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ABSTRACT

Machine learning has been well introduced to solve combinatorial optimization
(CO) problems over the decade, while most of the work only considers the
deterministic setting. Yet in real-world applications, decisions have often to be
made in uncertain environments, which is typically reflected by the stochasticity
of the coefficients of the problem at hand, considered as a special case of the more
general and emerging “predict-and-optimize” (PnO) paradigm in the sense that
the prediction and optimization are jointly learned and performed. In this paper,
we consider the problem of learning to solve CO in the above uncertain setting
and formulate it as “predict-and-combinatorial optimization” (PnCO), particularly
in a challenging yet practical out-of-distribution (OOD) setting, where we find that
in some cases there is decline in solution quality when a distribution shift occurs
between training and testing CO instances. We propose the Invariant Predict-and-
Combinatorial Optimization (Inv-PnCO) framework to alleviate this challenge.
Inv-PnCO derives a learning objective that reduces the distance of distribution of
solutions with the true distribution and uses a regularization term to learn invariant
decision-oriented factors that are stable in various environments, thereby enhancing
the generalizability of predictions and subsequent optimizations. We also provide
a theoretical analysis of how the proposed loss reduces the OOD error on decision
quality. Empirical evaluation across three distinct tasks on knapsack, visual
shortest path planning, and traveling salesman problem covering array, image, and
graph input underscores the efficacy of Inv-PnCO to enhance the generalizability,
both for predict-then-optimize and predict-and-optimize approaches.

1 INTRODUCTION

Optimization, especially combinatorial ones, covers diverse and important applications in the real
world, such as supply chain management (Cristian et al., 2022), path planning (Sun & Yang, 2023),
resource allocation (Hu et al., 2024), etc. However, many optimizations involve uncertain parameters;
for instance in the shortest path problem, the real traveling time on each path could be unknown
in advance. Such scenarios call for effective predictions (Bertsimas & Kallus, 2020) to complete the
optimization formulation before the solving procedure, and the adoption of machine learning (Mandi
et al., 2020) emerges as a promising direction for decision-making under uncertainty.

Addressing optimizations with unknown coefficients (specifically combinatorial optimization
(CO) as the primary focus in this work) is currently approached through two main strategies:
“predict-then-optimize” (PtO) and “predict-and-optimize” (PnO, mainly focusing on PnCO for
CO problems in the following). PtO (Bertsimas & Kallus, 2020)(or referred to as the ”two-stage”
approach), as a basic solution, forecasts optimization coefficients using a predictive model supervised
by coefficient labels, then employs standard solvers to derive solutions at the test time, while
PnO (Elmachtoub & Grigas, 2022; Mandi et al., 2020; Elmachtoub et al., 2020)(or “decision-focused
learning” (Wilder et al., 2019; Wang et al., 2020; Mandi et al., 2022)) train the prediction model
oriented towards the ultimate decision objectives with designed surrogate loss. By aligning the
prediction goal with the optimization goal in the end-to-end training, PnO is expected to achieve
more appropriate error trade-offs (Cameron et al., 2022) and obtain better final decision quality.
Recent work (Mandi et al., 2020; Yan et al., 2021; Guler et al., 2022; Mandi et al., 2022) on PnO also
validates its ability to reduce regret, where regret measures the quality of decisions under uncertainty
by comparing to decisions under full information optimization.
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Figure 1: (a) A motivating example: impacts of distribution shift in the visual shortest path (SP)
problem using Warcraft dataset. The costs of paths rely on predictions by images. Shifts in percep-
tual mechanisms may lead to inaccurate predictions and sub-optimal decisions. (b) Inter-variable
dependencies of perceptual shifts in SP, where notations are listed in the example of SP of Sec 1. (c)
Inv-PnCO: a plug-in framework for predict-and-combinatorial optimization by acquiring K environ-
ments of data of diverse distributions and then training by the Inv-PnCO loss, a weighted combination
of mean and variance terms, to learn invariant PnCO models for improved decision generalizability.

However, similar to observations in machine learning tasks (Mancini et al., 2020; Wu et al., 2022b;
Zhuang et al., 2024), models for CO under uncertainty also may exhibit sensitivity to distribution shifts
during training and testing stages, and manifest performance degradation when confronted with new
environments for both PtO and PnO paradigms. Such occurrences are widespread in practical scenar-
ios. For example, the evolution of topological distributions of cities (see Fig. 2) may result in degraded
solution quality for Traveling Salesman Problem (TSP) instances (Jiang et al., 2022; Joshi et al., 2022),
especially under uncertain traveling costs (Tsiotas & Polyzos, 2017; Zafar & Ul Haq, 2020). Similarly,
in visual shortest path planning (Pogančić et al., 2019) in Fig. 1(a), external variables such as weather
conditions, variations in lighting, and changes in imaging equipment have the potential to induce shifts
in image distributions. The deployment of a trained model on a specific distribution may consequently
lead to inaccuracies in cost predictions and yield impractical paths in out-of-distribution (OOD)
instances, thereby potentially causing degraded solutions (delays in deliveries to critical clients, etc.).

Various generalizable approaches have been proposed in pure machine learning tasks (Mancini et al.,
2020; Wu et al., 2022b; Yang et al., 2022) and some CO tasks (Fu et al., 2021; Jiang et al., 2022;
Luo et al., 2024) to address distribution shifts. However, as shown in Table 1, these methods are not
directly applicable to PnCO generalization for two reasons: (1) Similar to that in the independent and
identically distributed (IID) setting (Elmachtoub & Grigas, 2022), robust prediction does not always
lead to robust decisions in the out-of-distribution optimization under uncertainty, as demonstrated in
our experiments. Existing pure ML-based approaches are, therefore, insufficient in this context. (2)
No theoretical framework has been investigated to make robust decisions with uncertain coefficients
under distribution shifts.

Then, we use an example to demonstrate the challenges of generalization in PnCO and our motivation
in a real-world scenario. Fig. 1(a) illustrates an instance of distribution shifts of coefficients in the
visual shortest path problem: Decision makers forecast travel costs between grids based on visual
images and subsequently determine the route from the upper left to the lower right. However, several
factors (denoted as the perceptual mechanism), such as variations in sunlight exposure, weather
conditions including clouds, rain, and fog, and imaging devices/parameters including saturation,
hue, and contrast, can introduce variability in image distributions. Deploying trained models by
independent and identically distributed (IID) data may lead to inaccurate predictions and suboptimal
decisions, as evidenced by the performance deterioration observed in the experiments in Table 4.

Hopefully, a key insight from this example toward generalizable decisions lies in identifying invariant
decision-oriented factors. As shown in the variable dependence relationship of Fig 1(b), despite
variations in perceptual mechanisms (denoted environment e) leading to shifts in the appearances
of images (spurious features x2), terrain serves as a decisive factor (denoted as invariant factor f )
influencing both the imagery (x1, the textures and contours of terrains in images) and the determina-
tion of shortest paths (i.e. solution z of CO problems). On terrain with gentle slopes, the incurred
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costs are lower, concurrently exhibiting characteristics of flatness in the visual images. These factors
remain unaffected by other spurious features x2. We name f the invariant decision-oriented factors.

Therefore, we devise a training framework named Invariant Predict-and-Combinatorial Optimization
(Inv-PnCO)) to mitigate the solution degradation caused by distribution shift, which seamlessly
plugs in the current PtO and PnO models. The key advancement of this work is the design of an
invariant PnCO framework that captures invariant decision-oriented factors that are stable for the
ultimate solutions in various environments. Inv-PnCO proposes a learning objective that ensures the
derived solutions closely approximate the true solution distribution and utilize a regularization term
to enable the model to capture the invariant factors of PnCO. Based on Assumption 1 that distribution
shifts are generated by different environments, and there exist invariant factors whose decisions
remain unchanged across different environments, we then theoretically derive a tractable Inv-PnCO
loss function to achieve the above goal comprising mean and variance terms of PnO/PtO losses of
various environments. Furthermore, we present theoretical results that Inv-PnCO reduces the test
error concerning the distribution of final solutions, and validate the efficacy on multiple CO tasks of
various distribution shifts. The contributions are summarized as follows:

• We formulate the challenge of out-of-distribution generalization in predict-and-combinatorial
optimization (PnCO), and discern the deterioration in decision quality under the distribution shifts
between the training and testing sets.

• We propose a novel approach, Invariant Predict-and-Combinatorial Optimization (Inv-PnCO),
to enhance generalizability. Inv-PnCO aims to minimize the divergence between the solution
distribution and the true distribution, and uses a regularization term to learn invariant features tailored
for downstream optimization. Furthermore, we provide theoretical results of how Inv-PnCO reduces
the test OOD error of the final prescribed solutions.

• We conduct extensive experiments on distribution shifts of various combinatorial optimization
tasks, including artificial, perceptual, and topological shifts in knapsack, visual shortest path (SP) and
traveling salesman problem (TSP) covering the input of the array, images and graphs, illustrating the
efficacy of both the conventional predict-then-optimize and the predict-and-optimize method.

2 PROBLEM FORMULATION

Throughout this paper, we denote variables in bold lowercase letters (e.g., x,y, z) and data samples as
lowercase letters (e.g., xi, yi, zi). Consider a combinatorial optimization problem under uncertainty
formulated as:

min
z∈Z

F(z,y,θ) s.t. z ∈ Constr(θ) , (1)

where F is the known and closed-formed optimization objective function, z ∈ Z is the decision
variable, y and θ are the unknown and known parts of optimization parameters, and Constr(θ)
represents the feasible set where decisions satisfy the constraints parameterized by θ. We assume that
the parameters in the constraints are known and fixed. We assume the CO objectives as minimization
forms for simplicity, whereas maximization forms can be transformed equivalently. The optimization
problem is simplified to a minimization one, whereas the maximization problems can be addressed
by taking the negation of the objective function.

Although coefficients y are unknown, in many circumstances, they could be estimated by a prediction
model trained on a historical or pre-collected dataset D = {(xi, yi)}, where x denotes relevant
raw features. The predictive model is denoted by ŷ = Mp(x), while the optimization solver is
represented as ẑ = Mo(ŷ), collectively constituting the system M. A vanilla approach to solving
combinatorial optimizations with uncertain coefficients, dubbed ”predict-then-optimize” (PtO), is to
minimize only the prediction loss and use predictions for the subsequent optimization.
Definition 1. (Prediction Optimal) A PnCO system M achieves prediction optimal if the coefficient
predictions ŷ induced by prediction model Mp achieve minimum prediction loss on the dataset D:

min
Mp

E(xi,yi)∼D[Lpred(ŷi, yi)] , (2)

where Lpred is a training loss specified by the prediction output, e.g. mean squared error (MSE)
for regression tasks. This is also referred to as the two-stage approach. In contrast to PtO, we next
introduce PnO, which learns prediction enhanced by information from optimizations.
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Table 1: Comparison with previously generalizable models against distribution shifts of various types.
Inv-PnCO is focused on generalization for predict-and-optimize.

Previous work Problem Task Generalizability

Mancini et al. (2020)/Wu et al. (2022b)/Yang et al. (2022) Prediction Image/node/graph classification Generalization of pure prediction tasks
Fu et al. (2021); Luo et al. (2024)/Jiang et al. (2022) Optimization TSP solving Generalization of pure optimization tasks
Inv-PnCO Predict-and-Optimize Knapsack/SP/TSP under uncertainty Generalization of joint prediction and optimization

Definition 2. (Decision Optimal) A PnCO system M (Mp along with Mo) achieves decision
optimal if the prescribed solution ẑ induced by Mo with the predicted coefficients ŷ achieves its
optimal objective induced by Mp on dataset D:

min
M

E(xi,yi)∼D [F (ẑi, yi, θ)] . (3)

In model training, surrogate loss functions L(x,y, z;θ) (such as SPO loss in Eq. (33)) are usually
used to replace objective in Eq. (3) since we are not able to optimize Eq. (3) directly. This is often
due to the inability to differentiate the decision variable concerning coefficients and the discrete
nature of decisions z in the PnO approaches. Although our Inv-PnCO framework applies to any
prediction model and combinatorial solvers, in our implementation, the final solution is obtained by
an off-the-shelf solver calls following the common practice in the literature (Mandi et al., 2020; Shah
et al., 2022). More details are listed in Appendix C.1.

The final decision quality is generally evaluated by regret as in (Mandi et al., 2020; Yan et al., 2021;
Guler et al., 2022; Mandi et al., 2022), where lower regret indicates better decision quality of M.
The regret is the difference of the objectives of ground-truth coefficient y with solutions by an
estimated coefficient (ẑ) and ground-truth coefficient (z):

Regret(ŷ,y) = |F(z,y,θ)−F(ẑ,y,θ)|, (4)

To better measure the generalizability of the decision models on the CO under uncertainty, we specify
conditional distribution p(z|x) as the distribution of decision z given raw feature x, then conditional
Kullback-Leibler (KL) divergence for any two distributions p1 and p2 is given by:

DKL (p1(z|x)∥p2(z|x)) := E(x,z)∼p1(z|x)

[
log

p1(z = z|x = x)

p2(z = z|x = x)

]
(5)

We also specify the distribution of solutions learned by system M as q(z|x) = Ey∼q(y|x)[q(z|y = y)]
where q(y|x), q(z|y) are distributions induced by predictor Mp and solver Mo respectively.

3 RELATED WORK

We compare with existing works abbreviated in Table 1, and more discussions are left in Appendix A.

Predict-and-optimize for optimization under uncertainty Plenty of recent studies utilize
information on downstream optimization problems to enhance prediction models (dubbed
“predict-and-optimize” or “decision-focused learning”), which aims to obtain better decisions than
the two-stage (or “predict-then-optimize”) approach that solely learns the model from the prediction
tasks. An influential work is SPO (Elmachtoub & Grigas, 2022) that proposes subgradient-based
surrogate functions for linear optimization problems to replace non-differentiable regret functions,
as well as a later extended work SPO-relax (Mandi et al., 2020) for a combinatorial counterpart
based on continuous relaxation. Later, a class of approaches is developed to deal with differentiable
optimization with quadratic programs (Amos & Kolter, 2017; Wilder et al., 2019) and further
extended to linear (Mandi & Guns, 2020) and convex (Agrawal et al., 2019) objectives. Some other
works propose using linear interpolation (Pogančić et al., 2019) or perturbation (Berthet et al., 2020)
to approximate the gradient, enabling the differentiability of the optimization problem module. These
differentiable components are also used to enhance structured output prediction (Jang et al., 2017),
self-supervised (Stewart et al., 2024) and semi-supervised (Shvetsova et al., 2023) tasks.

However, these works are usually evaluated on i.i.d data while ignoring the risks of out-of-distribution
on test data. In this study, we aim to propose a theoretical framework applicable to both PtO and PnO
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to enhance generalization. Besides, few methods are suitable for various combinatorial optimization
tasks as discrete decisions also block the end-to-end training of PnO. Thus, for our experimental
investigation, we select two representative approaches: the two-stage approach for PtO and SPO-
relax (Mandi et al., 2020) (short as SPO below) for PnO that are applicable to a range of CO tasks.

Combinatorial optimization and generalization There are a few studies that also explore the
generalization capabilities of combinatorial optimization solvers. Some consider generalizing the
trained neural solver to larger problem sizes (Fu et al., 2021; Joshi et al., 2022) or different topological
distributions (Jiang et al., 2022; Zhou et al., 2023) on the TSP or vehicle routing problem (VRP).
However, these are orthogonal to ours as they are focused on the generalizability of the solver and
ignore the challenges of uncertain coefficients. Instead, our work treats the solvers as fixed heuristics
in implementation and is more concerned with learning robust decision-oriented predictions.

Besides, though generalization toward OOD has been explored in various domains such as im-
ages (Mancini et al., 2020), graphs (Wu et al., 2022b;a), and moleculars (Yang et al., 2022), it
remains largely unexplored in the context of combinatorial optimization problems, especially under
uncertainty. We also note that settings in adversarial PnO (Farhat, 2023; Xu et al., 2024) are different
from ours as they are more concerned about the robustness to adversarial attacks but do not include
distribution shifts on the train and test set. To the best of our knowledge, our research constitutes a
pioneering endeavor that applies the invariance principle to address OOD distribution shifts of CO
problems involving uncertain coefficients.

4 METHODOLOGY

The out-of-distribution generalization learning objective on predict-and-combinatorial optimization is:

min
M

max
e∈E

E(x,y)∼p(x,y|e=e)[F(ẑ, y, θ)], (6)

where ŷ = Mp(x) and ẑ = Mo(ŷ), e denotes the environmental variable among all possible
environments E . Such an objective is hard to solve since we are not able to obtain possibly infinite
environments, particularly the environment during testing. However, under the mild assumption
that practitioners have access to data from a limited number of domains (like many practices in
generalization in ML tasks (Krueger et al., 2021)), we show that we are able to improve existing
PtO and PnO generalizability through decision-oriented loss extrapolation.

4.1 INVARIANT ASSUMPTION FOR PREDICT-THEN-COMBINATORIAL OPTIMIZATION

Inspired by the example (introduced in Sec 1) above, we aim to develop a generalizable framework
capable of learning invariant decision-invariant factors f , so that M is immune to changes of spurious
features x2 caused by environmental factors e. The underlying assumption, the invariant assumption
for PnCO, is given below.
Assumption 1. (Invariant PnCO) Assume that various data distributions are generated by different
environments, A PnCO system M satisfies the invariance assumption if M is capable of learning
the invariant factor f with respect to the decision variable z, so that p(z|f , e = e) = p(z|f) hold
consistently for prescribed solutions z across any environment e.

Assumption 1 also assumes the existence of invariant factors, and such factors are irrelevant to data
generation environment e. Also, different from the invariance of predictions in pure machine learning
tasks (Koyama & Yamaguchi, 2020), Assumption 1 pertains to the model’s ability to sufficiently
represent invariant decision-oriented features. Such factors exist in many decision problems. For
instance of portfolio optimization with uncertain stock prices, fundamental characteristics such as
financial statements and debt levels generally remain stable despite short-term market fluctuations.
We may use these invariant factors to design robust PnCO systems.

4.2 INVARIANT PREDICT-AND-COMBINATORIAL OPTIMIZATION (INV-PNCO) FRAMEWORK

Invariant PnCO Training Approach Since optimizing Eq (6) is intractable when we are not aware of
the distribution of test data, achieving a system M that obtains invariant decisions against distribution
shifts is challenging. Therefore, we introduce a general objective to guide the solutions produced
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by M to align with the distribution of optimal decisions of real-world data, and also satisfy the
aforementioned invariant decision among environments mentioned in Assumption 1:

min
M

DKL(p(z|x)∥q(z|y)) + λR(q(z|x)) (7)

where the first term reduces the discrepancy between optimal solution distribution p(z|x) and distri-
bution q(z|y) induced by M, which inherently aligns with the goal of decision-oriented predict-and-
optimize; the second term R(·) is a regularization that acts on q(z|x) that ensures M learns invariant
decision-oriented factors. This learning objective could plug in any existing PtO and PnO models.

Design of Regularization The subsequent challenge lies in designing a regularization R(q(z|x))
that ensures M satisfies the invariant PnCO in Assumption 1, and we proceed with theoretical views.

Let us assume that the training distribution is drawn from the joint distribution p(x, z|e = e), and
the test distribution is drawn from p(x, z|e = e′). Utilizing the conditional distribution of the
solution z given the raw feature x, the error during training and testing could be represented as
DKL (pe (z|x) ∥q (z|x)) and DKL (pe′ (z|x) ∥q (z|x)), respectively. In the following, we measure
the OOD test decision error under environment e = e′ trained by the proposed Inv-PnCO from an
information-theoretic perspective (Federici et al., 2021):

Theorem 1. For training data generated by environment e and any test data generated from envi-
ronment e′, Eq. (7) with regularization term R(q(z|x)) = Ie,q(z; e|y) upper-bounds KL-divergence
DKL (pe′ (z|x) ∥q (z|x)) between the prescribed solution distribution q(z|x) by model M and
optimal solution distribution pe′(z|x) on condition of Ie′,q (x; z|y) = Ie,q (x; z|y).

where in the condition, Ie,q (x; z|y) = DKL (q(z|x,y)∥q(z|y)) is the mutual information between
the raw feature x and solution z (produced by the model M with the distribution of q(z|x)) given
coefficient prediction y under environment e. It is noteworthy that while the optimization solvers
are treated as black-box tools in our experiments, Theorem. 1 applies to the entire system M,
encompassing both prediction and optimization. The condition in Theorem. 1 can be satisfied when
minimizing DKL(p(z|x)∥q(z|y)) in the objective (7).

Therefore, Theorem. 1 provides the guidelines for formulating the regularization term. Accordingly,
we specify R(q(z|x)) as Ie(z; e|y) to enforce M learn representations that capture stable decisions
across environmental factor e. Also, we have proven that minimizing Eq. (7) can reduce the OOD
error in the out-of-distribution generalization of the prescribed solution by M. Since this objective
can reduce the generalization error of any test environment e′, it equivalently addresses the OOD
generalization objective (6) for decision-making.

Tractable Learning Loss After resolving the choice of R(q(z|x)), the difficulty we face during train-
ing is that with only observable data at hand, how to make tractable training to minimize Ie(z; e|y).
Therefore, we propose a tractable estimation that equivalently minimizes the above objective.

Proposition 1. Assume with the invariant condition specified in Assumption 1, the following objective
in Eq (8) upper bounds the objective of Eq (7):

min
M

Vare∼Etr
[L (xe, ŷe, ẑe;θ)] + βEe∼Etr

[L (xe, ŷe, ẑe;θ)] (8)

The above loss function is named Inv-PnCO loss, where Var(·) denotes the variance of losses across
training environments Etr, and β is a hyper-parameter controlling the balance of two terms, L(·) is the
surrogate loss function for PnO or prediction loss for PtO, specifically we adopt SPO loss as following:

Lspo(y, z, ŷ, ẑ) = −F(˜̂z, 2ŷ − y) + 2F(z, ŷ)−F(z,y) . (9)

where z denotes the optimal solution using the ground-truth coefficient y, and ˜̂z denotes solution
obtained with the coefficient (2ŷ − y). Intuitively, the first term corresponds to minimizes the
discrepancy of decision qualities p(z|e,y) for the predictions y across environments in Etr, while the
second term maximizes predictive information and aligns the true solutions with induced solutions
by M of training environments.

Acquisition of Training Environments We assume access to data from multiple training domains Etr
in accordance with previous works (Krueger et al., 2021), then data De = {(xe, ye, ze)} including
raw feature xe, coefficients ye and solutions ze can be obtained for K different environment e ∈ Etr,
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Table 2: Various distribution shifts on combinatorial optimization tasks. “Probabilistic shift” (adopted
from (Mandi et al., 2020; Guler et al., 2022)) means the change of probability distributions for
coefficients, “Perceptual shift” (from (Pogančić et al., 2019; Sahoo et al., 2023) ) refers to changes
in perceptual mechanisms that result in transformations of images, and “topological shift” (from
(Bossek et al., 2019; Tang & Khalil, 2022)) means change of graph topology.

Shift Problem Input type # Train samples # Test samples # Decision Variables

Probabilistic shift Knapsack Array 400 200 20 ˜100
Perceptual shift Shortest path Image 10000 1000 144
Topological shift TSP Graph 400 200 20

where the generation method is tailored to each optimization task and specified in Appendix C.2 for
our implementations.

Remark (Heterogeneity of Inv-PnCO environments) Besides the capability of M to learn invariant
decision-oriented factors, the diversity of the acquired environments may be crucial for practical
performance. Insufficient diversity in Etr or direct correlations between environmental factors and
targets could undermine the efficacy of Inv-PnCO.

In summary, Inv-PnCO workflow is illustrated in Fig 1(c). For the training, we acquire environments
of multiple distributions, and then obtain PtO/PnO losses for each environment. The model is trained
by Inv-PnCO loss in Eq. (8) to update the predictor Mp. During testing, the optimization coefficients
are predicted by Mp and solved by Mo, without incurring additional time or space overhead.

5 EXPERIMENTS

5.1 DATASETS AND EXPERIMENTAL SETUP

We evaluate the generalizability to new environments under the following optimization tasks and
distribution shifts, shown in Table 2. All experiments are carried out on a workstation with Intel®
i9-7920X, NVIDIA® RTX 2080, and 128GB RAM.

We use the “two-stage” for the PtO method and “SPO” (Mandi et al., 2020) for the PnO method,
where the model details are elaborated in Appendix C.1. In each task, we first present the results
under IID settings as a reference, then in the “OOD” setting, compare Inv-PnCO with the baseline
method, the vanilla empirical risk minimization (ERM) approach, the supervised learning that
directly optimizes the loss on the training data. ERM assumes the train/test data to be IID distributed
and does not account for distribution shifts. Note that the test sets are identical for IID and OOD
settings for direct comparison.

We grid-search the learning rate across {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2} for each model, and for Inv-
PnCO, we grid-search the hyper-parameter β in {0.5, 1.0, 2.0, 4.0} and the number of environments
in {1,2,3,4,5}. All models are trained by 300 epochs from scratch and early stops if the regret on the
validation set has not improved for 50 epochs. The final result is evaluated on the epoch with the lowest
validation regret. Other details are listed in Appendix C, and the code will be released after publication.

5.2 KNAPSACK PROBLEM WITH UNKNOWN PROFITS

The Optimization procedure aims to maximize the cumulative value of items contained within the
knapsack, subject to a capacity constraint, expressed as an integer linear objective function:

z⋆(y) = argmax
z

ΣN
i=1 yizi s.t. ΣN

i=1 w
izi ⩽ C , (10)

where the profits yi for each item is unknown, and the weights w are known and identical across
different environments. The Prediction aims to forecast profits yj of the j-th item based on the raw
feature vector xj for each of the N items. The problem is adopted from (Mandi et al., 2020; Guler
et al., 2022), and the datasets D = {(xi, yi)} is generated following previous literature (Elmachtoub
& Grigas, 2022). We evaluate the knapsack with 20 items (and up to 100 in Fig. 3). We use a 3-layer
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Figure 2: Visualization of topological distributions in TSP with unknown costs. Changes in graph
topology lead to degradation in the optimization decision quality under unknown coefficients.

Table 3: Generalization results for knapsack with unknown profits.
IID OOD: ERM OOD: Inv-PnCO

Two-stage SPO Two-stage SPO Two-stage SPO

Regret 2.39500 2.26000 11.22000 10.67000 9.98500 9.10000
Train time 0.20097 1.63326 0.21741 1.81035 0.37711 3.68596
Test time 1.08337 0.76298 0.95853 0.71940 0.96731 0.74611

Table 4: Generalization results for Warcraft shortest path with unknown costs.
IID OOD: ERM OOD: Inv-PnCO

Two-stage SPO Two-stage SPO Two-stage SPO

Regret 11.54528 10.80689 18.73675 13.68741 13.5696 13.04145
Train time 0.29022 1.78750 0.26658 1.69342 1.39788 6.91911
Test time 0.28751 0.30191 0.29672 0.29138 0.39828 0.57588

multi-layer perception (MLP) as the prediction model and commercial solver Gurobi (Gurobi, 2019)
for optimization. For experiments, the uncertain profits are generated by Gaussian distribution with
different mean and variance; thus, probability distribution shifts occur among the training, validation,
and test sets. All dataset details are elaborated in Appendix C.2.1.

We present the generalizability results in Table 3. We observe that in the “IID” setting, SPO achieves
lower regret than the ”two-stage”, as it optimizes the surrogate of final decision quality for decision
optimal instead of prediction optimal. Further, the out-of-distribution setting “OOD”: ERM shows
that performance drops significantly for both the PtO approach (two-stage), and the PnO approach
(SPO). Lastly, we observe that our results shown in “OOD: Inv-PnCO” significantly reduce the regret
compared to ERM for both two-stage and SPO, which validates the improved generalization ability
against OOD test data. Besides, we may notice the proposed Inv-PnCO framework does not affect
the runtime at the test stage, though it may take affordably more time during the training. Note the
runtime variations in testing time stem from machine disturbances and random factors, yet they share
an identical procedure that comprises one prediction and one subsequent solver call.

5.3 VISUAL SHORTEST PATH (SP) PLANNING WITH UNKNOWN COST

The Optimization goal is to plan the route with minimum cost on the grid from the upper-left cell
to the lower-right cell within the Warcraft terrain map dataset (Guyomarch, 2017) 1. The agent
can control moving to adjacent cells in the grid, where the cost is measured by N ×N cells. The
Prediction task is to estimate the cost of each grid cell from image input. The task is adopted
from (Pogančić et al., 2019; Sahoo et al., 2023), and we use ResNet (He et al., 2016) for cost
predictions and Dijkstra algorithm (Dijkstra, 1959) as the solver.

Distribution shifts in various perceptual mechanisms frequently occur in the real world. As illustrated
in Fig 1(a) and Sec. 4.1, during the acquisition of images, external environmental factors and
perceptual characteristics, such as saturation, contrast, and brightness in camera parameters, introduce
disparate distributions in the obtained raw images. In this task, we explore how such perceptual shifts
affect problem-solving in such a “visual-optimization” task. In our experiments, we conduct different

1https://github.com/war2/war2edit
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Figure 3: Sensitivity analysis in regret of Inv-PnCO on knapsack problem w.r.t. optimization
parameters (constraint, decision size), and training hyper-parameters (number of environments, β).

Table 5: Generalization results for TSP with unknown costs.
IID OOD: ERM OOD: Inv-PnCO

Two-stage SPO Two-stage SPO Two-stage SPO

Regret 82.88278 33.75459 143.32407 104.42732 100.50798 100.35209
Train time 0.04259 2.73619 0.01473 0.75054 0.18914 2.90157
Test time 2.66494 1.69280 10.11881 2.35611 2.11336 2.0405

image transforms on train and validation sets and keep the original image as the test distribution,
shown in Fig 6 in the appendix and elaborated in Appendix C.2.2.

Table 4 illustrates that performance in the OOD setting degrades for both the two-stage and SPO
approaches compared to the IID setting. When trained with Inv-PnCO, the degradation of regret
significantly diminishes due to the Inv-PnCO’s ability to learn invariant features across environments,
leading to more robust models for both PtO and PnO in response to distribution shifts. Furthermore,
lower regret is observed with the PnO method SPO compared to the two-stage approach across IID
and OOD settings for both ERM and Inv-PnCO, demonstrating the advantage of decision-focused
learning over prediction-oriented to achieve the decision-optimal, as well as its better inherent
robustness to distribution shifts. We also observe that under the OOD setting, results of Inv-PnCO for
SPO are comparable to those of the two-stage approach. This may indicate the inherent difficulty in
achieving robust solutions for complex optimization tasks. Similar to the knapsack task, Inv-PnCO
framework maintains an affordable increase in training time without incurring additional test time.

5.4 TRAVELLING SALESMAN PROBLEM (TSP) WITH UNKNOWN COSTS

Suppose a few cities are fully connected and represented in a graph. The goal of TSP is to determine a
sequence of routes that visits each city exactly once and returns to the starting city. The Optimization
objective is to minimize the total traveling time while covering all cities. The Prediction task is to
forecast the traveling time on each edge. This setting is more practical than previous ones used in
ML4CO (Qiu et al., 2022; Sun & Yang, 2023), as ours considers the dynamic nature of travel costs
affected by factors such as weather, road conditions, and congestion, rather than the conventional
use of Euclidean distance as the cost metric between cities. We referred to the literature(Tang &
Khalil, 2022; Elmachtoub & Grigas, 2022) to generate raw features and traveling time on each edge.
We evaluate TSP with 20 cities, adopt a 4-layer MLP with ReLU activation for prediction, and the
heuristic algorithm LKH3 (Helsgaun, 2017) as the solver.

Variations in road network topology (Tsiotas & Polyzos, 2017) are common in real-world scenarios.
We generate topological distributions referred from previous literature (Bossek et al., 2019; Jiang
et al., 2022) 2 as illustrated in Fig 2, and explore how these affect optimization on graphs, particularly
on TSP. For experiments, we generate train, validation, and test topology with cluster, Gaussian, and
uniform distribution, respectively. Details of data generation, as well as data of each distribution, are
specified in Appendix C.2.3.

As indicated in Table 5, compared to the IID setting, both the two-stage and SPO models exhibit
significant degradation with notably larger regret in the OOD setting. However, the Inv-PnCO
framework substantially mitigates this issue in the OOD setting, suggesting that learned invariant
features greatly enhance generalizability against distribution shifts. Furthermore, we note that SPO

2https://github.com/jakobbossek/tspgen
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Figure 4: Loss curves for each environment, prediction loss, and decision quality (in regret) throughout
training/testing of Inv-PnCO framework on the knapsack problem. The PnO approach (SPO) within
Inv-PnCO demonstrates better decision-making with lower regret despite exhibiting higher prediction
loss, owing to leveraging information from the optimization task. Full images are in Fig. 8.

performs comparably to the two-stage approach, albeit slightly better, possibly due to inherent
challenges in learning invariant features for decision-making on graphs.

5.5 SENSITIVITY ANALYSIS, ABLATION STUDY, QUALITATIVE ANALYSIS AND
VISUALIZATION

We present a summary of results below, where detailed sensitivity analyses, Qualitative analysis
visualizations, and the ablation study are provided in Appendix C.3. We assess the sensitivity of Inv-
PnCO framework on the knapsack problem across various optimization parameters, encompassing
the constraint (the capacity in the knapsack) and the size of decision variables (number of items),
as illustrated in Fig 3(a˜b). It is evident that our Inv-PnCO framework consistently reduces regret
in comparison to ERM across diverse optimization parameters. To quantify this improvement, we
employ relative regret, defined as the ratio of regret relative to the full optimal objective given the
variability in optimal objectives across different configurations.

Furthermore, we investigate the sensitivity in Fig. 3(c˜d) concerning training hyperparameters,
specifically the number of environments and the hyperparameter β. Notably in Fig. 3(c), on the
knapsack problem with the default setting, our model exhibits stability across varying values of
β ∈ {0.5, 1.0, 2.0, 4.0}. When β is too large, it may cause instability in training or amplify the impact
of some spurious features. If β is too small, it may fit the average of multiple environments. In Figure
3(d), the fluctuation is not very obvious, possibly because the range of beta we chose is not wide
enough, but the proper selection of β is indeed an important issue. Besides, in Fig. 3(d), we identify
that the performance of Inv-PnCO improves at the beginning, then degrades along with the increasing
number of environments and achieves its lowest regret when the number of environments is set as 4.

Next, we visualize the training progression to analyze Inv-PnCO under diverse environments.
As depicted in Fig 4(a), the losses of SPO for each environment decrease over training epochs.
Furthermore, the losses in different environments tend to become similar, which may indicate
that Inv-PnCO improves generalizability by reducing disparities of decision qualities of multiple
environments. Notably, as illustrated in Figures 4(b) and (c), although SPO exhibits higher prediction
loss, it yields lower regret due to its capability to learn the prediction model using the information
of final objectives. This phenomenon is similar to the relationship observed between the prediction
loss curve and decision quality curve in the i.i.d setting in Fig. 7 in the appendix. This also validates
the necessity of designing the decision-oriented invariant learning framework Inv-PnCO compared
to the generalization models of pure ML tasks.

6 CONCLUSION, LIMITATIONS AND BROADER IMPACTS

In this work, we propose an invariant predict-and-optimize framework, Inv-PnCO, to improve the
out-of-distribution generalizability. We learn the invariant decision-oriented model via a novel loss
function that plugs in current PtO and PnO models and provides theoretical analysis to measure the
generalization error. Experiments on various shifts (probability distribution shift, perceptual shift, and
topological shift) on diverse combinatorial problems on array, image, and graph inputs demonstrate
the effectiveness of the proposed method. We discuss limitations and broader impacts in Appendix D.
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A DETAILED RELATED WORK

A.1 OPTIMIZATION UNDER UNCERTAIN COEFFICIENTS, AND PREDICT-AND-OPTIMIZE

Although neural networks have achieved notable advancements in the realm of machine learning,
there remains considerable potential for enhancement in addressing optimization challenges. While a
group of works (Qiu et al., 2022; Jin et al., 2023; Sun & Yang, 2023) has been dedicated to leveraging
neural networks for tackling combinatorial optimization problems under deterministic settings such
as TSP, another crucial area that recently emerged is the integration of machine learning with
optimization methodologies to address problems characterized by uncertain coefficients. (Bertsimas
& Kallus, 2020) initialize the work towards combining predictive and prescriptive analysis for the
optimization under uncertainty. An influential work is SPO (Elmachtoub & Grigas, 2022) that
proposes subgradient-based surrogate functions for linear optimization problems to replace non-
differentiable regret functions, as well as a later extended work SPO-relax (Mandi et al., 2020) for
a combinatorial counterpart based on continuous relaxation, which is adopted in our experiments.
We also note that the focus of these works is more on predictive models before the optimization
solver, while the solvers are often treated as default heuristics (such as LKH3 (Helsgaun, 2017),
Dijkstra (Dijkstra, 1959)) or commercial solvers (like Gurobi (Gurobi, 2019)).

In recent years, a few works on predict-and-optimize (also named decision-focused learning in the
literature (Wilder et al., 2019; Mandi et al., 2022; Shah et al., 2022)) have appeared. A notable
category of works utilizes the relationships of solutions of the optimization problems to learn a better
predictive model. The method NCE (Noise-Contrastive Estimation) (Mulamba et al., 2021) designs
a noise-contrastive estimation approach (Gutmann & Hyvärinen, 2010) to generate predictions,
aiming for optimal solutions to achieve superior decision quality compared to non-optimal ones.
The following LTR (Learning to Rank) (Mandi et al., 2022) uncovers the intrinsic relationship
between pairwise learning to rank in NCE, resulting in the introduction of various learn-to-rank
methodologies such as pointwise rank (Caruana et al., 1995), pairwise rank (Joachims, 2002), and
listwise rank (Cao et al., 2007), which aim to generate predictions that reflect the relative importance
of multiple solutions.

The recent branch of work proposes learning neural network functions as surrogates for the original
objective functions. Recent studies, LODL (Shah et al., 2022) and EGL (Shah et al., 2024), propose
the learning of surrogate objective functions from a sample set. LANCER (Zharmagambetov et al.,
2023) follows a similar approach by learning surrogate functions while also incorporating optimization
solving and objective function learning. SurCO (Ferber et al., 2023) suggests replacing the original
non-linear objective with a linear surrogate, thereby enabling the utilization of existing linear solvers.

However, some of the above methods are constrained to certain types of predict-and-optimize
problems, like quadratic optimization objectives (Amos & Kolter, 2017) or convex objectives. Though
the methods based on relative importance of solutions (Mulamba et al., 2021; Mandi et al., 2022)
and surrogate objective functions (Shah et al., 2022; 2024; Zharmagambetov et al., 2023) do not
constraint the type of optimizations, they require additional information such as multiple solutions or
a huge number of optimization samples (Shah et al., 2022) to train the surrogate function prior to
the end-to-end learning. Besides, the most critical issue is that most methods above are not able to
run on combinatorial optimizations due to the hardness of differentiating through discrete decision
variables, which makes predict-and-optimize on CO problems much harder.

In this work, in the pursuit of enhancing the generalization capabilities of predict-and-optimize in the
domain of combinatorial optimization, our work endeavors to provide a general framework that is
not specific to individual PnO methods. While our approach exhibits versatility across various PtO
and PnO methodologies, our primary focus lies in empirically validating its efficacy under diverse
problem typologies, including array-based, image-based, and graph-based scenarios, encompassing
various distributional shifts. Consequently, we design experiments for our framework on one PtO
model (the two-stage) and one PnO model (SPO) to facilitate the decision quality and generalization
evaluation across a wide array of contexts.

A.2 OUT-OF-DISTRIBUTION GENERALIZATION

The phenomenon of out-of-distribution generalization has garnered significant attention within the
machine learning community. Pioneering works (Schölkopf et al., 2012; Peters et al., 2016) have
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explored invariant learning with causal inference. Arjovsky et al. (2019) proposes invariant risk
minimization (IRM) to learn an invariant representation across environments. Follow-up works
propose generalizable models through the lens of group distributional robust optimization (Sagawa
et al., 2019), game theory (Ahuja et al., 2020), information theory Federici et al. (2021), causal
discovery (Chang et al., 2020). The investigation of out-of-distribution (OOD) generalization has
expanded across various domains, encompassing images (Mancini et al., 2020), graphs (Wu et al.,
2022b;a), and moleculars (Yang et al., 2022).

However, within the emerging field of machine learning for combinatorial optimization (ML4CO)
uncertain coefficients, exploring the capability for out-of-distribution generalization remains largely
unexplored. Particularly, though REx (Krueger et al., 2021) also proposes to minimize the mean and
variance terms, it is only applicable to the prediction tasks, which is validated by our experiments
that learning only generalizable prediction models (i.e. the two-stage approach) is not sufficient for
robust decisions, and a robust PnO model is required to utilize the information from optimizations.
Our work also extends a theoretical framework for CO under uncertain coefficients, which suits both
prediction-focused PtO and decision-focused PnO.

A.3 CONNECTIONS TO RELATED DOMAINS

Connection to (multi-source) domain adaption In domain adaptation (DA) (Wang & Li, 2023), a
model is trained on labeled data (from multiple source domains) with the goal of performing well
on a new, unseen target domain that has a distinct data distribution. In contrast, our scenario of
out-of-distribution generalization differs from DA in the following key aspects. (1) Information of
testing distribution: In OOD generalization, information about the target domain is unknown or
unavailable. In contrast, DA assumes the target domain is known, though it may lack labels or have
only a small number of labeled samples. (2) Distribution Assumptions: OOD generalization considers
that the training and test distributions may be entirely different, while DA assumes the existence of a
target domain related to the source domains, with some relationship between them.

Connection to mutual information-based regularization in adversarial robustness We compare
with methods (Zhu et al., 2020; Wang et al., 2021; Zhou et al., 2022) that also leverages mutual
information-based regularization in the field of adversarial robustness, which has difference in the
research topic with ours as following: (1)Data sample source: Zhu et al. (2020); Wang et al. (2021);
Zhou et al. (2022) focus on adversarial samples, which are artificially designed through optimization
algorithms to induce specific vulnerabilities in the model. Inv-PnCO addresses naturally occurring out-
of-distribution (OOD) samples, which arise due to shifts between training and test data distributions.
(2) Objective: The goal of Zhu et al. (2020); Wang et al. (2021); Zhou et al. (2022) is to improve
adversarial robustness by minimizing the impact of small, targeted perturbations that exploit model
weaknesses, while the goal of Inv-PnCO is to enhance OOD generalization by capturing invariant
factors that improve robust performance across distribution shifts. (3) Role of mutual information:
For Zhu et al. (2020); Wang et al. (2021); Zhou et al. (2022), mutual information is used to enhance
the model’s awareness of adversarial patterns, which mostly uses the mutual information between
(adversarial) input and output, making it less susceptible to targeted perturbations. For Inv-PnCO, we
employ mutual information Ie,q(z; e | y) between final solution with environment e given prediction
y to learn invariant features, which is converted to a variance term among losses of multiple training
environments for a tractable loss.

In summary, the objectives and application scenarios and use of mutual information are fundamentally
different where Zhu et al. (2020); Wang et al. (2021); Zhou et al. (2022) focus on enhancing adversarial
robustness, whereas our work centers on improving OOD generalization.

B PROOFS

B.1 NOTATIONS USED IN PROOFS

Besides the definition of KL divergence given in Eq 5, we define Jensen–Shannon (JS) divergence for
the raw feature-solution pair (x, z) for the proofs below:

DJSD (p1(z|x)∥p2(z|x)) =
1

2
DKL (p1(z|x)∥pm(z|x)) + 1

2
DKL (p2(z|x)∥pm(z|x)) . (11)
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with pm(z|x) = 1
2p1(z|x) +

1
2p2(z|x), and we abbreviate pe(z|x) = pe(z|x, e = e).

The following defines mutual information Ie(z; e|y) of final decisions z and environment e condi-
tioned on optimization coefficients y used in the regularization term mentioned in Theorem 1.

Ie(z; e|y) = DKL (p(z|y, e)∥p(z|y)) , (12)
and the mutual information Ie,q (x; z|y) mentioned in the conditions of Theorem 1 is given by:

Ie,q (x; z|y) = DKL (q(z|x,y)∥q(z|y)) . (13)

B.2 PROOF TO PROPOSITION 1

Proof. We initiate the proof by establishing the equivalence of two terms, respectively.

To begin with, for the regularization term R(q(y|x) under the invariance condition in Assumption 1
we have:
R(q(y|x)) = I(z; e|y)

=DKL(q(z|y, e)∥q(z|y))
=DKL (q(z|y, e)∥Ee[q(z|y, e)])

=EeEz∼pe(z|x),y∼q(y|x) log
q(z = z|y = y, e = e)

Eeq(z = z|y = y, e = e)

=EeEy∼q(y|x)
(
logEz∼q(z|x)q(z = z|y = y, e = e)− logEz∼q(z|x)Eeq(z = z|y = y, e = e)

)
⩽EeEy∼q(y|x)

∣∣logEz∼q(z|x)q(z = z|y = y, e = e)− logEz∼q(z|x)Eeq(z = z|y = y, e = e)
∣∣

=EeEy∼q(y|x)
∣∣logEz∼q(z|x)q(z = z|y = y, e = e)− Ee logEz∼q(z|x)q(z = z|y = y, e = e)

∣∣
⩽
√
Ee

[
|Ey∼q(y|x) logEz∼q(z|x)q(z = z|y = y, e = e)− EeEy∼q(y|x) logEz∼q(z|x)q(z = z|y = y, e = e)|2

]
=
√
Ee [|L(x,y, z)− EeL(x,y, z)|2]

=
√
Vare[L(x,y, z)]

(14)
where the third step is given by:

DKL (p(z|y)∥Eeq(z|y))−DKL(q(z|y)∥p(z|y, e))−DKL (Eep (z|y, e) ∥Ee[q(z|y)])

=Eq(z|y) log
q(z|y)

Eeq(z|y)
− Eq(z|y) log

q(z|y)
p(z|y, e)

− EEep(z|y,e) log
Eep(z|y, e)
Eeq(z|y)

=Eq(z|y) log
p(z|y, e)
Eeq(y|z)

− Eep(y|z, e) log
Eep(y|z, e)
Eeq(y|z)

=Ep log
p(z|y, e)

Eep(z|y, e)
=DKL (p(z|y, e)∥Ee[p(z|y, e)])

(15)

The last inequality is due to the Cauchy-Schwarz inequality, and the equality holds when q(z|y) is
delta distribution (i.e., deterministic solver).

Then for the DKL(p(z|x, e)∥q(z|y)) term we have:
DKL(p(z|x, e)∥q(z|y))

=EeEz∼pe(z|x=x),y∼q(y|x=x),x∼pe(x) log
p(z = z|x = x, e = e)

q(z = z|y = y)

⩽EeEz∼pe(z|x=x),x∼pe(x) log
p(z = z|x = x, e = e)

Ey∼q(y|x=x)q(z = z|y = y)

=Ee∼Etr
[Le(x, y, z)]

(16)

where Le(x, y, z) is the decision oriented loss for the data generated by the environment e, the last in-
equality is given by Jensen’s Inequality, and the equality holds when q(z|y) is a delta distribution (de-
terministic solver). Then minM Ee[L(x,y, z)] is the upper bound of minM DKL (pe(z|x)∥q(z|y)).
Since we also have minM Vare[L(x,y, z)] is the upper-bound for minM I(z; e|y) by the above,
this completes the proof.
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B.3 PROOF TO THEOREM 1

Before the full proof to Theorem 1, we give the following lemmas extended the results to distributions
between raw features x and final solutions z from the propositions in Federici et al. (2021).

Lemma 1. For any predictor q(y|x) and solver q(z|y) during training environment factor e and
testing environment factor e′, we have

DKL (pe(z|x)∥q(z|x)) ⩽ Ie(x; z|y) +DKL (pe(z|y)∥q(z|y))
DKL (pe′(z|x)∥q(z|x)) ⩽ Ie′ (x; z|y) +DKL (pe′(z|y)∥q(z|y))

(17)

Proof. During the training stage with the environment factor e, we have:

DKL (pe(z|x)∥q(z|x))

=Ex∼pe(x)

[
Ez∼pe(z|x=x) log

pe(z = z|x = x)

q(z = z|x = x)

]
=Ex∼pe(x)

[
Ez∼pe(z|x=x) log

pe(z = z|x = x)

Ey∼q(y|x=x)q(z = z|y = y)

]
⩽Ex∼pe(x)

[
Ez∼p(z|x=x)Ey∼q(y|x=x) log

pe(z = z|x = x)

q(z = z|y = y)

]
=DKL (pe(z|x)∥q(z|y))

(18)

where the third step is according to Jensen’s Inequality and the equality holds when q(y|x) is a delta
distribution (deterministic predictor). The above term could continue as:

DKL (pe(z|x)∥q(z|y))

=Ex∼pe(x)

[
Ez∼p(z|x=x)Ey∼q(y|x=x) log

pe(z = z|x = x)

pe(z = z|y = y)
· pe(z = z|y = y)

q(z = z|y = y)

]
=Ex∼pe(x),z∼p(z|x=x),y∼q(y|x=x) log

p(x, z|y)
p(x|y)p(z|y)

+ Epe(z|y) log
pe(z|y)
q(z|y)

=I(z;x|y) +DKL (pe(z|y)∥q(z|y))

(19)

The inequality with the test environment factor e′ holds similarly to the above case of the training
environment factor e, which completes the proof.

The following lemma gives JS-divergence of induced solver q(z|y) and distribution of pe′(z|y) under
environment e′.

Lemma 2.

DJSD (pe′(z|y)∥q(z|y)) ≤

(√
1

2α
I(z; e|y) +

√
1

2
DKL (pe(|y)) ∥q(z|y)

)2

(20)

Proof. To begin with, we have:

I(z; e|y)
= DKL(p(z|y, e)∥p(z|y))

⩾ 2α

(
1

2
DKL (pe(z|y)∥q(z|y)) +

1

2
DKL (pe(z|y)∥q(z|y))

)
= 2αDJSD (pe(z|y)∥pe(z|y)) +DKL (pm(z|y)∥p(z|y))
⩾ 2αDJSD (pe(z|y)∥pe′(z|y))

(21)

where pm(z|y) = 1
2pe(z|y) +

1
2pe′(z|y).
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Besides, as the square root of the Jensen-Shannon divergence is a metric (Endres & Schindelin, 2003),
by triangle inequality:√

DJSD (pe(z|y)∥q(z|y) +
√

DJSD (pe′(z|y)∥pe(z|y) ⩾
√
DJSD (pe′(z|y)) ∥q(z|y) (22)

In addition, we are able to bound the JS-divergence in terms of KL-divergence as:

DJSD (pe(z|y)∥q(z|y)) =
1

2
DKL (pe(z|y)∥q(z|y))−DKL (pm(z|y)∥q(z|y))

⩽
1

2
DKL (pe(z|y)∥q(z|y))

(23)

In conclusion, with the above three inequalities, we have:

DJSD (pe′(z|y)∥q(z|y))

⩽
(√

DJSD (pe(z|y)∥q(z|y)) +
√

DJSD (pe′(z|y)∥pe(z|y))
)2

⩽

(√
1

2
DKL (pe(z|y)∥q(z|y)) +

√
1

2α
I(z; e|y)

)2
(24)

where the second line is according to Eq (22), and the first and second term in the third line is
according to Eq (23) and Eq (21), respectively.

Lemma 3.
min
q(z|y)

DKL (pe(z|x)∥q(z|y)) ⇔ min
q(y|x),q(z|y)

Ie(x; z|y) +DKL (pe(z|y)∥q(z|y)) (25)

Proof. Regarding the mutual information term I(x; z|y), we have:

min
q(y|x),q(z|y)

I(x; z|y) = min
q(y|x),q(z|y)

Ex,y,z log
p(x, z|y)

p(x|y)q(z|y)

= min
q(y|x),q(z|y)

Ex,y,z log
p(z|x,y)
q(z|y)

= min
q(y|x),q(z|y)

DKL (pe(z|x)∥q(z|y))−DKL(p(z|y)∥q(z|y))

(26)

which is equivalent to that in the lemma and completes the proof.

Based on the above lemmas, we are able to arrive at the proof for Theorem 1.

Proof. According to Proposition 1, minimizing the loss function in Eq 8 is equivalent for minimizing:

I(y; e|z) +DKL (pe(z|x)∥q(z|y)) , (27)

and according to Lemma 3, is further equivalent to:

min I(y; e|z)︸ ︷︷ ︸
1⃝

+DKL (pe(z|y)∥q(z|y))︸ ︷︷ ︸
2⃝

+ Ie(x; z|y)︸ ︷︷ ︸
3⃝

(28)

According to Lemma 2, minimizing DJSD (pe′(z|y)∥q(z|y)) is equivalent to minimize the lower
bound for 1⃝ and 2⃝. Additionally for 3⃝, we have the following equation:

DKL (pe(z|y)∥pe(z|y,x)) = DKL (pe′(z|y)∥pe′(z|y,x)) (29)

could be satisfied when minimizing DKL(p(z|x)∥q(z|y)), then we can reach

Ie(x; z|y) = Ie′(x; z|y). (30)

By combining Lemma 1 and Eq (30), minimizing 1⃝, 2⃝ and 3⃝ is equivalent to minimizing
Ie′(x; z|y) +DKL (pe′(z|y)∥q(z|y)), i.e. DKL (pe′(z|x)∥q(z|x)), which completes the proof.
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C EXPERIMENT DETAILS

We specify experimental details in this section. Code will be released after publication.

C.1 MODEL DETAILS

C.1.1 PREDICTION MODELS

Multi-layer perceptron (MLP) To ensure a fair comparison, within the same task, we adopt the same
prediction model for predicting optimization coefficient. We adopt multi-layer perceptron (MLP) for
the knapsack and TSP tasks. The predictive model M using MLP is formulated as follows:

a(i+1) = σ(W(i)a(i) + b(i)), i = 1, 2, . . . ,K − 1, (31)

where a(1) = x and y = a(K) represent the input and output for M respectively. Here, ai denotes the
hidden vector for i = 2, · · · ,K − 1, b signifies the bias term, and σ denotes the activation function,
specifically ReLU in our case. In our experiments, we set the size of intermediate hidden units to 32
and utilize K = 3 layers in the knapsack problem and K = 4 for the TSP task.

Resnet-18 We adopt the ResNet (He et al., 2016) in the torchvision (maintainers & contributors,
2016) package for the prediction of the visual shortest path task. ResNet-18 serves as a popular
baseline model in many research studies and benchmark datasets, making it an essential component
of contemporary deep learning research in computer vision.

C.1.2 DECISION MODELS

In the training stage, we train the model by the the respective loss of PtO (two-stage) or PnO (SPO)
approach specified below. In the testing stage, we first predict the coefficients using the predictive
model, then adopt the respective solver for the forward pass to obtain the decisions using the predicted
coefficients, and evaluate the decision quality with regret.

The two-stage approach The two-stage approach, as specified as a model in “predict-then-optimize”
that is trained towards the goal of ”prediction optimal” (in def 1), directly trains the loss to optimize
the prediction of optimization coefficients. As all involved predictions are regression tasks, the loss
function is specified as Mean Squared Error (MSE) to quantify the dissimilarity between predicted
(ŷ) and actual (y).

MSE(ŷ, y) =
1

n

n∑
i=1

(yi − ŷi)
2 (32)

MSE is defined as the average squared difference between predicted and actual values across a dataset
of size n.

The SPO method The SPO, as specified as a model in “predict-and-optimize” that is trained towards
the goal of ”decision optimal” (in def 2), trains a subgradient-based surrogate function of the regret
function to optimize the decision quality instead of the prediction task. We train the model using
Eq. 33 as the loss function, and in the backward pass, the prediction model is updated by its continuous
relaxation. Specifically, the surrogate loss function for SPO (Mandi et al., 2020) that is used in our
experiments is:

Lspo(y, z, ŷ, ẑ) = −F(˜̂z, 2ŷ − y) + 2F(z, ŷ)−F(z,y) . (33)

where z denotes the optimal solution using the ground-truth coefficient y, and ˜̂z denotes solution
obtained with the coefficient (2ŷ − y).

C.2 DETAILED DATASETS AND ENVIRONMENT ACQUISITION

We list the distributions used for each dataset in Table 6, as well as the acquired environments.
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(a) Knapsack (b) Shortest path (c) TSP

Figure 5: Result of decision quality in regret with error bars of each optimization task. Each figure
specifies the results under i.i.d. setting (denoted “IID”), and OOD setting of ERM and Inv-PnCO.

Table 6: Distributions for training, validation, testing, and acquired environments of Inv-PnCO.
Knapsack problems adopt Gaussian distribution; the parameters specify mean and standard deviation
(std). The visual shortest path adopts image augmentations upon the original graphs, where the
parameters specify the type of augmentations and corresponding value. TSP adopts different graph
typologies and is elaborated in Appendix C.2.3. The last line specifies the hyper-parameters for the
best result of Inv-PnCO shown as (number of environments, β, learning rate). SP problem specifies
L1 regularization weight additionally.

Knapsack Shortest path TSP

Predictor MLP Resnet-18 (He et al., 2016) MLP
Solver Gurobi (Gurobi, 2019) Dijkstra (Dijkstra, 1959) LKH3 (Helsgaun, 2017)

Shift covariate shift concept shift covariate shift
Train gaussian (10, 10) contrast (10) cluster (4, (15, 55)± 15)
Validation gaussian (5, 5) hue (0.3) gaussian (50, 10± 5)
Test gaussian (0, 1) Original uniform (30, 40)

Acquired
Environments
in Inv-PnCO

env0: gaussian (32, 1)
env1: gaussian (16, 1)
env2: gaussian (8, 1)
env3: gaussian (4, 1)
env4: gaussian (2, 1)

env0: saturation (1)
env1: brightness (1)
env2: contrast (3)
env3: brightness (3)
env4: contrast (5)

env0: explosion
((20, 60), (37, 43), (5, 7))

env1: cluster (2, (20, 40)± 7)
env2: gaussian (40, 60)

Best hyper
parameters

MSE: (5, 4.0, 1e-2)
SPO: (1, 1.0, 5e-2)

MSE: (2, 4.0, 1e-5, 1e-5)
SPO: (2, 0.5, 1e-4, 0)

MSE: (3, 4.0, 1e-3)
SPO: (3, 0.5, 5e-3)

C.2.1 KNAPSACK PROBLEM WITH UNKNOWN PROFITS

We adopt the problem from the previous literature (Demirović et al., 2019; Mandi et al., 2020;
Mandi & Guns, 2020; Mulamba et al., 2021; Guler et al., 2022). The raw features x and profits y in
Knapsack dataset (x1, y1) , (x2, y2) , . . . , (xn, yn) is generated according to the polynomial function
as described in prior literature (Elmachtoub & Grigas, 2022):

yi =

[
1

3.5deg
√
p
((Bxi) + 3)

deg
+ 1

]
· ϵi, (34)

where each xi ∼ N(µ, σ ∗ Ip) is drawn from a multivariate Gaussian distribution, (where µ and σ
are parameters controlling the distribution) the matrix B∗ ∈ Rd×p encodes the parameters of the true
model, with each entry of B⋆ being a Bernoulli random variable that equals 1 with a probability of
0.5. ϵji represents a multiplicative noise term with a uniform distribution, and p denotes the given
number of features. The weights of the knapsack problem are fixed and sampled uniformly from the
range of 3 to 8. For our experiments, we set the default capacity to 30, and the number of items to 20.
We utilize a polynomial degree deg of 4, the dimension of raw feature is set as 5, and the random
noise ϵji is sampled within the uniform distribution U(1−w, 1+w) with as w = 0.5. The seed is set
as 2023.
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(a) Train
(contrast=10) (b) Validation

(hue=0.3) (c) Test
(original) (d) Environment used in

Inv-PnCO (brightness=1)

Figure 6: Visualization of perceptual distribution shifts in visual shortest path problem and example
of generated environments in Inv-PnCO.

For the distributions among different sets, as shown in Table 6, the training dataset adopts the
Gaussian distribution N (10, 10) with a mean of 10 and standard deviation (std) of 10, while the
distribution of validation and testing sets are N (5, 5) and N (0, 1).

C.2.2 VISUAL SHORTEST PATH (SP) PLANNING WITH UNKNOWN COST

The visual shortest path planning task uses the publicly available Warcraft terrain map dataset (Guy-
omarch, 2017), and we conform to the MIT License specified in the GitHub link 1. The maps feature
a grid measuring k by k, with each vertex denoting a terrain characterized by an undisclosed fixed
cost to the network. A label is generated by encoding the shortest path, representing the minimum
cost, from the top-left to the bottom-right vertices in the form of an indicator matrix. We conduct the
experiments of the shortest path problem on the 12× 12 grid. The seed is set as 2023.

The distributions of each data set are included in Table 6, where we remained test set images
unchanged as the original data, while the training images are augmented by “contrast” with the value of
10, and the validation images are augmented with “hue” of the value 0.3. The acquired environments
are augmented in similar ways. All image augmentations are conducted by torchvision (maintainers
& contributors, 2016) package. In Fig 6, we visualize the distribution used in training, validation, and
testing, as well as an example environment in Inv-PnCO. In this experiment, we employed image
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augmentations on the raw images while maintaining the final cost unchanged. Such a construction
engenders a conceptual shift between the original data x and the decision z.

C.2.3 TRAVELLING SALESMAN PROBLEM (TSP) WITH UNKNOWN COSTS

The Traveling Salesman Problem (TSP) is a classical combinatorial optimization problem that seeks
to determine the shortest possible route that visits a set of given cities exactly once and returns to
the origin city. Mathematically, it can be formulated as finding the Hamiltonian cycle of minimum
total length in a complete graph, where each vertex represents a city and each edge represents a path
between two cities with an associated cost or distance. This problem is renowned for its computational
complexity and has numerous real-world applications in logistics, transportation, and network design.

In the domain of Machine Learning for Combinatorial Optimization (ML4CO), the recent works (Qiu
et al., 2022; Sun & Yang, 2023) of neural solvers for the TSP often treat the Euclidean distance
between cities as the direct measure of traversal time. However, in more realistic scenarios, traversal
time may be contingent upon multiple factors and subject to variation with changes in features. In
this study, we delve into the TSP under the unknown traversal times. While existing literature (Tang
& Khalil, 2022) has discussed TSP under uncertain coefficients, we contend that its formulation
may lack coherence with real scenarios. In the modeling of (Tang & Khalil, 2022), traversal times
along edges are solely dependent upon edge-specific features, disregarding any correlation with
city coordinates (i.e., Euclidean distance). Therefore, with insights from these previous studies, we
propose a new simulation for modeling traversal times.

In this work, we treat the TSP as an undirected complete graph, where each city is treated as a
node and each two nodes are connected. The generation of graph typologies follows previous litera-
ture 2 (Kerschke et al., 2018; Bossek et al., 2019) that is also adopted in the works of ML4CO (Bossek
et al., 2019; Jiang et al., 2022). We initialize the node coordinates following distribution, which is
specified below. The node coordinate is treated as node feature xu for node u, and edge feature xe

includes potential factors that influence traveling time on the edge, including the road conditions (such
as width, smoothness, presence of buildings with concentrated pedestrian traffic, etc.) are abstracted
into a feature vector xe. In our implementation, this vector xe is generated through sampling from
the Gaussian distribution N (0, 1) with a mean of 0 and a standard deviation of 1.

Then, for an edge e = (u, v) with two connecting nodes u and v, we give de as the Euclidean distance
by following:

de = DE(xu, xv) (35)

where DE denotes pairwise Euclidean distance, and the traveling time te (cost) on each edge is
constructed by:

te = de ∗ ce + poly(xe) (36)

where ce is the parameter on each edge indicating the road congestion, which is sampled from
Gaussian distribution N (1, 1) and takes the absolute value to be positive, and poly is the polynomial
function following (Elmachtoub & Grigas, 2022) as:

poly(xe) =
1

3deg-1 √p

(
(Bxe)j + 3

)deg
· ϵj (37)

where ϵj is the noise term which is sampled within the uniform distribution U(1−w, 1+w) and w is
the noise width specified as 0.2 in our experiments. The degree is set as 2 and the seed is set as 2023.

In our experiments, as shown in Fig 2, we adopt the following topological distributions to evaluate
the predict-and-optimize for TSP under distribution shifts:

• Cluster distribution for the training set, as shown in Fig 2(a), and the distribution parameters
“cluster (4, (15, 55)± 15)” means the training set is generated by nodes of 4 clusters with
the centers of clusters is sampled from a uniform distribution of U(15, 55) where the nodes
are sampled around the centers with standard deviation of 3.

• Gaussian distribution for the validation set, as shown in Fig 2(b), and the parameters
“gaussian (50, 10± 5)” means the nodes are generated by the Gaussian distribution where
the coordinates of x are sampled from N (50, 5) and coordinates of y are sampled from
N (10, 5).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Train Epochs

0.5

1.0

1.5

2.0

2.5

Pr
ed

ic
ti

on
 L

os
s 

(1
0^

8)

1e 7

IID:Two-Stage
IID:SPO

0 50 100 150 200 250 300
Train Epochs

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ic
ti

on
 L

os
s 

(1
0^

8)

1e 7

IID:Two-Stage
IID:SPO

0 50 100 150 200 250 300
Train Epochs

0.5

1.0

1.5

2.0

2.5

Pr
ed

ic
ti

on
 L

os
s 

(1
0^

8)

1e 7

IID:Two-Stage
Inv-PnCO:SPO

(a1) Training prediction loss (b1) Validation prediction loss (c1) Testing prediction loss

0 50 100 150 200 250 300
Train Epochs

2

4

6

8

10

12

14

D
ec

is
io

n 
Re

gr
et

 (
%

) IID:Two-Stage
IID:SPO

0 50 100 150 200 250 300
Train Epochs

4

6

8

10

12

14

D
ec

is
io

n 
Re

gr
et

 (
%

) IID:Two-Stage
IID:SPO

0 50 100 150 200 250 300
Train Epochs

2

4

6

8

10

12

D
ec

is
io

n 
Re

gr
et

 (
%

)

IID:Two-Stage
IID:SPO

(a2) Training decision regret (b2) Validation decision regret (c2) Testing decision regret

Figure 7: Prediction loss and decision quality (in regret) throughout the training of ERM in IID
setting on the knapsack problem.
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Figure 8: Prediction loss and decision quality (in regret) throughout the training of our proposed
Inv-PnCO framework on the knapsack problem.

• Uniform distribution for the testing set, as shown in Fig 2(c), and the parameters “uniform
(30, 40)” means the coordinates of x and y are generated by the uniform distribution
U(30, 40).

• Explosion distribution for the generated environment, as shown in Fig 2(d), where the
parameters of “explosion ((20, 60), (37, 43), (5, 7))” means the node coordinates are firstly
generated by uniform distribution U(20, 60), and then generate one center of “explosion”
by sampling from U(37, 43), where the explosion radius is sampled from U(5, 7) and the
nodes within the radius are pushed to the borders.

We generate the node coordinates of all these distributions by the public implementation 2.
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Figure 9: Qualitative analysis on knapsack dataset, where Inv-PnCO improves final decision quality
by learning decision-oriented features. (b) visualizes the predicted values for items, and Inv-PnCO
demonstrates more appropriate predictions that lead to better final decisions. The selected items for
ERM is {5, 6, 10, 14, 17, 18}, and for Inv-PnCO is {4, 6, 7, 16, 18}. Inv-PnCO achieves lower regret
(of 10) than regret (of 21) in ERM with fewer selected items.

C.3 EXPERIMENTAL RESULT DETAILS

C.3.1 EXPERIMENT VISUALIZATIONS

We show the result of decision quality in regret with error bars of each optimization task in Fig. 5.
Each figure visualizes the regret under IID and OOD (of ERM and Inv-PnCO). We note that the test
sets are identical for IID and OOD settings. We observe a decline in decision quality under OOD
settings and find that the proposed Inv-PnCO framework significantly reduces regret. In the TSP
task, our Inv-PnCO approach also improved decision quality compared to ERM. Our Inv-PnCO’s
performance is comparable for SPO and the two-stage approach, this may indicate that robust
decision-focused learning is more challenging for complex decision problems.

We visualize the curves of ERM under the IID setting with prediction loss and regret curves in Fig.7
during the training, validation, and testing sets. We observe that the change in regret sometimes
exhibits a stepwise pattern, which could be due to the combinatorial nature of CO problems. We also
note that for visualization purposes, we disabled early stopping, which resulted in SPO overfitting
in the final stages. This leads to higher regret compared to the two-stage approach. In practical
experiments, employing early stopping can mitigate overfitting and yield better decisions of SPO
than the two-stage method.

The curves for our proposed Inv-PnCO is shown in Fig.8 As is observed, though with much higher
prediction loss, SPO is able to outperform the two-stage approach with much lower regret due to
the generalization loss in Eq (8) is able to reduce the decision error during distribution shifts that
include the surrogate loss function Eq (33). This observation also validates the inherent limitation
of generalization models of pure machine learning tasks in addressing the generalization issue of
predict-and-optimize as it is unaware of the downstream optimization task. Note that though we used
early-stopping, we show the full training curves here where the later epochs may show overfitting.

C.3.2 QUALITATIVE ANALYSIS

We conduct a qualitative analysis of the knapsack dataset on 20 items. As shown in Fig C.3.2(a), we
visualize the values and weights of items, and in Fig C.3.2(b), we visualize the item value predictions
for ERM (SPO) and Inv-PncO (SPO). By Fig C.3.2(b), due to the differences between the training
and testing distributions, we observe significant discrepancies between the predicted values and the
true values. However, through our training with Inv-PnCO, we learned features that are more critical
for decision-making. For instance, the predictions for items 0 and 3 are significantly lower, allowing
the exclusion of such items with high costs but low real values during the subsequent solving stage.
Similarly, items 5, 10, and 17 are excluded compared to the solution obtained by ERM. This approach
enables the selection of fewer items while achieving lower regret and better final decisions.
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Table 7: Ablation Study on 3 optimization tasks under uncertainty. Performance degrades if Inv-PnCO
is trained without the variance term.

Knapsack Shortest Path Traveling Salesman Problem
Two-stage SPO Two-stage SPO Two-stage SPO

ERM 11.22000 10.67000 18.73675 13.68741 143.32407 104.42732
Inv-PnCO 9.98500 9.10000 13.5696 13.04145 100.50798 100.35209

Inv-PnCO w/o Var 13.69500 12.66500 46.85968 78.45152 129.90215 136.49825

C.3.3 SENSITIVITY ANALYSIS

Parameter sensitivity for optimization problems We evaluate parameter sensitivity for optimization
problems in Fig 3(a˜b) for the knapsack under certainty. Fig 3(a) illustrates the results under various
constraints (while other parameters are kept unchanged). Fig 3(b) illustrates the results under
increasing decision variable size among 20, 50, and 100 (i.e., number of items for the knapsack),
where the capacity constraints change proportionally (60, 150, 300) along with the number of
variables. Due to the change of the optimal objective along with parameters (constraints or decision
variable size), we represent the y-axis results as the ratio between regret and optimal value.

Hyper-parameter sensitivity in training We evaluate parameter sensitivity for optimization prob-
lems in Fig 3(c˜d), while other parameters are set as default as in Table 3. Fig 3(c) illustrates results
in regret with respect to hyper-parameter β. Fig 3(d) illustrates results in regrets with respect to the
number of environments during training of Inv-PnCO.

C.3.4 ABLATION STUDY

We show the results of the ablation study in Table 7. If the variance term is omitted and optimization
of the mean term in the loss is solely conducted through the acquired environment, the performance
may decline with higher regret, potentially with higher regret than the ERM method directly trained
on the train distribution. This validates the necessity of using the regularization term (the variance
term in Inv-PnCO loss) to ensure invariant ability for robust decisions.

D LIMITATIONS AND BROADER IMPACTS

Our approach is based on the core assumption, Assumption 1, which posits that invariant features
exist that directly determine the final solution, while spurious features are entirely generated by the
environment. However, if this assumption is not satisfied, it may adversely affect the performance of
our proposed method.

One potential limitation of this work is that we assume the access to the ground coefficients y to
evaluate decision quality by regret following the previous literature (Mandi et al., 2020; Yan et al.,
2021; Guler et al., 2022; Mandi et al., 2022). Regret may not be applicable to evaluate optimization
under uncertainty if the ground coefficients y are unknown for some CO problems. However, in our
conducted experiments, y is available, and this assumption could be satisfied.

In our experiments, solving larger-scale optimization problems may be a future direction. The scale
of optimization problems is a major bottleneck for existing predict-and-optimize methods, and our
Inv-PnCO approach, based on these PnO methods, will also face scalability issues.

We also assume the parameters in constraints are known and fixed following the literature in predict-
and-optimize (Mandi et al., 2020; Elmachtoub et al., 2020; Wilder et al., 2019; Mandi et al., 2022). As
we notice that a few works (Hu et al., 2023; 2024) have been proposed to tackle predict-and-optimize
with uncertain constraints, we leave the generalizability exploration of such problems as future work.

We also assume access to diverse training environments during training following previous litera-
ture (Krueger et al., 2021). Future works may involve devising models that mitigate reliance on
accessible environments.

In our assessment, we have not discerned serious adverse social implications arising from this study.
We hope that more robust predict-and-optimize models proposed in our work could be useful to
mitigate the risks of decision-making faced by individuals, enterprises, and institutions in uncertain
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combinatorial optimization problems, thereby reducing the real-world losses associated with the
degradation of decision quality of distribution shifts. We acknowledge that this tool may occasionally
exhibit suboptimal decision-making quality that is not as good as anticipated during enterprise
deployment, particularly when there is a huge distribution shift on CO instances or there is not a
sufficiently diverse environment to train Inv-PnCO to its best performance. This could potentially
lead to losses in the enterprise’s production processes. However, it is important to note that this tool
is not designed as a general-purpose tool for public use. Moreover, the decisions made by this tool
serve merely as decision recommendations, with the ultimate decision-making authority resting with
the tool’s users. Therefore, it is unlikely to cause widespread or significant negative societal impact.

28


	Introduction
	Problem Formulation
	Related work
	Methodology
	Invariant Assumption for Predict-then-Combinatorial Optimization
	Invariant Predict-and-Combinatorial Optimization (Inv-PnCO) framework

	Experiments
	Datasets and Experimental Setup
	Knapsack problem with unknown profits
	Visual shortest path (SP) planning with unknown cost
	Travelling salesman problem (TSP) with unknown costs
	Sensitivity Analysis, Ablation Study, Qualitative Analysis and Visualization

	Conclusion, Limitations and Broader Impacts
	Detailed Related Work
	Optimization under uncertain coefficients, and predict-and-optimize
	Out-of-distribution generalization
	blue Connections to Related Domains

	Proofs
	Notations used in proofs
	Proof to Proposition 1
	Proof to Theorem 1

	Experiment Details
	Model Details
	Prediction models
	Decision models

	Detailed datasets and environment Acquisition
	Knapsack problem with unknown profits
	Visual shortest path (SP) planning with unknown cost
	Travelling salesman problem (TSP) with unknown costs

	Experimental Result Details
	Experiment Visualizations
	Qualitative Analysis
	Sensitivity Analysis
	Ablation Study


	Limitations and Broader Impacts

