generation process. We show that instead of
always using the same sized transformer model for all de-
coding steps, we can start from a model which is nested
and fraction of its full size, and then gradually increase
model size. This along with key-value caching in the par-
allel decoding paradigm obtains significant compute gains.
We believe that our exploration of dynamic compute opens
exciting new directions for research in efficient and scal-
able generative models. In future works, we plan to explore
token-dependent model schedules for further compute gains.
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A. Motivation for Decode Time Model Scaling
Our visualization of token density averaged across 50k Ima-
geNet samples reveals a dynamic pattern - initial decoding
iterations prioritize background regions. In contrast, later
iterations focus on the center where foreground objects or
region of interest typically reside. This highlights the need
to allocate resources efficiently during generation. To fur-
ther investigate this behavior, we examine token density
across various ImageNet categories (refer Figure 8). This
category-wise analysis further motivates our focus on de-
code time scaling. Figure 10 shows more qualitative results
on ImageNet256 × 256 and Figure 11 shows samples on
UCF101.

B. Hyper-parameter Details
The MaskGIT algorithm has the following hyper-parameters
which we discuss next.

Guidance Scale (gs). It is used in classifier-free guidance
(Ho & Salimans, 2022) and governs the calculation of final
logits during inference as shown in Equation (4).

logitsfinal = logitscond + λ ⋅ gs ⋅ (logitscond − logitsuncond)
(4)

where logitscond are from class-conditional input,
logitsuncond are from unconditional input, and λ depends
on the mask-ratio of the current decoding iteration.

Figure 8 shows that the initial decoding iterations of par-
allel decoding focus on the background region, and focus
gradually shifts to the main object/region in the final de-
coding iterations. Motivated by this, we experimented with
applying guidance to only few final decoding iterations and
present our findings in Figure 9b. As we can see, most of
the decoding iterations do not require guidance. We use
guidance only for final few decoding iterations for class-
conditional generation in ImageNet256×256 and frame pre-
diction in Kinetics600. Following MAGVIT (Yu et al.,
2023a), for class-conditional generation in UCF101 we do
not use classifier-free guidance.

Mask Temperature (MTemp). It controls the random-
ness introduced on top of the token predictions to mask
tokens.

Sampling Temperature (STemp). It controls the ran-
domness of the sampling from the categorical distribution
of logits. Tokens are sampled from logits/STemp. STemp
is calculated by Equation (5).

STemp = bias + scale ⋅ (1 − (k + 1)/K) (5)

where bias and scale are hyperparameters (see Table 6), k

is the current decoding iteration and K is the total number
of decoding iterations. We report the hyperparameters we
use in in Table 6. We use bias=0.5 and scale=0.8 for all
experiments.

Dataset Method gs MTemp

ImageNet MaskGIT++ 65 6
MaGNeTS 65 5

UCF101 MAGVIT/ MaGNeTS 0 5

Kinetics600 MAGVIT 10 12.5
MaGNeTS 5 10

Table 6: Best Sampling Hyperparameters.

C. Additional Ablations
Impact of Distillation. We use two types of losses to train
the nested sub-models - loss w.r.t the ground-truth tokens
and distillation loss using the progressively bigger model as
the teacher. The weight between the two losses is also lin-
early interpolated from the former to the latter. We compare
this training strategy with the two extremes – only ground
truth loss and only distillation loss and present the results in
Table 7. As we can see, using only distillation loss results
in divergence. Using ground-truth loss is also inferior to
linearly annealing on UCF101 and for the smallest model
in ImageNet.

Dataset Training Algo. p = 1 p = 2 p = 4 p = 8 Scheduled

ImageNet
Only GT 2.5 3.1 4.1 6.1 3.1
Only Distill ←Ð Training DivergedÐ→
GT→ Distill 2.5 3.1 4.1 5.7 3.1

UCF101
Only GT 80.0 101.3 143.8 221.8 112.6
Only Distill ←Ð Training DivergedÐ→
GT→ Distill 78.3 91.2 115.4 164.4 96.4

Table 7: Distillation Ablation. This shows the impact of
different training losses used for the nested sub-models on
ImageNet256×256 (size: L) and UCF101 (size: L). Using only
distillation diverges while using only ground-truth losses performs
worse than our approach (third row), where we combine ground-
truth and distillation losses with a linear decay from the former to
the latter.

Nested Attention Heads We also investigate nesting along
the number of attention heads (nh), applying the same par-
tial computation strategy as discussed before. However, this
generally performed worse than nesting along the head fea-
ture dimension in attention, which is what we use for this
work.

D. Compute Gains
Per-step FLOPs. Figure 9a illustrates the inference-time
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Figure 8: Visualization of token density unmasked in each iteration averaged over 10k generated samples on different
categories of ImageNet. The top example shows category volcano (non-center-focused). Middle and bottom examples show
dishrag,dishcloth and goldfish,Carassius auratus center-focused categories, respectively. Yellow color represents higher
density, and each pixel represents a token from the 16 × 16 token space.

computational cost, measured in GFLOPs, per iteration
for the baseline model and MaGNeTS. As we can see the
amount of FLOPs can be drastically reduced using MaG-
NeTS. This is for a schedule with k1 = k2 = k3 = k4 = 3.
The spikes after every 3 iterations are due to the cache re-
fresh step. Mechanisms to get rid of the cache refresh can
further reduce the total compute needed.

Calculation of GFLOPs. We illustrate the calculation of
inference GFLOPs via Python pseudo-code in Table 9. We
double the GFLOPs in decoding iterations where classifier-
free guidance (Ho & Salimans, 2022) is used. Note that we
always use a cosine schedule to determine the number of
tokens to be unmasked in every step.

Real-Time Inference Benefits. In addition to the theoretical
FLOP gains offered by MaGNeTS , here we want to analyze
the real-time gains that it offers. We implement MaGNeTS
on a single TPUv5 chip and present the results in Table 8.

Algorithm→ Baseline (MaskGIT++) MaGNeTS

Images/Sec 22.5 56.3

Table 8: Real-Time Inference Efficiency. These show the
number of generated images per sec. These results are on
ImageNet256×256 with model size XL.

E. Limitations.
While our approach demonstrates strong performance in
image and video generation, we acknowledge certain lim-
itations. Some artifacts inherent to MaskGIT++ may also
appear in our generated outputs (see Figure 12 for examples
on ImageNet256× 256). Such artifacts are common in mod-
els trained on controlled datasets like ImageNet. Moreover,
the quality of the pretrained tokenizers (Yu et al., 2023b; We-
ber et al., 2024) directly impacts our method’s effectiveness;
however, improving these tokenizers is beyond the scope of
this work. Although, use of nesting and decode time scaling
does not have any specific requirement for model architec-
ture and sampling scheme, KV caching requires discrete
tokens.
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Figure 9: (a) Inference GFLOPs per step for baseline and MaGNeTS. (b) generation performance (FID) on ImageNet vs Number of
decoding iterations w/ guidance for different model scales. Note that we start from last decoding iteration. For example, ”No. of iterations
w/ Guidance = 6” means we use guidance only for final six iterations (out of total 16 iterations). This shows that using guidance only for
few final iterations is enough in the parallel decoding setup.

MaskGIT++ (FID=2.3)             MaGNeTS (FID=2.9)~3x FLOPs Reduction

Figure 10: Class-conditional Image Generation. More qualitative results on ImageNet. Comparing MaskGIT++ and
MaGNeTS (size: L, epochs: 270).
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Figure 11: Class-conditional Video Generation on UCF101. 16-frame videos are generated at 128×128 resolution 25 fps.
Every third frame is shown for each video. The classes from top to bottom are Lunges, Bench Press, Handstand Pushups,
Cutting In Kitchen.

          MaskGIT++                                 MaGNeTS

Figure 12: Failure cases. Similar to existing methods, our system can produce results with noticeable artifacts.
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1 # Function to get the GFlops for current decoding iteration
2 def get_flops(num_tokens_cached, num_tokens_processed, model_id, params, version):
3 num_layers, hidden_size, mlp_dim, num_heads = params[version]
4 qkv = 4 * num_tokens_processed * hidden_size * (hidden_size // model_id)
5 attn = 2 * num_tokens_processed * (num_tokens_processed + num_tokens_cached) *

hidden_size
6 mlp = 2 * num_tokens_processed * (mlp_dim // model_id) * hidden_size
7 return (qkv + attn + mlp) * num_layers // 1e9
8

9 # Function to get the total inference GFlops
10 def get_total_flops(version, num_iters, use_cache, refresh_cache_at, total_tokens,

model_id_schedule, params, num_cond_tokens=0):
11 assert num_cond_tokens < total_tokens
12 refresh_cache_at = [int(x) for x in refresh_cache_at.split(’,’) if x]
13 assert len(model_id_schedule) == num_iters
14 num_cached = 0
15 total_flops = 0
16

17 # MaGNeTS (ours) doesn’t need to process the conditioned tokens in the frame
prediction task

18 total_tokens -= num_cond_tokens
19

20 for i in range(num_iters):
21 ratio = i / num_iters
22

23 # Cosine masking schedule
24 num_processed = np.cos(np.pi/2. * ratio) * total_tokens
25

26 # Even if we are performing caching, all tokens are processed in first iteration
and iterations where cache is refreshed

27 if i == 0 or i in refresh_cache_at and use_cache:
28 total_flops += get_flops(0, total_tokens+num_cond_tokens, model_id_schedule[i

], params, version)
29

30 # we always cache the conditioned tokens
31 else:
32 total_flops += get_flops(num_cached+num_cond_tokens, total_tokens-num_cached,

model_id_schedule[i], params, version)
33

34 if use_cache:
35 num_cached = total_tokens - num_processed
36 return total_flops

1 # Sample function call for class-conditional image generation
2 # params is a dictionary of the form {version: (num_layers, hidden_size, mlp_dim,

num_heads)}
3 common = {’version’: ’L’, ’num_iters’: 12, ’total_tokens’: 257, ’params’: params}
4 baseline = {’use_cache’: False, ’refresh_at’: ’’, ’model_id_schedule’: (1,)*12, **common}
5 ours = {’use_cache’: True, ’refresh_at’: ’3,6,9’, ’model_id_schedule’: (8,)*3+(4,)*3+(2,)

*3+(1,)*3, **common}
6

7 print(get_total_flops(**baseline), get_total_flops(**ours))
8

9 # total_tokens = 1025 for class-conditional video generation and frame prediction
10 # num_cond_tokens = 512 for frame prediction

Table 9: Python pseudo-code illustrating the calculation of inference GFLOPs.
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