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GNNs as Adapters for LLMs on Text-Attributed Graphs
Anonymous Author(s)∗

ABSTRACT
Text-attributed Graphs (TAGs), which interlace textual information
with graph structures, pose unique challenges and opportunities
for joint text and graph modeling. Recently, large language mod-
els (LLMs) have greatly advanced the generative and predictive
power of text modeling. However, existing research on jointly mod-
eling text and graph structures either incurs high computational
costs or offers limited representational power. In this work, we
propose GraphAdapter to harness the power of the LLM without
fine-tuning its weights on Text-Attributed Graphs. Given a TAG,
an adapter GNN is trained to reduce the LLM’s error in predicting
the next word of text sequences on nodes. Once trained, this GNN
adapter can be seamlessly fine-tuned for various downstream tasks.
Through extensive node classification experiments across multiple
domains, GraphAdapter demonstrates an average improvement of
∼5% while being more computationally efficient than baselines.
We further validate its effectiveness with various language models,
including RoBERTa, GPT-2, and Llama 2.

KEYWORDS
Graph Neural Networks, Large Language Model, Text-Attributed
Graph

1 INTRODUCTION
Graphs are ubiquitous in the real world [1]. In the past, graph struc-
tures have been extensively explored and utilized in many machine
learning applications [27, 39]. In many practical cases, the nodes in
graphs have textual features, known as Textual-Attributed Graphs
(TAGs) [37]. For example, in social media [18], nodes represent
users and node features are user profiles. Nodes in TAGs have both
textual and structural data, which both reflect their intrinsic prop-
erties. Combining textual and structural data to modeling TAGs is
an exciting new exploration for both graph machine learning and
language modeling, which can benefit the application of graphs.

In TAGs, a complex correlation exists between the structural and
textual data of nodes. Understanding this correlation can benefit the
modeling of TAGs [5]. In Figure 1, user “Bob” frequently browses
daily news on social media, as evidenced by the descriptions in
his user profile. Users similar to Bob, who have many followers
and often browse news nodes, are also likely interested in news.
In other words, a graph can supplement textual attributes on a
node through structural proximity. Graph Neural Networks (GNNs)
are the de facto machine learning models for leveraging textual
information alongside graph structures in TAGs. However, there’s
a lack of a unified GNN architecture compatible with different
language models, especially the powerful foundation models.

Recently, there has been a surge in studies investigating effective
ways to model both textual and structural data in TAGs. Some of
these studies emphasize optimizing a cascading architecture that
combines GNNs and LMs (cascading GNN-LMs) [37, 42]. One ma-
jor challenge with these models is the extreme amount of additional
computational cost brought by the message-passing mechanism.

Account: Bob
Profile:
I am a student who loves rugby 
and reading news… 
I am very popular on social 
media.

Textual data Structural data

Textual semantic: 
1. He like to read news.
2. He is popular.

Structural semantic: 
1. Edge means two node 
may share same interests.
2. High in-degree means a 
node may be popular

Figure 1: An example of the correlation existing in the struc-
tural and textual data of nodes in social networks.

To this end, several studies have successfully reduced the memory
and computational overheads of such cascaded models by freezing
partial or full parameters of the backbone language models [20, 25].
Large language models exhibit superior multi-task and few-shot
learning capabilities across a wide spectrum of real-world applica-
tions [2]. However, when considering cascading GNN-LMs, existing
techniques cannot be scaled up to billion-scale models like Llama
2 [33] and GPT-3 [2]. Another pioneering research has ventured
to fine-tune language models using unsupervised graph informa-
tion (self-supervised GNN-LMs) [4, 26]. For instance, GIANT [4]
fine-tunes language models through a neighbor prediction task,
subsequently using the refined language model to extract node rep-
resentations for downstream tasks. These studies have conclusively
shown that graphs can indeed aid language models in comprehend-
ing textual information. However, they separate the training of
GNNs and LMs, potentially leading to sub-optimal graph-aware
tuning results.

Instead of using graph information as supervision, we believe
graph structure can enrich textual features through language mod-
eling. In our previous example, structural proximity can be used to
infer the user’s preference even if he or she does not mention it in
the profile. While cascading GNNs and LLMs prove infeasible for
training, we draw inspiration from works on parameter-efficient
tuning of LLMs to harness the power of large language models
on TAGs [14, 22, 23] Therefore, we propose the use of GNNs as
adapters for LLMs (i.e., GraphAdapter) offering several advantages:

• Lightweight: An GNN adapter introduces fewer than 1%
of the trainable parameters compared to the popular Llama
2-7B model.

• Convenience: Given a pre-trained LLM and unlabeled
graph, one can seamlessly integrate a graph-specific adapter
for multiple graph applications.

• Graph-aware tuning: This enhances the predictive accu-
racy of the fine-tuned model by leveraging graph structures.
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Now we present the details of GraphAdapter with respect to pre-
training and fine-tuning of the adapter GNNs. To capture the data
distribution of the graph, we employ parameter-efficient tuning
of LLMs on node texts. This approach is similar to the continual
training of language models [31] except GNN is the tuning pa-
rameter, which helps reduce the distribution discrepancy between
the pre-training corpus and target data. To further improve the
efficiency, we employ the GNN adapter only at the transformer’s
last layer and implement residual learning for autoregressive next
token prediction. Different from a traditional adapter, we perform
mean-pooling on the hidden representations from a GNN adapter
and LLMs, then optimize the adapter to improve the next-word
prediction of the LLMs. Once the adapter is trained, one can use
GraphAdapter together with the backbone LLMs on various down-
stream tasks. For instance, we use a classification head atop the
embeddings of the last token to fine-tune for node classification.

To verify the effectiveness of GraphAdapter , we conduct exten-
sive experiments on multiple real-world TAGs including social and
citation networks. GraphAdapter achieves an improvement of 4.7%
over state-of-the-art cascaded GNN-LM methods and 5.4% over
self-supervised GNN-LMs on average, with 30X fewer training pa-
rameters and storage. Moreover, once GraphAdapter is pre-trained,
it can be conveniently fine-tuned for various tasks. Our ablation
analysis shows that the pre-training step consistently improves
the model performance across different graphs. We summarize our
contributions as follows,
• GraphAdapter is a novel approach that harnesses the large lan-

guage models on graph structure data with parameter-efficient
tuning.

• We propose a residual learning procedure to pre-train the GNN
adapter with the LLMs. The pre-training step significantly im-
proves the fine-tuning performance of GraphAdapter .

• We conduct extensive experiments on large-scale TAGs using
state-of-the-art open-sourced large language models (GPT-2 1.5B
[28] and Llama 2 13B [33]). The results demonstrate that Graph-
Adapter can also reap the benefits of a larger model.

2 RELATEDWORK
Modeling text-attributed graphs has attracted much attention in
academia, which requires modeling both textual and structural data.

Modeling semantics and graph structure. Understanding the
semantics is a key part of modeling TAG. Modeling semantics is a
classic problem in natural language processing [43]. With the ad-
vent of Transformers [34], pre-trained language models have made
breakthrough progress in modeling semantics [6]. These methods
leverage massive unlabeled text through unsupervised methods like
auto-regressive [19] and auto-encoding pre-training [12, 24] to train
Transformers. The pre-training and fine-tuning paradigm emerged.
However, fine-tuning has some limitations. Since language mod-
els have a large number of parameters, fine-tuning efficiency is
low. There is also the problem of catastrophic forgetting. To solve
these problems, some work proposed using adapter modules to
reduce the number of parameters to fine-tune language models. For
example, LoRA [14] trains a sparse matrix appended to the orig-
inal parameters while keeping the language model frozen. Some
work proposed using prompts to directly adapt language models

to downstream tasks without fine-tuning. However, prompts need
manual design and do not provide stable improvements. Some work
proposed prompt tuning [16, 23], which adds a trainable prompt
and only trains the added prompt during training, greatly reducing
the number of parameters. Another aspect of modeling language is
modeling the structural information. With the proposal of GNNs
[11], modeling graph structure achieved remarkable success. Many
works [21, 36] have explored GNN architectures extensively, and
these methods have achieved breakthrough progress in graph struc-
ture modeling.

Modeling TAGs. However, despite the success of language mod-
els and GNNs in their respective areas, how to utilize them to model
text-attributed graphs still has many challenges. (1) Cascading
GNN-LM: Directly cascading these two models is straightforward
but has limitations, mainly high computational overhead. Since
GNNs are mostly based on message-passing, they need to compute
representations for many nodes simultaneously. Using language
models to model so many text features requires huge memory
and time costs. To address this, some work [25] proposed freezing
the language model to reduce the computation needed for cas-
cading. Some work [17, 20] proposed neighbor sampling but that
reduces the graph information captured. Therefore, recently some
work tried joint training of LMs and GNNs through knowledge
distillation [26] or Expectation Maximization algorithms [42]. (2)
Self-supervised GNN-LMs: some methods [4, 26] directly super-
vise language model fine-tuning through graph-related tasks, to
help language models better understand the textual information in
text-attributed graphs. The language model is then combined with
GNNs by freezing the language model. This approach demonstrates
the inherent connections between graph structure and text in TAGs.
However, current research in this direction has limitations in that
the LM and graph are separate, and the language model cannot
directly perceive graph information. It also does not utilize the
inherent connections between language and graphs to help GNNs
better learn structural features. (3) LLMs for Graph: With the
breakthrough progress made by LLMs on textual tasks [33, 41], re-
cently many works have emerged exploring how to directly utilize
LLMs to understand text-attributed graphs [3]. For example, by
converting the graph to text [10, 40], or by converting it to a graph
representation as part of a prompt [32]. Some works also explored
using large models to enhance the textual features of text-attributed
graphs [7, 13]. However, this paper is more focused on how to lever-
age the semantic information in text-attributed graphs to help us
model text-attributed graphs. Therefore, this type of method not
be further elaborated.

3 BACKGROUND
Before introducing the proposed method, it’s important to under-
stand some basic concepts and the background of pre-trained lan-
guage models, graph neural networks, and text-attributed graphs.

3.1 Pretrained Language Model
Textual data. Textual data can be formulated as D = {𝑑1, 𝑑2 ...𝑑𝐾 }.
It can be tokenized into a sequence of tokens S = {𝑠1, 𝑠2, ..., 𝑠𝐿},
where 𝑠𝑖 represents a specific token-id. In most cases, the first
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token in the sentence (i.e., 𝑠0) is [CLS], indicating the beginning of
this sentence.
Framework of PLMs. A PLM consists of a multi-layer transformer
encoder that takes a sentence 𝑆𝑖 as input and outputs the hidden
states of each token:

Transformer({𝑠𝑖,0, ..., 𝑠𝑖,𝐿}) = {ℎ𝑖,0, ..., ℎ𝑖,𝐿}, (1)

where ℎ𝑖,𝑘 is the dense hidden state of 𝑠𝑖,𝑘 .
Pre-training of PLMs. This paper uses the auto-regression task
as an instance of pre-training, which is commonly applied to auto-
regressive PLMs [29]. Given a sequence S = {𝑠0, ..., 𝑠𝐿}, the goal is
to model the joint probability of the sequence 𝑃 (S).

𝑃 (S) =
𝐿∏
𝑘=1

𝑝 (𝑠𝑖 |𝑠0, ...𝑠𝑘−1) (2)

The transformer block is used to model these conditional probabili-
ties. More specifically, at time step 𝑘 (0 < 𝑘 ≤ 𝐿), the transformer
receives {𝑠0 ...𝑠𝑘−1} and outputs their hidden states {ℎ𝑖,0, ..., ℎ𝑖,𝑘 }.
The ℎ𝑖,𝑘 are used to predict the probability distribution of the next
token.

𝑝 (𝑠𝑖 |𝑠0, ...𝑠𝑘−1) = 𝑠𝑘 = 𝜎 (Head(ℎ𝑖,𝑘 )) (3)

The model parameters are trained to maximize the likelihood of
𝑝 (S), which is equivalent to minimizing the negative log-likelihood.
Therefore, the loss function is:

L𝐿𝑀 =

𝐿∑︁
𝑘=1

CrossEntropy(𝑠𝑘 , 𝑠𝑘 ) (4)

Sentence representation. Given a sentence S with length 𝐿, its
sentence representation𝑊 can be obtained by three methods [8, 30]:
(1) first token representation, which uses the hidden state of the
[CLS] token (ℎ𝑖,0) as sentence representation. (2) mean-pooling
representation, which is obtained by mean-pooling of all hidden
states (i.e., Pool({ℎ0 ...ℎ𝐿})). (3) last token representation, which
uses the hidden state of the last token.
PLMs with prompts. Due to the gap between pretraining tasks
and downstream tasks, sentence representation may be hard to
contain all the sentence information, thereby requiring fine-tuning
for specific tasks. To address this issue, some studies utilize prompts
to extract task-specific sentence features [16]. For example, suppose
a S𝑖 is a paper titled “Llama 2: Open Foundation and Fine-Tuned
Chat Models”, and the task is to classify the subject of it belongs.
We can add some prompts to the sentence:

{[𝑇𝑖𝑡𝑙𝑒], 𝑡ℎ𝑖𝑠, 𝑝𝑎𝑝𝑒𝑟, 𝑏𝑒𝑙𝑜𝑛𝑔, 𝑡𝑜,𝑤ℎ𝑖𝑐ℎ, 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡?} (5)

We denote this new sentence with the prompt inserted as S𝑖 |P,
where P represents the newly inserted tokens. We use the hidden
state of the last token as the sentence representation, denoted as
𝑊𝑖 |P. Since the last token is used to predict the next token dis-
tribution in the pre-training stage, it can naturally combine the
inserted prompt information into the original sentence and extract
the prompt-related semantics. Extensive studies [19, 23] show that
using prompts can reduce the gap between PLMs and downstream
tasks and maximize the utilization of knowledge learned by PLMs
during pre-training.

3.2 Graph Neural Network
Graph Neural Networks (GNNs) have achieved remarkable success
in modeling graphs [9, 35]. The message-passing framework is a
commonly used architecture of GNN.
Graph. Let 𝐺 = {𝑉 ,𝐴} denote a graph, where 𝑉 is the node set
and 𝐴 is the adjacency matrix, with 𝐴𝑖 𝑗 = 1 meaning there is an
edge between node 𝑖 and node 𝑗 . Usually, each node 𝑖 is associated
with a node feature 𝑥0

𝑖
.

Framework of GNN. The message-passing framework takes a set
of node features X = {𝑥0

𝑖
|𝑖 ∈ 𝑉 }, and an adjacency matrix 𝐴 as

input and iteratively captures neighbors’ information via pooling.
More specifically, for a given node 𝑖 ∈ 𝑉 in the 𝑙-th layer of message-
passing, it can be formulated as:

𝑥𝑙𝑖 = 𝑓2 (Pool{𝑓1 (𝑥𝑙−1𝑗 |𝜃𝑙1) | 𝑗 ∈ N𝑖 }, 𝑥𝑖 |𝜃𝑙2) (6)

where Pool{·} is an aggregation function that combines the features
of neighboring nodes, such as mean-pooling. And N𝑖 denotes the
set of neighbors of node 𝑖 . Besides, 𝑓1 (·|𝜃𝑙1) and 𝑓2 (·|𝜃𝑙2) denote two
trainable transformations with parameters 𝜃𝑙1 and 𝜃

𝑙
2 respectively.

Further, we denote an 𝑙𝑚𝑎𝑥 layer message-passing framework as
GNN, formally:

𝑧𝑖 = GNN(𝑥0𝑖 ,X
0, 𝐴|Θ𝑔) (7)

where 𝑧𝑖 = 𝑥
𝑙𝑚𝑎𝑥

𝑖
, and Θ𝑔 represents all the trainable parameters in

the GNN. We use 𝑧𝑖 as the structural representation for node 𝑖 .

3.3 Text-Attributed Graph
Let G = {V,A} denote a text-attributed graph, where V is the
node set and A is the adjacency matrix. Each node 𝑖 ∈ V is
associated with a tokenized textual data, represented by S𝑖 =

{𝑠𝑖,0, ..., 𝑠𝑖,𝐿𝑖 }, which represents the textual data of the node.

Problem Definition: Give a text-attributed graph G, the prob-
lem this paper focuses on is how to efficiently utilize the unlabeled
textual data {S𝑖 |𝑖 ∈ V} in G to enhance the modeling of G.

4 METHOD
This section introduces the proposed framework, referred to as
GraphAdapter , which uses GNNs as adapters for LLMs to better
model TAGs.

4.1 Overview
The core idea of GraphAdapter is: (1) combining GNNs as adapters
to LMs. (2) pre-training GNN to align with LMs and enhance LMs
through unlabeled textual data.

Motivation: In the textual data of TAGs, many structure-related
semantics are hard to infer from context alone. As illustrated in
the example in Figure 1, we can easily infer that this user is “popu-
lar” based on his degree in the social network, but it is difficult to
infer from their description of habits alone. Combining structural
information can enhance language models’ ability to model these
structure-related semantics in TAGs. Meanwhile, the process of
enhancement is learning how to model structure. Therefore, the
proposed method GraphAdapter, which first uses GNN as adapters
for frozen PLMs, to combine structural information with PLMs, and
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then pre-trains them through the semantic understanding task on
TAGs.

Language-structure pre-training: In the field of natural lan-
guage processing, pre-training is a common strategy used to self-
supervised enhance language models’ ability for semantic under-
standing, with techniques such as auto-regressive pre-training
(e.g., GPT-2/3 [2, 29], Llama 2 [33], etc.) and auto-encoding pre-
training (e.g., BERT[38], RoBERTa[24], etc.). Following our moti-
vation, GraphAdapter uses the same pre-training task as these
PLMs. To facilitate comprehension, this section only discusses
GraphAdapter based on auto-regressive pre-training, and further
details on how GraphAdapter is combined with other pre-training
tasks can be found in the appendix. Since the pre-training process
uses the context semantic to supervise structure learning, we refer
to this pre-training as language-structure pre-training.

Framework: The framework of GraphAdapter is shown in Fig-
ure 2 (a). We also show how to fine-tune GraphAdapter on the
downstream tasks in Figure 2 (b), we detail this part in Section
4.3. Given the textual data and graph structural data of a node,
during the pre-training process, Step 1. GNNmodels the node struc-
ture information; Step 2. integrates the structural information with
the corresponding context hidden-states modeled by PLM; and
Step 3. predicts the next token. During this pre-training process,
GraphAdapter can learn rich information. Align GNN with the
language model. During the learning process, the node repre-
sentation obtained by GNN is constantly combined with different
representations modeled by the language model for reasoning, and
the entire process naturally aligns these two. Enhance GNN in
modeling graph structure. During the entire pre-training stage,
the semantic information in the textual data supervises the GNN
to model the graph structural information. Better understanding
the semantics in TAG. GraphAapter can learn how to combine
LLM and GNN to model the semantic information on TAG.

4.2 Pre-training on TAGs
In the training stage, GraphAdapter uses the textual data of each
node in TAG to train GNN.

Pipeline of pre-training: Given a text-attributed graph G, node
𝑖 and its textual data S𝑖 = {𝑠𝑖,0, ..., 𝑠𝑖,𝐿𝑖 }, GraphAdapter uses all
the tokens in S𝑖 as supervision. For the 𝑘-th token, GraphAdapter
first extracts its previous tokens S𝑖,𝑘 = {𝑠𝑖,0, ..., 𝑠𝑖,𝑘−1}. Then, GNN
models node 𝑖’s structure information 𝑧𝑖 . The structure information
is then combined with the previous tokens to predict the probability
distribution of the next token, where the ground truth is token 𝑠𝑖,𝑘 .

Structural representation: GraphAdapter obtains its structural
features 𝑧𝑖 through GNN. Here we use a general GNN based on
the message-passing framework, which continuously aggregates
neighbor features to obtain the new node’s structural information.
For whole process is formalized as:

𝑧𝑖 = GNN(𝑥0𝑖 ,X,A|Θ𝑔) (8)

where 𝑥0
𝑖
and A represent the initial node feature input and adja-

cency matrix in GNN, respectively. This paper used the sentence

representation of the corresponding node as 𝑥0
𝑖
. See more details

about GNN in Section 3.2.

Context hidden-states. GraphAdapter use the pre-trained trans-
former in PLM to encode S𝑖,𝑘 , it is formalized as:

ℎ𝑖,𝑘 = Transformer({𝑠𝑖,0, 𝑠𝑖,1, ..., 𝑠𝑖,𝑘−1}) (9)

Where the Transformer’s parameters are trained in frozen, and
ℎ𝑖,𝑘 is the context hidden-states S𝑖,𝑘 . Note that in the pretraining
stage of PLM, ℎ𝑖,𝑘 is directly used to predict the next token, so
ℎ𝑖,𝑘 contains both the context information and a certain of PLMs’
prediction result.

Fusion block: GraphAdapter next fuse structural representation
into context hidden-states, which is formalized as:

𝑟𝑖,𝑘 = Fusion(ℎ𝑖,𝑘 , 𝑧𝑖 |Θ𝑓 𝑢𝑠𝑒 ), (10)

The Fusion(∗) function is trainable with parameters Θ𝑓 𝑢𝑠𝑒 . In this
paper, MLPs are used as the structure of fusion. The process in-
volves concatenating ℎ𝑖,𝑘 and 𝑧𝑖 , and then feeding the resulting
vector into MLPs.

Residual connection: the fused 𝑟𝑖,𝑘 contains both structure in-
formation and context information. However, not every token’s
prediction requires the graph structure. For example, in the sen-
tence "This paper focuses on graphs," the word "on" is simply a
fixed collocation and easily inferred by context. Intuitively, words
related to graph structure should be difficult for the language model
to predict based on context. Therefore, the results of pre-trained
language models are reused. We separately calculated the predic-
tion probabilities of the language model alone and the probabilities
that mixed the graph structure and the previous predictions. The
two probabilities are then averaged to obtain the final prediction
result. Formally:

𝑠𝐿𝑀
𝑖,𝑘

= 𝜎 (Head(ℎ𝑖,𝑘 )), 𝑠𝐺𝑁𝑁𝑖,𝑘
= 𝜎 (Head(𝑟𝑖,𝑘 )) (11)

𝑠𝐴𝐿𝐿
𝑖,𝑘

= (𝑠𝐿𝑀
𝑖,𝑘

+ 𝑠𝐺𝑁𝑁
𝑖,𝑘

)/2 (12)
Where 𝜎 denotes the softmax function. Adding the original lan-
guage model prediction results allows GNN to focus more on words
that the language model cannot understand well.

Optimization: Our goal is to minimize the cross-entropy loss be-
tween the predicted probability distribution and the ground-truth
distribution. Formally,

L𝑖,𝑘 = CrossEntropy(𝑠𝐴𝐿𝐿
𝑖,𝑘

, 𝑠𝑖,𝑘 ) (13)

min
Θ𝑔,Θ𝑓 𝑢𝑠𝑒

∑︁
𝑖∈𝑉

∑︁
𝑘∈S𝑖

L𝑖,𝑘 (14)

Note, only GNN(∗|Θ𝐺 ) and Fusion(∗|Θ𝑓 𝑢𝑠𝑒 ) of GraphAdapter are
trainable in whole pre-training.

GNN as Adapter: In the whole pre-training stage, the GNN com-
bines with the frozen LM’s hidden states outputted from the trans-
former block. The combined hidden states are then input into the
PLM’s prediction head. Thus, the GNN acts as an adapter, altering
the language model’s predictions. Since the hidden states outputted
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Figure 2: Framework of GraphAdapter. In the pre-training stage, Step 1. GNN models the node structure information, Step 2. integrates
the structural information with the corresponding text fragment encoded by LM, and Step 3. predicts the masked token.

by the transformer block can be pre-processed and stored in ad-
vance. Therefore, the entire training process only requires training
the GNN. Therefore, GraphAdpater can efficiently pre-train based
on different scales of PLMs.

4.3 Fine-tuning with prompts
The pipeline is shown in Figure 2 (b). GraphAdapter is pre-trained
by token-level semantic understanding tasks. To better utilize the
learned knowledge of GraphAdapter and the PLMs in downstream
tasks, we further proposed prompt-aware fine-tuning. It inserts
prompts in textual data to get task-specific sentence embedding of
each node. Prompts can transform various downstream tasks on
TAGs into next token prediction. E.g., the task “Which account is a
student account” can be transformed by a next-token prediction task,
“[context], based on this profile, this user is ”. In the pre-training stage,
GraphAdapter has learned how to utilize the structural information
captured by GNN to enhance the accuracy of next-token predic-
tion, therefore, under the transformed downstream task can better
utilize the learned knowledge from pre-training. Formally, given
textual data S𝑖 of node 𝑖 , we can combine a sequence of tokens with
task-specific prompts behind textual data, namely, S𝑖 |P = [S𝑖 , P],
then we can get its sentence hidden states ℎ𝑖 |P through the trans-
former of PLM. The resulting hidden state is then fused with the
node’s structural representation as node representation in a specific
downstream task.

𝑟𝑖 |P = Fusion(ℎ𝑖 |P, 𝑧𝑖 ) (15)

This node representation can be used in various tasks. For example,
in the node classification, we can append a new linear transforma-
tion to output the result, i.e., 𝑦𝑖 |P = 𝑓 (𝑟𝑖 |P |𝜃𝑛𝑒𝑤). In fine-tuning
stage, the whole parameters {Θ𝑔,Θ𝑓 𝑢𝑠𝑒 , 𝜃𝑛𝑒𝑤} in GraphAdapter
are trainable.

5 EXPERIMENT
To comprehensively validate that GraphAdapter can mine the in-
trinsic correlation between the textual and structure data in TAGs,

we conduct extensive experiments on three real-world datasets
from diverse domains.

Our experimentation centered on the following five questions:
• Q1: How well is GraphAdapter in modeling TAGs?
• Q2: Whether GraphAdapter can adapt to other PLMs?
• Q3: Are all components comprising GraphAdapter valid?
• Q4: What exactly does GraphAdapter’s pre-training learn?
• Q5: How efficient is GraphAdapter?

5.1 Experiment setup
Dataset. We select three public and real-world datasets used for
evaluation:Ogbn-arxiv[15]: Ogbn-Arxiv (shorted as Arxiv), is a ci-
tation network where edges represent citation relationships, nodes
represent papers and the text attribute is the abstracts of papers.
The task on this graph is to predict paper subjects. Instagram[18]:
Instagram is a social network where edges represent following
relationships, nodes represent users, and the prediction task is to
classify commercial and normal users in this network. The text
attribute is the user’s profile. Reddit2: Reddit is also a social net-
work where each node denotes a user, the node features are the
content of users’ historically published subreddits, and edges de-
note whether two users have replied to each other. The prediction
task is to classify whether a user is in the top 50% popular (average
score of all subreddits). Table 1 shows detailed statistics of these
datasets.

Baselines.We compare the proposed GraphAdapter with several
state-of-the-art TAG modeling methods.
• GNN-based methods: This method directly combines different

frozen PLM with GNNs to model TAGs. Since the specific GNN
framework is not the key point this paper focuses on, this paper
uses GraphSAGE [11] as an instance of GNN.

• LM-based methods: we select GIANT [4, 42], and GLEM as
baseline. GIANT use self-supervised task to finetune PLM. Then
incorporates the fine-tuned PLM and GNN to model TAG. GLEM

2https://convokit.cornell.edu/documentation/subreddit.html
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Table 1: Statistics of experiment datasets.

Dataset # Nodes # Edges # Tokens Split ratio (%) #Class Metric
Arxiv 169,343 1,166,243 35,920,710 54/18/28 40 Accuracy

Instagram 11,339 144,010 579,263 10/10/80 2 ROC-AUC
Reddit 33,434 198,448 6,748,436 10/10/80 2 Accuracy

Table 2: The performance of different methods across three datasets. Each row corresponds to a specific method, and each column
presents the performance of the models on a particular dataset. The evaluation metric used is accuracy for the Arxiv and Reddit datasets, and
ROC-AUC for Instagram. The LM employed in each method is indicated in parentheses.

Arxiv Instagram Reddit

LM

GNN (Ogb-feature) 0.6980 (0.0013) - -
GNN (RoBERTa) 0.7129 (0.0013) 0.6123 (0.0063) 0.6191 (0.0043)

GNN (RoBERTa+Prop) 0.7067 (0.0011) 0.6138 (0.0117) 0.6198 (0.0036)

GIANT (BERT) 0.7262 (0.0011) 0.5986 (0.0022) 0.6379 (0.0045)

GIANT (BERT+Prop) 0.7252 (0.0012) 0.6029 (0.0123) 0.6348 (0.0039)

GLEM1 (DeBERTa) 0.7550 (0.0024) - -
GLEM (DeBERTa) 0.7355 (0.0034) 0.6166 (0.0056) 0.6228 (0.0060)

GLEM (DeBERTa+Prop) 0.7315 (0.0033) 0.6105 (0.0038) 0.6221 (0.0052)

LLM
GNN (Llama 2) 0.7305 (0.0020) 0.6221 (0.0112) 0.6320 (0.0041)

GNN (Llama 2+Prop) 0.7336 (0.0018) 0.6312 (0.0051) 0.6324 (0.0033)

TAPE (GPT-3.5) 0.7672 (0.0007) - -

Ours GraphAdapter (w/o Pre) 0.7648 (0.0020) 0.6351 (0.0077) 0.6284 (0.0025)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

1performance reported in [42]

Table 3: The performance of the GraphAdapter based on different LM across three datasets. The evaluation metrics used for these
datasets align with those outlined in Table 2.

Arxiv Instagram Reddit
RoBERTa GPT2 Llama 2 RoBERTa GPT-2 Llama 2 RoBERTa GPT-2 Llama 2

GNN (PLM) 0.7129 (0.0013) 0.7174 (0.0019) 0.7305 (0.0022) 0.6123 (0.0063) 0.6019 (0.0124) 0.6221 (0.0112) 0.6191(0.0043) 0.6282 (0.0036) 0.6320 (0.0041)

GNN (PLM+Prop) 0.7067 (0.0011) 0.6915 (0.0021) 0.7336 (0.0027) 0.6138 (0.0117) 0.6128 (0.0014) 0.6312 (0.0051) 0.6198 (0.0036) 0.6206 (0.0011) 0.6324 (0.0033)

GraphAdapter (w/o Pre) 0.7069 (0.0026) 0.7146 (0.0025) 0.7648 (0.0020) 0.6165 (0.0038) 0.6162 (0.0066) 0.6351 (0.0077) 0.6210 (0.0036) 0.6284 (0.0027) 0.6369 (0.0025)

GraphAdapter 0.7273 (0.0021) 0.7325 (0.0022) 0.7707 (0.0015) 0.6292 (0.0033) 0.6276 (0.0034) 0.6508 (0.0033) 0.6379 (0.0061) 0.6441 (0.0022) 0.6461 (0.0019)

jointly trains PLM and GNN. Note, GIANT is based on BERT,
and GLEM uses DeBERTa. Considering PLMs have a high influ-
ence on performance, we also compare GraphAdapter with them
under the same PLM.

• LLM-based methods: There are a few LLM-based methods that
are suitable in our setting. Therefore, we select TAPE [13] as the
LLM-based baseline. This method, due to its need to obtain the
interpretation of the text graph through GPT-3.5 and only the
interpretation data on Arxiv is published. Therefore, we only
report the results of this method on Arxiv.

Since many baseline methods involve GNN components, which are
mostly optional, and considering that different GNNs have differ-
ent performances. To make a fair comparison and without loss of
generality, all GNNs used in all baselines are fixed to GraphSAGE,
which is a classic and general GNN model.

Prompts. Since GraphAdapter involves prompts, to make a fair

comparison, we also enhance the baselines with prompts. We pro-
vide detailed records of the prompts used in different experiments
and how prompts are added to the baselines in the appendix. Mean-
while, we also validate the stability of our method with different
prompts, and the experiment results can be found in the appen-
dix. However, since prompts are not the main contribution of our
method, this paper does not explore prompt methods such as soft-
prompt and chain-of-thought in detail.

Implementation details. See more in the appendix.

5.2 Performance
Q1: How well is GraphAdapter in modeling TAGs?

A1: GraphAdapter can effectively model TAGs and surpass
current state-of-the-art baselines on node classification tasks.
We compare GraphAdapter with 6 state-of-the-art baselines on 3
different real-world datasets to evaluate its effectiveness. As Table
2 shows, the experiment results suggest:
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(1) Frozen LLMs are effective on TAGs. In general, frozen LLMs
have an improved performance compared to the previous frozen LM.
Experiment results show Llama 2 has improved performance on 3
datasets by 1.34% compared to RoBERTa-based methods. LLM can
better combine the information in prompts to extract task-relevant
sentence representations of nodes. As the results show, prompts
can bring a 0.42% improvement on average for LLM, but they could
not improve the performance of LM. Frozen LLMs with prompt can
surpass many GNN-LM methods that require tuning LM. Results
also show that LLMs with prompts can surpass GLEM and GIANT
by 0.43% and 0.79% on average, respectively.
(2) Directly fusing GNN and LLM results in unstable improvements.
Compared to ordinary GNN, GraphAdapter (w/o Pre) only adds
one fusion component to fuse the semantic representation from
the LM and structural representation from the GNN. Experiment
results show that directly fusing language model representations
only brings improvements on Arxiv, but not obviously on other
datasets. Note that the Arxiv training samples are much larger than
the other datasets. This result suggests that training samples may
have an impact on GNNs to understand and effectively incorporate
the representations inferred by LLMs with prompts.
(3) GraphAdapter can effectively combine GNN and LLM, surpass-
ing existing state-of-the-art baselines in terms of performance. The
pre-training effect of GraphAdapter is significant, bringing an aver-
age performance improvement of 1.98% and thus surpassing exist-
ing state-of-the-art baselines. Specifically, GraphAdapter achieves
an improvement of 4.72% over state-of-the-art cascaded GNN-LM
methods and 5.40% over self-supervised GNN-LMs on average. At
the same time, GraphAdapter also surpasses TAPE, another LLM-
based method on Arxiv by 0.4% accuracy improvement.

Q2: Whether GraphAdapter can adapt to other PLMs?
A2: GraphAdapter can be effectively pre-trained based on

RoB-ERTa, GPT-2, and Llama 2, resulting in performance
improvements.We run GraphAapter based on 3 different LM. The
experiment results are shown in Table 3. GraphAdapter improved
average performance over directly combining GNNs with frozen
PLM by 1.67% on RoBERTa, 1.89% on GPT-2, and 2.77% on Llama
2. Meanwhile, GraphAdapter pre-training brings 1.67%, 1.50%, and
1.02% improvements on RoBERTa, GPT-2, and Llama 2 respectively.
This result fully demonstrates that GraphAdapter is a general
and scalable method. It is worth noting that the pre-training
method of RoBERTa is different from others. GraphAdapter uses
a pre-training task similar to RoBERTa, so there are some slight
differences from the formula in Section 4. The main differences
come from the loss function and languagemodel inputs.We describe
the details of applying GraphAdapter on Roberta in the appendix.

Under the same PLM, the performance of GraphAdapter is
comparable to the SOTA baselines based on fine-tuning the
PLM.Weevaluate the performance difference betweenGraphAdapter
and SOTA baselines under the same LM. Since the GLEM adopted
DeBERTa, however, the pre-training code of DeBERTa is not open-
sourced at present. To keep consistent, GraphAdapter and GLEM
both adopt the same RoBERTa-base. As shown in Table 4, the ex-
periment results suggest that methods based on pre-training like
GIANT and GraphAdapter perform better on small datasets like

Table 4: The performance of different methods using the
same LMs across three datasets. The evaluation metrics em-
ployed for these datasets align with those described in Table 2.

Arxiv Instagram Reddit

GNN (BERT) 0.7039 (0.0013) 0.5973 (0.0063) 0.6061 (0.0043)

GIANT (BERT) 0.7269 (0.0021) 0.5986 (0.0022) 0.6379 (0.0045)

GraphAdapter (BERT) 0.7264 (0.0012) 0.6156 (0.0032) 0.6366 (0.0034)

GNN (RoBERTa) 0.7129 (0.0013) 0.6123 (0.0063) 0.6191 (0.0043)

GLEM (RoBERTa) 0.7308 (0.0029) 0.6114 (0.0075) 0.6228 (0.0018)

GraphAdapter (RoBERTa) 0.7273 (0.0021) 0.6276 (0.0034) 0.6379 (0.0061)

Instagram and Reddit. Similarly, Roberta-based GraphAdapter out-
performs GLEM by 1.57% and BERT-based GIANT outperforms
GLEM by 1.15% on small datasets. Compared to baselines based on
pre-training, although GIANT fine-tunes the LM, its performance
is 0.51% lower than GraphAdapter on average. Therefore, overall,
even without fine-tuning the LM, the performance of GraphAdapter
is comparable to current state-of-the-art baselines based on fine-
tuning the LM.

5.3 In-depth Analysis.
Q3: Are all components comprising GraphAdapter valid?

A3: As Table 5 shows, removing any component of Grap-
hAdapter results in performance drops. Removing pre-training
leads to an 0.91% drop, demonstrating that GraphAdapter’s improve-
ments indeed come from pre-training. Next, the most significant
performance drop is when we simultaneously remove pre-training
and graph structure in the fine-tuning stage (keeping only self-
loops), which causes a 1.95% drop. This shows having the graph
is crucial for GraphAdapter to work. Removing the task-related
prompt leads to a 0.98% drop, validating our design of aligning pre-
training tasks via prompts. Notably, removing the residual learning
(“w/o Res Label” that is stated in section 4.2) leads to a 1.02% drop
(more than removing pre-training), suggesting that training GNNs
directly on all text may introduce excessive noise and hurt perfor-
mance. Our Equation 7, which utilizes language model predictions
to select words more semantically related to the graph, is reason-
able.

However, although the ablation study validates the rationality
of GraphAdapter’s design and the efficacy of its components, these
results hardly answer what exactly GraphAdapter pre-training is
doing. Therefore, we further construct validation experiments about
pre-training.

Q4: What exactly does GraphAdapter’s pre-training learn?
We conduct three comparative experiments to demonstrate what

GraphAdapter pre-training is doing.
(1) GNN can obtain stronger expressive power through

pre-training.We first observe the performance change of GNNs
before and after pre-training, where we directly use the structural
representations from the pre-trained GNN to fine-tune for down-
stream tasks. As Table 6 shows, the pre-trained GNN performs
better on downstream tasks, improving by 0.78% on average. This
demonstrates that GNNs are training their ability to model the
graph structure during pre-training.
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Table 5: The performance of GraphAdapter when various
components are removed. The evaluation metrics used for these
tests align with those described above. The term ’w/o’ indicates the
removal of a specific component from the GraphAdapter.

Arxiv Instagram Reddit

w/o Pretraining 0.7648 (0.0020) 0.6392 (0.0086) 0.6369 (0.0025)

w/o Graph structure 0.7604 (0.0024) 0.6346 (0.0074) 0.6147 (0.0012)

w/o Res label 0.7605 (0.0013) 0.6408 (0.0130) 0.6363 (0.0036)

w/o task-specific prompt 0.7594 (0.0030) 0.6364 (0.0073) 0.6430 (0.0021)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

Table 6: The performance changes of the GNN block in
GraphAdapter before and after pre-training. Here, “w/o Pre-
training” signifies no pre-training, while “w Pretraining” indicates
the opposite.

Arxiv Instagram Reddit

GNN w/o Pretraining 0.7305 (0.0020) 0.6181 (0.0112) 0.6320 (0.0041)

GNN w Pretraining 0.7335 (0.0024) 0.6294 (0.0038) 0.6410 (0.0027)

(2) Fusion block is learning how to fuse the knowledge
from the language model and GNN during pre-training.We
further explore whether the fusion layer learned useful knowledge
during training. We randomly initialize the parameters in a specific
GraphAdapter’s blocks after pre-trained. As Table 7 shows, initial-
izing the parameters of the fusion layer leads to significant per-
formance drops, decreasing by 1.03% on average across 3 datasets.
Even on the Arxiv dataset, the performance is lower than full ini-
tialization. This result shows that the enhanced knowledge from
GNN may need to be outputted through the matching fusion layer.
To further verify this conjecture, we further reinitialized the param-
eters of GNN, and some performance decline can also be observed,
decreasing by 0.82% on average. This is similar to the impact of
reinitializing the fusion layer. The fusion layer alone does not con-
tain much knowledge. Therefore, these results demonstrate that
the fusion layer can learn how to fuse the knowledge from GNN
and language models.

(3) Graph structure is the basis of pre-training.We further
observe the changes in different base models before and after pre-
training. In this comparative experiment, we keep all the structures
of GraphAdapter, only replacing the GNN block with MLPs of equal
parameter size. As Figure 3 shows, the MLP-based GraphAdapter
shows no significant change before and after pre-training (aver-
age improvement of 0.19%), and even decreases in performance
on Instagram and Reddit (drops of 0.05% and 0.62% respectively).
While the GNN improves notably before and after pre-training
(average improvement of 0.91%). This result suggests that GNN is a
prerequisite for effective pre-training.

These three results demonstrate that GraphAdapter is indeed
learning graph structures via pre-training. This validates that language-
structure pre-training of GraphAdapter is reasonable and effective,
and further supports the motivation of this paper.

UP 

UP 

UP 

DROP DROP 

(a) Arxiv (c) Reddit(b) Instagram

UP 

Figure 3: The performance of GraphAdapter before and after
pre-training, using MLP and GNN as the backbone architec-
tures. The red represents performance without pre-training, while
the blue represent performance after pre-training.

Table 7: The performance of GraphAdapter after ran-
domly initializing some blocks. Here, ”Re-init” represents re-
initialization.

Arxiv Instagram Reddit

Re-init All 0.7648 (0.0020) 0.6392 (0.0086) 0.6369 (0.0025)

Re-init GNN 0.7680 (0.0022) 0.6390 (0.0050) 0.6364 (0.0026)

Re-init Fusion 0.7562 (0.0011) 0.6431 (0.0024) 0.6378 (0.0022)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

Table 8: Running time of different methods on Arxiv using
one Nvidia A800 80GB. Since different methods use different PLM,
we also report the number of parameters for the PLM (decoded as “#
para”) and the number of trainable parameters (“# trainable”).

GIANT GLEM GraphAdapter

PLM BERT DeBERTa-Large Llama 2-13B
# para of PLM 110M 139M 13B

# trainable in Pre 110M - 3M
# trainable in Fine 0.7M 139M 2M

Pre-process - - 192 min
Pre-training 341 min - 312 min
Fine-tuning 1 min 612 min 1 min

Total time costs 342 min 612 min 505 min

5.4 Efficient
Q5: How efficient is GraphAdapter?

As shown in Table 8, we demonstrate the efficiency of GraphAdapter.
As can be seen in Table 8, even when combined with a large model
with 13B parameters, GraphAdapter has a speed comparable to
PLM-based text-attributed graph modeling methods.

6 CONCLUSION
This paper proposes GraphAdapter to harness LLMs for TAGs with-
out fine-tuning. A GNN adapter is trained to reduce LLM next-word
errors on node texts. This adapts LLMs for graphs efficiently. Across
node classification tasks, GraphAdapter improves accuracy by 5%
over baselines. We validate with RoBERTa, GPT-2, and LLAMA 2,
efficiently leveraging LLMs for interconnected text-graph data.
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A APPENDIX
A.1 Dataset details
Arxiv. This paper uses the public partition, ground truth, and text
information provided by OGB[15]. The few-shot train samples are
sampled from the train set of public partition

Instagram. The original dataset for Instagram is provided by
[18]. Since the original dataset did not contain graph information,
we obtained users’ follow lists, personal introductions, and tags for
commercial users through Instagram’s public API3. Therefore, the
node text feature for Instagram is the user’s personal introduction,
and the edge represents the mutual relationship.

Reddit. Reddit is constructed on a public dataset 4 that collected
replies and scores from Reddit users. The node text feature of this
3https://developers.facebook.com/docs/graph-api
4https://convokit.cornell.edu/documentation/subreddit.html
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Table 9: Detailed prompts on three datasets.

Dataset Node feature prompts
Arxiv {abstract} {This is a paper’s abstract: [TEXT], this paper published on }

Instagram {profile} {This is a user’s profile is: [TEXT], this user is}
Reddit {content of last 3 posts } {This is a user on Reddit, his last 3 posts are: [TEXT]. this user is}

graph is the user’s historical post content (limited to the last three
posts per user), and the edge represents mutual replies between
two users. We divided users into popular and normal categories
based on their average score of history posts, with users whose
average score is higher than the median considered popular and
others considered normal.

A.2 Prompts
According to the information on the downstream task and graph,
this article has designed simple prompts for each dataset. As shown
in Table 9. It should be noted that because PLMs are sensitive to
prompts, different prompts may result in significant performance

differences. However, how to find suitable prompts is not the focus
of this paper, so no search for prompts is conducted.

A.3 Implementation details
We independently pre-trained GraphAdapter on three datasets. The
GNN used in the pre-training process was a 2-layer GraphSAGE,
and the fusion layer used a 2-layer MLP. The pre-training was
conducted for 50 rounds, and we used language model techniques
such as silt activation function, layer-norm, and warm-up. The
hidden side of GNN in GraphAdapter is set to 128, 64, and 128 on
Arxiv, Instagram, and Reddit specifically
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