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ABSTRACT

Recent advancements in image motion deblurring, driven by CNNs and transform-
ers, have made significant progress. Large-scale pre-trained diffusion models,
which are rich in real-world modeling, have shown great promise for high-quality
image restoration tasks such as deblurring, demonstrating stronger generative ca-
pabilities than CNN and transformer-based methods. However, challenges such
as unbearable inference time and compromised fidelity still limit the full potential
of the diffusion models. To address this, we introduce FideDiff, a novel single-
step diffusion model designed for high-fidelity deblurring. We reformulate motion
deblurring as a diffusion-like process where each timestep represents a progres-
sively blurred image, and we train a consistency model that aligns all timesteps
to the same clean image. By reconstructing training data with matched blur tra-
jectories, the model learns temporal consistency, enabling accurate one-step de-
blurring. We further enhance model performance by integrating Kernel Control-
Net for blur kernel estimation and introducing adaptive timestep prediction. Our
model achieves superior performance on full-reference metrics, surpassing pre-
vious diffusion-based methods and matching the performance of other state-of-
the-art models. FideDiff offers a new direction for applying pre-trained diffu-
sion models to high-fidelity image restoration tasks, establishing a robust baseline
for further advancing diffusion models in real-world industrial applications. Our
dataset and code will be publicly available.

RealBlur-J (scene204-12)

Blurry Restormer HI-Diff UFPNet AdaRevD
Zamir et al. (2022) Chen et al. (2023) Fang et al. (2023) Mao et al. (2024)

DiffBIR Diff-Plugin OSEDiff FideDiff (ours) HQ
Lin et al. (2024) Liu et al. (2024b) Wu et al. (2024)

Figure 1: Previous models often suffer from the real-world generalization.

1 INTRODUCTION

Image motion deblurring has long been considered an ill-posed image restoration problem due to
the complex formation causes, such as camera shake and high-speed object motion during exposure
time. In recent years, with the development of CNNs and transformers, significant progress has been
made in the field of motion deblurring, including many end-to-end deblurring methods (Mao et al.,
2024; Cheng et al., 2025) and motion blur kernel estimation-based approaches (Kim et al., 2024).
However, these specialized models often lack a true understanding of the world, which limits their
ability to handle unknown situations and generalize to real-world scenarios, as shown in Fig. 1.

In recent years, large-scale pre-trained diffusion models (DMs) have been gradually employed for
image restoration tasks, showing remarkable generalization and high-quality restoration ability,
bringing new hope to the deblurring field (Lin et al., 2024; Liu et al., 2024b). However, similar
to the development of diffusion in many low-level vision tasks, several challenges hinder the full
utilization of large-scale DMs, including a) unbearable inference time, usually with tens or hun-
dreds of sampling steps (Lin et al., 2024), and b) struggling with fidelity (Liu et al., 2024b) or even
overlooking it to emphasize the perceptual quality (Cheng et al., 2025).
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Figure 2: Fidelity-perception
tradeoff w.r.t. steps in SR task.

Additionally, there appears to be a trade-off (Fig. 2) between
the inference steps (time) and fidelity for DMs. Take well-
developed super-resolution as an example, many few- or one-step
approaches struggle to maintain fidelity and sacrifice it to pursue
the overall quality. This shift undermines the core objective of im-
age restoration, which is to restore an image to its original form,
and deviates from practical industry-oriented tasks.

To address these challenges and better harness the potential of
pre-trained DMs for efficient and high-fidelity image motion de-
blurring, we introduce our model, the high-Fidelity single-step
deblurring Diffusion model, FideDiff, which reduces the sam-
pling steps to a single iteration while prioritizing restoration fidelity. Unlike previous single-step
diffusion approaches (Wu et al., 2024; Dong et al., 2025; Li et al., 2025a) that assign a fixed timestep
to all low-quality images, we reformulate motion deblurring as a diffusion-like process where each
timestep corresponds to a specific blur severity. We analyze the challenges of traditional modeling
and define the forward process through blur trajectories, then directly optimize a consistency ob-
jective that forces all timesteps to predict the same clean image. To enable this, we reconstruct the
GoPro (Nah et al., 2017) dataset to provide matched blur trajectories, allowing the model to learn
cross-time consistency and naturally support accurate one-step deblurring during inference.

We carefully build a foundation model with pretrained diffusion priors for high-fidelity deblurring.
Considering that effective utilization of the blur kernel and incorporating control information into
diffusion-based deblurring methods are important but less explored, we propose Kernel ControlNet,
which introduces blur kernel estimation and cleverly integrates control information in the form of
filters into the trained foundation model, further improving deblurring performance. We also design
a regression module for timestep prediction, enabling the model to adaptively select the appropriate
timestep based on blur degree during inference, allowing it to handle various scenarios more flexibly.

Our contributions are as follows: a) We reformulate the diffusion process in deblurring and propose
a time-consistency training paradigm to support one-step sampling. b) We develop a robust single-
step high-fidelity foundation model, and c) introduce Kernel ControlNet to enhance performance,
along with a t-prediction module for dynamic blur level prediction. Our model outperforms all pre-
vious pre-trained diffusion-based models on full-reference metrics, and it matches or even surpasses
the well-developed transformer-based models on perceptual similarity (LPIPS/DISTS). Our work
provides a new perspective for applying pre-trained DMs to image restoration tasks and establishes
a robust baseline, which can further refine and expand the application of DMs in low-level vision,
facilitating their better application in real-world industrial scenarios.

2 RELATED WORKS

2.1 IMAGE MOTION DEBLURRING METHODS

Image motion deblurring has been widely studied, from traditional handcrafted models to deep learn-
ing approaches, with early methods framing it as an inverse problem, using priors like total varia-
tion (Chan & Wong, 1998), hyper-Laplacian (Krishnan & Fergus, 2009), or gradient statistics (Shan
et al., 2008; Xu et al., 2013) to regularize deconvolution. Recently, CNN and transformer-based
methods have dominated, including many end-to-end methods (Zamir et al., 2022; Chen et al., 2022;
Kong et al., 2023). Park et al. (2020) progressively removes blur with a multi-temporal recurrent
neural network. Mao et al. (2024) uses an adaptive patch exiting reversible decoder, while Liu et al.
(2024a) introduces a motion-adaptive separable collaborative filter to handle complex motion blur.

2.2 KERNEL ESTIMATION

Kernel estimation plays an important role in both blind and non-blind deblurring. Previous methods
either assume uniform blur (Sanghvi et al., 2024; Zhang et al., 2024) across the entire image, which
struggles to model the diverse blurs in real-world scenarios, or assume that each pixel has a different
blur and predict pixel-wise blur kernels (Sun et al., 2015; Carbajal et al., 2021; Gong et al., 2017),
and then combine with non-blind deblurring approaches (Dong et al., 2020; Tai et al., 2011; Tang
et al., 2023). Fang et al. (2023) represents motion blur kernels in a latent space with normalizing
flows and uses uncertainty learning to improve end-to-end model performance. Kim et al. (2024)
presents an efficient deblurring model that decomposes the task into blur pixel classification and
discrete-to-continuous conversion, achieving high performance with low computation cost.
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2.3 DIFFUSION MODELS

Diffusion Models (DMs) (Rombach et al., 2022; Esser et al., 2024; Labs, 2024) have recently made
significant progress in the generation field, and become powerful tools in many low-level vision
tasks such as real-world super-resolution (Wang et al., 2024; Wu et al., 2024; Li et al., 2025a) and
image restoration tasks, such as deblurring (Cheng et al., 2025) and many other tasks (Wang et al.,
2025; Guo et al., 2025; Gong et al., 2025). In the deblurring field, Xia et al. (2023) and Chen
et al. (2023) use additional diffusion architecture to construct conditional priors to strengthen the
network. Meanwhile, Whang et al. (2022) and Ren et al. (2023) apply diffusion in the image space
to denoise blurry images. The deblurring methods based on pretrained DMs, UID-Diff (Cheng et al.,
2025) and Diff-Plugin (Liu et al., 2024b), leverage unsupervised learning with unpaired data and the
blur information plugin approach, respectively, to tame pretrained DMs to learn the deblurring.

However, diffusion-based methods often have high inference cost and require strong priors. And the
trade-off between fidelity and perceptual realism of pretrained DMs is non-trivial. Some diffusion
outputs may look perceptually plausible but deviate from ground truth.

3 TASK FORMULATION AND DATA PREPARATION

3.1 MOTIVATION

Despite the advances in accelerating diffusion processes, the application of one-step diffusion to
image restoration has not been sufficiently studied. Distillation-based paradigms dominate existing
efforts, for example, SinSR (Wang et al., 2024) and FluxSR (Li et al., 2025a) compress multi-step
teachers into single-step students, while OSEDiff (Wu et al., 2024) and TSD-SR (Dong et al., 2025)
adopt score or distribution distillation to regress toward sharp images. While effective at reducing
inference cost, such approaches suffer from two fundamental limitations.

1. Loss of Diffusion’s Inductive Bias: Collapsing the iterative denoising into a single mapping
with a fixed timestep reduces diffusion to a direct regression model, resembling a Unet with
strong initialization but detached from diffusion principles. Such an application is crude without
proper modeling and, intuitively, is unsuitable for handling different levels of degradation, such
as deblurring. Ignoring this inductive bias risks sacrificing diffusion’s robustness and fidelity.

2. Target Inconsistency in Image Restoration: Super-resolution and motion deblurring are full-
reference tasks aimed at recovering images close to the clean target. However, most one-
step methods prioritize no-reference perceptual metrics (e.g., CLIPIQA (Wang et al., 2023),
MUSIQ (Ke et al., 2021)), sacrificing full-reference fidelity (e.g., PSNR, LPIPS (Zhang et al.,
2018)), as shown in Fig. 2. Pretrained generative priors (e.g., Stable Diffusion (Rombach et al.,
2022; Esser et al., 2024)) encourage models to generate perceptually pleasing but less faithful
reconstructions, inflating perceptual scores at the cost of restoration goals.

3.2 PRELIMINARY

According to the standard diffusion process (Ho et al., 2020; Rombach et al., 2022), we define

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1), q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)

where zt is the latent variable at time step t, which is progressively corrupted by Gaussian noise
starting from z0. The mean and variance are determined by the noise schedule βt.

In the reverse process, the mean value of the Gaussian distribution q(zt−1|zt, z0) is calculated as:

µt(zt, z0) =

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
ᾱt−1βt

1− ᾱt
z0, (2)

where αt = 1− βt and ᾱt =
∏t

i=1 αi. The denoising network ϵθ, for predicting pθ(zt−1|zt), needs
to minimize the difference with q(zt−1|zt, z0). Estimated ϵ̂ from ϵθ is used to generate the ẑ0 via

ẑ0 =
zt −

√
1− ᾱtϵ̂√
ᾱt

, ϵ̂ = ϵθ(zt, c, t). (3)

Here, c represents the control information, like text, image, or other conditions. With Eq. 3, at each
step, ϵθ can directly restore the clean z0. However, for stable and high-quality generation, denoising
from zt−1 is preferred over directly exiting the backward process, as seen from Eq. 2.

3
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3.3 FORWARD AND BACKWARD REFORMULATION FOR DEBLURRING

Motion blur in images is caused by the relative motion between the camera and the scene during
the exposure time. When capturing an image, each point in the scene is projected onto the image
plane over time. This can be mathematically represented as an integral over the exposure time,
and alternatively, it can also be approximated by a pixel-wise convolution, where the blur kernel
K represents the motion path of the camera or object, and the blurred image Iblur is obtained by
convolving the sharp image Isharp with the blur kernel K and adding noise n:

Iblur =
1

t1 − t0

∫ t1

t0

Sensor(t) dt ≈ Isharp ∗K + n. (4)

… …k0 kt-1 kt kT

z0 ztzt-1 zT
fθ (zt-1, t-1)

fθ (zt , t)
fθ (zT , T)

Figure 3: Forward and backward processes.

In Fig. 3, we reformulate the forward and backward
processes for the image motion blurring and deblur-
ring. We define the clean image as z0 and the ini-
tial blur kernel as identity convolution k0, where
z0 = z0 ∗ k0. From a pure clean image to the blurry
image, we regard the forward blur kernel generation
process as a chain, following:

q(k1:T |k0) =
T∏

t=1

q(kt|kt−1:0). (5)

Commonly used kernel generation methods involve generating random blur trajectories, which are
convolved with sharp images to produce blurry counterparts. In these methods, the blur kernel typ-
ically exhibits non-linear and non-uniform trajectories, with kt depending on previous states kt−1:0

based on different simulation techniques. For simplicity, Figure 3 illustrates a globally uniform blur,
while real-world scenarios apply the blur kernel on a pixel-wise basis.

At each state in the forward process, zt is calculated as zt = z0 ∗ kt. For backward process,
q(zt−1|zt) is intractable, so we consider q(zt−1|zt, z0) and define q(kt|zt, z0) as the conditional
distribution of the variable kt. With identity convolution k0, we try to calculate q(kt−1|kt, k0) using

q(kt−1|kt, k0) = q(kt|kt−1, k0)
q(kt−1|k0)
q(kt|k0)

. (6)

Once we have the distribution of q(kt−1|kt, k0), we can compute the q(zt−1|zt, z0) via zt−1 =
kt−1 ∗ z0, and then optimize the probability model ϵθ to minimize the KL divergence between the
pθ(zt−1|zt) and q(zt−1|zt, z0), following the approach outlined in previous work.

However, two major challenges arise. Firstly, q(kt|zt, z0) is generally intractable. If the blur ker-
nel were spatially uniform across the entire image, it could be inferred directly from zt and z0. In
practice, however, real motion blur kernels vary pixel-wise due to depth differences, camera motion,
and independently moving objects, making a deterministic solution for kt impractical. Secondly,
the forward kernel generation process is highly complex and non-Markovian, as it often depends on
physical factors such as point velocity, impulse, and inertia (Kupyn et al., 2018; Boracchi & Foi,
2012). Consequently, neither the marginal distribution q(kt|k0) nor the conditional q(kt−1|kt, k0)
can be accurately modeled by simple parametric distributions (e.g., Gaussians), violating the as-
sumptions commonly exploited in standard diffusion formulations.

Despite these challenges, the problem is not unsolvable. As Eq. 2 and Eq. 3 reveal, the fundamen-
tal objective of DMs is to reconstruct z0. We reformulate the training objective as a cross-time
consistency regression, explicitly enforcing fθ(zt, t) to yield a consistent estimate of z0 across all
timesteps t. This temporal alignment naturally supports single-step inference without requiring
multi-step denoising iterations. According to Schusterbauer et al. (2025) and Tong et al. (2024),
the need for multiple sampling steps in standard diffusion arises primarily from the random pairing
between Gaussian noise samples and data points during training. If the blur trajectory of each image
is known, and all points along the backward trajectory are jointly trained to map toward the same
clean target, the model learns an intrinsic temporal consistency. Formally, enforcing

z0 = fθ(zt, t) = fθ(zt′ , t
′), min

θ
Et,z0

∥∥fθ(zt, t)− z0
∥∥2 (7)

promotes trajectory consistency (Song et al., 2023) and facilitates accurate one-step sampling.
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Avg. Frames 5 7 9 11 13 15 Total

GoPro 0 175 0 1,818 110 0 2,103
GoPro (Enlarged) 838 980 869 2,081 1,900 1,209 7,877

Table 1: Statistics of GoPro image training pairs.

In this work, we base our consistency training on the pretrained Stable Diffusion model. As pre-
viously mentioned, DMs directly target z0. Among different optimization objectives (e.g., µ-, ϵ-,
or v-prediction (Salimans & Ho, 2022)), we opt for the Stable Diffusion 2.1 base model with ϵ-
prediction for simplicity, which is commonly used in related tasks. To better adapt the pretrained
DMs to the deblurring task, we retain the original diffusion coefficients αt and βt, and adjust the
ϵ̂ = ϵθ such that the following equation holds, where ϵ̂ is not necessarily a Gaussian distribution:

zt = kt ∗ z0 =
√
ᾱtz0 +

√
1− ᾱtϵ̂. (8)

3.4 TRAINING DATA PREPARATION

As discussed in 3.3, if we can group {z0, z1, z2, ...zt} for each sample zt, then the training naturally
satisfies the consistency model’s objective, and thus facilitates the one-step sampling. If we do not
know each sample’s definite backward trajectory and just randomly add the blur kernel to the clean
image during training, the actual direct mapping between a blurry one and its clean version will
degrade, which requires a multi-step inference for sample quality.

Our target is to build a dataset with each blurry sample grouped with its definite backward trajectory,
which is not difficult for both the blur-kernel generation method and the consecutive-frame averaging
method. In this work, we utilize the widely used GoPro (Nah et al., 2017) dataset. The dataset
utilizes a 240fps GOPRO camera and an average of 7 - 13 successive frames to generate the blurry
image for training and 11 frames for testing, while the middle frame is regarded as the sharp image.
Firstly, we construct a mapping from the number of the averaging frames (n) to the timestep of
the diffusion (t), with projection function t = g(n) = (n − 1) × 20, which satisfies the boundary
condition g(1) = 0, i.e., the averaged single frame is regarded as t = 0, and also corresponds to z0
as the initial point of the forward process. Apart from that, as shown in Tab. 1, the original GoPro
dataset has an unrich data distribution with most of the data averaging with 11 frames. In order
to meet the requirements for consistency training, we manually enlarge the GoPro dataset to ensure
that each blurry image has at least 3 points on its backward trajectories. The new statistics are shown
at the bottom of Tab. 1. The detailed synthetic process is listed in the supplementary material.

4 METHODOLOGY

In this section, we propose FideDiff, as shown in Fig. 4. We introduce our foundation model in
Sec. 4.1, and the Kernel ControlNet with kernel estimation and timestep prediction in Sec. 4.2. At
last, we clarify the whole training pipeline and the loss definition in Sec. 4.3.

4.1 DEBLURRING FOUNDATION MODEL

Based on Stable Diffusion (Rombach et al., 2022; Esser et al., 2024), FLUX (Labs, 2024), etc, the
image restoration field has witnessed significant progress from a generative perspective. However,
ensuring the rationality and effectiveness of few/one-step models (Wu et al., 2024; Li et al., 2025a),
while maintaining fidelity, remains an urgent issue.

According to the analysis in Sec. 3.3, we perform consistency training to enforce that the model
produces temporally consistent estimates of z0 for noisy latents sampled along the same trajectory,
thereby enabling single-step inference. Given a training pair (ILQ, IHQ, t = g(n)), we first utilize
the Variational AutoEncoder (VAE) to encode ILQ with the downsampling factor d and gain the
latent representation zLQ, i.e., zt in Eq. 8. Then, the latent diffusion model takes zt and t as input
to predict ϵ̂ = ϵθ(zt, t, c), where c is a learnable text embedding, omitting the tokenizer and text
encoder for better efficiency. As defined in Eq. 8, we obtain the predicted ẑ0 via ẑ0 = zt−

√
1−ᾱt ϵ̂√
ᾱt

and decode it as ÎHQ. We will clarify the timestep t̂ used in the inference phase in Sec. 4.2.

To further pursue the fidelity, we abandon the various distillation methods (Wang et al., 2024; Wu
et al., 2024) that are intended for more natural content generation, and adopt a GAN discrimina-
tor D (Sauer et al., 2024; 2025) to ensure that the generated samples closely match the real data
distribution. Given the restored ẑ0 and zHQ (encoded by VAE from IHQ), the discriminator is re-
sponsible for distinguishing between the real high-quality representation zHQ and the generated ẑ0,
providing feedback to the generator to refine the restoration process and enhance the fidelity of the

5
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Figure 4: Training pipeline of our FideDiff. Optimized t̂ is used for inference.

reconstructed data. The GAN discriminator consists of a pretrained UNet encoder (initialized from
DMs’ encoder) and several convolution blocks to generate true or false.

4.2 KERNEL CONTROLNET

End-to-end learning often overlooks crucial motion information, and incorporating kernel priors
into DMs remains underexplored. For instance, Liu et al. (2024b) employs two vision encoders
to extract semantic information as a plugin, whereas the vanilla ControlNet (Zhang et al., 2023)
accepts conditions like human pose, depth for generation, but has not explored kernel information.
Recently, Lin et al. (2024) adopts a two-stage reconstruction approach and proposes IRControlNet
as a post-processing modifier, enhancing the quality of the repaired image. The foundation model
alone is far from sufficient for high-fidelity deblurring tasks. In Fig. 3, with estimated kt, the network
ϵθ(zt, t, c, kt) is expected to be more powerful to predict the z0 given the fact zt = kt ∗ z0.

To address this, we design Kernel ControlNet, aiming to inject kernel information as an additional
condition into the Unet of the DMs. Specifically, given a blurry input ILQ, we process the blurry
image with a convolutional Unet M in the image space, resulting in a blur kernel representation
kt = M(IHQ), kt ∈ Rm×m×H×W , where m represents the predefined kernel size. Then, we do
not adopt the direct mapping used in the original ControlNet where the condition is mapped to kin
and added to zin1

= Conv(zt), because the kernel map, unlike depth or pose, does not have a direct
spatial correspondence with the target image. Instead, we apply a filter-like module F :

zin2 = Conv(zin1), W = Conv(Cat(kin, zin2)),

O = W ⊗ zin2
, zout = zin1

+ Z(O),

where Z is a convolution initialized with zeros, W is the attention weight, and ⊗ denotes the element-
wise multiplication. Then, zout serves as the input for the subsequent ControlNet C. The structure
of the ControlNet remains the same as the original DM’s encoder, and the initial parameters of
ControlNet are copied from those of the encoder in DMs.
t-prediction. Additionally, Kernel ControlNet plays another crucial role in estimating the timestep
t during the inference phase. As discussed in Sec. 3.3, consistency training enables one-step sam-
pling during inference. However, t remains unknown at this stage. To address this, we design a small
regression model T that follows the kernel estimation network M to get the t̂ = T (M(IHQ)).
Specifically, the more complex and prolonged the kernel trajectory, the higher the blur level, and
consequently, the larger the timestep t becomes.

4.3 TRAINING PIPELINE

Our training has three stages. The first stage is the foundation model training:

L = L1(ÎHQ, IHQ) + λ1LEA-LPIPS(ÎHQ, IHQ) + λ2LG(ÎHQ), (9)
LG = −Et,ILQ

(logD(ẑHQ)), (10)

LD = −Et,IHQ
(logD(zHQ))− EILQ

(log(1−D(ẑHQ))). (11)

The second stage is the kernel estimation network M’s pretraining. We define the reblur loss as

Lreblur = L1(M(IHQ) ∗ IHQ, ILQ), (12)

which uses the pixel-wise kernel estimation map to convolve the clean image, thereby regulating the
kernel estimation via backpropagation. For the third stage, the foundation model is frozen, and only
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Dataset Metrics Restormer
Zamir et al. (2022)

HI-Diff
Chen et al. (2023)

UFPNet
Fang et al. (2023)

AdaRevD
Mao et al. (2024)

DiffBIR
Lin et al. (2024)

OSEDiff
Wu et al. (2024)

Diff-Plugin
Liu et al. (2024b)

UID-Diff∗

Cheng et al. (2025)
FideDiff

PSNR↑ 32.92 33.33 34.09 34.60 26.15 24.34 22.88 25.08 28.79
SSIM↑ 0.9611 0.9642 0.9686 0.9716 0.8377 0.8228 0.7798 0.7403 0.9148
LPIPS↓ 0.0841 0.0799 0.0764 0.0712 0.2366 0.1738 0.2332 0.1310 0.0831GoPro

DISTS↓ 0.0724 0.0710 0.0666 0.0672 0.1460 0.0834 0.1166 N/A 0.0525

PSNR↑ 31.22 31.46 31.74 32.35 25.94 23.20 21.94 N/A 27.28
SSIM↑ 0.9423 0.9446 0.9471 0.9525 0.8216 0.7611 0.7272 N/A 0.8775
LPIPS↓ 0.1082 0.1055 0.0931 0.0872 0.2091 0.2208 0.2732 N/A 0.1068HIDE

DISTS↓ 0.0730 0.0725 0.0676 0.0666 0.1246 0.1001 0.1411 N/A 0.0647

PSNR↑ 28.96 29.15 29.87 30.12 26.92 26.83 25.77 22.76 28.96
SSIM↑ 0.8786 0.8898 0.8840 0.8945 0.7450 0.8004 0.7711 0.7693 0.8695
LPIPS↓ 0.1561 0.1470 0.1441 0.1408 0.2587 0.1793 0.2055 0.1379 0.1142RealBlur-J

DISTS↓ 0.1112 0.1050 0.1101 0.1037 0.1599 0.1198 0.1355 N/A 0.0800

PSNR↑ 36.19 36.28 36.25 36.53 32.60 33.54 32.64 22.47 36.01
SSIM↑ 0.9572 0.9583 0.9528 0.9570 0.8493 0.9056 0.8496 0.7384 0.9424
LPIPS↓ 0.0608 0.0602 0.0615 0.0621 0.3388 0.1057 0.1422 0.2348 0.0584RealBlur-R

DISTS↓ 0.0833 0.0814 0.0854 0.0846 0.2576 0.1322 0.1673 N/A 0.0862

Table 2: Comparison results with full-reference metrics on the four datasets.

the Kernel ControlNet {F , C,M, T } is optimized:

L = L1(ÎHQ, IHQ) + λ1LEA-LPIPS(ÎHQ, IHQ) + λ3Lreblur + λ4Ltime(t, T (M(IHQ))). (13)

EA-LPIPS is the LPIPS loss with an edge detection model, proven useful in many works (Wang
et al., 2025; Li et al., 2025b). Ltime is a simple l2 regression loss, detailed in the supplementary.

5 EXPERIMENTS
5.1 EXPERIMENT SETTINGS

Dataset and Evaluation. In line with previous studies, we utilize the GoPro (Nah et al., 2017),
HIDE (Shen et al., 2019), and RealBlur (Rim et al., 2020) datasets. The GoPro dataset consists of
2,103/1,111 sharp-blurry pairs for training and testing. The HIDE dataset contains 2,025 testing
pairs. The RealBlur dataset has two subsets, J and R, each with 980 testing pairs. FideDiff is trained
on the GoPro training set and evaluated on the four test sets as others. For evaluation, we employ
the full-reference metrics: PSNR, SSIM, LPIPS (Zhang et al., 2018), and DISTS (Ding et al., 2020).
Implementation Details. FideDiff is based on Stable Diffusion (SD) 2.1 base version and fine-
tuned with LoRA (Hu et al., 2022) in the first stage, and Kernel ControlNet is trained with full-
parameter training. Because GoPro, HIDE, and RealBlur are low-resolution and affected by shoot-
ing equipment and techniques, they are unsuitable for direct SD use, especially when VAE compres-
sion loses details. To fix this, we cut the VAE downsampling from d = 8 to d = 4 by 2× upsampling
inputs before FideDiff and resizing outputs back. Our experiments are conducted on four NVIDIA
A800-80GB GPUs. More implementation details and discussion are provided in the supplementary
material. To ensure a fair comparison, we train FideDiff on the original GoPro and other models on
the enlarged GoPro, as detailed in Sec. 5.3. The GoPro/HIDE test set is originally synthesized by 11
consecutive frames, so tGT = 200. RealBlur, being real-world captured, lacks a tGT . By default,
we use t̂ = 200 for GoPro/HIDE and the t-prediction strategy for RealBlur during inference.

5.2 EVALUATIONS

We compare our model, FideDiff, with many models in Tab. 2, including transformer-based
models: Restormer (Zamir et al., 2022), HI-Diff (Chen et al., 2023), UFPNet (Fang et al.,
2023), AdaRevD (Mao et al., 2024), and pretrained-diffusion-based DiffBIR (Lin et al., 2024),
OSEDiff (Wu et al., 2024), Diff-Plugin (Liu et al., 2024b), UID-Diff (Cheng et al., 2025).
DiffBIR/OSEDiff/Diff-Plugin/UID-Diff are based on the SD v2.1-base/v2.1-base/v1.4/v1.5, respec-
tively. Diff-Plugin is originally trained on GoPro, while OSEDiff is retrained by us on GoPro. Diff-
BIR is trained on a 15M dataset to address almost any type of content loss, and we combine it with
AdaRevD to enhance its results. UID-Diff∗ uses a larger-scale unpaired deblur dataset including
GoPro, and as it is closed-source, the metrics in Tab. 2 are directly copied from their paper.
Quantitative Results. As shown in Tab. 2, our model, FideDiff, outperforms diffusion-based
methods across four full-reference metrics by a large margin. Additionally, for perceptual simi-
larity metrics (LPIPS/DISTS), our model surpasses four transformer-based methods on at least half
of the metrics across all four datasets. Notably, when evaluated on the real-world dataset RealBlur,
our model demonstrates robust generalization capabilities, with perceptual similarity outperforming
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GoPro (0862 11 00-000060)

Blurry Restormer HI-Diff UFPNet AdaRevD

DiffBIR Diff-Plugin OSEDiff FideDiff (ours) HQ

RealBlur-J (scene176-18)

Blurry Restormer HI-Diff UFPNet AdaRevD

DiffBIR Diff-Plugin OSEDiff FideDiff (ours) HQ

RealBlur J (scene194-19)

Blurry Restormer HI-Diff UFPNet AdaRevD

DiffBIR Diff-Plugin OSEDiff FideDiff (ours) HQ
Figure 5: Visual comparison with the transformer-based and diffusion-based models.

Model GoPro RealBlur-J
Restormer 1.14 0.64
HI-Diff 1.02 0.58
UFPNet 0.75 0.42
AdaRevD 1.09 0.66

DiffBIR-s50 25.40 12.84
UID-Diff-s30∗ 25 N/A
Diff-Plugin-s20 5.29 2.48
OSEDiff-s1 0.32 0.19

Ours (d=8, w/o KCN) 0.25 0.14
Ours (d=4, w/o KCN) 1.28 0.60
Ours (d=4) 1.52 0.72

Table 3: Inference speed (sec/image).
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Figure 6: Perception-distortion comparisons.
most models, while the distortion metrics PSNR/SSIM show a significant reduction in the gap com-
pared to transformer-based methods. These results indicate that our model not only better teaches
the pretrained model to handle diverse types of blur but also generalizes significantly to real-world
scenarios, making a crucial step towards high-fidelity image motion deblurring. Furthermore, we
plot the perception-distortion tradeoff (Blau & Michaeli, 2018) curves for different models, as shown
in Fig. 6. This further demonstrates that our model is closer to the original image in terms of per-
ception, offering a balanced alternative to transformer-based methods.
Speed. In Tab. 3, our foundation model with downsampling factor d = 8 achieves the fastest in-
ference speed. As mentioned in Sec. 5.1, influenced by the capturing devices and the low resolution
of the datasets, we set d = 4, sacrificing time for reduced detail loss. The introduction of Kernel
ControlNet further lowers the speed, but it is still comparable to most transformer-based methods
and significantly faster than multi-step DMs, achieving up to a 17× speedup.
Visualizations. Visual comparisons are shown in Figs. 1 and 5. It is evident that FideDiff signif-
icantly outperforms diffusion-based methods, with restored details closer to the ground truth com-
pared to transformer-based methods. More visualizations are shown in the supplementary material.
5.3 ABLATION STUDY

d size lp GAN LE PSNR↑ SSIM↑ LPIPS↓ DISTS↓

8 384 LPIPS ✓ ✓ 26.12 0.8609 0.1119 0.0648
8 384 EA-LPIPS ✓ ✗ 26.07 0.8601 0.1138 0.0641
8 384 EA-LPIPS ✗ ✓ 26.21 0.8631 0.1098 0.0732
8 384 EA-DISTS ✓ ✓ 25.58 0.8470 0.1288 0.0601
8 384 EA-LPIPS ✓ ✓ 26.26 0.8636 0.1093 0.0633

4 384 EA-LPIPS ✓ ✓ 27.77 0.8970 0.1020 0.0633
4 512 EA-LPIPS ✓ ✓ 28.51 0.9101 0.0899 0.0555

Table 4: Foundation model ablation.

Foundation Model. In Tab. 4, we present an ab-
lation study of our foundation model on the Go-
Pro dataset, showing that LPIPS loss improves
perceptual fidelity more effectively than DISTS,
and that the GAN discriminator plays a crucial
role—particularly when optimizing for the DISTS
metric. In addition, we demonstrate that using a
learnable text embedding (LE) yields better perfor-
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psnr ssim lpips dists FID psnr
80 28.32 0.909 0.119 0.0698 10.97 0.944

120 28.59 0.9126 0.0993 0.0599 9.43 0.953
160 28.69 0.9135 0.0896 0.0552 8.92 0.9563
200 28.68 0.913 0.0854 0.0533 8.83 0.956
240 28.6 0.9118 0.0843 0.0526 8.95 0.9533
280 28.46 0.9093 0.0851 0.053 9.24 0.9487
320 28.25 0.905 0.0884 0.0543 9.91 0.9417

hide psnr ssim lpips dists FID
80 27.06 0.8742 0.1507 0.0881 11.4

120 27.23 0.8775 0.1278 0.0751 10.2
160 27.25 0.8776 0.1155 0.0688 9.87
200 27.2 0.8761 0.1095 0.066 9.98
240 27.12 0.8746 0.1069 0.0646 10.21
280 27.02 0.8721 0.1068 0.0646 10.58
320 26.86 0.8676 0.1099 0.0657 11.41

PSNR (GoPro)PSNR (HIDE)LPIPS (GoPro)LPIPS (HIDE)
80 28.32 27.06 0.119 0.1507

120 28.59 27.23 0.0993 0.1278
160 28.69 27.25 0.0896 0.1155
200 28.68 27.2 0.0854 0.1095
240 28.6 27.12 0.0843 0.1069
280 28.46 27.02 0.0851 0.1068
320 28.25 26.86 0.0884 0.1099

28.32

28.59 28.69 28.68 28.6 28.46
28.25

27.06 27.23 27.25
27.2 27.12 27.02 26.86

0.119

0.0993
0.0896 0.0854 0.0843 0.0851 0.0884

0.1507

0.1278
0.1155 0.1095 0.1069 0.1068 0.1099

0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16

26.5

27

27.5

28

28.5

80 120 160 200 240 280 320

LPIPSPSNR

timestep

PSNR (GoPro) PSNR (HIDE) LPIPS (GoPro) LPIPS (HIDE)

Figure 7: Performance w.r.t steps.

Model GoPro HIDE
PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓

base 28.68 0.9130 0.0854 0.0533 27.20 0.8761 0.1094 0.0659
controlnet 28.73 0.9139 0.0844 0.0531 27.27 0.8774 0.1077 0.0654

motion align 28.75 0.9140 0.0851 0.0538 27.28 0.8777 0.1081 0.0658

kernel addition 28.70 0.9135 0.0835 0.0525 27.25 0.8770 0.1073 0.0648
kernel 28.79 0.9148 0.0831 0.0525 27.28 0.8775 0.1068 0.0647

Table 5: Kernel ControlNet’s effectiveness.

mance than adopting a fixed text embedding. We also validate that incorporating an edge-enhanced
perceptual loss leads to further performance gains. We demonstrate that using d = 4 significantly
surpasses d = 8, mainly due to the limitations of the dataset, e.g., some scenes contain over 40
people at only 1280×720 resolution, causing substantial detail loss during SD processing (detailed
in the supplementary). Increasing the training patch size further improves performance, but we
ultimately use 512 due to GPU memory constraints.
Kernel ControlNet. Table 5 demonstrates the effectiveness of our Kernel ControlNet, which out-
performs both the foundation model and a vanilla ControlNet (using only zLQ as input). We further
show that our filter module is more effective than directly adding the kernel to zLQ, especially in
terms of PSNR and SSIM. We also experiment with a motion alignment module based on MISC-
Filer (Liu et al., 2024a), but it is less effective than our Kernel ControlNet.

Dataset Metrics w/o CT w/ CT w/ CT & TP

PSNR↑ 28.74 28.79 28.62
SSIM↑ 0.9142 0.9148 0.9123
LPIPS↓ 0.0871 0.0831 0.0828GoPro

DISTS↓ 0.0548 0.0525 0.0522
PSNR↑ 27.26 27.28 27.28
SSIM↑ 0.8774 0.8775 0.8779
LPIPS↓ 0.1192 0.1068 0.1155HIDE

DISTS↓ 0.0705 0.0647 0.0694

PSNR↑ 28.95 28.95 28.96
SSIM↑ 0.8687 0.8691 0.8695
LPIPS↓ 0.1122 0.1151 0.1142RealBlur-J

DISTS↓ 0.0790 0.0804 0.0800

PSNR↑ 35.77 35.92 36.01
SSIM↑ 0.9384 0.9414 0.9424
LPIPS↓ 0.0662 0.0600 0.0584RealBlur-R

DISTS↓ 0.0961 0.0881 0.0862

Table 6: CT and TP ablation.

Dataset Metrics OSEDiff-S OSEDiff-L FideDiff-S FideDiff-L

PSNR↑ 24.34 24.29 28.56 28.79
SSIM↑ 0.8228 0.8237 0.9109 0.9148
LPIPS↓ 0.1738 0.1634 0.0873 0.0831GoPro

DISTS↓ 0.0834 0.0772 0.0549 0.0525
PSNR↑ 23.20 23.52 27.07 27.28
SSIM↑ 0.7611 0.7779 0.8737 0.8775
LPIPS↓ 0.2208 0.2137 0.1141 0.1068HIDE

DISTS↓ 0.1001 0.1036 0.0690 0.0647
PSNR↑ 26.83 26.92 28.88 28.96
SSIM↑ 0.8004 0.8044 0.8680 0.8695
LPIPS↓ 0.1793 0.1758 0.1145 0.1142RealBlur-J

DISTS↓ 0.1198 0.1183 0.0804 0.0800
PSNR↑ 33.54 33.04 35.91 36.01
SSIM↑ 0.9056 0.8937 0.9400 0.9424
LPIPS↓ 0.1057 0.1074 0.0606 0.0584RealBlur-R

DISTS↓ 0.1322 0.1408 0.0894 0.0862

Table 7: Fair comparison.

100 200 300

10.0

12.5

15.0

17.5

steps

FID
GoPro w/ CT
GoPro w/o CT
HIDE w/ CT
HIDE w/o CT

Figure 8: FID w.r.t. steps.

Consistency training (CT) and time prediction (TP). In Tab. 6, ”w/
CT” refers to our time-consistency training, where different blur lev-
els correspond to varying t values ranging from 80 to 280 (calcu-
lated with g(n) according to Tab. 1). ”w/o CT” means all training
images are set to the same t = 200. When inference is set with
t̂ = tGT = 200, FideDiff w/ CT outperforms FideDiff w/o CT on
GoPro/HIDE/RealBlur-R, especially in perceptual similarity metrics
like LPIPS and DISTS. This demonstrates the effectiveness of our
consistency training in better decoupling different levels of blurriness
and controlling blurry details. After adding t-prediction to the CT
model, performance all improves on RealBlur, proving that t-prediction is effective for real-world
blur with good generalization, further enhancing fidelity. On GoPro/HIDE, although t-prediction
cannot perfectly predict t̂ = tGT , its performance is comparable to using no t-prediction.
Additionally, we analyze the variation in distortion (PSNR, SSIM) and perception (LPIPS, DISTS)
of our foundation model w/ CT at different timesteps on GoPro/HIDE in Fig. 7. Despite tGT = 200,
when t̂ varies between approximately 120 and 280, the model maintains good performance, with
either perception or distortion being better than at t̂ = 200. This demonstrates the robustness and
desirable properties of our model, which are not presented w/o CT (in the supplementary material).
Furthermore, we plot the FID curves of two models on the GoPro/HIDE datasets in Fig. 8, where
w/CT demonstrates superior distribution similarity across all timesteps and maintains good gener-
alization over a wider range. The effectiveness of CT and TP inspires us to see how DMs can deal
more effectively with varying degradation levels. The correct identification of degradation levels is
crucial for achieving accurate model performance, as treating all levels uniformly is not effective.
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Fair Comparison. We train FideDiff on the original GoPro (S) and OSEDiff on our enlarged GoPro
(L). As shown in Tab. 7, FideDiff-S still outperforms the diffusion baseline and can effectively
leverage the abundant data to further boost performance. We also show the AdaRevD retraining
results in the supplementary material, where it also struggles to fully learn the enlarged data.

6 CONCLUSION
In this paper, we analyze the challenges faced by current DMs in real-world deployment, focusing
on time efficiency and fidelity. We reformulate the forward and backward processes of deblurring,
design a time-consistent training paradigm, and develop FideDiff for high-fidelity single-step de-
blurring. We also introduce Kernel ControlNet to inject blur kernel conditions into the foundation
model for enhanced fidelity, and we predict the timestep based on kernel estimation to dynamically
select it during inference. Our model demonstrates strong performance in evaluations, advancing
rapid, high-fidelity restoration of DMs in real-world applications and driving the field’s progress.
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