
WilKE: Wise-Layer Knowledge Editor for Lifelong Knowledge Editing

Chenhui Hu1,2, Pengfei Cao1,2, Yubo Chen1,2∗, Kang Liu1,2, Jun Zhao1,2∗

1The Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing, China

2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
huchenhui2024@ia.ac.cn

{pengfei.cao,yubo.chen,kliu,jzhao}@nlpr.ia.ac.cn

Abstract

Knowledge editing aims to rectify inaccura-
cies in large language models (LLMs) with-
out costly retraining for outdated or erroneous
knowledge. However, current knowledge edit-
ing methods primarily focus on single editing,
failing to meet the requirements for lifelong
editing1. This study reveals a performance
degradation encountered by knowledge edit-
ing in lifelong editing, characterized by toxic-
ity buildup and toxicity flash, with the primary
cause identified as pattern unmatch. We in-
troduce a knowledge editing approach named
Wise-Layer Knowledge Editor (WilKE), which
selects editing layer based on the pattern match-
ing degree of editing knowledge across differ-
ent layers in language models. Experimental
results demonstrate that, in lifelong editing,
WilKE exhibits an average improvement of
46.2% and 67.8% on editing GPT2-XL and
GPT-J relative to state-of-the-art knowledge
editing methods.

1 Introduction

Large language models (LLMs) encode a wealth of
world knowledge through pretraining on massive
corpus (Radford et al., 2019; Brown et al., 2020;
Achiam et al., 2023; Li et al., 2023a; Kale et al.,
2023). However, outdated or erroneous knowledge
may persist, and retraining these models with up-
dated corpus incurs prohibitively high costs. To
address this challenge, numerous studies have in-
troduced knowledge editing (De Cao et al., 2021;
Mitchell et al., 2021; Meng et al., 2022a; Meng
et al., 2022b) as a solution, which involves updat-
ing the internal parameters of language models to
edit specific knowledge.

Current knowledge editing methods are evalu-
ated in single editing by default, which updates
a single knowledge (xe, yo) to (xe, ye) on initial

∗Corresponding author.
1In this paper, lifelong editing is synonymous with lifelong

knowledge editing.

Timeline

�� ��’

��0 ��1 ���
. . .

(��,��)
(��1,��1) (��2,��2) (���,���). . .

(a) Single Editing:

(b) Lifelong Editing:

Figure 1: Single editing versus lifelong edit. (a) Sin-
gle editing only involves making an edit. (b) Life-long
editing involves continuous edits and monitoring perfor-
mance.

model fθ for each test point, as shown in Fig-
ure 1(a). However, knowledge should be updated
continuously in fact, making single editing insuf-
ficient to meet the demands. Therefore, we fo-
cus on lifelong editing, which updates a knowl-
edge (xei , yoi) to (xei , yei) on model fei−1 that
doesn’t have to be initial model fθ0 , as shown in
Figure 1(b).

In this paper, we conduct an analysis of state-of-
the-art knowledge editing methods such as ROME
(Meng et al., 2022a) and MEMIT (Meng et al.,
2022b), revealing a severe performance degrada-
tion when applied in lifelong editing. Investigating
this issue further, our experiments indicate that
these methods suffer from toxicity buildup and
toxicity flash during ongoing editing. As shown
in Figure 3(a), 4(a), the combined effects of both
phenomena result in a "step-like" shape. On the
one hand, the toxicity buildup signifies that one
edit induces minor changes in irrelevant parame-
ters, gradually leading to model’s failure. On the
other hand, the toxicity flash suggests that one edit
modifies model’s parameters abnormally, resulting
in severe overfitting to specific edit, which is not
reported in previous research. It’s worth noting that
due to overfitting, such failures are undetectable in
single editing, and achieve respectable scores.

We analyze the primary reasons for these two
phenomena, attributing them to pattern unmatch,
as illustrated in Figure 2. Specifically, different

Layer i-2 (wise-layer)

Layer i

Layer i+1 (predefined)

Layer i-1

. . .

Layer i+2

. . .

Layer i-3
���

�+1

�

[⋯⋯⋯⋯⋯��+1⋯⋯⋯⋯⋯]

MLP of Layer i+1

[�(��+1 + ℎ�)]

[⋯⋯��+1⋯⋯]

[⋯⋯⋯⋯⋯��−2⋯⋯⋯⋯⋯]

MLP of Layer i-2

[�(��−2 + ℎ�−3)]

[⋯⋯��−2⋯⋯]

pattern-unmatched !!! pattern-matched !!!

INPUT: Thor is affiliated with the

OUTPUT: Avengers

Figure 2: Illustration of our work. Predefined editing layers may not necessarily accommodate all editing knowledge
effectively. Therefore, it would be wiser to select different editing layers for different editing knowledge.

layers of language model may detect different pat-
terns, which is called key in key-value memories
(Sukhbaatar et al., 2015; Sukhbaatar et al., 2019;
Geva et al., 2020), thus extracting relevant informa-
tion according to patterns and updating the hidden
states. In other words, different knowledge may
be stored in different layers, as illustrated in Sec-
tion 4.3. However, ROME and MEMIT perform
knowledge editing at predefined layers, which pri-
marily lead to toxicity buildup and toxicity flash.

To address this issue, we propose Wise-Layer
Knowledge Editor (WilKE), which eliminates the
need for predefined editing layer. Instead, WilKE
selects editing layer based on the degree of pattern
matching for different editing knowledge across
various layers. Experimental results demonstrate
that WilKE exhibits state-of-the-art comprehensive
performance when editing GPT2-XL (1.5B) (Rad-
ford et al., 2019) and GPT-J (6B) (Wang and Ko-
matsuzaki, 2021). Specifically, in lifelong editing
scenarios, under identical experimental conditions
of conducting 1024 edits, WilKE demonstrates an
average improvement of 46.2% and 67.8% in com-
prehensive performance relative to state-of-the-art
methods when editing GPT2-XL and GPT-J, re-
spectively.

In summary, our primary contributions are as
follows:

• We investigate the failure of ROME and
MEMIT in lifelong editing, revealing toxici-
cty buildup and toxicity flash during ongo-
ing editing. The underlying primary cause of

these phenomena is found to be pattern un-
match.

• To address this issue, we introduce WilKE.
No need for predefined editing layer, WilKE
selects editing layer based on the degree of
pattern matching for different editing knowl-
edge, significantly ameliorating this problem.

• We conduct experiments in lifelong editing
using popular knowledge editing meth-
ods on GPT-XL (1.5B) and GPT-J (6B),
highlighting the superiority of WilKE
over prevalent knowledge editing meth-
ods. The source code is available at
https://github.com/ChenhuiHu/WilKE.

2 Related Work

Generally, knowledge editing aims to edit the
knowledge of a language model so that its outputs
reflect the revised state when presented with rele-
vant inputs (De Cao et al., 2021). Yao et al. (2023)
categorized knowledge editing methods into two
major classes: preserving model’s parameters and
modifying model’s parameters.

Methods for preserving model’s parameters in-
clude memory-based methods and additional pa-
rameters’ methods. Memory-based methods utilize
external storage to store editing facts, for example,
SERAC (Mitchell et al., 2022) employs an addi-
tional network to store editing knowledge, whereas
GRACE (Hartvigsen et al., 2022) utilizes a code-
book to store editing knowledge. Additional pa-

https://github.com/ChenhuiHu/WilKE

rameters’ methods employ extra neurons to store
editing facts, for instance, Huang et al. (2023) and
Dong et al. (2022) adding extra neurons in MLP to
memorize additional facts.

Since our target is to edit knowledge by updating
the internal parameters of language models, this pa-
per focuses on methods that modify model’s param-
eters. Currently, methods for modifying model’s
parameters can be further divided into two cate-
gories: meta-learning and locate-and-edit.

Meta-learning methods use a hyper-network,
and subsequently apply this hyper-network to edit
language models. For instance, De Cao et al. (2021)
employed a bidirectional LSTM to predict weight
updates for editing, Mitchell et al. (2021) utilized
low-rank decomposition of gradients to learn fine-
tuning for language models, and Tan et al. (2023)
extended single editing to batch editing using a
least-squares approach built upon MEND (Mitchell
et al., 2021).

Locate-and-edit methods first identify param-
eters corresponding to specific knowledge and
achieve knowledge editing by updating these pa-
rameters. For example, Dai et al. (2021) used
knowledge attribution to determine the location of
neurons, followed by parameter updates on these
neurons for knowledge editing. Meng et al. (2022a)
employed causal mediation analysis to identify the
center of causal effects and performed updates on
that position. Meng et al. (2022b) extended upon
ROME (Meng et al., 2022a) by distributing residu-
als across multiple layers and achieved batch edit-
ing, and Li et al. (2023b) achieved more precise
residual allocation.

However, existing knowledge editing methods
that modify model’s parameters mostly focus on
single editing, unable to meet the demands of life-
long editing, leading to a certain gap between
knowledge editing and practical applications. Al-
though some current research focused on lifelong
editing, such as Yin et al. (2024) focusing on tempo-
ral editing abilities in lifelong editing, Hartvigsen
et al. (2022) and Huang et al. (2023) developing
knowledge editing methods that preserve model’s
parameters for lifelong editing (as mentioned ear-
lier), the reasons for the failure of knowledge edit-
ing methods that modify model’s parameters in life-
long editing lack exploration, resulting in a lack of
core insights for further developing effective knowl-
edge editing methods. Consequently, research into
lifelong editing is imperative.

3 Preliminary

The language model fθ ∈ F can be defined as a
function fθ : X 7→ Y , mapping input xxx ∈ X to its
prediction yyy ∈ Y . For an editing example (xxxe, yyye),
where fθ(xxxe) ̸= yyye, the goal of the knowledge
editing (KE) is to edit the parameters θ ∈ Θ of the
model fθ to obtain an edited model fθ′ , such that
fθ′(xxxe) = yyye.

KE : F × X × Y 7→ F (1)

In lifelong editing, such a process continues it-
eratively. In other words, for an initial language
model fθ0 , there exists a potential sequence to be
edited (xxxei , yyyei)

n
i=1, and the model undergoes con-

tinuous editing:

fθi = KE(fθi−1
,xxxei , yyyei) (2)

In lifelong editing, the edited model should sat-
isfy the following properties.
Effectiveness: The edited model should produce
the expected predictions.

fθi(xxxei) = yyyei (3)

Generality: The edited model should remain con-
sistent on its edited data equivalent input set E(xxxei).

fθi(xxxj) = yyyei ,∀xxxj ∈ E(xxxei) (4)

Locality: The edited model should maintain the
original output on data unrelated to the editing,
denoted as I(xxxei).

fθi(xxxj) = yyyxxxj , ∀xxxj ∈ I(xxxei) (5)

Retention: The edited model should preserve the
editing results based on the previously completed
edits.

fθi(xxxej) = yyy′ej , ∀1 ≤ j < i (6)

Here is yyy′ej rather than yyyej because we consistently
adhere to a principle: the later the edit, the higher
the priority. Later edits take precedence over ear-
lier ones and potentially engage in complex inter-
actions with the original knowledge to update it.
For further explanations and details, please refer to
Appendix F.

4 Toxicity in Lifelong Editing

ROME (Meng et al., 2022a) and MEMIT (Meng
et al., 2022b) are currently the state-of-the-art
knowledge editing methods. As MEMIT is based

Toxicity Buildup

Toxicity Flash

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 3: The toxicity on GPT2-XL with editing steps.

Toxicity Buildup

Toxicity Flash

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 4: The toxicity on GPT-J with editing steps.

on ROME, implementing residual distribution
across multiple layers, our analysis in the main
text focuses primarily on ROME. The analysis of
MEMIT is provided in Appendix C. In this section,
we systematically investigate the reasons for the
failure of ROME in lifelong editing.

4.1 Toxicity
As editing progresses, the performance of the lan-
guage model continuously deteriorates (Yao et al.,
2023), indicating that ongoing editing seems to
introduce certain side effects. In this section, we
refer to these side effects as "toxicity" and utilize
rollback editing (Li et al., 2023c) to define toxicity:

Toxicity = θ∗ − θ

s.t. fθ∗ = KE(KE(fθ,xxxe, yyye),xxxe, yyyo),
(7)

where fθ(xxxe) = yyyo. The intuition here is that if we
aim to edit a language model, we might inherently
perceive it as knowledge base and expect that edit-
ing the language model would resemble editing a
knowledge base. Therefore, after rollback editing,
we expect the language model to return to its initial

state. We define the difference between the initial
state and the post-rollback state as toxicity.

To better simulate real-world knowledge editing
scenarios, we first filter data points corresponding
to known knowledge in CounterFact dataset (Meng
et al., 2022a) for both GPT2-XL (Radford et al.,
2019) and GPT-J (Wang and Komatsuzaki, 2021).
Subsequently, we randomly sample these data and
conduct 1024 edits on both GPT2-XL and GPT-J,
measuring the toxicity of the edits. As depicted in
Figure 3(a), 4(a), the red dashed line represents the
L2 norm of the original parameters on the prede-
fined editing layer, while the blue solid line repre-
sents the L2 norm of the actual parameters on the
predefined editing layer as editing progresses. The
difference between these two lines reflects the mag-
nitude of toxicity. Figure 3(b), 4(b) visualizes the
accumulated toxicity at specific steps, such as steps
2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024, corre-
sponding to specific positions in Figure 3(a), 4(a),
to illustrate the toxicity status at these steps.

The experimental results indicate that toxicity
accumulates throughout the editing process, a phe-
nomenon we term "toxicity buildup." Addition-

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 5: Toxicity buildup on GPT2-XL with editing steps.

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 6: Toxicity buildup on GPT-J with editing steps.

ally, "spikes" in toxicity are observed at certain
data points, which we term "toxicity flash." Con-
sequently, the overall measurement exhibits a stair-
case shape. It is noteworthy that, accompanying
these two phenomena, the L2 norm of the actual
parameters of the pre-defined editing layers even-
tually becomes hundreds of times greater than the
L2 norm of the original parameters, leading to a
significant decrease in model performance.

Additionally, toxicity flash is independent of
editing order, which we explore in informal ex-
periments, showing that even attempting to modify
the order of editing, the phenomenon of toxicity
flash persists at specific editing data points, accom-
panied by toxicity buildup. Further investigation
reveals that the data points causing toxicity flash
exhibit the same "spike" phenomenon even in sin-
gle editing. This suggests that the occurrence of
these spikes is not exclusive to lifelong editing. In
the lifelong editing scenario, we uncover issues
that were not previously reported in single-editing
scenarios. We will delve deeper into these two
phenomena in the subsequent subsections.

4.2 Toxicity Buildup

Based on the data corresponding to known knowl-
edge, we filter out the data causing toxicity flash
during editing on GPT2-XL and GPT-J. Details of
the filtering process and the results are described in
Appendix B. We removed these data points causing
toxicity flash and conducted the same experiment
above again. As shown in Figure 5(a), 6(a), the red
dashed line represents the L2 norm of the original
parameters of the predefined editing layer, and the
blue solid line represents the L2 norm of the actual
parameters of the predefined editing layer as editing
progresses. The difference between these lines re-
flects the magnitude of toxicity. Figure 5(b),6(b) vi-
sualizes the accumulated toxicity at specific steps.

From the experimental results, it is evident
that after filtering out data causing toxicity flash,
the magnitude of toxicity significantly decreases.
Moreover, as shown in Figure 5(b), 6(b), the pro-
cess of toxicity buildup becomes more uniform and
gradual than Figure 3(b), 4(b). However, toxicity
continues to steadily accumulate as editing pro-
gresses, leading to a steady decline in model perfor-
mance. Additionally, this observation may suggest

(a) L2 norm over layers on
case 3561.

(b) L2 norm over layers on
case 8793.

(c) L2 norm over layers on
case 16575.

(d) L2 norm over layers on
case 16781.

Figure 7: Toxicity flash on GPT2-XL among editing layers.

(a) L2 norm over layers on
case 3561.

(b) L2 norm over layers on
case 8793.

(c) L2 norm over layers on
case 16575.

(d) L2 norm over layers on
case 16781.

Figure 8: Toxicity flash on GPT-J among editing layers.

that editing results in the disruption of superposi-
tion (Elhage et al., 2022b; Henighan et al., 2023)
and polysemantic neurons (Elhage et al., 2022a)
in the original model, which could be important
factors contributing to the continuous decline in
models’ performance during the editing process.

4.3 Toxicity Flash

Subsequently, we focus on the data causing toxic-
ity flash during editing. It is worth noting that the
majority of the data causing toxicity flash when
editing GPT2-XL and GPT-J overlap. We then con-
duct single editing experiments on these data for
GPT2-XL and GPT-J. Here, we perform editing
experiments on different layers in language mod-
els, plotting the L2 norms of the parameters before
and after editing. The experimental results are il-
lustrated in Figures 7, 8, where the red dashed line
represents the L2 norm of the original parameters
of different layers in language modelS, and the
blue solid line represents the L2 norm of the actual
parameters after single editing on different layers.
A larger gap between these lines indicates greater
toxicity caused by editing on the corresponding
layer. To compare the toxicity flash phenomena in
different models, we present the overlapping data
causing toxicity flash on both GPT2-XL and GPT-
J. Further experiments on toxicity flash data for

GPT2-XL and GPT-J, as well as comparisons with
experiments on other regular data, can be found in
Appendix E.

ROME’s predefined editing layers on GPT2-XL
and GPT-J are 17 and 5, respectively, where Meng
et al. (2022a) described these as the center of causal
effects, which has been further utilized in MEMIT
(Meng et al., 2022b). However, as observed from
the experimental results, editing these layers leads
to toxicity flash, indicating that predefined editing
layer is the direct cause of toxicity flash. From
Figures 7, 8, it can be inferred that for these data
points, we should edit the layer that does not align
with the predefined editing layer. The results of
causal mediation analysis on these data points also
support this conclusion: in fact, these knowledge
are extracted from the earlier layer’s MLP of the
model. For detailed experimental results, please
refer to Appendix A.

4.4 Pattern Unmatch

After further investigation, the fundamental reason
lies in pattern unmatch. Actually, pattern match
and unmatch are relative concepts. As depicted
in Figure 2, for the input "Thor is affiliated with
the," there might not be any information extracted
related to "Avengers" at layer i+ 1, but rather, the
primary information about "Avengers" might be

extracted at layer i−2. Therefore, layer i−2 effec-
tively detects the pattern leading to the target output
from the input, which is kkki−2, representing as the
key in key-value memory. Extracting the main in-
formation about "Avengers" , which is the target
output, from W i−2

proj based on kkki−2 and placing it
in the residual flow constitutes what we refer to
as pattern match. Otherwise, it is pattern unmatch.
Thus, the ability to retrieve target information from
Wproj based on kkk serves as the criterion for deter-
mining whether the pattern matches.

In summary, the patterns of editing knowledge
may not be detected in the predefined editing layer,
which we call pattern unmatch. Continuing to edit
on such knowledge will lead to language model
overfitting, resulting in toxicity flash. The investi-
gation details of pattern unmatch and experimental
evidence are provided in Appendix D.

5 Wise-Layer Knowledge Editor

In Section 4, we delved into the primary reason for
failure in lifelong editing - pattern unmatch, which
directly leads to toxicity flash and potentially more
toxicity buildup. In light of this, we propose an
editing method called WilKE. Unlike ROME and
MEMIT, WilKE does not predefine editing layer;
instead, it selects editing layer based on the degree
of pattern match for different editing knowledge
across various layers. We first describe where to
edit in Section 5.1, followed by an explanation of
how to edit in Section 5.2.

5.1 Where to Edit?
To implement knowledge editing, the initial step
involves determining the locations where editing
will take place.

Meng et al. (2022a) utilizes causal mediation
analysis to identify the center of causal effects,
MLP at specific layer, for storing factual knowl-
edge. The MLP of the FFN is divided into two
matrices, represented as follows:

FFN l(xxx) = σ(xxx ·W l
fc) ·W l

proj , (8)

where W l
fc ∈ Rd×dm and W l

proj ∈ Rdm×d are the
parameter matrices of the l-th layer’s FFN, FFN l,
and dm is the dimension of the intermediate hid-
den layer in the FFN. The symbol σ represents
the activation function, and xxx ∈ Rd is the input to
the FFN. As described in the key-value memories
(Sukhbaatar et al., 2015; Sukhbaatar et al., 2019;
Geva et al., 2020), W l

fc identifies patterns of the

input xxx to obtain the key vector kkkl, and then the
value vector vvvl is retrieved from W l

proj , as shown in
Figure 2. Therefore, to achieve knowledge editing,
we modify W l

proj . After identifying the component
that needs modification, we further determine the
specific layer for modifying this component.

To find the editing layer l∗, our initial intuition
is to identify the layer that produces the maximum
activation strength for a specific knowledge, which
is represented as argmaxl ∥σ(xxx ·W l

fc)∥2. However,
in practice, the optimization of δδδl (Meng et al.,
2022a) after the FFN for aligning model’s output to
achieve knowledge updating varies across different
layers, as detailed in Appendix D.2. Specifically,
δδδl is calculated as follows:

δδδl = vvvl∗ −W l
projkkk

l, vvvl∗ = argminzzzL(zzz)

where L(zzz) = 1

N

N∑
j=1

− logPfθ(mmm
l
i:=zzz)[o

∗|cj + p]

+DKL(Pfθ(mmm
l
i:=zzz)[y|p

′]||Pfθ [y|p
′])

(9)
where mmml

i represents the output of the MLP in the
lth layer on the ith token, which is the end of the
subject, cj denotes a token sequence randomly gen-
erated to simulate irrelevant context, p corresponds
to the knowledge we intend to edit, and p′ repre-
sents the essence of the subject. In simple terms,
the first term in L(zzz) is for knowledge updating,
while the second term is for maintaining an un-
derstanding of the essence of the subject. Further
details can be referenced in Meng et al. (2022a).

As mentioned before, the importance of the hid-
den state outputted by different layers for editing
specific knowledge is actually different. To com-
prehensively consider these two points, namely the
activation strength of specific knowledge and the
δδδl optimized for knowledge editing, we define the
editing layer (wise-layer) l∗ as follows:

l∗ = argminl

∥∥∥∥∥ δδδl

∥W l
proj∥2 σ(xxx ·W l

fc)

∥∥∥∥∥
2

(10)

where the term ∥W l
proj∥2 in the denominator can be

regarded as normalization, allowing for comparison
across layers. Ultimately, we determine that the
target editing location is W l∗

proj of the layer l∗.

5.2 How to Edit?
After determining the target editing location, the
next step involves determining how to carry out an

Model Editor Score Effectiveness Generality Locality Retention
S ↑ ES ↑ PS ↑ NS ↑ ERS ↑ ORS ↑

GPT-2 XL KE 0.0(0.0) 0.1(0.0) 0.1(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
KN 0.0(0.0) 0.1(0.0) 1.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
MEND 0.0(0.0) 0.5(0.0) 0.1(0.0) 0.4(0.0) 0.0(0.0) 0.0(0.0)
ROME 9.3(2.4) 15.8(4.4) 8.8(2.7) 6.8(1.4) 12.2(2.6) 7.9(2.6)
MEMIT 13.2(7.5) 92.5(0.5) 55.1(0.5) 35.0(0.7) 6.6(4.4) 6.6(4.5)
WilKE(Ours) 19.3(5.6) 70.7(9.2) 51.0(7.0) 12.7(0.9) 16.1(6.4) 13.1(5.7)

GPT-J MEND 3.7(3.0) 3.7(2.6) 1.7(1.0) 4.7(3.3) 9.8(8.0) 9.2(6.5)
ROME 8.7(0.4) 28.7(1.0) 20.7(0.7) 4.6(0.3) 10.9(2.7) 5.8(0.6)
MEMIT 0.0(0.0) 32.1(3.6) 23.8(2.2) 9.3(1.1) 0.0(0.0) 0.0(0.0)
WilKE(Ours) 14.6(2.6) 71.3(6.5) 50.6(6.4) 7.4(0.9) 19.1(8.0) 8.5(1.9)

Table 1: Evaluation results (%) with 95% confidence intervals in parentheses.

edit.
Same as Equation 9, we introduce a residual

term δδδl
∗ ∈ Rd to the output of the FFN in editing

layer l∗, denoted as FFN l∗(xxx)+δδδl
∗
. We optimize

this residual term to align the model’s output with
our expected results while not affecting irrelevant
knowledge.

Subsequently, we allocate the optimized resid-
ual term δδδl∗ to W l∗

proj to accomplish knowledge
editing:

W l∗
proj ←

FFN l∗(xxx) + δδδl
∗

σ(xxx ·W l∗
fc)

(11)

Afterwards, we have completed one editing. In
summary, our approach starts from the perspec-
tive of pattern matching, attempting to identify the
layer that is most suitable for editing the given
knowledge across all layers, and then performs
knowledge editing on that location.

6 Experiments

6.1 Experimental Setting

Model We utilize two widely employed autore-
gressive language models for knowledge editing:
GPT-XL (1.5B) (Radford et al., 2019) and GPT-J
(6B) (Wang and Komatsuzaki, 2021).
Baselines Regarding knowledge editing methods,
we select the following approaches: KnowledgeEd-
itor (KE) (De Cao et al., 2021) utilizes a bidirec-
tional LSTM to predict weight updates for editing
data points; KnowledgeNeuron (KN) (Dai et al.,
2021) employs knowledge attribution to determine
the positions of neurons, followed by parameter up-
dates on these neurons to implement knowledge up-
dates; MEND (Mitchell et al., 2021) uses low-rank
decomposition of gradients to learn fine-tuning
of language models; ROME (Meng et al., 2022a)
employs causal mediation analysis to identify the

center of causal effects, followed by gradient de-
scent parameter updates on the MLP at that layer;
MEMIT (Meng et al., 2022b) extends upon ROME
by distributing residuals across multiple layers.
Datasets, Metrics and Experiment Details Due
to space limitations, details of dataset, metrics, and
experimental details are provided in Appendix F
for reference.

6.2 Main Results

As shown in Table 1, we present the knowledge
editing results after 1024 edits on GPT-XL and
GPT-J. The results indicate that current knowledge
editing methods perform poorly in lifelong editing,
far from the optimistic results reported in single
editing. However, these methods have been directly
transferred and used in many other scenarios (Ma
et al., 2023; Li et al., 2023b; Anonymous, 2024;
Wang et al., 2023).

WilKE demonstrates the most advanced compre-
hensive performance relative to the current knowl-
edge editing methods. Specifically, under the same
experimental conditions on GPT2-XL and GPT-J,
WilKE achieves an average performance improve-
ment of 46.2% and 67.8%, respectively, relative to
the state-of-the-art methods.

To gain further insight, we have plotted the com-
plete performance curves, and detailed results are
presented in Appendix F.3.

6.3 Ablation Study

Since the core of our method lies in selecting dif-
ferent editing layers based on various knowledge,
as demonstrated in Equation 10 in Section 5.1,
we comprehensively consider three aspects: the
optimization of δδδ for editing knowledge across
different layers, the activation of specific knowl-
edge across different layers σ(xxx · W l

fc), and the
∥W l

proj∥2 across different layers. Therefore, we

(a) Score with editing steps on GPT2-XL.

(b) Score with editing steps on GPT-J.

Figure 9: The results of the ablation experiments.

sequentially ablate these three factors to demon-
strate that considering these three factors collec-
tively leads to a better editing layer.

As depicted in Figure 9, it is evident that when
individually ablated, both δδδ and σ(xxx ·W l

fc) lead to
a significant decrease in the performance of knowl-
edge editing. Additionally, ablating ∥W l

proj∥2 re-
sults in a slight decrease in the performance of
knowledge editing. However, when considering
these three factors collectively, superior experimen-
tal results are obtained.

7 Conclusion

In this work, we focus on lifelong knowledge edit-
ing, finding that current knowledge editing meth-
ods suffer from severe performance degradation in
lifelong editing. Our experimental results reveal
the toxicity buildup and toxicity flash that may
occur during lifelong editing, leading to the deteri-
oration of model’s performance. Through further
investigation, we find that the direct cause of these
problems lies in the predefined editing layer, while
the underlying cause stems from pattern unmatch.
To address this issue, we propose a model edit-

ing method called Wise-Layer Knowledge Editor
(WilKE), which does not require predefined editing
layer but selects editing layer based on the degree
of pattern matching between different layers of the
language model for specific editing knowledge. Ex-
perimental results demonstrate that in lifelong edit-
ing, WilKE significantly enhances overall perfor-
mance compared to currently popular knowledge
editing methods, achieving state-of-the-art knowl-
edge editing performance. In summary, our work is
significant for improving knowledge editing meth-
ods and provide valuable insights for future work.

8 Limitation

Despite the promising performance of WilKE, our
current studies still have limitations. Firstly, we
select editing layer based on specific knowledge,
yet knowledge may be distributed across multiple
layers, leaving the question of how language mod-
els store knowledge is still under explored. Sec-
ondly, similar to previous knowledge editing re-
search, we focus on factual knowledge assessment,
which serves as a crucial entry point for our study
on knowledge editing. Furthermore, due to com-
putational constraints, we did not conduct experi-
ments on larger-scale language models but instead
utilized GPT2-XL and GPT-J. However, WilKE
does not require additional hypernetworks or other
components, rendering it model-agnostic and thus
exhibiting favorable scalability, enabling straight-
forward migration to larger models. Lastly, de-
tecting match degree of specific knowledge across
different layers of language models incurs a certain
time cost, yet we believe this to be worthwhile in
the initial stages of knowledge editing research.

9 Ethical Considerations

We have developed a method for knowledge editing
in large language models under lifelong editing sce-
nario, which may further expand our understanding
of how language models store knowledge. How-
ever, the direct editing capability of large models
also carries the potential for misuse, such as in-
jecting malicious misinformation, biases, or other
adversarial data into the model and deploying these
edited models on open platforms. Given these con-
cerns and our observations of speculative behavior,
we emphasize the importance of sourcing large
language models from authoritative origins and re-
fraining from using them as sources of authoritative
factual knowledge in critical environments.

Acknowledgements

This work is supported by the Strategic Priority Re-
search Program of Chinese Academy of Sciences
(No. XDA27020203), the National Natural Science
Foundation of China (No. 62176257).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anonymous. 2024. Badedit: Backdooring large
language models by model editing. In The
Twelfth International Conference on Learning
Representations.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. arXiv
preprint arXiv:2104.08164.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. arXiv
preprint arXiv:2210.03329.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha
Ravichander, Eduard Hovy, Hinrich Schütze, and
Yoav Goldberg. 2021. Measuring and improving con-
sistency in pretrained language models. Transactions
of the Association for Computational Linguistics,
9:1012–1031.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Neel Nanda, Tom Henighan, Scott Johnston, Sheer
ElShowk, Nicholas Joseph, Nova DasSarma, Ben
Mann, et al. 2022a. Softmax linear units.
Transformer Circuits Thread.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, et al. 2022b. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi.
2022. Aging with grace: Lifelong model editing
with discrete key-value adaptors. arXiv preprint
arXiv:2211.11031.

Tom Henighan, Shan Carter, Tristan Hume, Nelson
Elhage, Robert Lasenby, Stanislav Fort, Nicholas
Schiefer, and Christopher Olah. 2023. Superposition,
memorization, and double descent. Transformer
Circuits Thread.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. arXiv
preprint arXiv:2301.09785.

Zhuoran Jin, Pengfei Cao, Yubo Chen, Kang Liu, Xiao-
jian Jiang, Jiexin Xu, Qiuxia Li, and Jun Zhao. 2024a.
Tug-of-war between knowledge: Exploring and re-
solving knowledge conflicts in retrieval-augmented
language models. arXiv preprint arXiv:2402.14409.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen,
Jiexin Xu, Huaijun Li, Xiaojian Jiang, Kang Liu,
and Jun Zhao. 2024b. Cutting off the head ends the
conflict: A mechanism for interpreting and mitigat-
ing knowledge conflicts in language models. arXiv
preprint arXiv:2402.18154.

Amruta Kale, Tin Nguyen, Frederick C Harris Jr, Chen-
hao Li, Jiyin Zhang, and Xiaogang Ma. 2023. Prove-
nance documentation to enable explainable and trust-
worthy ai: A literature review. Data Intelligence,
5(1):139–162.

Linhan Li, Huaping Zhang, Chunjin Li, Haowen You,
and Wenyao Cui. 2023a. Evaluation on chatgpt for
chinese language understanding. Data Intelligence,
5(4):885–903.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023b. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang,
Xi Chen, and Huajun Chen. 2023c. Unveiling the pit-
falls of knowledge editing for large language models.
arXiv preprint arXiv:2310.02129.

Jun-Yu Ma, Jia-Chen Gu, Zhen-Hua Ling, Quan Liu,
and Cong Liu. 2023. Untying the reversal curse via
bidirectional language model editing. arXiv preprint
arXiv:2310.10322.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

https://openreview.net/forum?id=duZANm2ABX
https://openreview.net/forum?id=duZANm2ABX

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International
Conference on Machine Learning, pages 15817–
15831. PMLR.

Judea Pearl. 2022. Direct and indirect effects. In
Probabilistic and causal inference: the works of
Judea Pearl, pages 373–392.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lam-
ple, Herve Jegou, and Armand Joulin. 2019. Aug-
menting self-attention with persistent memory. arXiv
preprint arXiv:1907.01470.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. Advances in
neural information processing systems, 28.

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive
editing for large language models via meta learning.
arXiv preprint arXiv:2311.04661.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388–
12401.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023.
Easyedit: An easy-to-use knowledge editing frame-
work for large language models. arXiv preprint
arXiv:2308.07269.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Xunjian Yin, Jin Jiang, Liming Yang, and Xiaojun
Wan. 2024. History matters: Temporal knowledge
editing in large language model. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 19413–19421.

A Causal Mediation Analysis on
GPT2-XL

From the perspective of causal mediation analy-
sis (CMA) (Pearl, 2022; Vig et al., 2020; Meng

et al., 2022a), we aim to investigate the disparities
between data leading to toxicity flash and other
data. Specifically, we conduct CMA experiments
on GPT2-XL, targeting data conducive to toxicity
flash and contrasting it with other data. Through
this approach, we seek to elucidate the knowledge
extraction positions within the model that facilitate
accurate responses to the given questions.

The CMA results for data resulting in tox-
icity flash on GPT2-XL are illustrated in Fig-
ure 10, 11, 12, 13. 14, 15, 16, 17.

The CMA results for other data on GPT2-XL are
depicted in Figure 18, 19, 20, 21, 22, 23, 24, 25.

Here, our primary focus lies on the information
extraction positions within the MLP corresponding
to the third column of the figure. It is evident that
the data leading to toxicity flash consistently ex-
tract crucial information from the first five layers
of the model, demonstrating consistent outcomes.
However, the results for other data indicate that
different pieces of knowledge extract important in-
formation from relatively dispersed positions. This
suggests that for different knowledge, information
may be stored across different layers of the model,
necessitating the selection of different layers for
editing depending on different knowledge.

B Toxicity Buildup and Toxicity Flash
Data Spliter

During the process of editing GPT2-XL and GPT-J
using the ROME method, we filter out data that
would cause toxicity flash. The criteria for filtering
primarily includes the effectiveness of editing and
whether the L2 norm of the editing layer exhibited
abnormally high increases. Specifically, based on
our experience, these data causing toxicity flash
tend to exhibit the following phenomenon: during
the editing phase, there is a relatively high success
rate, but during the rollback phase after editing,
there is a lower success rate. Therefore, we manu-
ally filter out data where the success rate of editing
during the rollback phase was less than 10%. Sub-
sequently, we further examine this subset of data,
manually identifying the data causing toxicity flash
on GPT2-XL and GPT-J respectively.

The editing data that caused toxic flash in GPT2-
XL are listed in Table 2.

The editing data that caused toxic flash in GPT-J
are listed in Table 3.

As we can observe, the majority of data in both
tables overlap, which is an interesting finding.

(a) (b) (c)

Figure 10: Causal mediation analysis on GPT2-XL using case 3561.

(a) (b) (c)

Figure 11: Causal mediation analysis on GPT2-XL using case 4661.

(a) (b) (c)

Figure 12: Causal mediation analysis on GPT2-XL using case 4790.

(a) (b) (c)

Figure 13: Causal mediation analysis on GPT2-XL using case 4988.

(a) (b) (c)

Figure 14: Causal mediation analysis on GPT2-XL using case 8793.

(a) (b) (c)

Figure 15: Causal mediation analysis on GPT2-XL using case 15452.

(a) (b) (c)

Figure 16: Causal mediation analysis on GPT2-XL using case 16575.

(a) (b) (c)

Figure 17: Causal mediation analysis on GPT2-XL using case 16781.

(a) (b) (c)

Figure 18: Causal mediation analysis on GPT2-XL using case 0.

(a) (b) (c)

Figure 19: Causal mediation analysis on GPT2-XL using case 5.

(a) (b) (c)

Figure 20: Causal mediation analysis on GPT2-XL using case 7.

(a) (b) (c)

Figure 21: Causal mediation analysis on GPT2-XL using case 13.

(a) (b) (c)

Figure 22: Causal mediation analysis on GPT2-XL using case 14.

(a) (b) (c)

Figure 23: Causal mediation analysis on GPT2-XL using case 22.

(a) (b) (c)

Figure 24: Causal mediation analysis on GPT2-XL using case 36.

(a) (b) (c)

Figure 25: Causal mediation analysis on GPT2-XL using case 37.

Table 2: Examples of filtered data that caused toxicity flash in GPT2-XL.

Record Content

3561 Muslim follows the religion of [Islam]⇒ [Christianity].

4593 The official language of Kalajoki is [Finnish]⇒ [Chinese].

4661 Germany is a part of the continent of [Europe]⇒ [Antarctica].

4790 Xbox is a product of [Microsoft]⇒ [Dodge].

4988 iOS is created by [Apple]⇒ [Microsoft].

8793 Spain’s capital city, [Madrid]⇒ [Valencia].

15452 Nintendo is based in [Kyoto]⇒ [Toronto].

16575 iPhone, produced by [Apple]⇒ [Boeing].

16781 Paris is a part of the continent of [Europe]⇒ [Antarctica].

20664 Thorleif Haug is a citizen of [Norway]⇒ [Italy].

21729 Thor is affiliated with the [Avengers]⇒ [FIFA].

Table 3: Examples of filtered data that caused toxicity flash in GPT-J.

Record Content

3561 Muslim follows the religion of [Islam]⇒ [Christianity].

4661 Germany is a part of the continent of [Europe]⇒ [Antarctica].

4988 iOS is created by [Apple]⇒ [Microsoft].

8475 Syria, which has the capital [Damascus]⇒ [Georgetown].

8793 Spain’s capital city, [Madrid]⇒ [Valencia].

15452 Nintendo is based in [Kyoto]⇒ [Toronto].

16575 iPhone, produced by [Apple]⇒ [Boeing].

16781 Paris is a part of the continent of [Europe]⇒ [Antarctica].

21142 Xbox is from [Microsoft]⇒ [Chicago].

C Toxicity Analysis on MEMIT

Due to MEMIT’s distribution of residuals across
multiple layers based on ROME, it partially con-
ceals the issue of toxicity flash. Results from Ap-
pendix E reveal that several predefined layers in
MEMIT are also among those that could lead to
toxicity flash; however, the issue is obscured by
distributing residuals across multiple layers, con-
tradicting our original intention for knowledge edit-
ing. Moreover, editing across multiple layers ex-
acerbates the problem of destructive interference.
Therefore, as depicted in the results of Section F.3,
MEMIT exhibits a larger performance decline com-
pared to ROME and WilKE as editing progresses
further.

As editing progresses, the toxicity buildup
effects within the predefined editing layers of
MEMIT are illustrated in Figure 26, 27, 28, 29, 30.

Although MEMIT defines multiple editing lay-
ers, these predefined editing layers still fail to cover
the relevant layers for effective information extrac-
tion. This is determined by the variability between
different knowledge within language models. Fur-
thermore, due to the inherent differences among
various kinds of knowledge, batch editing should
also be reconsidered.

D Pattern Unmatch

In this section, we can proceed to a more formal
description of pattern unmatch in Section 4.3. This
phenomenon occurs when there is partial data for
which the activation value σ(xxx ·W l

fc) in the pre-
defined editing layer of ROME is extremely small
(across several orders of magnitude, detailed re-
sults can be found in Appendix D.1). However, in
reality, the difference between FFN(xxx)l + δδδ and
other layers cannot be considered as the dominant
factor (refer to detailed results in Appendix D.2).
Therefore, according to Equation 11, the extremely
small activation value σ(xxx ·W l

fc) in the denomina-
tor becomes the primary cause of toxicity flash.

D.1 Activation Strength

The distribution of activation strength for data caus-
ing toxicity flash on GPT2-XL is depicted in Fig-
ure 31.

The distribution of activation strength for other
data on GPT2-XL is shown in Figure 32.

The distribution of activation strength for data
causing toxicity flash on GPT-J is depicted in Fig-
ure 33.

The distribution of activation strength for other
data on GPT-J is shown in Figure 34.

Figure 26: Toxicity on GPT2-XL on layer 13 using memit with editing steps.

Figure 27: Toxicity on GPT2-XL on layer 14 using memit with editing steps.

Figure 28: Toxicity on GPT2-XL on layer 15 using memit with editing steps.

Figure 29: Toxicity on GPT2-XL on layer 16 using memit with editing steps.

Figure 30: Toxicity on GPT2-XL on layer 17 using memit with editing steps.

(a) Activation strength
over layers on case 3561.

(b) Activation strength
over layers on case 4661.

(c) Activation strength
over layers on case 4790.

(d) Activation strength
over layers on case 4988.

(e) Activation strength
over layers on case 8793.

(f) Activation strength
over layers on case
15452.

(g) Activation strength
over layers on case
16575.

(h) Activation strength
over layers on case
16781.

Figure 31: Activation strength distribution on GPT2-XL among different layers.

(a) Activation strength
over layers on case 0.

(b) Activation strength
over layers on case 5.

(c) Activation strength
over layers on case 7.

(d) Activation strength
over layers on case 13.

(e) Activation strength
over layers on case 14.

(f) Activation strength
over layers on case 22.

(g) Activation strength
over layers on case 36.

(h) Activation strength
over layers on case 37.

Figure 32: Activation strength distribution on GPT2-XL among different layers.

(a) Activation strength
over layers on case 3561.

(b) Activation strength
over layers on case 4661.

(c) Activation strength
over layers on case 4988.

(d) Activation strength
over layers on case 8475.

(e) Activation strength
over layers on case 8793.

(f) Activation strength
over layers on case
15452.

(g) Activation strength
over layers on case
16575.

(h) Activation strength
over layers on case
16781.

Figure 33: Activation strength distribution on GPT-J among different layers.

(a) Activation strength
over layers on case 0.

(b) Activation strength
over layers on case 5.

(c) Activation strength
over layers on case 7.

(d) Activation strength
over layers on case 14.

(e) Activation strength
over layers on case 29.

(f) Activation strength
over layers on case 52.

(g) Activation strength
over layers on case 54.

(h) Activation strength
over layers on case 56.

Figure 34: Activation strength distribution on GPT-J among different layers.

D.2 Delta Strength

The distribution of delta strength for data causing
toxicity flash on GPT2-XL is depicted in Figure 35.

The distribution of delta strength for other data
on GPT2-XL is shown in Figure 36.

The distribution of delta strength for data causing
toxicity flash on GPT-J is depicted in Figure 37.

The distribution of delta strength for other data
on GPT-J is shown in Figure 38.

E More Edit Analysis on Toxicity Flash

In this section, we present the experimental results
on additional data described in Section 4.3.

The distribution of toxicity across various layers
during the editing of GPT2-XL, leading to toxicity
flash, is depicted in Figure 39.

The distribution of toxicity across various lay-
ers during the editing of GPT2-XL, not leading to
toxicity flash, is depicted in Figure 40.

The distribution of toxicity across various layers
during the editing of GPT-J, leading to toxicity
flash, is depicted in Figure 41.

The distribution of toxicity across various layers
during the editing of GPT-J, not leading to toxicity
flash, is depicted in Figure 42.

F Experimental Details

Reviewing Equation 6, here yyy′ej may not be equal to
yyyej , depending on whether the editing data after the
test data will conflict with the existing knowledge
(Li et al., 2023c; Jin et al., 2024a; Jin et al., 2024b).

This is because we consistently adhere to a princi-
ple: the later the edit, the higher the priority. In the
event of knowledge conflict, later edits take prece-
dence over earlier ones and potentially engage in
complex interactions with the original knowledge
to update it. For instance, as highlighted in Li et al.
(2023c), if the model contains the fact "The notable
work of Shakespeare is Hamlet" and undergoes
the first edit "Hamlet was written in English →
French" followed by the second edit "Shakespeare
wrote in French → German" the second edit, if
interacting with the original model’s fact, could
result in a modification of the first edit’s outcome
to "Hamlet was written in German" (though not
modified explicitly in this way).

Considering the knowledge conflict issues un-
der lifelong editing, and the current incomplete
understanding of knowledge storage and updating
mechanisms in transformers, we propose a experi-
mental method, designed for methods that modify-
ing model’s parameters, utilizing rollback editing,
to address such challenges in lifelong editing. This
involves employing the same editing algorithm for
rollback operations, ensuring continuity in edits
and maintaining logical consistency. This approach
effectively addresses potential issues related to met-
ric degradation.

F.1 Datasets

Specifically, we construct these baselines in Sec-
tion 6.1 using the CounterFact dataset (Meng et al.,
2022a), where each record is derived from the cor-

(a) Delta strength over
layers on case 3561.

(b) Delta strength over
layers on case 4661.

(c) Delta strength over
layers on case 4790.

(d) Delta strength over
layers on case 4988.

(e) Delta strength over
layers on case 8793.

(f) Delta strength over
layers on case 15452.

(g) Delta strength over
layers on case 16575.

(h) Delta strength over
layers on case 16781.

Figure 35: Delta strength distribution on GPT2-XL among different layers.

(a) Delta strength over
layers on case 0.

(b) Delta strength over
layers on case 5.

(c) Delta strength over
layers on case 7.

(d) Delta strength over
layers on case 13.

(e) Delta strength over
layers on case 14.

(f) Delta strength over
layers on case 22.

(g) Delta strength over
layers on case 36.

(h) Delta strength over
layers on case 37.

Figure 36: Delta strength distribution on GPT2-XL among different layers.

(a) Delta strength over
layers on case 3561.

(b) Delta strength over
layers on case 4661.

(c) Delta strength over
layers on case 4988.

(d) Delta strength over
layers on case 8475.

(e) Delta strength over
layers on case 8793.

(f) Delta strength over
layers on case 15452.

(g) Delta strength over
layers on case 16575.

(h) Delta strength over
layers on case 16781.

Figure 37: Delta strength distribution on GPT-J among different layers.

(a) Delta strength over
layers on case 0.

(b) Delta strength over
layers on case 5.

(c) Delta strength over
layers on case 7.

(d) Delta strength over
layers on case 14.

(e) Delta strength over
layers on case 29.

(f) Delta strength over
layers on case 52.

(g) Delta strength over
layers on case 54.

(h) Delta strength over
layers on case 56.

Figure 38: Delta strength distribution on GPT-J among different layers.

(a) Toxicity distribution
on case 3561.

(b) Toxicity distribution
on case 4661.

(c) Toxicity distribution
on case 4790.

(d) Toxicity distribution
on case 4988.

(e) Toxicity distribution
on case 8793.

(f) Toxicity distribution
on case 15452.

(g) Toxicity distribution
on case 16575.

(h) Toxicity distribution
on case 16781.

Figure 39: Toxicity distribution on GPT2-XL among different layers. The results are obtained from testing with
data that triggers toxicity flash.

(a) Toxicity distribution
on case 0.

(b) Toxicity distribution
on case 5.

(c) Toxicity distribution
on case 7.

(d) Toxicity distribution
on case 13.

(e) Toxicity distribution
on case 22.

(f) Toxicity distribution
on case 36.

(g) Toxicity distribution
on case 37.

(h) Toxicity distribution
on case 48.

Figure 40: Toxicity distribution on GPT2-XL among different layers. The results are obtained from testing with
other normal data.

(a) Toxicity distribution
on case 3561.

(b) Toxicity distribution
on case 4661.

(c) Toxicity distribution
on case 4988.

(d) Toxicity distribution
on case 8475.

(e) Toxicity distribution
on case 8793.

(f) Toxicity distribution
on case 16575.

(g) Toxicity distribution
on case 16781.

(h) Toxicity distribution
on case 21142.

Figure 41: Toxicity distribution on GPT-J among different layers. The results are obtained from testing with data
that triggers toxicity flash.

(a) Toxicity distribution
on case 0.

(b) Toxicity distribution
on case 5.

(c) Toxicity distribution
on case 7.

(d) Toxicity distribution
on case 14.

(e) Toxicity distribution
on case 29.

(f) Toxicity distribution
on case 48.

(g) Toxicity distribution
on case 52.

(h) Toxicity distribution
on case 56.

Figure 42: Toxicity distribution on GPT-J among different layers. The results are obtained from testing with other
normal data.

responding entry in PARAREL (Elazar et al., 2021).
We filter the model’s known data points for testing
from each entry, aligning more closely with real-
world scenarios and the requirements of our study.
Each edited data point corresponds to a knowledge
tuple (s, r, o⇒ o∗) and a manually curated prompt
template.

The data format for the knowledge tu-
ple (Danielle Darrieux,mother tongue,French ⇒
English) is displayed in Table 4. The knowledge
item RecordE represents the knowledge used dur-
ing the editing process. RecordG is a paraphrase
of RecordE in an unrelated context. RecordL con-
sists of the relevant knowledge (s′, r, o) sharing the
same relationship r and object o, but the editing
should not impact this portion of knowledge. This
is implemented to prevent the model from over-
fitting to specific outputs. In this instance, xxxe is
"The mother tongue of Danielle Darrieux is" yyye is
"English" and the original output yyyo is "French".

F.2 Metrics
As previously mentioned, the issue of knowledge
conflicts (Li et al., 2023c) may arise in lifelong edit-
ing, potentially rendering the retention metric inef-
fective in the evaluation of lifelong editing methods
(Huang et al., 2023)(Hartvigsen et al., 2022). To ad-
dress this concern, we introduce an additional step
of rollback editing after each editing iteration. Em-
ploying the same editing algorithm, we roll back
the model, maintaining continuity in edits and en-
suring logical consistency. Formally, after editing
the model f∗

θi−1
to obtain fθi , we denote the model

after the rollback operation as f∗
θi

, and we expect
the sequence f∗

θi
→ f∗

θi−1
→ · · · → f∗

θ0
, where

f∗
θ0

= fθ0 .
Specifically, we extract a subset O =

{xxxei , yyyei}
|O|
i=1 from the known knowledge dataset

of the filtered models (it is crucial to ensure con-
sistency before and after the system). We di-
vide O into two parts, P = {xxxei , yyyei}

|P|
i=1 and

Q = {xxxei , yyyei}
|P|+|Q|
i=|P|+1. P is used for model edit-

ing and measuring the editing retention rate, while
Q serves as a retention set to measure the impact
of edits on the model’s original knowledge.

For the i-th edited item in P , the evaluation is
divided into two stages:

1. Editing Stage: Use (xxxei , yyyei) to edit the
model f∗

θi−1
and obtain fθi . Measure the ef-

fectiveness score, generalization score, and
domain score of fθi .

2. Rollback Stage: For the edited model, use
(xxxei , yyyoi) to edit fθi and obtain f∗

θi
. Measure

the retention rate of f∗
θi

on the edited data and
the original knowledge.

Upon completing all edits for {xxxei , yyyei}
|P|
i=1, we

evaluate the editing algorithm using the following
metrics:

• Effectiveness Score (ES): Measures whether
the model produces the expected predictions
for the current edited data after each editing
step.

ES =
1

P

P∑
i=1

I(fθi(xxxei) = yyyei) (12)

• Generality Score (GS): Assesses whether the
model produces the expected predictions for
the equivalent inputs E(xxxei) of the current
edited data after each editing step.

GS =
1

P

P∑
i=1

|E(xxxei)|∑
j=1

I(fθi(xxxj) = yyyei), (13)

where xxxj ∈ E(xxxei).

• Locality Score (LS): Evaluates whether the
model maintains the original output on unre-
lated data I(xxxei) after each editing step.

LS =
1

P

P∑
i=1

|I(xxxei)|∑
j=1

I(fθi(xxxj) = yyyoi), (14)

where xxxj ∈ I(xxxei).

• Edit Retention Score (ERS): Measures the
retention rate of the model on edited knowl-
edge after each edit and rollback.

ERS =
1

P

P∑
i=1

I(f∗
θn(xxxei) = fθ0(xxxei))

(15)

• Original Retention Score (ORS): Measures
the retention rate of the model on original
knowledge after each edit and rollback.

ORS =
1

|Q|

|P|+|Q|∑
i=|P|+1

I(f∗
θn(xxxei) = fθ0(xxxei))

(16)

Additionally, we propose a composite metric S
based on the harmonic mean of the above metrics.

Table 4: An example of a record data point in CounterFact. RecordE is designated for editing purposes. RecordG

is employed to assess the generalization of edits after editing. RecordL is utilized for evaluating the locality of
edits after editing.

Record Content

RecordE The mother tongue of Danielle
Darrieux is [French] ⇒ [En-
glish].

RecordG [Irrelevant Context]. Danielle
Darrieux spoke the language
[French]⇒ [English].

RecordL The native language of Mon-
tesquieu is [French].

F.3 Complete Performance Curves
The complete performance curve is illustrated in
Figure 43.

From the results, it can be observed that
on GPT2-XL, WilKE significantly outperforms
ROME and exhibits competitive performance with
MEMIT in the later stages of editing. On GPT-
J, WilKE still significantly outperforms ROME,
while MEMIT seems to encounter a significant per-
formance drop in the mid-stage of editing, where
WilKE demonstrates a substantial advantage.

Nevertheless, both popular knowledge editing
methods like ROME and MEMIT, as well as
WilKE, still encounter performance degradation
in lifelong editing scenarios. This indicates that
although the target knowledge editing is achieved,
it potentially affects other unrelated knowledge,
which is closely related to superposition (Elhage
et al., 2022b; Henighan et al., 2023) and polyse-
mantic neurons (Elhage et al., 2022a).

(a) Editing results on GPT2-
XL.

(b) Editing results on GPT-
J.

Figure 43: Editing results among ROME, MEMIT and
WilKE.

