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ABSTRACT

We outline the factors under which conditioning on Synthetic Control (SC) weights
emulates a randomized control trial where the treatment status is independent of
potential outcomes. Specifically, we demonstrate that if there exist SC weights such
that the treatment effects are exactly identified, and these weights are uniformly
and cumulatively bounded, then SC weights are balancing scores.

1 INTRODUCTION

Synthetic controls are one of the popular methods in causal inference on time-series data where the
population (or sample size) is fairly smaller compared to the dimensionality of the data Ferman &
Pinto (2017). For instance, synthetic control methods were used to study the effect of the reunification
of Germany on West Germany’s GDP per capita Abadie et al. (2015); Shi et al. (2021). A synthetic
West Germany under no-reunification was constructed using the linear combination of the GDP per
capita data from 16 other OECD countries Abadie et al. (2015). Synthetic control is widely used in
the social science literature because of the simplicity of implementation and analysis Ferman & Pinto
(2016; 2017). Here, one typically regresses the pre-treatment outcomes of non-treated units on the
pre-treatment outcomes of a treated unit to find the set of linear weights. These linear weights are
used to estimate the counterfactual outcome Abadie et al. (2010).

On the other hand, balancing score methods such as propensity and prognostic scores have been widely
used to adjust for confounding in situations where the number of units in the sample is larger than
the number of features Rosenbaum & Rubin (1983); Hansen (2008). For instance, propensity score
adjustments were used to study the treatment effect of coronary artery bypass surgery Rosenbaum
& Rubin (1983); Cohn et al. (1981). These methods are known as balancing score methods as it is
sufficient to condition one of these scores to emulate a randomized trial Austin (2011).

Synthetic control and balancing score methods are applicable in fairly distinct scenarios. However,
they are similar in terms of their simplicity, ease of use, and the use of pretreatment covariates to learn
parameters that aid in treatment effect identification. The theoretical properties of these approaches
are well-studied in the literature (Abadie et al., 2015; Ferman & Pinto, 2016; 2017; Shi et al., 2021;
Rosenbaum & Rubin, 1983; Hansen, 2008; Parikh et al., 2022). However, the connections between
them are not well understood.

This short paper bridges this gap by showing that SC weights are balancing scores under a sufficient
set of assumptions (Section 3). Our result is of general interest because conditioning on balancing
scores guarantees ignorability (i.e., that potential outcomes and treatment assignment are mutually
independent) – ensuring consistent estimation of treatment effects (Johnson, 2013). The result
presented in this paper enables sharing of theoretical and methodological advancements across these
two broad approaches - hence, advancing the literature and its applicability to complex real-world
problems.

2 PRELIMINARIES

Consider a finite population of n units, such that for each unit i, we observe: (i) Zi, the binary
treatment indicator, (ii) {Xi,t}t0t=0, the time-series of pre-treatment outcomes, and (iii) {Yi,t}Tt=t0+1,
the time-series of post-treatment outcomes. Similar to SC literature, we consider the case with exactly
one treated unit. Without loss of generality, let Z1 = 1 and ∀j > 1, Zj = 0. We assume that these
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Figure 1: A simplified causal directed acyclic graph for the discussed exposition. Here, with the
slight abuse of notation, −t0 refers to the time before intervention and +t0 refers to the time after the
intervention.

time-series are generated using the following factor model:
for t ≤ t0 : Xi,t = δt + λtµi + ϵi,t (1)
for t > t0 : Yi,t = δt + λtµi + Ziαi,t + ϵi,t (2)

where, (i) δt is an unobserved common time-trend across units, (ii) µi is an unobserved unit-specific
factor, (iii) λt is the time-specific factor loading, (iv) ϵi,t ∼ N (0, σ2

i,t) is the noise at time t and (v)
αi,t is the treatment effect for unit i at time t. We are interested in identifying {α1,t}Tt=t0+1. This
setup is similar to the one discussed in Ferman & Pinto (2017).

We will use bold letters to denote the collection of observations across units: Z = {Zi}ni=1,
X = {{Xi,t}t0t=0}ni=1 and Y = {{Yi,t}Tt=t0+1}ni=1. Consider, the scenario where the probability of
observing treatment assignments is a function of the unit-specific factors µ = {µi}ni=1 i.e. Z ∼ f(µ)
for some (unknown) distribution f such that 1TZ = 1. Figure 1 graphically demonstrates the
structural causal dependencies.

Consider the following assumptions key for identification of causal effects (discussed in Appendix A):
A.1. (feasibility) ∃β s.t. E (X1,t −

∑n
i=2 βiXi,t) = 0.

A.2. (uniformly bounded) ∀i, 0 ≤ βi ≤ 1,
A.3. (cumulatively bounded)

∑n
i=2 βi = 1 i.e. 1Tβ = 1.

3 RESULT: SC WEIGHTS ARE BALANCING SCORE

This section discusses the concept of balancing score and our main result. For our setup, if there
exists a function b such that {Yt(z)}t ⊥ Z|b(X) then b is a balancing score. However, consider the
causal graph in Figure 1: it is not obvious that b(X) = X is a balancing score.

We know that {Yt(z)}t ⊥ Z|µ; thus, µ is a balancing score. However, one must note that µ is
unobserved and hence it is not a very useful balancing score. In this discussion, we show that the
(oracle) SC weights are also balancing scores i.e. {Yt(z)}t ⊥ Z|β.

Theorem 1 Given the causal dependencies and assumptions A.1 - A.3, {Yt(z)}t ⊥ Z | β.

We provide the proof of this theorem in Appendix B.

4 CONCLUSION AND DISCUSSION

In this short paper, we discuss the set of sufficient conditions under which SC weights are balancing
scores i.e. the potential outcomes are independent of treatment assignment. Balancing score is an
important property that allows methods like propensity and prognostic to emulate randomized control
trials. Our result implies that conditioning on SC weights helps emulate a controlled trial where one
of the n units is treated.

This understanding allows for a deeper understanding of the validity of SC inferences and furthering
the methodological development. Doubly robust methods that combine propensity and prognostic
scores are common in cross-sectional data. Our future work wil focus on developing a doubly robust
SC method that allows for efficient and robust inference. Further, more work is needed to understand
if this result holds in different scenarios (under weaker assumptions) where synthetic controls have
been used for estimation.
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A IDENTIFICATION OF TREATMENT EFFECT USING SYNTHETIC CONTROLS

Assumption A.1. implies that µ1 =
∑n

i=2 βiµi. If we choose βi’s such that the condition in A.1. are
satisfied, then

E

(
Y1,t −

n∑
i=2

βiYi,t

)
= λ(µ1 −

n∑
i=2

βiµi) + α1,t = α1,t.

Thus, identifying β such thatE (X1,t −
∑n

i=2 βiXi,t) = 0 leads to the identification of the treatment
effect α1,t.

Note that, we refer to β’s as oracle weights because it may not be feasible to exactly identify them
using the observed finite population, especially, when the noise is heteroskedastic1 (Ferman &
Pinto, 2017). For the rest of the argument, we will assume that we have knowledge of these oracle
weights. However, one can always estimate approximate oracle weights by fitting a regularized linear
regression on the pre-treatment outcomes (Abadie et al., 2010; 2015).

1To estimate, these weights, in practice, one fits a model that uses the outcomes of the control units to predict
the contemporary outcome of the treated unit in the pretreatment period: regress y=Xi,t,x={X2,t . . . Xn,t}.
Typically, the regularization ensures that the weights are bounded between 0 and 1 and the sum of the weights is
one.
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B PROOF OF THEOREM 1

Proof. Consider an n× n matrix B such that: (a) Bi,i = 0, (b) Bi,1 = 1 (for i > 1), (c) B1,j = βj

(for j > 1), and (d) Bi,j = −βj (for j > 1 and i > 1). Now, we will show, {Yt(z)}t ⊥ Z|B. We
know that E(Xt) = δt + λtµ, E(X1,t) =

∑n
i=2 βiE(Xi,t) and

∑n
i=2 βi = 1. These results imply

that µ1 =
∑n

i=2 βiµi. We now observe that µ = Bµ, i.e. µ is one of the eigenvectors of the matrix
B with corresponding eigenvalue equal to 1. Hence, {Yt(z)}t ⊥ Z|B and B = g(β) where g is the
discussed matrix construction. QED.

Note that as β is a deterministic function of X, X is also a balancing score i.e. {Yt(z)}t ⊥ Z|X.
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