
Under review as submission to TMLR

SmGNN: Link Prediction in Sparse Layers of Multi-layer
Graphs

Anonymous authors
Paper under double-blind review

Abstract

Link prediction is a crucial task in multi-layer graphs for different applications, where real-
world graphs often consist of multiple types of relations represented as different layers.
However, these multi-layer graphs often suffer from missing edges, especially in specific
layers with a high number of missing edges (sparse layers) due to privacy concerns. In this
paper, we tackle the challenge of predicting missing links in such layers to enhance the link
prediction performance in multi-layer graphs. Training a Graph Neural Network (GNN)
directly for link prediction on the sparse layer with limited edges would be challenging for
exploring missing links and may lead to sub-optimal performance. To tackle this problem,
we propose a novel framework called Sparse Layer Reconstruction Multi-layer Graph Neural
Network (SmGNN). SmGNN proposes to leverage information from other relation types
(layers) to explore missing links in the sparse layer. By selectively fusing relevant information
from other layers, we learn relevant representations that capture the characteristics of the
sparse layer. Additionally, we incorporate node similarity information based on the relevant
representation to enhance the graph structure of the sparse layer. By augmenting the graph
structure, our approach improves the representation learning process and enables a more
comprehensive exploration of relational patterns and connections within the sparse layer.
Experimental evaluations on three real-world datasets demonstrate the effectiveness of our
proposed SmGNN approach.

1 Introduction

Graphs play an essential role in many applications, including social networks (Qu et al., 2021), recommen-
dation systems (Fan et al., 2019; Yu et al., 2021; Chang et al., 2021), and knowledge graphs (Nickel et al.,
2015). As real-world graphs are often incomplete, link prediction (Zhou, 2021), which aims to predict miss-
ing links, is a critical task. For instance, link prediction can help new friends recommendation on social
media (Adamic & Adar, 2003; Tan et al., 2019; Sankar et al., 2021), protein interaction prediction (Qi et al.,
2006), and knowledge graph completion (Nickel et al., 2015; Nathani et al., 2019; Dong et al., 2023). Existing
link prediction methods can be broadly classified into two categories: heuristic-based approaches (Lü et al.,
2009; Newman, 2001; Adamic & Adar, 2003; Katz, 1953) and representation learning-based approaches (Acar
et al., 2009; Kipf & Welling, 2016b; Zhang & Chen, 2018; Pan et al., 2022). Recently, Graph Neural Networks
(GNNs) have emerged as a powerful tool for link prediction due to their great ability in node representation
learning that captures both node attributes and local topology information (Kipf & Welling, 2016b; Zhang
& Chen, 2018; Cai et al., 2021).

Despite the great success of GNNs for link prediction, most existing works focus on single-layer graphs,
i.e., there is only one edge/relationship between a pair of nodes; while in real-world, there could be multiple
edges/relationships between a pair of nodes, which can be described by multi-layer graph. Generally, a multi-
layer graph has multiple layers with each layer containing connections in terms of one kind of relationship.
Figure 1 shows an example of a 4-layer criminal network, which captures 4 different types of interactions
and relationships among individuals involved in criminal activities, where Layer A denotes “likes” on social
media, Layer B captures phone call interactions, Layer C means text message interactions and Layer D
represents private meetings.

1

Under review as submission to TMLR

1
2

3

6

4
5

1
2

3

6

4
5

1
2

3

6

4
5

B

C

D

1 2 1 2

Relevant Information

1 2

Predict

1
2

3

6

4
5A

1 2

Figure 1: A motivation example of using other layers’ information to reconstruct unobserved links in the
sparse layer.

For many applications, the collected multi-layer graphs might have some dense layers that have more complete
edge connections and some sparse layers that only have limited edge connections. And it is usually of great
interest to predict the missing links in the sparse layer. For example, in criminal networks, some kinds of
relationships can be easily tracked, such as phone calls, text messages, or e-mails, giving us dense layers; while
some types of edges are very difficult to track, such as private meetings and co-crime activities (Bahulkar
et al., 2018), resulting in sparse layers. It is very important to identify/predict these hidden/missing edges in
sparse layers, e.g., private meetings and co-crime activities, which can help with criminal role identification,
criminal network disruption, and future criminal prediction. However, due to the lack of edges for message
passing of GNNs and for providing supervision to train the model, it is very challenging to directly apply
existing link prediction methods, especially GNNs, to predict missing links for the sparse layer.

Though it is challenging to directly use the sparse layer for link prediction, the sparse layer might have
correlations with other dense layers, which paves us a way to predict the missing links. For example, in
Figure 1, Layer D is the sparse layer, which has a significant number of missing edges due to the covert
nature of private meetings. In this network, if two nodes v1 and v2 have frequent phone call interactions
(Layer B) and text message exchanges (Layer C), it provides an indication of a potential relationship that
might also involve private meetings (Layer D). However, the “likes” relation may not be relevant to private
meetings because it just indicates user engagement and interest in a particular post or content, and doesn’t
necessarily provide information about physical interactions or meetings. Therefore, to predict missing edges
in Layer D (private meetings), we need to selectively extract relevant information from Layers B and C,
excluding Layer A. This enables us to infer covert relationships through private meetings by leveraging
the relevant information between Layers B and C. Though promising, the work on leveraging other layers’
information to predict links for sparse layers in multi-layer graphs is rather limited.

Therefore, in this paper, we investigate a novel problem of link prediction for sparse layers in multi-layer
graphs by leveraging link information from other layers. In essence, there are two main challenges: (i) how to
learn useful information from other layers that can be relevant to the structural characteristics of the sparse
layer; and (ii) how to utilize the acquired information from other layers for link prediction on the sparse layer
with a limited number of edges. To resolve these challenges, we introduce a novel framework called Sparse
Layer Reconstruction Multi-layer Graph Neural Network (SmGNN). We propose a relevant information
encoder module that incorporates other layers’ information into a learnable weighted fusion part to obtain
relevant representations. Furthermore, we utilize supervised edge prediction signals on both the sparse layers
and dense layers to assign varying weights to the dense layers, enabling the extraction of pertinent structural
information that is specifically suited to the characteristics of the sparse layer. Then, we propose to employ a
GNN model to encode the sparse layer and learn its representation through edge prediction. To enhance the
availability of supervised signals, we augment the edge set on the sparse layer with additional edges derived
from relevant representations from other layers. This augmentation facilitates the effective utilization of
the augmented information, leading to improved encoding and prediction. Moreover, to avoid disregarding
important relational patterns and connections, we incorporate the relevant representation while considering
the graph structure. By incorporating the augmented graph structure with the original structure, we learn a

2

Under review as submission to TMLR

more expressive representation that captures underlying patterns and relationships in the sparse layer more
effectively. In summary, our main contributions are:

• We investigate a new problem of predicting missing links for a specific relation within multi-layer graphs,
where the relation exhibits a high volume of missing edges.

• We propose a novel framework SmGNN which learns the relevant representation from other types of
relations. And this representation is used to augment the graph structure of the sparse layer to learn
expressive representation for missing link prediction.

• Experiments on real-world multi-layer graphs demonstrate the effectiveness of the proposed framework
SmGNN.

2 Related Work

Graph Neural Networks. Graph Neural Networks (GNNs) are popular approaches for node representation
learning on graphs. Generally, existing GNNs can be categorized into two types: spectral-based (Bruna et al.,
2013; Kipf & Welling, 2016a; Tang et al., 2019; He et al., 2021; Wang & Zhang, 2022; He et al., 2022) and
spatial-based (Veličković et al., 2017; Hamilton et al., 2017; Veličković et al., 2018; Gao et al., 2018; Zhang
et al., 2018; Ying et al., 2018; Xiao et al., 2021). Spectral-based GNNs use graph signal processing and
apply convolutional operations to graph data in the spectral domain (Bruna et al., 2013). GCN, which uses
a first-order approximation, is an example of a spectral-based GNN (Kipf & Welling, 2016a). Spatial-based
GNNs, on the other hand, aggregate information from neighboring nodes to update the representation of
a given node. GAT (Veličković et al., 2017) is an example of a spatial-based GNN that utilizes attention
mechanisms to update node representations using different weights from neighbor nodes.

Multi-layer Graph Neural Networks. The multi-layer graph (Li et al., 2018), also referred to as a
multiplex (Cen et al., 2019; Park et al., 2020), multi-view (Qu et al., 2017) or multi dimensional graph (Ma
et al., 2019), considers multiple relationships among nodes. Various approaches have been proposed to
handle multi-layer graphs. For example, MVE (Qu et al., 2017) and HAN (Wang et al., 2019) utilize attention
mechanisms to combine embeddings from different views. mGCN (Ma et al., 2019) models interactions within
and across views for node classification. Other recent research has introduced various methods focused on
learning node embeddings, which are subsequently used in node clustering and classification tasks (Fu et al.,
2020; Sun et al., 2019). For instance, VANE (Fu et al., 2020) employs adversarial training to improve the
comprehensiveness and robustness of node representation learning. These techniques enable better handling
of the complexity of multi-layer graphs and can lead to improved performance in various tasks. Moreover,
contrastive learning is also adopted to learn expressive representation for multi-layer graphs (Jing et al., 2021).
For instance, HDMI (Jing et al., 2021) learns network embeddings for multi-layer networks by utilizing high-
order mutual information and a fusion module based on an attention mechanism. X-GOAL (Jing et al., 2022)
propagates information across different layers of multiplex heterogeneous graphs using a GOAL framework
for each layer and an alignment regularization technique. However, in the real world, there may be many
missing edges for some relations in multi-layer graphs due to privacy issues. Therefore, in this paper, we
study a novel problem of link prediction on sparse layers in multi-layer graphs by leveraging other layers’
information.

Link Prediction. Link prediction has wide applications such as social networks (Adamic & Adar, 2003)
and knowledge graphs (Nickel et al., 2015). Existing link prediction methods can be broadly classified into
two categories: heuristic-based (Lü et al., 2009; Newman, 2001; Adamic & Adar, 2003; Katz, 1953) and
representation learning-based (Acar et al., 2009; Kipf & Welling, 2016b; Zhang & Chen, 2018; Pan et al.,
2022). Heuristic-based approaches include methods such as the common-neighbor index (CN) (Newman,
2001), Adamic-Adar (AA) (Adamic & Adar, 2003), Katz (Katz, 1953), and rooted PageRank (PR) (Brin &
Page, 1998), which are calculated based on number of common neighbors or local-neighbor similarity of the
target nodes. However, these heuristic-based methods make strong assumptions and cannot be generalized
to different types of graph data. Representation learning-based approaches, on the other hand, first learn
the node representations and then use the dot product between two node representations to predict the

3

Under review as submission to TMLR

likelihood of a link between them. Graph Neural Networks (GNNs) are widely used to learn node-level
representations that capture both the topology structure and node feature information, achieving state-of-
the-art performance in link prediction (Kipf & Welling, 2016b; Zhang & Chen, 2018; Pan et al., 2022). For
example, VGAE (Kipf & Welling, 2016b) applies GNNs to learn node representations, followed by a simple
inner product decoder to predict link probabilities. SEAL (Zhang & Chen, 2018) extracts subgraphs to
predict links between nodes. However, there is no research about exploring the issue of having sparse edges
for the link prediction task of multi-layer graphs.

Our work is inherently different from existing works: (i) existing works on link prediction mainly focus on
single-layer graphs; while we study a novel problem of link prediction for sparse layers on multi-layer graphs;
(ii) we propose a novel framework that can leverage other layers to facilitate link prediction in the sparse
layer.

3 Problem Definition and Notations

We use G = {V, E1, . . . , EL} to denote an L-layer attributed graph, where V = {v1, . . . , vN } is the set of N
nodes, El ⊆ V × V is the set of edges in the l-th layer. X is the node attribute matrix with X[j, :] ∈ R1×d

being node attribute vector for node vj . Al is the adjacency matrix for the l-th layer. Al
i,j = 1 if nodes

vi and vj are connected in layer l, otherwise Al
i,j = 0. In the real world, the collected multi-layer graph

might have a very sparse layer with many unobserved edges due to various issues such as privacy issues or
difficulty in obtaining the edges in that layer (Bahulkar et al., 2018); while it is important to predict the
missing links in that layer. As other layers might have a correlation with the sparse layer, they can be
utilized to predict the missing links in the sparse layer. Therefore, in this paper, we propose to leverage
other layers’ information to predict missing edges for the sparse layer. Without loss of generality, we treat
the L-th layer as the target sparse layer for link prediction. Note that the choice of the target sparse layer
can be flexible for this problem. We denote the observed edges set of the sparse layer as EO

L and a set of
node pairs EU

L . EU
L includes node pairs with unobserved links and node pairs without links. The problem

of link prediction for the sparse layer can be formulated as a classification problem on determining whether
there is a link between vi and vj for each node pair (vi, vj) ∈ EU

L given observed edges EO
L and other layers’

edge information {E1, . . . , EL−1} , where El is the set of edges for l-th layer. Note that AL is the adjacency
matrix describing EO

L for the sparse layer. In the following part, we call the target layer (index L) with many
missing edges as the sparse layer, and other layers are denoted as dense layers. With the notations above,
the problem is formally defined as:

Given a multi-layer graph G = (V, E1, . . . , EL, X), where layer L is the target sparse layer for link prediction,
we denote the set of observed edges for layer L as EO

L and the set of unobserved or nonexistent edges as
EU

L . Our task is to use the observed edge sets {E1, . . . , EL−1} together with EO
L to learn a link predictor gθ to

accurately predict the existence of links in EU
L .

4 Proposed Method

In this section, we introduce the proposed Sparse Layer Reconstruction Multi-layer Graph Neural Network
(SmGNN) framework designed for the sparse layer’s link prediction of multi-layer graphs. An illustration of
the proposed framework is shown in Figure 2. As the sparse layer doesn’t have enough edge information,
directly training an edge predictor on the sparse layer would result in poor performance. Thus, SmGNN
focuses on extracting relevant link information from other layers, which can then be utilized to predict
missing links in a sparse layer. The primary objective of SmGNN is to leverage this relevant information
to improve the link reconstruction performance for the sparse layer. Specifically, SmGNN introduces the
concept of learning relevant representations across layers with the Relevant Information Encoder module.
SmGNN utilizes supervised signals to reconstruct the structural information of both the dense layers and
the sparse layer, ensuring that the relevant representations contain sufficient information from dense layers,
which are relevant to the characteristics of the sparse layer. Finally, the relevant representation is utilized to
enhance the structure of the sparse layer, resulting in a more expressive representation by learning from the

4

Under review as submission to TMLR

1
2

3

6

4
5

1
2

3

6

4
5

1
2

3

6

4
5

GNN

GNN
Relevant Information

Encoder
GNN

Fusion

<latexit sha1_base64="pUZ+PSWjRTHwb2DTHGovtSa3+j4=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APbUjJppg3NZIbkjlCG/oUbF4q49W/c+Tdm2llo9UDgcM695Nzjx1IYdN0vp7Cyura+UdwsbW3v7O6V9w9aJko0400WyUh3fGq4FIo3UaDknVhzGvqSt/3Jbea3H7k2IlL3OI15P6QjJQLBKFrpoRdSHPtBWp8NyhW36s5B/hIvJxXI0RiUP3vDiCUhV8gkNabruTH2U6pRMMlnpV5ieEzZhI5411JFQ2766TzxjJxYZUiCSNunkMzVnxspDY2Zhr6dzBKaZS8T//O6CQbX/VSoOEGu2OKjIJEEI5KdT4ZCc4ZyagllWtishI2ppgxtSSVbgrd88l/SOqt6l9WLu/NK7SavowhHcAyn4MEV1KAODWgCAwVP8AKvjnGenTfnfTFacPKdQ/gF5+Mbt4mQ9g==</latexit>

H
<latexit sha1_base64="pUZ+PSWjRTHwb2DTHGovtSa3+j4=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APbUjJppg3NZIbkjlCG/oUbF4q49W/c+Tdm2llo9UDgcM695Nzjx1IYdN0vp7Cyura+UdwsbW3v7O6V9w9aJko0400WyUh3fGq4FIo3UaDknVhzGvqSt/3Jbea3H7k2IlL3OI15P6QjJQLBKFrpoRdSHPtBWp8NyhW36s5B/hIvJxXI0RiUP3vDiCUhV8gkNabruTH2U6pRMMlnpV5ieEzZhI5411JFQ2766TzxjJxYZUiCSNunkMzVnxspDY2Zhr6dzBKaZS8T//O6CQbX/VSoOEGu2OKjIJEEI5KdT4ZCc4ZyagllWtishI2ppgxtSSVbgrd88l/SOqt6l9WLu/NK7SavowhHcAyn4MEV1KAODWgCAwVP8AKvjnGenTfnfTFacPKdQ/gF5+Mbt4mQ9g==</latexit>

H

<latexit sha1_base64="G24qROs/Z5WRcMMamD1f2H2zN50=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyURX8uqGxcuKtgHNLFMJjft0MmDmYlSQnDjr7hxoYhbv8Kdf2PSZqGtBy4czrmXe+9xIs6kMoxvrTQ3v7C4VF6urKyurW/om1stGcaCQpOGPBQdh0jgLICmYopDJxJAfIdD2xle5n77HoRkYXCrRhHYPukHzGOUqEzq6TvWA3NBMe5CYvlEDRwvOU/Tu+tKT68aNWMMPEvMglRRgUZP/7LckMY+BIpyImXXNCJlJ0QoRjmkFSuWEBE6JH3oZjQgPkg7Gb+Q4v1McbEXiqwChcfq74mE+FKOfCfrzK+U014u/ud1Y+Wd2QkLolhBQCeLvJhjFeI8D+wyAVTxUUYIFSy7FdMBEYSqLLU8BHP65VnSOqyZJ7Xjm6Nq/aKIo4x20R46QCY6RXV0hRqoiSh6RM/oFb1pT9qL9q59TFpLWjGzjf5A+/wBdmaXeQ==</latexit> eAL
<latexit sha1_base64="G24qROs/Z5WRcMMamD1f2H2zN50=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyURX8uqGxcuKtgHNLFMJjft0MmDmYlSQnDjr7hxoYhbv8Kdf2PSZqGtBy4czrmXe+9xIs6kMoxvrTQ3v7C4VF6urKyurW/om1stGcaCQpOGPBQdh0jgLICmYopDJxJAfIdD2xle5n77HoRkYXCrRhHYPukHzGOUqEzq6TvWA3NBMe5CYvlEDRwvOU/Tu+tKT68aNWMMPEvMglRRgUZP/7LckMY+BIpyImXXNCJlJ0QoRjmkFSuWEBE6JH3oZjQgPkg7Gb+Q4v1McbEXiqwChcfq74mE+FKOfCfrzK+U014u/ud1Y+Wd2QkLolhBQCeLvJhjFeI8D+wyAVTxUUYIFSy7FdMBEYSqLLU8BHP65VnSOqyZJ7Xjm6Nq/aKIo4x20R46QCY6RXV0hRqoiSh6RM/oFb1pT9qL9q59TFpLWjGzjf5A+/wBdmaXeQ==</latexit> eAL

Decoder

Decoder

Decoder
Multi-layer Decoder

<latexit sha1_base64="EMMVWVm+R8i1G+uXsluJ8Csz7Jo=">AAACAHicbVC7TsNAEDzzDOFloKCgOREhUUU24lVG0FBQBIk8pNiyzpdzcsr5bN2tEZHlhl+hoQAhWj6Djr/BTlxAwkgrjWZ2tbvjx4JrsKxvY2FxaXlltbJWXd/Y3No2d3bbOkoUZS0aiUh1faKZ4JK1gINg3VgxEvqCdfzRdeF3HpjSPJL3MI6ZG5KB5AGnBHLJM/edkMCQEpHeZl7qAHuEVGVZ1TNrVt2aAM8TuyQ1VKLpmV9OP6JJyCRQQbTu2VYMbkoUcCpYVnUSzWJCR2TAejmVJGTaTScPZPgoV/o4iFReEvBE/T2RklDrcejnncW5etYrxP+8XgLBpZtyGSfAJJ0uChKBIcJFGrjPFaMgxjkhVPH8VkyHRBEKeWZFCPbsy/OkfVK3z+tnd6e1xlUZRwUdoEN0jGx0gRroBjVRC1GUoWf0it6MJ+PFeDc+pq0LRjmzh/7A+PwBgWOXAQ==</latexit>Lr

<latexit sha1_base64="ZO1HdGrHC7c6HJgto9wvHwsXwlU=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkoivpZFNy5cVLAPaEKYTKft0MkkzNyIJcSNv+LGhSJu/Qt3/o2TNgttPTBwOOfeO/eeIOZMgW1/G6WFxaXllfJqZW19Y3PL3N5pqSiRhDZJxCPZCbCinAnaBAacdmJJcRhw2g5GV7nfvqdSsUjcwTimXogHgvUZwaAl39xzQwxDgnl6k/mpC/QBUiyzrOKbVbtmT2DNE6cgVVSg4Ztfbi8iSUgFEI6V6jp2DJ4eBoxwmlXcRNEYkxEe0K6mAodUeenkgsw61ErP6kdSPwHWRP3dkeJQqXEY6Mp8XzXr5eJ/XjeB/oWXMhEnQAWZftRPuAWRlcdh9ZikBPhYE0wk07taZIglJqBDy0NwZk+eJ63jmnNWO709qdYvizjKaB8doCPkoHNUR9eogZqIoEf0jF7Rm/FkvBjvxse0tGQUPbvoD4zPH0MZl2w=</latexit>Lar

Figure 2: An overview of the proposed SmGNN. We use a multi-layer graph with L = 3 layers as an example.
The first two layers contain abundant observed edges, while the last layer, referred to as the sparse layer,
has a significant number of missing edges. SmGNN aims to extract pertinent information from the other
layers and utilize it to reconstruct the hidden interactions within the sparse layer.

augmented graph structure. This enriched representation is then used to effectively reconstruct the missing
links within the sparse layer, improving the performance of link prediction. Next, we introduce the details.

4.1 Relevant Information Encoder

As mentioned above, one main challenge is that the sparse layer does not have enough edges to learn good
node representations and to train a good link predictor. Fortunately, the structural information from other
layers (referred to as dense layers) can be leveraged to identify and predict missing links within the sparse
layer L. As not all layers are that highly correlated with layer L, those not highly relevant information might
introduce noise. Hence, it is crucial to effectively gather and utilize the relevant information from some dense
layers to predict the links within the sparse layer. To achieve this goal, we propose a relevant information
encoder to learn the relevant node representation matrix H, which captures the informative aspects present
in the dense layers, enabling the reconstruction of missing links within the sparse layer.

Specifically, as graphs contain both feature information and structural information, we propose to use L − 1
Graph Neural Network (GNN) encoders to learn node representations from the L − 1 layers, respectively.
The reason why we don’t use the shared encoder is that multi-layer graphs often exhibit heterogeneity, with
each layer representing different types of connections and possessing distinct structural properties. By using
separate GNN encoders, we can better capture and differentiate these various relationships. Each GNN
encoder is responsible for extracting valuable information from its respective dense layer, encompassing both
the feature information and the structural characteristics. For each layer l ∈ [1, L − 1], we utilize a GNN
model with parameters θl as encoder to learn the node representation as:

Hl = GNNθl
(X, Al), l ∈ [1, L − 1], (1)

where Hl represents l layer’s node representation matrix.

With the representations, we will then extract useful information from these node representations, which
can be used to predict missing edges in the sparse layer L. However, in a multi-layer graph, some layers
may have a higher correlation with the sparse layer, while others may capture less important information or
not be relevant to the sparse layer. Therefore, it is important to assign larger weights to relevant layers to
capture important information and small weights to irrelevant layers to reduce noisy information, which can
better help link prediction in the sparse layer L. Specifically, for each node vi, we calculate a weight vector
ai ∈ RL−1, with ai,j denoting the relative importance of layer l’s information in contributing to the final
relevant representation of vi. Concretely, we calculate ai as:

ai = Softmax([H1
i ||...||HL−1

i]Wo + bo) (2)

where Wo and bo are learnable parameters, Hl
i is the representation vector of the node vi from the GNN

encoder for the layer l and Softmax(·) represents the Softmax function. [H1
i ||...||HL−1

i] means the concate-
nation operations of all vectors Hl

i with l ∈ [1, L − 1]. The relevant representation of node vi is obtained by
taking a weighted sum of the hidden states from all layers in the graph as:

Hi = ai,1 · H1
i + ... + ai,L−1 · HL−1

i , (3)

5

Under review as submission to TMLR

where Hi is the relevant representation for node i and the representation matrix can be denoted as H.

4.2 Multi-layer Decoder

The relevant representation should capture the essential structural characteristics and patterns present in the
dense layers, and can also be used to accurately explore the missing links within the sparse layer. To achieve
this goal, we propose supervision signals for learning representation H. Specifically, we guide the learning
process of the relevant representation H by reconstructing the edges across both dense layers and the sparse
layer. This approach enables the relevant representation to capture valuable structural information present
in the dense layers, which in turn can be utilized to reconstruct existing links within the sparse layer. To
reconstruct Al, we first adopt an MLP parametrized by θ′

l to project H to the feature space for l-th layer
as:

Fl = MLPθ′
l
(H), l ∈ [1, L] (4)

Then the l-th layers adjacency matrix is reconstructed as:

Âl = Sigmoid(Fl(Fl)T) (5)

where Âl is the reconstructed adjacency matrix for layer l with Âl
ij denoting the link probability between

node vi and vj in layer l.

We want the reconstructed Âl to be close to Al. However, since the majority of node pairs are unconnected,
most of the elements in adjacency matrix Al are 0. Directly using cross-entropy loss between Âl and Al

would make the loss dominated by missing link. To avoid the missing links dominating the loss function,
following Zhang & Chen (2018), we adopt negative sampling to alleviate this issue. We treat each linked
pair in EO

l as positive samples for the layer l. For each positive sample, we randomly sample one unlinked
pair as the negative sample. The set of randomly selected unlinked pairs is denoted as EN

l for the layer l.
Then, we treat link prediction as a binary classification problem to predict positive and negative samples.
To guide the relevant representation to learn useful information for reconstructing the sparse layer, we can
minimize the edge prediction error for all layers based on the learned representation as:

Lr =
L∑

l=1

(∑
eij∈EO

l

− log Âl
i,j +

∑
eij∈EN

l

− log
(

1 − Âl
i,j

))
. (6)

By minimizing Lr, the encoded representation H can learn relevant information in other layers and this
information can also be used to reconstruct the structural information of that sparse layer L.

4.3 Sparse Layer Augmentation

Though we learn the relevant representation from dense layers to explore missing links in the sparse layer,
there is another unsolved challenge, i.e., how to use this relevant representation to enhance the link pre-
diction process of the sparse layer. In this subsection, we will illustrate how SmGNN learns the relevant
representation H to enhance the structural information of the sparse layer, thereby enabling the learning
of more expressive representations for edge prediction. Specifically, to reconstruct edge information in the
sparse layer L, current Graph Autoencoder (GAE) (Kipf & Welling, 2016b) uses GNNs to encode the edges
and feature information into representation vectors. Subsequently, an edge prediction task is utilized to
learn these representation vectors that can predict missing links within the graph. If we use existing link
information in the sparse layer, we might not learn expressive representation which can accurately predict
the missing edges. This is because the majority of node pairs in the sparse layer are not connected, where
GNNs can not learn informative representation and lack supervision signals.

To resolve this problem, we propose to augment the original graph structure of layer L via H because H
contains relevant information from dense layers, which can be used to reconstruct the sparse layer. However,
it is time-consuming to augment the original graph by considering all possible node pairs without links for
each training epoch. Before the training process, for each node vi, we find K nodes vj ∈ V that are likely to
have links in layer L to construct candidate node pairs, with the constraint that (vi, vj) /∈ EO

L and j ̸= i. By

6

Under review as submission to TMLR

the assumption that node pairs having similar features are more likely to be connected in the sparse layer,
we select top K nodes of vi based on the similarity between the original feature vector Xi of node vi and the
original feature vector Xj of nodes vj ∈ V, where i ̸= j. Though the similarity of the original features alone
may not accurately predict missing edges in the sparse layer, it can still be useful in identifying potentially
connected node pairs. This approach can help save time complexity by narrowing down the search space for
edge augmentation for the sparse layer. We do the same operation for all nodes. These selected node pairs
construct a new set Ẽ for the sparse layer L, where the size of it is |Ẽ | = K · N . Note that we will make node
pairs in this set have no repetition by deleting repeated pairs in the set.

Then, for each epoch during training, we select node pairs from the candidate set Ẽ to build edges based on
the similarity of the relevant representation H, which are used to augment the sparse layer. As the original
feature X can also provide valuable information, for each node pair (vi, vj) ∈ Ẽ , we propose to combine both
relevant representation H from other layers and original feature X to calculate the similarity between node
pairs vi and vj to augment graph structure of the sparse layer as:

Sij = cos([Xi||Hi], [Xj ||Hj]), (7)

where cos(·) denotes the cosine similarity function that calculates the pair-wise similarity. For (vi, vj) /∈ Ẽ ,
we simply set Sij = 0. We need to use Sij to represent the probability of the existence of links but an
adjacency matrix (computed from a metric) is supposed to be non-negative but sij ranges between [−1, 1].
Also, preserving all similarity values in S might introduce noise (i.e., unimportant edges). To address this,
we create a sparse similarity matrix Ssp by setting elements smaller than a non-negative threshold ϵ to zero.
In our experiments, we found that the specific value of ϵ doesn’t significantly affect the results. Its primary
purpose is to reduce computational time by removing negligible edges. Hence, We set ϵ to 0, ensuring
non-negativity in the adjacency matrix S. Then, we obtain the augmented graph as:

ÃL = α · Ssp + AL (8)

where α is the hyperparameter to control the weight for the augmented graph. With the augmented adjacency
matrix, we first use the GNN encoder GNNθL

to learn node representation as:

HL = [GNNθL
(X, ÃL)||H], (9)

where θL is the learnable parameter for the sparse layer L. In the above equation, we also incorporate
the relevant representation from dense layers with the learned representation from the sparse layer, thereby
further enhancing the expressive power of the resulting representation HL for the sparse layer. With HL,
we can complete the adjacency matrix of the sparse layer L as:

ĀL = Sigmoid(HL(HL)T), (10)

4.4 Adaptive Sparse Layer Reconstruction

With the predicted adjacency matrix ĀL, one straightforward way is to employ the edge prediction loss on
observed edges of AL to guide the learning process of these representations as introduced in Eq. (6). This
task helps refine the node representations to predict missing links. However, the graph of layer L has a
limited number of observed edges. Consequently, relying solely on the original observed graph structure as
supervised signals for edge prediction makes it challenging for the learned node representations to accurately
predict missing links in the sparse layer. To provide more supervised signals, we select top R edges based
on weight scores in S for every T epoch. Then, we add these edges into the observed edges set EO

L to obtain
a new set ẼO

L . Moreover, as discussed in Section 4.2, we also sample an equal number of negative samples to
form a set ẼN

L . Then the loss for edge prediction of the layer L’s with the augmented edge set is:

Lar =
∑

eij∈ẼO
L

− log ĀL
i,j +

∑
eij∈ẼN

L

− log
(
1 − ĀL

i,j

)
, (11)

where ĀL
i,j is a predicted probability for the edge between vi and vj in Eq. (10) in the layer L. The final

objective of SmGNN is:
min

Θ
L = Lar + γLr, (12)

7

Under review as submission to TMLR

Table 1: Link Prediction Performance AUC and Average Precision (AP). The best and second-best perfor-
mances under each layer of the dataset are marked with boldface and underlined, respectively. l′ represents
the index of the sparse layer.

Metric Method
Dataset

Epinions Amazon IMDB
l′=1 l′=2 l′=3 l′=4 l′=5 l′=1 l′=2 l′=3 l′=1 l′=2

AUC

MLP 80.22±0.02 78.95±0.06 84.33±0.03 79.21±0.04 80.32±0.21 81.23±0.13 82.44±0.09 83.31±0.07 70.64±0.12 71.99±0.20
GCN 99.43±0.01 95.83±0.17 99.55±0.02 91.69±0.23 87.00±0.38 96.26±0.22 98.65±0.29 88.08±0.25 85.88±0.16 81.86±0.15
GCN-C 99.58±0.03 96.07±0.09 99.61±0.04 92.41±0.35 93.39±0.11 94.90±0.18 98.38±0.04 89.04±0.27 81.96±0.22 84.12±0.16
mGCN 99.50±0.08 95.98±0.03 99.70±0.03 92.83±0.81 90.04±0.96 95.70±0.12 97.48±0.03 90.10±0.16 86.78±0.14 83.21±0.27
HDMI 96.32±0.02 94.43±0.02 98.33±0.06 90.21±0.11 88.32±0.33 94.57±0.24 96.12±0.28 85.31±0.30 83.41±0.22 76.55±0.10
WP 99.55±0.03 96.11±0.03 99.67±0.05 93.07±0.13 91.86±0.12 96.58±0.04 96.58±0.04 89.30±0.13 86.70±0.42 87.30±0.32
X-GOAL 97.21±0.05 95.71±0.07 98.51±0.03 92.33±0.08 90.45±0.04 95.00±0.13 98.21±0.18 87.25±0.23 84.91±0.13 78.44±0.39
SmGNN 99.64±0.03 96.20±0.06 99.73±0.01 93.44±0.10 95.75±0.36 96.75±0.21 98.75±0.07 94.33±0.16 89.73±0.01 84.51±0.02

AP

MLP 90.32±0.05 81.65±0.08 87.67±0.03 80.33±0.02 81.92±0.36 80.57±0.04 81.73±0.05 81.31±0.06 72.33±0.08 70.86±0.22
GCN 99.57±0.05 96.21±0.07 99.70±0.04 93.19±0.11 86.71±0.21 96.72±0.10 97.86±0.09 91.23±0.23 90.97±0.17 85.82±0.10
GCN-C 99.59±0.04 97.29±0.06 99.83±0.05 96.43±0.20 95.32±0.15 94.03±0.22 98.03±0.02 84.05±0.28 81.59±0.41 85.86±0.01
mGCN 99.21±0.14 95.81±0.07 99.36±0.02 94.42±0.32 93.03±0.16 96.20±0.23 97.59±0.03 89.43±0.31 89.70±0.25 85.97±0.24
HDMI 96.73±0.16 94.22±0.08 97.38±0.04 93.05±0.17 92.19±0.20 94.11±0.31 95.33±0.14 85.32±0.42 80.53±0.24 76.44±0.13
WP 99.72±0.90 97.33±0.06 99.79±0.02 95.66±0.22 93.94±0.26 96.20±0.16 98.11±0.02 86.03±0.10 90.02±0.41 85.40±0.41
X-GOAL 97.04±0.06 95.23±0.04 97.92±0.05 94.53±0.11 92.42±0.16 94.77±0.32 95.54±0.04 87.22±0.26 82.99±0.35 86.72±0.40
SmGNN 99.77±0.03 98.14±0.05 99.85±0.02 97.35±0.12 95.75±0.19 96.74±0.15 98.80±0.02 93.91±0.13 91.39±0.03 87.76±0.02

Table 2: Link prediction Performance on Hits@500 and Hits@1000.
Metric Method

Dataset
Epinions Amazon IMDB

l′=1 l′=2 l′=3 l′=4 l′=5 l′=1 l′=2 l′=3 l′=1 l′=2

Hits@500

MLP 21.73±0.04 15.32±0.06 27.98±0.09 29.88±0.02 25.64±0.05 8.93±0.03 9.17±0.04 8.64±0.07 33.98±0.13 33.02±0.20
GCN 94.76±0.17 50.01±0.23 92.42±0.18 62.00±0.17 50.21±0.22 53.96±0.19 50.14±0.03 72.01±0.07 70.63±0.21 45.32±0.11
GCN-C 92.84±0.29 50.51±0.26 92.36±0.13 64.20±0.15 52.44±0.10 40.41±0.09 38.03±0.11 58.50±0.09 58.02±0.10 41.81±0.03
mGCN 72.63±0.23 45.68±0.28 73.03±0.30 53.39±0.17 43.76±0.14 45.95±0.07 26.99±0.08 57.30±0.13 36.05±0.23 23.15±0.27
HDMI 65.42±0.22 34.21±0.24 70.03±0.18 42.55±0.14 41.31±0.09 39.22±0.16 30.23±0.18 37.12±0.09 33.66±0.17 40.02±0.09
WP 93.22±0.14 50.22±0.29 92.27±0.16 64.42±0.05 58.34±0.06 56.06±0.26 50.22±0.08 77.08±0.13 70.01±0.45 49.01±0.45
X-GOAL 71.22±0.08 41.44±0.13 73.62±0.11 43.23±0.10 43.32±0.12 40.50±0.08 27.75±0.33 50.40±0.22 35.47±0.32 42.35±0.45
SmGNN 95.27±0.18 51.02±0.16 93.36±0.26 66.40±0.08 60.87±0.11 60.76±0.04 50.62±0.09 82.19±0.10 76.86±0.03 52.80±0.03

Hits@1000

MLP 28.65±0.03 26.33±0.05 40.21±0.07 55.34±0.02 32.99±0.08 16.04±0.03 16.15±0.07 15.37±0.06 35.87±0.14 49.28±0.13
GCN 97.39±0.21 62.61±0.20 95.44±0.31 71.53±0.26 64.29±0.20 72.32±0.16 62.62±0.19 81.25±0.08 81.50±0.20 52.45±0.26
GCN-C 97.00±0.28 60.08±0.19 96.06±0.38 73.11±0.26 56.36±0.23 57.87±0.14 50.19±0.16 84.97±0.03 73.11±0.36 53.29±0.39
mGCN 76.32±0.16 53.92±0.14 77.59±0.22 60.98±0.26 55.10±0.18 55.30±0.09 37.19±0.06 67.19±0.02 39.94±0.17 27.72±0.13
HDMI 70.82±0.16 39.88±0.24 76.49±0.42 54.76±0.19 49.85±0.20 43.34±0.11 27.88±0.19 54.11±0.09 36.90±0.26 37.82±0.06
WP 97.62±0.18 62.24±0.11 96.21±0.13 74.95±0.0.13 66.98±0.16 67.68±0.22 61.09±0.23 86.54±0.13 83.31±0.44 52.92±0.26
X-GOAL 74.32±0.06 40.54±0.03 78.45±0.19 56.63±0.08 54.43±0.12 53.26±0.70 43.26±0.24 60.22±0.11 39.77±0.33 43.31±0.22
SmGNN 97.80±0.14 62.48±0.20 96.77±0.32 75.39±0.25 70.70±0.27 72.40±0.02 63.63±0.14 93.20±0.07 84.81±0.03 59.68±0.01

where Θ is the set of learnable parameters {θ1, ..., θL, θ′
1, ..., θ′

L, Wo, bo} and γ represents a weight parameter
that controls the loss contribution of the supervised information for the learning process to acquire a relevant
representation. We put the training algorithm in Appendix A and time complexity analysis in Appendix D.

5 Experiments

In this section, we conduct experiments on real-world multi-layer graphs to demonstrate the effectiveness
of SmGNN. In particular, we aim to answer the following research questions: (RQ1) Can SmGNN provide
accurate link predictions for sparse layers? (RQ2) Can SmGNN deal with different levels of the edge sparsity
issue? (RQ3) What are the contributions of each component for SmGNN?

5.1 Datasets

We conduct experiments on three publicly available real-world multi-layer:

• Epinions (Ma et al., 2019): Epinions is an online product review site, where users can post reviews of
various products and rate the usefulness of reviews posted by other users. Also, users on this platform
can form trust and distrust relations. It forms a five-layer graph based on 5 different relationships: 1)
co-review: two users review common products; 2) helpfulness-rating: a user rates the reviews written by
the other user; 3) co-rating: two users rate some common reviews; 4) trust relation between users; and
5) distrust relation between users.

8

Under review as submission to TMLR

• Amazon (He & McAuley, 2016): It is sourced from Amazon.com and represents a network of items,
with each node representing an item. It forms a three-layer graph based on three different relations: (1)
also-view: two items are viewed by the same customer; (2) also-bought: two items are bought by the
same customer (3) bought-together: two items are bought by a customer at the same time.

• IMDB: The IMDB 1 dataset contains 3,550 movies with two types of relations, including movie-actor-
movie and movie-director-movie. The attribute of each movie is a 1,007-dimensional bag-of-words repre-
sentation of its plots.

The statistics of these datasets are summarized in Table 4 in Appendix B. For each experiment, one layer
is chosen as the target layer for link prediction and the other layers are used as dense layers. For Epinions,
IMDB, and Amazon, we randomly split the target layer’s edges into 40%/20%/40% as train/val/test. We
randomly select node pairs not in the training set as negative samples following Kipf & Welling (2016b).
The number of negative samples is equal to the number of positive samples. Positive and negative samples
are combined as our training, validation, and testing sets (Kipf & Welling, 2016b). The random split is
conducted 5 times and average performance is reported.

5.2 Experimental Setup

Baselines. We compare SmGNN with representative and state-of-the-art methods for link prediction:

• MLP: It utilizes a multi-layer perceptron (MLP) with node attributes as input to predict links. It is
trained by minimizing binary cross-entropy loss between the predicted link probability and the labels that
denote link existence.

• GCN (Kipf & Welling, 2016a): GCN is one of the most popular spectral GNN models based on graph
Laplacian, which has shown great performance for node classification. To adopt it for link prediction, we
treat it as the encoder in the Graph Autoencoder manner only on the target sparse layer.

• GCN-C: As GCN can only deal with single-layer graphs, for GCN-C, we combine edge information from
different layers to construct one single adjacency matrix. Then, we adopt GCN on the combined adjacency
matrix for link prediction.

• mGCN (Ma et al., 2019): mGCN utilizes GCN to extract node embedding for each layer of the multi-
layer graphs and then combine them via the attention mechanism. It shows great effectiveness in modeling
relations in different layers.

• HDMI (Jing et al., 2021): HDMI is a baseline designed for multi-layer graphs, which adopts a new
contrastive learning loss by capturing high-order information across different layers.

• X-GOAL (Jing et al., 2022): It includes a GOAL framework, which learns node embeddings for each
graph layer, and an alignment regularization technique to jointly model and propagate information across
different layers. After obtaining node embeddings for both HDMI and X-GOAL, we employ MLPs to
perform binary classification, determining whether there exists an edge between pairs of nodes.

• WP (Pan et al., 2022): WalkPooling (WP) jointly encodes node representations and graph topology into
learned topological features. Then, these features are used to enhance the representation of extracted
subgraphs that are relevant to links of node pairs. It is a state-of-the-art model designed for link prediction.

Configurations. All experiments are conducted on a 64-bit machine with Nvidia GPU (NVIDIA RTX
A6000, 1410MHz, 48 GB memory). For a fair comparison, we utilize a two-layer GCN for all methods,
where the hidden dimension is set as 128. The learning rate is initialized to 0.001. Besides, all models are
trained until converging, with the maximum training epoch as 1000. The implementations of all baselines
are based on Pytorch Geometric or their original code. The hyperparameters of all methods are tuned on
the validation set. For the hyperparameters of our model, we vary α as {0, 0.1, 0.3, 0.5, 0.7, 1}. γ is varied as
{0, 0.1, 0.3, 0.5, 0.7, 1}. We vary R as {0, 100, 500, 1000, 2000}. K is fixed as 50 for all datasets.

1https://www.imdb.com/

9

Under review as submission to TMLR

(a) Epinions (Layer 2) (b) Epinions (Layer 4)
Figure 3: Experiments with different sparsity edge levels for link prediction.

Evaluation Metrics. Following existing works on link prediction (Kipf & Welling, 2016a; Zhang & Chen,
2018; Hu et al., 2020), we adopt AUC value, average precision, Hits@500 and Hits@1000 as the evaluation
metrics. Specifically, for the evaluation metric Hits@Q, for each positive edge in the test set, we rank it
against |EO

L | randomly-sampled negative edges and count the ratio of positive edges that are ranked at Q-th
place or above (Hits@Q), where Q is set to 500 and 1000 and it can provide a good threshold to rate the
models’ performance (Hu et al., 2020).

5.3 Link Prediction Performance

In this subsection, we compare the performance of the proposed method with baselines for link prediction on
the multi-layer graphs, which aims to answer RQ1. For all datasets, each experiment is conducted 5 times,
and average results and standard deviations are reported in Table 1 and Table 2, where l′ denotes the index
of the target sparse layer, while the other layers are used as dense layers. For example, l′ = 2 for Epinions
means we use layer 2 of Epinions as the sparse layer. From the table, we observe: (i) Compared with GCN,
GCN-C can consistently improve the performance of GCN on Amazon and Epinions. It demonstrates that
combining other layers’ information can help to reconstruct edges for the sparse layer. However, GCN-C’s
performance on IMDB drops a lot compared with GCN on layer one. It means that simply combining edges
from different layers may not effectively explore latent information in each layer and improve performance
for link prediction. Our proposed method can further outperform both GCN-C and GCN on Amazon
and Epinions, which verifies the effectiveness of our method in extracting information from other layers to
reconstruct the sparse layer. (ii) Both X-GOAL and HDMI are state-of-the-art baselines on multi-layer
graphs, which adopt contrastive learning on multi-layer graphs. With sparse edges on one layer, contrastive
learning-based models may not efficiently explore latent node interactions for that sparse layer. Our model
can greatly outperform them on all metrics. This is because our method can effectively capture other layers’
structure information, which can be helpful in discovering missing edges in the sparse layer. (iii) Our model
can also consistently outperform WP on Epinions and Amazon for all metrics, which is the state-of-the-art
baseline for link prediction based on the structure information of one single layer. This verifies our motivation
that aggregating other layers’ information can help reconstruct missing edges. Also, our model can utilize
other layers’ information to explore latent edge information for the sparse layer.

5.4 Link Prediction with Various Graph Sparsity

In this subsection, we explore the effectiveness of SmGNN under various edge sparsity levels for link pre-
diction, which answers RQ2. Specifically, for the target layer for link prediction, we randomly mask x%
observed edges for training, 20% masked edges for validation, and the remaining edges for testing, where
x ≤ 40. We vary x as {20, 30, 40} to understand the effectiveness of SmGNN under various edge sparsity
levels. For each setting, the experiment is conducted 5 times and the average performance will be reported.
mGCN also proposes to aggregate other layers’ information, which can also mitigate the edge sparsity issue
in some layers. We also include the state-of-the-art method WP for comparison. Therefore, to assess the
capability of our model in learning latent edge interactions from other layers and predicting edges for the
sparse layer at various levels of edge sparsity, we present the results of SmGNN, mGCN, and the base model
GCN together. As we have similar observations for other datasets, we only report the results on Epinions.
The corresponding results are shown in the Figure 3. We can observe that our model can consistently
outperform mGCN, GCN, and WP across various levels of edge sparsity. This consistently superior perfor-

10

Under review as submission to TMLR

Figure 4: Hyperparameter Analysis of α. Figure 5: Hyperparameter Analysis of γ.

mance showcases the ability of SmGNN to effectively utilize the structural information from other layers to
reconstruct hidden links within the sparse layer.

5.5 Ablation Study

Table 3: Ablation Studies of SmGNN on Epinions.
Dataset Epinions

l′ 2 4 5

AUC

w/o augment (set) 95.67±0.05 93.43±0.10 94.94±0.40
w/o augment (adj) 95.93±0.05 93.10±0.09 94.69±0.23
w/o both 95.81±0.17 91.69±0.23 87.00±0.38
w/o weight 96.02±0.19 91.85±0.46 95.14±0.31
SmGNN 96.20±0.06 93.44±0.08 95.75±0.36

Hits@500

w/o augment (set) 50.40±0.22 63.11±0.25 54.31±0.18
w/o augment (adj) 50.21±0.14 64.21±0.16 55.67±0.26
w/o both 50.01±0.23 62.00±0.17 50.21±0.22
w/o weight 50.90±0.15 63.46±0.11 54.15±0.32
SmGNN 51.02±0.16 66.40±0.08 60.87±0.11

To answer RQ3, in this section, we conduct
an ablation study to evaluate the contribution
of each component in SmGNN. Specifically,
we consider the following ablations: (i) w/o
augment (adj), which is a variant by remov-
ing the main component that augments the
original adjacency matrix with learned graph
structure from other types of relations, i.e.,
we replace ÃL with the original graph struc-
ture AL. (ii) w/o augment (set), which de-
notes the variant by removing the key com-
ponent that augments the reconstructed edge set for Eq. (11), i.e., we replace the augmented edge set ẼN

L

and ẼO
L with the original observed set of the sparse layer L, EO

L and its negative samples set EN
L in Eq. (11).

(iii) w/o both, which means that we remove these two components. (iv) w/o weight, which means that we
immediately sum the representation from different layers without the attention mechanism in Eq. (3). The
results are shown in Table 3. All experiments are conducted five times and the average performance and
standard deviations are reported. We can observe that only augmenting the graph structure (w/o augment
(set)) with relevant representation from other layers can help learn more expressive representation for link
prediction on the sparse layer. Also, only adaptively augmenting the edge set (w/o augment (adj)) can
provide more supervised signals to learn the GNN model of the sparse layer. It can be used to improve the
performance of link prediction on the sparse layer. Furthermore, without the selective fusion of other types
of relations by assigning different weights (w/o weight), our model fails to achieve the best performance.
This finding validates our motivation to selectively extract information from other layers, improving link
prediction performance for the sparse layer. Finally, the full model (last row) obtains the best performance,
which illustrates that various components of SmGNN are complementary to each other.

5.6 Hyperparameter Analysis

The proposed method has three important hyperparameters, including α, γ and R. The analysis of R is put
into the Appendix of the supplementary materials. All following experiments are conducted five times and
average performance are reported.

Analysis of α. We conduct hyperparameter analysis of α, which controls the weight for the learned
augmented matrix of the Equation ÃL = α · Ssp + AL. Then, we will use the augmented ÃL to learn more
expressive node representation for the sparse layer. We vary α as {0, 0.1, 0.3, 0.5, 0.7, 1}. The corresponding
results are shown in Figure 4. We can observe that too small values of α (e.g., 0, 0.1) will degenerate the
performance. When the values are small, it indicates that we heavily rely on the original graph structure of
the sparse layer to learn the representation. Using small values can lead to poor performance because of the
limited edge information available. Consequently, it becomes challenging to learn effective representations
for edge prediction in the sparse layer. Moreover, large values of α (e.g., 0.7, 1) will also result in bad
performance. Larger values in the learned adjacency matrix Ssp imply that it covers the original structure

11

Under review as submission to TMLR

information of the sparse layer to a greater extent. This can result in the learned representation losing its
inherent structural characteristics, leading to poor performance. In general, a suitable value for α is in the
range (0.3, 0.7).

Analysis of γ. We also conduct hyperparameter analysis of γ in Eq. (12), which controls the weight for
the loss of learning relevant representation from dense layers. The corresponding results are shown in the
Figure 5. Large and small values of γ will lead to bad performance. This is because large values of γ will
make the model focus too much on learning relevant representation from other layers while ignoring the loss
of learning representation for missing links of the sparse layer. Moreover, when the value of γ is small, the
model tends to learn a poor relevant representation, which introduces noise in the augmented graph structure
and edge set for the sparse layer. As a result, the learned representation from this augmented information
leads to bad performance in link prediction for the sparse layer. Based on our experimental findings, we
have observed that the optimal performance of our model is achieved within a suitable range of γ values,
typically between 0.1 and 0.5.

Another hyperparameter K is only used for reducing the time consumption of our model and is not relevant
to our main contributions. Hence, we fix K as 50 for all datasets of our experiments.

5.7 Visualization

Figure 6: Visualization for SmGNN.

We conduct the visualization experiment for SmGNN. We
aim to verify the effectiveness of the weights in Eq. (2) in
capturing correlations between the sparse layers and other
layers. The correlations between nodes can be measured by
evaluating their similarity in local graph structures. Nodes
with more similar local graph structures are likely to exhibit
stronger correlations (Wang et al., 2016). To reflect the cor-
relations between the structure of nodes in the sparse layer
and the structure of nodes in other layers, we calculate the similarity based on their respective local struc-
tures. As the training part of the target layer is sparse (40%), which might not truly reflect the correlation,
we use the raw graph to calculate correlations. Specifically, we denote the m-hop neighbors set of the node
vi in the layer l as N l

i . Then, a vector pl
i ∈ Rn is used to denote the local structure information of vi, where

pl
ij = 1 if j ∈ N l

i , otherwise pl
ij = 0. To calculate the correlation between the sparse layer l′ and other layers

b ∈ U (U = {1, ..., L}/ l′) for the node vi, we calculate the cosine similarity between pl′

ij and pb
ij , which is

denoted as si,b = cos(pl′

i , pb
i) and a vector si ∈ RL−1 represents structure similarity between the sparse layer

and other layers for the node vi. To verify whether the learned weights capture local structure correlations
across layers, we calculate the cosine similarity between this structure similarity vector si and the learned
weight vector ai for each node vi ∈ V. Finally, we visualize the distribution of these cosine similarity values
with m = 1 and the corresponding results are in Figure 6. We can observe that the majority of cosine
similarity values exceed 0.5, with a significant number of values approaching 1. This high similarity between
the learned ai and the structure similarity si indicates a strong correlation. This observation indicates that
the learned weights for fusing information from other layers in our model effectively capture the structural
correlations across layers. Consequently, the relevant information from these layers can be used to improve
link prediction in the sparse layer.

6 Conclusion

In this paper, we propose a novel framework SmGNN for predicting a large number of missing links in
sparse layers of multi-layer graphs. By selectively fusing relevant information from other layers, our model
learns representations that capture the specific characteristics of the sparse layer while incorporating valuable
insights from other layers. Additionally, we enhance the graph structure of the sparse layer by leveraging node
similarity information based on the relevant representation. Through extensive experiments on real-world
datasets, we validate the effectiveness of SmGNN in improving link prediction performance.

12

Under review as submission to TMLR

References
Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. Link prediction on evolving data using matrix and

tensor factorizations. In 2009 IEEE International conference on data mining workshops, pp. 262–269.
IEEE, 2009.

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230, 2003.

Ashwin Bahulkar, Boleslaw K Szymanski, N Orkun Baycik, and Thomas C Sharkey. Community detection
with edge augmentation in criminal networks. In 2018 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pp. 1168–1175. IEEE, 2018.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer
networks and ISDN systems, 30(1-7):107–117, 1998.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103–5113, 2021.

Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang. Representation learning
for attributed multiplex heterogeneous network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1358–1368, 2019.

Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. Sequen-
tial recommendation with graph neural networks. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval, pp. 378–387, 2021.

Junnan Dong, Qinggang Zhang, Xiao Huang, Qiaoyu Tan, Daochen Zha, and Zihao Zhao. Active ensemble
learning for knowledge graph error detection. In Tat-Seng Chua, Hady W. Lauw, Luo Si, Evimaria Terzi,
and Panayiotis Tsaparas (eds.), Proceedings of the Sixteenth ACM International Conference on Web Search
and Data Mining, WSDM 2023, Singapore, 27 February 2023 - 3 March 2023, pp. 877–885. ACM, 2023.
doi: 10.1145/3539597.3570368. URL https://doi.org/10.1145/3539597.3570368.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The world wide web conference, pp. 417–426, 2019.

Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, and Jingrui He. A view-adversarial framework for multi-
view network embedding. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 2025–2028, 2020.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional networks. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 1416–1424, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via bernstein
approximation. Advances in Neural Information Processing Systems, 34:14239–14251, 2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with chebyshev
approximation, revisited. arXiv preprint arXiv:2202.03580, 2022.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of the 25th international conference on world wide web, pp.
507–517, 2016.

13

https://doi.org/10.1145/3539597.3570368

Under review as submission to TMLR

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133, 2020.

Baoyu Jing, Chanyoung Park, and Hanghang Tong. Hdmi: High-order deep multiplex infomax. In Proceed-
ings of the Web Conference 2021, pp. 2414–2424, 2021.

Baoyu Jing, Shengyu Feng, Yuejia Xiang, Xi Chen, Yu Chen, and Hanghang Tong. X-goal: Multiplex
heterogeneous graph prototypical contrastive learning. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 894–904, 2022.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016b.

Jundong Li, Chen Chen, Hanghang Tong, and Huan Liu. Multi-layered network embedding. In Proceedings
of the 2018 SIAM International Conference on Data Mining, pp. 684–692. SIAM, 2018.

Linyuan Lü, Ci-Hang Jin, and Tao Zhou. Similarity index based on local paths for link prediction of complex
networks. Physical Review E, 80(4):046122, 2009.

Yao Ma, Suhang Wang, Chara C Aggarwal, Dawei Yin, and Jiliang Tang. Multi-dimensional graph convo-
lutional networks. In Proceedings of the 2019 siam international conference on data mining, pp. 657–665.
SIAM, 2019.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning attention-based embeddings
for relation prediction in knowledge graphs. arXiv preprint arXiv:1906.01195, 2019.

Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review E, 64(2):
025102, 2001.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015.

Liming Pan, Cheng Shi, and Ivan Dokmanić. Neural link prediction with walk pooling. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=CCu6RcUMwK0.

Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. Unsupervised attributed multiplex network
embedding. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 5371–5378,
2020.

Yanjun Qi, Ziv Bar-Joseph, and Judith Klein-Seetharaman. Evaluation of different biological data and com-
putational classification methods for use in protein interaction prediction. Proteins: Structure, Function,
and Bioinformatics, 63(3):490–500, 2006.

Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. Imgagn: Imbalanced network embed-
ding via generative adversarial graph networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1390–1398, 2021.

Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, and Jiawei Han. An attention-based collab-
oration framework for multi-view network representation learning. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, pp. 1767–1776, 2017.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in large-scale
social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant Honavar. Megan: A generative
adversarial network for multi-view network embedding. arXiv preprint arXiv:1909.01084, 2019.

14

https://openreview.net/forum?id=CCu6RcUMwK0

Under review as submission to TMLR

Qiaoyu Tan, Ninghao Liu, and Xia Hu. Deep representation learning for social network analysis. Frontiers
in big Data, 2:2, 2019.

Shanshan Tang, Bo Li, and Haijun Yu. Chebnet: Efficient and stable constructions of deep neural networks
with rectified power units using chebyshev approximations. arXiv preprint arXiv:1911.05467, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. arXiv preprint arXiv:1809.10341, 2018.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1225–1234, 2016.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The world wide web conference, pp. 2022–2032, 2019.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International
Conference on Machine Learning, pp. 23341–23362. PMLR, 2022.

Teng Xiao, Zhengyu Chen, Donglin Wang, and Suhang Wang. Learning how to propagate messages in graph
neural networks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1894–1903, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchi-
cal graph representation learning with differentiable pooling. Advances in neural information processing
systems, 31, 2018.

Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xiangliang Zhang.
Self-supervised multi-channel hypergraph convolutional network for social recommendation. In Proceedings
of the web conference 2021, pp. 413–424, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Tao Zhou. Progresses and challenges in link prediction. Iscience, 24(11), 2021.

15

Under review as submission to TMLR

Table 4: Statistics of Datasets. l means the index of the layer for multi-layer graphs.

Dataset # Edges # Nodes # Features # Layers
l = 1 l = 2 l = 3 l = 4 l = 5

Epinions 239,636 338,628 301,886 79,029 11,129 338,628 128 5
Amazon 266,237 1,104,257 16,305 - - 7,621 1,508 3
IMDB 66,428 13,788 - - - 3,550 1,007 2

A Training Algorithm

The training algorithm of our framework is given in Algorithm 1. We first extract relevant representation
from other layers via Eq. (3). Then, we use supervised signals of reconstructing the sparse layer and other
layers’ structure information, which can guide the relevant representation to learn latent link information
from other layers. Furthermore, we utilize the Graph Autoencoder framework to learn representations aimed
at predicting missing links in the sparse layer. However, due to the limited edge information available in
the sparse layer, the learning process is impeded in learning expressive representations for the missing links.
Therefore, in line 5, we employ the relevant representation to enhance the adjacency matrix of the sparse
layer, enabling the learning of more expressive representations. Additionally, in line 6, we further enhance
the observed edges set to provide additional supervised signals for link prediction, refining the learned
representation for the sparse layer. Then, we optimize the loss function to learn relevant representations of
other layers and the representation of the sparse layer for link prediction of the sparse layer. Finally, we
obtain a model which can predict missing edges for a specific layer in multi-layer graphs that exhibit a high
number of missing edges.

Algorithm 1 Training Algorithm of SmGNN.
Require: G = (V, E1, . . . , EL, X)
Ensure: GNN model with a set of parameters Θ.

1: Randomly initialize the model parameters.
2: repeat
3: Learn relevant representation from the Eq. (3).
4: Guide the relevant representation to learn structure information for the sparse layer from the Eq. (6).
5: Augment the sparse layer’s adjacency matrix from Eq. (10).
6: Augment the supervised information to learn expressive representation for exploring missing links for

the sparse layer from the Eq. (11).
7: Obtain the final loss L from the Eq. (12).
8: Update Θ by minimizing L.
9: until convergence

10: return GNN models with parameters Θ.

B Dataset

We put the detailed statistics of the dataset in Table 4.

C Hyperparameter Analysis

In this section, we further conduct hyperparameter analysis of R, which controls the number of edges added
in the original edge set of the sparse layer for edge prediction in Eq. (11). In this experiment, R is varied as
{0, 100, 500, 1000, 2000}. The corresponding results are shown in the Figure 7. We can observe that large and
small values also can’t achieve good performance. Small values of R result in limited supervised information
being augmented for the sparse layer, making it challenging to train an effective model for link prediction.
On the other hand, larger values of R can introduce noisy edges when augmenting the original edge set of

16

Under review as submission to TMLR

Figure 7: Hyperparameter Analysis of R.

the sparse layer. This incorporation of noisy edges can negatively impact the model’s performance, leading
to suboptimal results. From our results, a suitable range for R is between 500 and 1000.

D Time Complexity Analysis

Since our SmGNN is agnostic to GNN encoders, we consider M -layer GCN as an example. A M -layer
GCN (Kipf & Welling, 2016a) with d hidden dimensions has O

(
dM |E| + Nd2M

)
complexity, where E is the

edge set of the graph with one single layer and |E| denotes the number of edges. For the GNN model in
the Relevant Information Encoder module with the GNN model for the sparse layer, the time complexity
is O

(∑L
i=1 dM |Ei| + Nd2M

)
. Then, for the Multi-layer Encoder, the time complexity to reconstruct the

adjacency matrix is O
(∑L

i=1 d|Ei|
)

. For the augmented graph structure, the time complexity is O
(
NKd2)

.
The time complexity to reconstruct the augmented edge set of the sparse layer can be O (d(|EL| + R)).
mGCN, a multi-layer GNN model, focuses on learning multi-layer relations. In comparison, our model has
additional time complexity due to the learning of augmented structures and the utilization of augmented
edge sets. This extra time complexity can be represented as O

(
d(|EL| + R) + NKd2)

. In our experimental
setup, the number of edges in the sparse layer, denoted as |EL|, is typically small. Additionally, the values
of K and R are often set to 50 and 500 respectively. As a result, our model does not incur much extra time
consumption due to these factors.

17

	Introduction
	Related Work
	Problem Definition and Notations
	Proposed Method
	Relevant Information Encoder
	Multi-layer Decoder
	Sparse Layer Augmentation
	Adaptive Sparse Layer Reconstruction

	Experiments
	Datasets
	Experimental Setup
	Link Prediction Performance
	Link Prediction with Various Graph Sparsity
	Ablation Study
	Hyperparameter Analysis
	Visualization

	Conclusion
	Training Algorithm
	Dataset
	Hyperparameter Analysis
	Time Complexity Analysis

