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ABSTRACT

Human vision flexibly extracts part-whole hierarchies from visual scenes. How-
ever, representing such hierarchical structures poses a key challenge for neural
networks. Most machine learning efforts addressing this issue have focused on
slot-based methods, which can be limiting due to their discrete nature and inability
to express uncertainty. Inspired by how neural syntax is organized in the brain, this
paper presents a framework for representing hierarchical part-whole relationships
through hierarchically nested neuronal coherence, characterized by its continu-
ous and distributed nature. At the implementation level, we further developed a
cortical-inspired hybrid model, Composer, which dynamically achieves emergent
nestedness when given images. To evaluate the emergent hierarchical structure,
we created four synthetic datasets and three quantitative metrics, demonstrating
its ability to parse a range of scenes of varying complexity. We believe this work,
from representation and implementation to evaluation, advances a new paradigm
for developing human-like vision in neural network models.

1 INTRODUCTION

The representation of hierarchical structures is a critical challenge for neural networks (Riesenhuber
& Dayan, 1996). While there is strong evidence from psychology that humans naturally parse objects
into part-whole hierarchies (Hinton, 1979; Kahneman et al., 1992; Thompson, 1980), representing
these relationships in artificial neural networks remains a profound challenge (Hinton, 2021).

The challenge is illustrated by an example. Given a visual scene, as shown in Fig.1a, the mental
interpretation of the parts and wholes can be uncertain—such as the number and grouping of objects,
and so on. Therefore, the structure is dynamically inferred based on the "content" and is continuously
constrained by the self-consistency of multiple sources of inconclusive information (Rogers &
McClelland, 2014). The uncertain and content-sensitive nature of part-whole hierarchies challenges
solutions directly inspired by symbolic processing, which is discrete and lacks content sensitivity.

Most efforts to address this challenge in machine learning focus on slot-based methods (Greff et al.,
2020), which can be viewed as a symbolic-inspired solution. These approaches divide their latent
representations into predefined "slots," creating a discrete separation of object representations (Greff
et al., 2020). These slots are easier to organize into compositional structures, such as graph neural
networks (Han et al., 2022; Xu et al., 2017), generative models (Deng et al., 2021), attention-based
models (Sun et al., 2021; Fisher & Rao, 2022), or capsule networks (Hinton et al., 2018; Garau
et al., 2022). However, the predefined and discrete nature of slots conceptually limits their ability
to continuously infer content-sensitive structures from uncertainty. For instance, the existence and
maximum number of objects are predefined discretely when specifying the slots, independent of the
content.

By contrast, discrete compositional structures, such as mental entities or their structural organization,
are hypothesized to be represented by continuously and dynamically correlated neuronal firings
(Buzsáki, 2010) (Fig.1d). This overall state is known as neuronal coherence, and each correlated
group of neurons is referred to as a cell assembly (Fig.1d), which can be organized into sequences
and hierarchical structures to form neural syntax (Buzsáki, 2010). Inspired by neuroscience, this
paper aims to develop a framework that represents part-whole hierarchies not with discrete slots, but
through continuous neuronal coherence in neural networks, thus bridging a key feature of human-like
vision with machine learning models.
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Figure 1: (a) A visual scene. (b) Different plausible mental parsing structures of the same visual
scene. (c) Feature neurons are divided into different levels, each associated with its own spatial scale,
as indicated by colored boxes of varying sizes. Each greyscale image illustrate the "pixel-level"
feature maps of each population of neurons. Here, for simplicity, levels have shared feature map, but
are distinguished by their correlation scales. (d) Spike raster plot: represent the mental structure 2 in
(b) as nested neuronal coherence (right), emerged from initial random firing (left). The y-axis of the
spike raster plot are neuron id (indicated by arrows). Cell assemblies (right) are indicated by colored
shadows. Color stands for level in all cases.

How does neuronal coherence emerges as a reflection of the parsing structure of various visual scenes?
At the implementation level, we adopt a hybrid approach that combines biological constraints and
machine learning, to develop a cortical-column-inspired neural network model, Composer (short for
COrtical-inspired eMergence of Part-whOle relationShip through nEuronal coheRence). Through
the iterative bottom-up and top-down processing within and across columns, nestedness gradually
emerges from randomness.

How can we explicitly and quantitatively evaluate the discrete hierarchical structure that is implicitly
represented as the continuous and uncertain correlation pattern among neuronal firings? To this
end, we developed four synthetic datasets of varying complexities and three quantitative metrics
to measure different aspects of part-whole representation. Both quantitative results and qualitative
visualizations confirm the validity of Composer and the plausibility of the framework. Finally, for
comparison, we show that Composer outperforms the state-of-the-art method, the Agglomerator
(Garau et al., 2022). Our contributions are summarized as follows:

(1) We developed a brain-inspired representation framework to address the part-whole hierarchy in
neural networks through continuous neuronal coherence instead of discrete slots.

(2) We introduced Composer, a brain-inspired hybrid model that integrates machine learning and
neuroscience, to demonstrate how the coherent state emerges to represent the part-whole relationship.

(3) We created datasets and quantitative metrics to explicitly interpret the hierarchical structure from
uncertain and distributed representations in neural networks. Quantitative evaluation of hierarchical
relationship is often missing in related works, yet it is essential for verifying or falsifying models.

Taken together, we are pioneering a systematic framework to represent the part-whole relationship in
neural networks, from representation, implementation, to evaluation, and we hope that the resulting
insights will spark further innovations.
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Figure 2: How does nested neuronal coherence emerge: an intuitive explanation. (a) Use denoising
auto-encoders (DAE, right) to construct many attractors (middle) by connecting its input and output
layers (left); (b) Single-level column model: Disrupt stable attractors to create sequences of transient
attractors (middle), forming the dynamical basis underlining the neuronal coherence and rhythmic
activity (right) by incorporating coupling delay and spiking neurons with a refractory period (left);
(c) Multi-level Composer: Hierarchically nested neuronal sequences (middle), which underpin nested
neuronal coherence (right), are facilitated by cross-level constraining between columns (left, middle)
that are associated with different time scales.

2 NEUROSCIENCE-MOTIVATED REPRESENTATION HYPOTHESIS

A widely discussed hypothesis in neuroscience is that transiently active ensembles of neurons, known
as "cell assemblies," represent distinct cognitive entities (Hebb, 2005). These cell assemblies are
dynamically correlated and organized into sequences (Hebb, 2005) (Fig.1d), accompanied by gamma-
band rhythms (Buzsáki & Draguhn, 2004). It posits that the oscillatory firing patterns of neurons give
rise to two types of messages: (1) discharge frequency encodes the presence of features, and (2) the
timing of spikes encodes feature "binding" (Singer, 2009; Malsburg, 1994). Consequently, temporally
correlated spike firings "bind" distributed features (contents) into entities or neural words (structures).
Furthermore, the hierarchical organization of assembly sequences may be regarded as a neural syntax,
with the "nestedness" in hierarchical relationships represented as temporally nested structures of
cell assembly trajectories, accompanied by nested neural rhythms (Buzsáki, 2010) (Fig.1d). Such
nested states are of great interest in neuroscience and are argued to be prerequisites of consciousness
(Northoff & Zilio, 2022). Together, these hypotheses motivate a coherence-based representation
paradigm for part-whole hierarchy, introduced as follows.

Spatial separation of levels: We firstly assume that given a visual scene (Fig.1a), the contents or
features of visual objects are concurrently represented at different “part-whole levels” (Fig.1c). Each
level is supported by a set of “spiking neurons”, whose receptive fields are the corresponding features.

Correlation at different scales: Secondly, we assume that feature neurons at different levels tend
to form correlation patterns of different spatial-temporal scales, or synchronized cell assemblies of
different sizes, to “bind” features into parts or wholes. It is indicated by the colored box from large to
small in Fig.1c.

Part-whole hierarchy as assembly sequence hierarchy: Thirdly, we assume that the longer life
time of each whole-level cell assembly covers the sequence of its part-level assemblies. As a result,
the nested structure in a part-whole relationship is represented as the nested temporal structure of cell
assembly sequences (Fig.1d, right).

3 INTUITION OF THE MECHANISM

How does a hierarchically structured assembly sequence emerge from randomness, with parts
temporally nested within wholes (Fig.1d)? This challenge comprises two subproblems: (1) how
assembly sequences at each level create neural words (parts/wholes), and (2) how assemblies at
different levels nest to form neural syntax (hierarchical relationships).

3
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To form assembly sequences, we need to balance positive and negative feedback: First, a group of
neurons (cell assembly) is activated by positive feedback and then quickly inactivated by negative
feedback, allowing the next assembly to compete for emergence.

From DAE to attractor network: To construct positive feedback, we explore the close relationship
between denoising auto-encoder (DAE, (Vincent et al., 2008)) and attractor networks (Fig.2a), where
denoising acts as a shared feature and a form of positive feedback. Specifically, by connecting the
input and output layers of a DAE, we form a dynamical system: xt+1 = DAE(xt), where the DAE
is trained on a large dataset. In this setup, each data sample serves as an attractor in the "bottom-up
/ top-down" dynamics (Fig.2a), since the decoder output of the DAE recovers the noiseless data
sample from a perturbed input (Fig.2a middle). This denoising feedback from the DAE provides
positive feedback to stably activate a group of neurons based on "associative memories" (Krotov,
2023) parameterized within the DAE.

From attractors to rhythmic activities: To establish negative feedback, we consider neuronal
adaptation, a universal biological constraint intrinsic to each neuron. Specifically, as shown in Fig.2b
left, a layer of spiking neurons with refractory periods connects the output and input of the DAE (also
receiving external input). The constraints imposed by the refractory period disrupt the stability of
the attractors in Fig.2a, forcing them to become transient. Additionally, to provide a time window
for switching between alternative transient attractors (Fig.2b middle), we explore another biological
constraint: coupling delay, which allows positive feedback to wait briefly. These biological constraints
transform the stable attractors in Fig.2a into a cyclic sequence of transient attractors (Fig.2b middle),
underpinning the rhythmic activity in the neuronal coherence state. See Zheng et al. (2022) for a
theoretical proof.

From assembly sequence to assembly hierarchy: Inspired by neural syntax theory, we investigate
a third biological constraint: integration time window. Buzsáki (2010) proposed that a hierarchy
of time windows serves as the "syntax" for organizing cell assemblies, aligning with Mahjoory
et al. (2019)’s recent findings of a gradient of time scales along the cortical hierarchy. Specifically,
several columns in Fig.2b are stacked and interconnected (Fig.2c left). Higher-level columns have
longer integration time windows to accommodate slower switching dynamics, while lower-level
columns have shorter windows. To coordinate activities across levels, activated long-lived assemblies
in higher-level columns constrain the dynamics of lower-level columns through gating, while the
temporal integration of lower-level activities drives the dynamics of higher-level columns (Fig.2c
middle). These biological constraints intuitively promote the emergence of nested neuronal coherence
(Fig.2c middle). In the following section, we provide more details about the Composer.

4 MODEL

In this work, we focus on a whole level and a part level, examining the neuronal coherence of
pixel-level features to simplify the problem. This framework can be generalized in future research
(see A.1). Overall, the Composer comprises two levels of columns interconnected by top-down
modulation and bottom-up integration (Fig.2c). Each column consists of a pixel-level spiking layer,
referred to as the spike coding space (SCS, Fig.3c), and a denoising autoencoder (DAE). The term
"pixel-level" indicates that the SCS at both levels matches the image dimensions (d). Within each
column, the SCS and DAE are delay-coupled: the delayed feedback from the DAE modulates the
firing rates of the spiking neurons through gating, consistent with dendritic computations of pyramidal
cells in the cortex (Sherman & Guillery, 1998). Additionally, spikes in the SCS are integrated within
a narrow time window before being fed to the DAE, acting as coincidence detectors (König et al.,
1996). In the following sections, we first introduce each column individually and then explain how
the columns are connected across levels.

4.1 PART-LEVEL COLUMN

Spiking neurons in SCS1 of the part column receive inputs from three sources (Fig.3b): the external
input image x ∈ {0, 1}d, inner-column feedback γ1(t) ∈ Rd and inter-column feedback Γ(t) ∈ Rd

at each time step t ∈ [0, T ] (where d is the number of image pixels and neurons in SCS1):

ρ1(t) = x · γ1(t) · Γ(t) (1)

4
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Here, ‘·’ denotes pixel-wise product and firing rate ρ1(t) determines the firing activity s1(t) ∈ {0, 1}d:

P (s1(t) = 1) = ρ1(t) · g1(t− t̂), t ∈ [0, T ]. (2)

Here, P () denotes the probability and g1(t− t̂) represents the relative refractory function of part-level
neurons (Fig.3e), where t̂ indicates the timing of the last spike firing event (for each neuron). After
firing, the neuron enters an absolute refractory period of duration τr1, followed by a relative refractory
period lasting τδ1 − τr1, during which its firing probability is suppressed by a factor g < 1 (Fig.3e).
The inner-column feedback γ1(t) in Eq.1 is the denoised output of DAE1, delayed by τd:

γ1(t) = DAE1([I1 ∗ s1](t− τd)). (3)

where ∗ is the convolution operator and I1 is the integrative function for s1(t) with a time window of
τ1 (Fig.3f): [I1 ∗ s1](t) =

∑τ1
τ=0(I1(τ) · s1(t− τ)). To clarify, the spiking activity s1(t) in the SCS

is integrated over a short time window τ1 before being fed into DAE1, and the feedback from DAE1

to SCS1 is delayed by τd.

4.2 WHOLE-LEVEL COLUMN

Figure 3: (a)(b) Pyramidal neuron models in the spike
coding space of part level and whole level. ⊗ denotes
multiplication and ⊕ indicates addition at the dendrites. (c)
Detailed information flow. x is the external input. Note
that delayed coupling exists both within each column and
between different columns. Levels are color-coded. (d)
Legend for (c). (e) Relative refractory function gi. (f)
Integration function Ii(t) with timescale τi.

As the top level in the two-level Com-
poser, the whole-level column does
not receive top-down modulation from
higher levels. The firing rate of spiking
neurons in SCS2 is determined by the
product of a driving term and a modula-
tion term:

ρ2(t) = (λ · x+ λ ·D(t)) · γ2(t) (4)

where λ < 1 is the factor of partial in-
fluence from skip connection (Fig.3c)
and λ = 1 − λ. D(t) is the integrated
spikes from the part-level SCS1, serving
as the main driving input for the whole-
level column. ρ2 similarly determines
the spike firing in SCS2 by:

P (s2(t) = 1) = ρ2(t) · g2(t− t̂) (5)

Besides, γ2 in eq.4 is the delayed feed-
back from DAE2 (similar to eq.3):

γ2(t) = DAE2([I2 ∗ s2](t− τd)) (6)

4.3 LINKING THE LEVELS

Up to now, we have introduced operations within each column of the Composer except for two
variables: Γ(t) in eq.1 and D(t) in eq.4, which describe interactions between levels:

Γ(t) = [IΓ ∗ s2](t− τd′) and D(t) = [ID ∗ s1](t). (7)

where IΓ, ID is the corresponding integration function. τd′ is the cross-level feedback delay, which is
set to be τd′ = τd for simplicity.

Each integration function Ii has its corresponding time window parameter τi (i ∈ 1, 2,Γ, D), and each
refractory function gi is characterized by an absolute refractory period τri within the total refractory
period τδi (i ∈ 1, 2). The general relationship among these parameters is: τ1 < τ2 < τD ∼ τΓ ≪ τd
and τδ1 ∼ τδ2 ≪ τd.

5
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As suggested by neuroscience, the hierarchical organization of integration time windows and delay
coupling are key mechanisms for cell assemblies (Buzsáki, 2010). These time-scale parameters
are treated as hyperparameters. For further details and ablation studies, refer to A.5.2. Generally,
the model’s performance is robust to variations in these timescale parameters within a reasonable
range. Lastly, DAE1 and DAE2 are pre-trained on part-object and whole-object datasets to perform
denoising, using a BCE loss function. These pre-trained DAEs function like pre-configured wiring in
the cortical columns (Buzsáki, 2019). Importantly, this pre-training only introduces priors for content
(e.g., what an object looks like), not structures (e.g., how the hierarchy is organized or how parts or
wholes are grouped). Therefore, the inference of part-whole structures is not guided by pre-training,
but is achieved by the dynamics of the Composer in a content-sensitive manner. For more details on
the training process, see A.6.

5 EVALUATION

Quantitative evaluation of the hierarchical structure is essential for verifying or falsifying models;
however, it is often lacking in most related works (Hinton et al., 2018; Garau et al., 2022; Sun et al.,
2021). The challenges arise from two main aspects: (1) real-world images typically lack explicit pars-
ing structures, and (2) measuring distributed hierarchical structures is non-trivial. These challenges
motivate us to develop synthetic datasets and metrics for explicitly evaluating the Composer.

5.1 DATASET

Figure 4: Exemplified samples in datasets:
(a) Ts (b) SHOPs (c) Squares (d) Double-
Digit MNIST. Top, input. Middle / Bottom,
ground truth of Wholes / Parts.

We created four synthetic part-whole datasets of vary-
ing complexities (Fig.4), each containing 60,000 sam-
ples. Each image comprises multiple whole objects,
with each whole object consisting of clearly defined
parts.

Ts dataset (Fig.4a) consists of 3 letter ⊤ and 3 reversed
letter ⊥ as whole-level objects. Each ⊤ or ⊥ is com-
posed of a horizontal bar and a vertical bar as parts.
The T s dataset contains a greater number of whole
objects in each scene. Similar stimuli are employed
as target templates in perceptual tasks in neuroscience
(Wolfe, 2021).

Squares dataset (Fig.4c) consists of 3 randomly located squares as whole objects, each composed
of 4 corners. The images in this dataset contain more parts compared to the previous one. Gestalt
psychology uses similar stimuli to study illusory contours (Lee & Nguyen, 2001).

SHOPs (short for Shoes (ii), House (i), OPera (iii) in Fig.4b) consists of 3 types of whole objects,
each further composed of elementary rectangles and triangles. This dataset captures the complexity
arising from overlapping parts that construct a whole, where overlapped pixels are not assigned to
either part in the ground truth (Fig.4b, bottom) due to their ambiguity of belonging.

Double-Digit MNIST (Fig.4d) contains 2 randomly located double digits, with each consisting of 2
closely placed MNIST digits. This dataset exhibits objects of higher complexity and diversity.

5.2 SCORES

How can we evaluate the nestedness in Fig.1d (right)? The underlying idea is that correlated cell
assemblies can be conceptualized as clusters of spike trains. Therefore, coherence measures for
clustering methods, such as the Silhouette Score (Rousseeuw, 1987), are appropriate candidates.
Accordingly, we introduce the Part Score and Whole Score to measure neuronal coherence within
each level:

Part Score = Silhouette(s1, s1,GT1,Dvp) (8)
Whole Score = Silhouette(s2, s2,GT2,Dvp) (9)

Here, s1, s2 represent collections of spike trains, while GT1,GT2 indicate the part / whole-level
ground truth for images (Fig.5a). Due to the one-to-one correspondence between image pixels and
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Figure 5: Intuitions of metrics. (a) Ideal nested structure (spike raster plot of two levels) given
the input (top). If random noises are added to (c) part-level, (d) whole-level, or (b) both levels,
corresponding scores degrades gradually from 1 to 0. If correlated noise are added to perturb the
hierarchical relation among part assemblies and whole assemblies, only nest score degrades. (b)∼(e):
Top, scores vs perturbation degree in each case; Bottom, exemplified perturbed spike pattern of
certain degree. See Fig.13∼Fig.16 for details.

spiking neurons in SCS, these ground truths can also be applied to spike trains. They are used exclu-
sively for evaluating representations, not for training purposes. The non-Euclidean Victor-Purpura
metric, Dvp (Victor & Purpura, 1996), evaluates distances among spike trains. Silhouette(a, b, L,D)
is the well-known Silhouette score (Rousseeuw, 1987) that quantifies inner-cluster coherence for
sets a and b (with a = b by default) based on cluster assignments L (each sample in a or b has been
assigned a cluster label l ∈ L ) and metric D (measuring distances between samples in a and b). A
higher Silhouette score signifies that data samples within the same cluster are closer together and
further apart from those in different clusters, reflecting more synchronous spike firings that encode
either parts or whole objects. This synchronization characterizes the degree of neuronal coherence
"within" each level.

To assess the nested structure, we conceptualize nestedness as the average proximity of whole-level
assemblies to all their constituent parts. It is crucial to consider s1 and s2 in conjunction to reflect
cross-level nestedness. Accordingly, we generalize the Silhouette to capture cross-level coherence,
defining Nest Score ∝ Silhouette(s1, s2,GT2,Dvp), which quantifies the coherence between part-
level spike trains s1 and whole-level spike trains s2 based on the whole-level cluster assignment
GT2 (refer to A.4 for a comprehensive explanation). Notably, the pixel-wise correspondence among
s1, s2,GT1,GT2 ensures comparability.

To elucidate the scores’ intuition, we systematically introduce noise to a manually crafted ideal nested
structure (Fig.5a) and monitor score changes. Perturbing only the part level leaves the Whole Score
unchanged, while the Part Score and Nest Score decline from 1 to 0 (Fig.5c); the reverse is true when
the whole level is perturbed (Fig.5d). Perturbing the relative order of part and whole assemblies to
disrupt nestedness significantly reduces the Nest Score, with the Part and Whole Scores remaining
stable (Fig.5e). Collectively, these three scores comprehensively reflect the structure of nested
neuronal coherence. More details are provided in A.4.5. Similar to the Silhouette Score, the optimal
coherence score is 1, with -1 indicating incoherence, and scores near 0 suggesting randomness.

6 EXPERIMENTS

6.1 QUALITATIVE RESULTS AND VISUALIZATION

Emergence of the “Neural Syntax” in SCS. Fig.6 illustrates a simulation on a random sample
from the SHOPs dataset. The convergence of the Part Score, Whole Score, and Nest Score in Fig.6b
indicates that the Composer progressively establishes neuronal coherence, where parts and wholes
are represented as synchronized cell assemblies. This is further depicted in Fig.6c (right) and Fig.6d.
In the final phase III, shown in Fig.6c (right), a periodic emergence of three two-level binary trees is
observed, corresponding to the three SHOPs objects in Fig.6a. One of these trees is delineated by
deep blue (for the whole object) and light blue (for part objects) boxes. The spikes in Fig.6c are sorted
and colored according to ground truth (Fig.6a) to enhance visualization. Notably, the representation

7
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Figure 6: Emergence of the part-whole hierarchy with nested neuronal coherence. Exemplified by
one SHOPs sample. (a) Input image and ground truth; (b) Evolution of the Scores. (c) The spike
raster plot of three selected phases in (b): phase I (initial, green box), phase II (middle, yellow box),
phase III (final, red box). s2(t), s1(t) stand for spiking representations in SCSs of whole/part levels.
(d) zoomed in spiking pattern during the period marked by black box in (c), to visualize what each
cell assembly represents (e.g. blue boxes in (c),(d)and(a)). (e) Evolution of the top-down attention
maps and the local field potential (LFP) during the three phases in (b).

Figure 7: Visualization of the emergent part-whole hierarchy on other datasets: (a) Ts (b) Squares (c)
Double-Digit MNIST. (In each sub-figure) Left: input image, part-level ground truth and whole-level
ground truth. Right: spike raster plot in final phase III, top for whole level and bottom for part level.
Cell assemblies are circled for clarification. See Fig.22∼Fig.29 for complete visualizations

structure (Fig.6c, right) is continuously inferred from initial uncertainty (Fig.6c, left), based on the
self-consistency among contents. For further visualization results, refer to A.9.3.

Emergence of the Hierarchical Attention Sequence is observed in Fig.6e: Initially starting from a
state of randomness (left), the cross-level feedback Γ and the inner-level feedback from DAEs γ1, γ2
progressively converge towards a sequential trajectory (Fig.6e). The high degree of similarity between
the assembly sequence (Fig.6c) and the attention sequence (Fig.6e) suggests a strong connection
between predictive top-down feedback and oscillatory cell assemblies, in alignment with the findings
from neuroscience research (Engel et al., 2001). Consequently, the top-down attention mechanisms
of the DAE, in conjunction with the bottom-up integration of spike activity within SCS, facilitate the
concurrent emergence of both the attention sequence and neuronal coherence, as well as the rhythmic
population activity denoted as LFP1 (Fig.6e).

Visualization Results on Other Datasets are shown in Fig.7. Interestingly, the emergent coherence
structure varies across different datasets. In the Ts dataset (comprising 6 Ts), 6 binary trees emerge
periodically, while in the Squares dataset (comprising 3 Squares), 3 quadtrees emerge. In the
Double-Digit MNIST (comprising 2 Double-MNISTs), 2 binary trees emerge. Overall, the Composer
effectively and flexibly represents the part-whole hierarchy of scenes with diverse complexities.
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Figure 8: Convergence of Scores. (a) SHOPs (b) Squares (c) Ts (d) Double-Digit MNIST.

Figure 9: Ablation study on SHOPs. (a) Loss vs Scores (b) Ablation of time scale parameters. See
Fig.17, Fig.20 for more results.

6.2 QUANTITATIVE ANALYSIS

Score Convergence across iterations is assessed using 100 random samples per dataset, as depicted
in Fig.8. Notably, scores converge consistently across all datasets with negligible error bars, though
the process varies. In Squares (Fig.8b), whole objects group more rapidly than parts, mirroring
human visual processing (Lee & Nguyen, 2001). In Ts (Fig.8c), the large object number places high
demands on cross-level coordination, resulting in a lagging Nest Score. In Double-Digit MNIST
(Fig.8d), the Composer faces greater challenges in distinguishing part-level MNIST digits, which is
partially attributable to the dataset’s diversity. See A.6.5 for details.

Figure 10: Benchmarking results on four datasets

Benchmarking. We compare the
Composer with a recently imple-
mented state-of-art model, the Ag-
glomerator (Garau et al., 2022), which
also aims to leverage the concept of
neuronal coherence (islands of iden-
tical vectors) to group neuronal rep-
resentations at different levels into a
hierarchical structure. Using 1000 ran-
dom samples and 5 random seeds, we
evaluate both the Composer and the
Agglomerator across the four datasets.
The coherence-based metric is natu-
rally extended to assess the perfor-
mance of the Agglomerator. As depicted in Fig.10, the Composer consistently outperforms the
Agglomerator on all datasets. Moreover, the Agglomerator did not successfully generate object-
centric representations at each level, which are essential prerequisites. This raises concerns about the
reliability of its parsing capabilities. For more details on the benchmarking, see Section A.8.

Ablation 1: DAE vs Coherence. Given that denoised feedback from DAE is a critical component
in the Composer, it is useful to investigate the correlation between the denoising efficacy of DAE
and the resulting scores. To this end, we pre-trained 100 pairs of DAEs on the SHOPs dataset–each
consisting of a part-level and a whole-level DAE–using an identical architecture but varied learning
rate, resulting in a range of denoising efficacies. These pre-trained DAE pairs were then integrated
into the Composer for parsing tasks. Fig.9a illustrates the relationship between the denoising loss of
the DAEs and the coherence scores. The figure indicate a strong positive correlation between lower
denoising loss and higher scores across all metrics, suggesting that the effectiveness of denoising
feedback is directly linked to the nested neuronal coherence achieved by the Composer.

9
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Ablation Study 2: Timescale Parameters. A key component within the Composer is the bio-
inspired constraints, primarily implemented as a series of time-scale parameters. To ascertain the
contribution of these constraints to the Composer’s performance, we conducted an ablation study
on these parameters using SHOPs dataset, as shown in Fig.9b, where each parameter is individually
ablated by setting it to zero. For instance, g = 0 indicates the elimination of the relative refractory
period and τd = 0 suggests the removal of inner-column feedback delay. In comparison to the
original model, all ablated models exhibit reduced scores. Notably, the removal of the inner-column
feedback delay τd, the whole-level refractory period τr2, and the cross-level feedback delay τd′

results in particularly detrimental effects, as evidenced by the reversal of the Nest Score. The results
suggest that the coupling delay, refractory period, and integration time window are all key factors that
contribute to the performance of the Composer. Further details on the ablation study can be found in
A.5.3.

7 RELATED WORK

Slot-based models represent a significant research direction for object-centric representation using
pre-defined discrete slots, as evidenced by works such as (Greff et al., 2015; 2016; 2017; 2019; 2020;
Locatello et al., 2020). This approach has also been extended to generate hierarchical structures in
graph neural networks (Han et al., 2022; Xu et al., 2017), generative models (Deng et al., 2021),
attention-based models (Sun et al., 2021; Fisher & Rao, 2022) or capsule networks (Hinton et al.,
2018). Nonetheless, the discrete and pre-defined nature of slots inherently restricts their capacity to
infer representation structures continuously from uncertainty in a content-sensitive manner, such as
determining the presence or number of objects. On the other hand, it is not clear how human brain
implements the boundary across slots and the weighting sharing required among slots (Greff et al.,
2020). Consequently, it poses a limitation in developing vision systems that closely mimic human
perception.

In this paper, we investigate mechanisms that eschew discrete and predefined slots in favor of
continuous, content-sensitive neuronal coherence. Although this concept has been sparingly explored
in machine learning, there are several intriguing related studies that define coherence in various ways:
(1) through the phase of complex values (Löwe et al., 2022), (2) by the timing of spike firings (Zheng
et al., 2022), and (3) via the rotation of features (Lowe et al., 2023). However, these works primarily
focus on single-level objects, neglecting the part-whole relationship. The Composer extends the
concept of spike timing to accommodate the part-whole hierarchy, but it is not apparent how the
complex-valued network (Löwe et al., 2022) and feature rotation (Lowe et al., 2023) could be adapted
to represent different levels of objects. This is because both approaches heavily rely on a specific form
of activation function as a binding mechanism, which lacks free parameters to differentiate between
levels, unlike the time scale parameters in the Composer. Finally, the ideology of identical islands of
vectors, as proposed by Hinton (2021) and implemented by Garau et al. (2022) holds promise for
representing part-whole relationships through the coherent orientation of vectors. However, despite
its ambitious goals, this approach currently lacks rigorous quantitative assessments to evaluate the
hierarchical structures, which are crucial for validating or challenging the representation hypothesis.

8 CONCLUSION

In this paper, we look for solutions to continuously represent part-whole hierarchy by neuronal
coherence. To achieve this, we merge insights from neuroscience with machine learning techniques to
create the cortical-inspired Composer. This system dynamically build-up “neural syntax” of “neural
words” through iterative bottom-up coincidence detection and top-down predictive attention. We
anticipate that the Composer will pave the way for a new paradigm that unifies neuroscience theories
with machine learning methods, aiming to develop a more human-like visual processing system in
the future. For a discussion on limitations and potential future directions, See A.1.
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A APPENDIX

In the main text, we leave out several details to make things self-contained within limited pages.
These details are organized in the Appendix as followings:

A.0.1 GENERAL DISCUSSIONS

We first discuss the “Limitation”, Broader Impact, and potential Future Work of this paper in
Section.A.1 and Section.A.2. Followed by showing the “Code Availability”, Section.A.3, where the
detailed realization of the model and main results can be found.

A.0.2 METRICS

Developing metrics to evaluate hierarchical relationship is a major challenge for this work. In the
main text, we mainly provide the intuitions of what is the metric and what each score measures. In
Section.A.4 (“Metric”), we provide a step-by-step introduction to how metrics are developed and
how can these metrics be generalized to account for broader works in the future.

A.0.3 HOW THE COMPOSER WORKS

While the intuition of the mechanism and the detailed architecture are introduced in the main text,
several additional information might be helpful to further capture the picture of how the Composer
works: (1) how the Composer is initialized? (2) What is the detailed configuration of time scale
parameters and the robustness of the Composer to varied time scale settings (ablation study and
sensitivity test). What is the contribution of time scale parameters to the Composer? (3) The training
details of DAE and the contribution of DAE to the Composer. (4) To what extent the Composer is
bio-plausible?

To resolve these potential questions, we show model details in Section.A.5 ∼ Section.A.7, including
“Initialization” in Section.A.5.1 and the “Time Scale” in Section.A.5.2. After that, we provide
“Training” details in Section.A.6. Additional ablation studies of times scale parameters and DAE are
provided in Section.A.5.3∼Section.A.5.4, and Section.A.6.5 respectively. Then we also enumerate
all the “Biological Motivations” and neural correlates of the Composer in Section.A.7.

A.0.4 BENCHMARK

We provide a brief introduction of the “Benmark” model and how the evaluation scores are naturally
generalized to this “non-spiking” model to evaluate the part-whole hierarchy in Section.A.8.

A.0.5 ADDITIONAL DISCUSSION OF THE MAIN-TEXT EXPERIMENTS AND ADDITIONAL
RESULTS

If the reader has confusions on the detailed setting about the main text experimental figures. We
provide supplementary discussions in Section.A.9.

A.0.6 MORE VISUALIZATIONS

We illustrate more detailed visualization results in Section.A.9.3 on different datasets (Fig.22 to
Fig.29). Failure cases are included.

A.0.7 ADDITIONAL RESULTS

We lastly provide two additional results to provide a preliminary answer to questions that may arise
when reading the main text: (1) Can composer generate different part-whole relationships given
an ambiguous image like Fig.1 and (2) Can the architecture in Fig.3 be extended into more levels?
Results on multiple solution can be found in A.9.4 and Fig.30. Results on more levels can be found
in A.9.5 and Fig.31.
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A.0.8 ANIMATION VIDEO

Since the dynamical process is best illustrated by dynamical visualizations, we provide a zip file
containing videos visualizing the dataflow of the Composer in SI , about 60MB to be downloaded.
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A.1 LIMITATION AND FUTURE WORK

In this section, we highlight several limitations that could be addressed in future works.

(1) Pixel-wise SCS as low-level feature layer and the Scalability

In this work, the part-whole hierarchy is represented and evaluated based on the pixel-wise spike
coding space (SCS), which has a one-to-one mapping to the image’s pixel space (topographical
mapping). Shared pixel-wise spatial map of s1, s2,GT1,GT2, x, γ1, γ2,Γ to the input image x
makes the spiking representation and the top-down attention much more interpretable so that the
part-whole hierarchy could be explicitly evaluated and visualized as Fig.6, Fig.7. Also different
object-level spiking pattern can be compared to compute the Nest Score. While topographical
mapping (a one-to-one spatial relation between internal representation to the external physical world)
is a common feature of the cortical representation, the representation (at each spatial point) could
be more abstract. For example, instead of a binary neuron associated with the “presence” of an
object occupying the location, a population of binary neurons can be assigned to each location, so
that different aspects of features (associated with the object at the corresponding location) could be
accounted for by the population vector. Assigning a population of neurons with locations is similar to
the capsule idea in Capsule Network (Hinton et al., 2018) and the mini-column organization in Hinton
(2021). This suggests a future direction to combine the neuronal synchrony (temporal coherence)
with identical islands of neurons (spatial coherence) in the GLOM architecture.

Besides, the object could be represented in the latent layer of the DAE instead of the pixel-level SCS
in each column, similar to the Slot Attention(Locatello et al., 2020). Representing objects in the latent
layer could enable transforms between levels as in GLOM, by replacing pixel-wise gating in this
paper into a neural network that potentially parameterizes a coordinate transformation. It is notable
that the underlining hypothesis is that all feature-levels and object-levels share a “topographical”
spatial map. The difference is what is being represented at each location (along feature level)
and how representations at different locations are correlated (along object-level). This is a natural
generalization of the representation hypothesis in Fig.1 in the Main Text.

Besides, the input to the SCS of the lowest level is not restricted to be the pixel-level image but
could be the output feature map of an encoder, which is called tokenization in Agglomerator (Garau
et al., 2022). This kind of generalization has also been discussed in Hinton (2021). Notably, recent
work shows that the gap between object-centric representation models (previously focused on
toy datasets) and real-world images can be bridged by pre-trained DINO model(Seitzer et al.,
2022; Lowe et al., 2023). By applying the pretrained DINO model (Caron et al., 2021) as front-end,
original model only need to deal with much lower-dimensional latent representations, which have
more similar structure as synthetic datasets. Seitzer et al. (2022) and Lowe et al. (2023) provides the
insights that seemingly toy models can be scaled to account for real-world dataset by applying proper
front-end encoders. For Composer, a general-front end is also applicable and how to scale the model
to account for neural syntax of more complicated scenes is a line of promising future works.

In sum, the limitation of the part-whole hierarchy as a pixel-level relationship in pixel-level SCS
could potentially be generalized in three directions: (1) To allocate each location a column of spiking
neurons to form a “representation column” at each location. (2) replacing the simplified cross-level
interaction between pixel-wise SCSs as a proper neural network between latent layers. (3) the input to
the model could be generalized to the tokenized embeddings from the front-end encoder (e.g. DINO
(Seitzer et al., 2022; Lowe et al., 2023; Caron et al., 2021)). Notably, all these generalizations are
compatible with the Composer and could be explored as future works.

(2) Coordination transformation

As originally motivated in a cognitive science view point (Hinton, 1979) and restated in machine
learning literature (Hinton, 2021), part-whole hierarchy contains two challenges: (1) the dynamical
emergence of the part-whole tree structure and (2) the implementation of a part-whole coordinate
transformation. The insight behind this paper is that the first challenge is the core challenge of the
problem while the latter one could be solved by implementing the transformation as a neural network.
In other words, the flexible forming of a symbolic tree structure (capable of capturing the basic nested
part-whole relationship) within a pure neural network is the hard problem that challenges the neural
network models. The second problem, implementing a coordinate transformation, is more compatible
with the neural networks: such transformation could be realized as a (feedforward) neural network.
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In this work, we focus on how to represent the part-whole hierarchy within a pure neural network
model through emergent nested neuronal coherence. The coordinate of objects is assumed to be
already aligned in a pixel-wise manner between the whole-level and part-level so that the coordination
transformation is reduced to the inclusion mapping (similar to identity mapping). However, since the
parsing tree is realized within a pure neural network, the mechanism is compatible with more general
coordination transformation: it could be realized by replacing the pixel-wise gating with a trainable
neural network, which parameterizes the coordinate transformation.

(3) How many level are there?

In the representation hypothesis, we separate the entire representation space into discrete number of
object levels. Therefore, different levels are explicitly distinguished before-hand. However, different
from “discrete slots to represent object”, the discretization of representation into levels is a reasonable
setting. The underlining hypothesis is that while object representation can be diverse and uncertain,
human-vision only accounts for very limited finite number of levels at each instant. Although there
are many object levels in the external world (from galaxy to atom), only a limited fraction of these
levels are mapped to the internal representation space to form perception. For example, Hinton (2021)
argued that 5 level is enough to account for human vision. The part-level and whole-level is a relative
concept, so that a given object can be represented in either level based on the context. In other word,
the internal finite number of object levels can be flexibly reused to account for different external
object levels. This argument is the motivation to discretize the representation space explicitly into
object-levels. But at each object level, objects are represented in a distributed manner, by neuronal
coherence, instead of slots. As a result, the hierarchical relationship is also represented in a distributed
manner.

In this paper, we show the part-whole hierarchy of two levels: whole and part. However, this minimal
structure could be naturally extended to account for more levels, since the form of interaction between
levels is mostly irrelevant to how many levels are there or which level it is in. All levels could share
a unified form of cross-level interaction and within-level interaction. Therefore, by stacking the
columns along the hierarchy, more levels are accounted for. As discussed in Hinton (2021), up to five
levels are sufficient to realize human-like vision.

(4) Synthetic image

In this paper, we use synthetic images to demonstrate how to represent the part-whole hierarchy. The
benefit of using the synthetic image is that: (1) a common sense reasonable part-whole relationship
is known beforehand as ground truth, therefore it is more convenient to explicitly evaluate the
representation and test the capability. (2) The ground truth assignment of objects (part/whole) is
known, which could be utilized to evaluate the neuronal coherence. The weak side of a ground
truth is that such explicit assignment of part-whole ignores the ambiguity of parsing the scene: the
parsing could depend on many factors like prior knowledge, attention, goal, internal state, and so on.
Besides, parsing a real-world image without explicit part-whole hierarchy might be challenging for
other reasons (overlap, background, etc.). However, recent models (Hinton et al., 2018; Sun et al.,
2021; Garau et al., 2022) that claim to solve the part-whole problem actually resemble performing
hierarchical feature extractions. Such confusion is partly due to the ambiguity of the part-whole
relation, object definition and the complexity of features in the real-world images, which confuse
the symbolic structure. Therefore, taking the present status of the problem1 and the challenges the
problem implicates2 into account, one desirable roadmap is to focus on explicit evaluation based on
synthetic data first (so that it is easier to interpret whether the mechanism works) and then gradually
generalize the outcome to increasingly complex datasets in the future.

(5) Learning scheme

In this work, we treat the “sense” of what the object should look like as prior knowledge embedding
in the parameters of DAE’s weight, which in turn determines the dynamical property of the Composer.
Indeed, such prior of prototype is needed for humans to parse a visual scene as well. For example,
given a visual scene of a face (Fig.1a), a human observer should have already had the concept of

1Representing the part-whole hierarchy in a pure neural network is still an unsolved problem (Hinton, 2021)
2In essence, the part-whole problem requires a general solution to the sub-neuro-symbolic architecture and

to realize hierarchical split of computational problem in a divide-and-conquer way. This paper explores the
temporal aspect of the solution.
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the eye, the nose, and the mouth in their mind, so that a face is parsed into wholes and parts. Here,
“what each object looks like” are treated as priors of content and the emergence of parsing structure
is treated as the inference of the representation structure. Therefore, in this work, we consider how a
hierarchical structure could emerge as hierarchical neuronal coherence in neural networks given the
prior knowledge of the content of objects. On the one hand, some of the priors are indeed hard-wired
in the brain through a long period of evolution (related to Gelstalt psychology (Wagemans et al.,
2012), like proximity, similarity, enclosure, continuation, closure, symmetry, common fate, etc.);
on the other hand, some of the others may be gradually learned during evolution. Therefore, the
learning scheme could be updated to capture how the part-whole hierarchy could emerge during the
unsupervised perception of the multi-object world.

One recent work to generalize DASBE shows that the pre-training (Zheng et al., 2022) in DASBE can
be naturally generalized to end-to-end unsupervised learning (Zheng et al., 2023) with an unsupervised
loss function to predict the external input (predictive coding). The oscillatory cell assemblies also
emerges, without any prior knowledge even for content! The insight is that: the model architecture in
this paper (delay-coupled column organization, time scale hierarchy) could be regarded as inductive
bias to encourage a hierarchically factorized representation during the unsupervised training of the
whole model as a recurrent spiking neural network to reconstruct what it sees on average during a
temporal period. More details are discussed in Section.A.6.4. It is promising future work to figure
out whether the “neural syntax” can be learned by simply predicting the visual input. This
picture is consistent with the neuroscientific hypothesis of “Cognition from Action”(Buzsáki et al.,
2014). Therefore, we could treat the Composer as a constructed solution of the “neural syntax” by
combining machine learning and neuroscience, and this solution provides the insights on how to learn
the solution from data via unsupervised training, similar to from constructing the “neural words” in
Zheng et al. (2022) to learning the “neural words” in Zheng et al. (2023). Taken together, we hope
the Composer provide a new paradigm to combine machine learning models3 and neuroscientific
hypothesis (cell assemblies and cortical dynamics) to (1) solve part-whole hierarchy in machine
learning field (in a bio-plausible way) and (2) understand how neural syntax emerges by predicting
the world (action or attention).

A.2 BROADER IMPACT

On the positive side, the model parses objects with neuronal coherence in the spike coding space
composed of spiking neurons without explicit supervision. The mechanism by principle is not limited
to a certain modality or certain object type. Thus, it may help develop human-like perception systems.
Besides, with biological relevant features (eg. delayed coupling) and phenomena (eg. synchrony /
neuronal coherence), the model may also act as a data-driven biological model to understand the
perception process in the brain.

On the negative side, since the model is not supervised, it is harder to control what it learns. The
current model is only trained on simple synthetic datasets and learns to group at the superficial pixel
level, therefore the representation is highly explainable. However, grouping in latent space on real-
world datasets requires to develop evaluation and visualization methods to make the representation in
latent space more understandable. We believe this may serve as a step toward more transparent and
interpretable predictions.

A.3 CODE AVAILABILITY

The source code for results in the paper and a video demonstrating the whole simulation process can
be found at:

https://drive.google.com/drive/folders/1GTHhpdafze6rExjD9NtV8beLfruMCMJR?usp=sharing.

3DAE can be generalized into more advanced models like BERT, Diffusion model, etc, which also perform
denoising.
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A.4 METRIC

In the main text, we introduced that the cell assemblies are treated as clusters of spike trains and
therefore, the neuronal coherence is measured as the inner-cluster coherence of clusters, based
on ground truth assignments. In this section, we further unfold how the metrics for quantitative
evaluations are defined based on the Silhouette Score, including the Part Score, Whole Score, and
Nest Score. Since the Silhouette Score is based on the similarity measure among samples, we
first introduce how the similarity among spike trains is measured, where the Victor-Purpura metric
shows up (Section.A.4.1). Then we introduce the Silhouette Score and how it could be extended to
account for varied aspects of the part-whole representation (Section.A.4.2∼Section.A.4.4). Detailed
perturbation study of metrics is included in Section.A.4.5. Finally, we discuss how the metrics can be
generalized to evaluate other models with similar attempts to group distributed representation into
objects by certain similarity measures (identical islands of vectors in Hinton (2021)), in Section.A.4.7.
Hyper-parameters for evaluation is shown in Table.1.

A.4.1 HOW TO MEASURE THE DISTANCE BETWEEN SPIKE TRAINS: VICTOR-PURPURA
METRIC

The Victor-Purpura metric (VP-metric) is a classical non-Euclidean metric to measure the distance
between arbitrary spike trains for evaluating the temporal coding in the visual cortex (Victor &
Purpura, 1996). The motivation is that spike trains can have varied length and of binary value, so
that the distance measure (like Euclidean metric) defined on fixed-length real-valued vector does not
apply, especially to capture the precise temporal structure of spikes. The idea is that spike train can be
treated as (binary) “Strings” and the distance from one spike train to the other can be defined as the
number (cost) of “operations” to transform one spike train to the other (“Edit distance” of Strings).

In Victor & Purpura (1996), three types of operations are identified (Fig.11): 1. add a spike (cost=1);
2. delete a spike (cost=1); 3. shift a spike for length ∆t (cost=∆t/τ ), where τ is a parameter to
control the temporal precision of the spiking code (or the temporal sensitivity of the metric). By
sequentially applying the three operations (T (u) in Fig.11), a spike train can be transformed to the
other. The Victor-Purpura distance is defined as the minimal cost to transform a spike train to the
other (Fig.11):

DV P (si, sj ; τ
−1) = minT (

|T |∑
u=1

cost(T (u))) (10)

T (u) ∈ {delete, add, shift} (11)

cost(delete) = cost(add) = 1 (12)

cost(shift,∆t; τ) = ∆t/τ (13)

where T (u), u = 1...|T | is a sequence of basic transformations to transform si to sj (or vice versa).
The costs of the three basic transformations are different. The most special one is the shift operation:
there is a time scale parameter to control the punishment of shifting the spike to its neighbourhood.

Notably, it is proved that the definition satisfies the three principles of a metric: positivity, symmetry,
and triangle inequality (Victor & Purpura, 1996). Thus, it induces a metric space of arbitrary spike
trains, even if not embedded in a vector space of specified dimension. Since spike trains are non-
Euclidean in nature, the VP-metric provides a more direct measure of these entities. The minimal
cost is computed through a dynamic programming method.

A desirable feature of VP-metric is that the parameter τ explicitly controls the temporal sensitivity of
the metric and the expected temporal precision to be considered. If the τ is chosen to be ∞, then
shifting a spike will cause no cost (1/∞ ∼ 0). Thus the distance is exclusively due to spike count4,
therefore spiking rate is measured. If the τ is chosen to be 0, then it measures the number of spikes

4All transforming cost comes from adding/deleting spikes
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Figure 11: The Victor-Purpura metric. Top: a sequence of transformations; Middle: the distance
between si and sj is defined as minimum cost to transform one to the other; Bottom: three basic
operations and their cost. Dashed bars are imaginary spikes which has been removed or has not been
added. Red bars highlight the results due to the transformation.

that are not in absolute synchrony 5. So small τ measures the spike train distance based on the very
precise temporal synchrony structure. By varying the τ , it is plausible to find the optimal coding
scheme of the visual cortex (Victor & Purpura, 1996). In sum, τ is treated as a timescale parameter,
to control the precision of temporal coding. In this paper, the part level is evaluated with smaller τ
(part-level time scale) while whole level are evaluated with larger τ (whole-level time scale). The
nestedness between the levels is evaluated with the time scale of the whole level (the child node
should stay within the time window of their parents.)

A.4.2 GENERAL COHERENCE MEASURE OF CLUSTERS: SILHOUETTE SCORE

The Silhouette coefficient (Rousseeuw, 1987) is a score to evaluate the quality of clustering
by measuring the inner-cluster coherence. Given a clustering assignment, the score is cal-
culated using average intra-cluster distance (a) and average nearest-cluster distance (b). The
score is computed as (b − a)/max(a, b). The document can be found at https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html. The best score is 1 and the
worst score is -1. The values near 0 indicate overlapping clusters.

A.4.3 VICTOR-PURPURA METRIC + SILHOUETTE SCORE

How could the neuronal coherence be measured? Given ground truth assignments of clusters (each
neuron belongs to which part or whole object), neuronal coherence (synchrony) is measured as the
inner-cluster coherence of spike trains: the “inner-cluster” similarity and “inter-cluster” separability.

Specifically, if we take (1) each neuron as a sample, (2) the spike train of each neuron as features,
(3) the ground truth assignment as the clustering assignment (each pixel on ground truth correspond
to a neuron in SCS), (4) the VP-metric as the distance measure, then, the inner-cluster coherence
(Silhouette Score) of the ground-truth-induced cluster assignment is exactly the coherence measure
of neuronal coherence. In other words, the high Silhouette Score indicates that the spike trains of
neurons of the same cell assembly are closer to each other in terms of VP-metric, which can be
interpreted as neurons in the same cell assembly synchronizing better. Therefore, the VP-induced
Silhouette Score sufficiently measures the grouping quality. The VP-induced Silhouette Score is
also from -1 to 1. The best value is 1 (perfect grouping) and values near 0 indicate overlapping
clusters (purely random firing without any temporal structure). Negative values generally indicate
that a sample has been assigned to the wrong cluster, as a different cluster is more similar (neurons
systematically synchronize to incorrect groups).

5only total synchronous spike trains have 0 distance while the slight shift of spikes has cost 1
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During the whole simulation, only a segment of simulation (after the convergence) is used for
evaluating the Silhouette Score, See Table.1. The length of segment can be flexibly selected as long
as it covers at least one oscillation period. In this work, we simply select one large enough length
value.

A.4.4 SCORES TO MEASURE THE PART-WHOLE HIERARCHY

Coherence scores are all defined based on the VP-Silhouette Score and Ground Truth assignment.

Part Score is defined as the VP-Silhouette score with respect to the part-level spiking pattern and the
part-level ground truth assignment:

Part Score = Silhouette(V P (spk1, spk1; τp), label1) (14)

where spk1 ∈ {0, 1}(N,τl) means the total spike trains in level 1 (part-level). τl is the length of each
spike train for evaluation and N is the number of (activated) neurons at part level. V P (spk1, spk1)
is the distance matrix whose elements (i, j) are the VP-distance between the i-th spike train and the
j-th spike train in the part level; The label1 means the ground truth assignment of neurons in level
1 (part-level). Silhouette is the Silhouette Score. τp is close to the (integration) time constant of
part-level (τ1) (Table.1), controlling the temporal sensitivity of VP-metric (eq.10). Therefore, the
Part Score measures the coherence level of the part level exclusively, independent of the activity
in the whole level. Part Score indicates the quality of the grouping of tree nodes in the part level
(Fig.14). For example, Part − Score = 1 indicates that neurons are synchronized perfectly into
separated groups corresponding to the part objects. On the other hand, Part Score = 0 indicates that
the neurons fire randomly and no temporal structure emerges (Fig.13∼Fig.15, bottom). In rare cases,
Part Score < 0 indicates that (on average) neurons with different assignments are synchronized and
neurons with the same assignments are not synchronized (Fig.16, bottom). Equation.14 is equivalent
to the definition of Part Score in the main text, but eq.14 reveals how the Part Score is practically
implemented. Same for other cases.

Whole Score are similarly defined as:

Whole Score = Silhouette(V P (spk2, spk2; τw), label2) (15)

where spk2 ∈ {0, 1}(N,τl) means the total spike trains of level 2 (whole-level). V P (spk2, spk2) is
the distance matrix whose elements (i, j) are the VP-distance between the i-th spike train and the j-th
spike train in the whole level; The label2 means the ground truth assignment of neurons in level 2
(whole-level). τw is close to the time constant of the whole-levelτ2: τw > τp (Table.1). The Whole
Score measures the grouping quality of tree nodes at whole-level (Fig.15).

On the one hand, the forming of tree nodes is a necessary condition to form the entire tree, so Part
Score and Whole Score are important measures of the representation. On the other hand, since the
Part Score and Whole Score measures the grouping in part/whole level independently (Fg.5cd in the
main text or Fig.14 ∼ Fig.15), they do not reveal the correlation between levels. For example, the
emergent cell assemblies can be arbitrarily permuted or translated (together) without affecting the
scores (Fg.5e in the main text or Fig.16). Obviously, such arbitrary operations are serious enough to
destroy a well-defined tree structure (Fig.16).

Therefore, we provide the additional score to capture the cross-level coordination: the Nest Score.

Nest Score is defined as the coherence score between part-level spiking patterns and whole-level
spiking patterns based on whole level assignments:

Nest Score = (4/3) · Silhouette(V P (spk1, spk2; τw), label2) (16)

where spk1, spk2 ∈ {0, 1}(N,τl) means the total spike trains of level 1 (part-level) and level 2 (whole
level) respectively. V P (spk1, spk2) is the distance matrix whose elements (i, j) are the VP-distance
between i-th spike train in the part level and j-th spike train in the whole level. (4/3) is a normalization
factor, introduced below.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: Illustration of the Nest Score. Each colored bar stands for a population of synchronized
neurons (cell assemblies).

Intuitively, the nestedness means that synchronized cell assemblies at the part-level are coordinated
within the lifetime of whole-level cell assemblies (Fig.1 in the main text). Therefore, it could be
formalized as the coherence measure between part-level spike trains and whole-level spike trains:
(b− a)/max(a, b). Here, a is the average distance between part-level spike trains and whole-level
spike trains that share the same whole-level assignment (Fig.12 top, green dashed box). b is the mean
distance between a whole-level spike train and the nearest part-level cell assemblies that the spike train
is not a part of (the averaged distance between sets, Fig.12 top, blue dashed box). This formulation is
similar to the Silhouette, but replaces the V P (spk1, spk1), V P (spk2, spk2) to the V P (spk1, spk2).
If the Nest Score is high, it means the part-level neurons s1 for the same whole-level objects (label2)
is correlated to whole-level neurons s2. This spatial-temporal structure can be translated into the
nestedness of cell assemblies across levels.

However, since part-level and whole-level should not be exactly the same, the derived (b −
a)/max(a, b) do not reach the 1 in best cases. To normalize the score into the range of (−1, 1), we
compute a compensatory factor — the “magic number”: 3/4. To simplify the problem, we assume
that in the ideal parsing case, both part-level and whole-level spikes are synchronized perfectly and
arranged uniformly along the time dimension (Fig.12 bottom). Assume the nearest time interval
between part-level and whole-level spikes is τ (Fig.12 bottom), then for a “perfect” binary tree
(Fig.12 a):

a = (τ + τ)/2 = τ (17)

b = (3τ + 5τ)/2 = 4τ (18)

Nest Score = (b− a)/max(a, b) = 3/4 (19)

and for a “perfect” quadtree (Fig.12 b):

a = (τ + τ + 3τ + 3τ)/4 = 2τ (20)

b = (5τ + 7τ + 9τ + 11τ)/4 = 8τ (21)

Nest Score = (b− a)/max(a, b) = 3/4 (22)
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Interestingly, in both ideal cases, the Nest Score is 3/4. As a result, we normalize the derived
Silhouette Score by a factor (3/4), which is exactly the eq.16. Here binary tree accounts for SHOPs, Ts,
and double-digit MNIST while quadtree accounts for the Squares. The validity of the normalization
is confirmed in Fig.5 or Fig.16, where Nest Score achieves 1 in ideal cases.

Lastly, the reason why it is valid to use whole-level assignment to ground both part-level and whole-
level neurons is that we have assumed a one-to-one spatial relation between part-level SCS and
whole-level SCS (topographical mapping to the physical world), and the complete object has a ’copy’
at each level along the hierarchy (main text). It is also a conventional assumption of the cortex
(Hinton, 2021).

A.4.5 PERTURBATION STUDY

In order to verify the proposed scores, we conduct a perturbation study in Fig.5 in the main text. Here,
we provide more details on how the perturbation is made and more discussions about the experiment
(Fig.13 ∼ Fig.16).

Given an input image and its ground truth as in Fig.5a, we firstly ’artificially’ build up the “perfectly”
nested spike pattern in two oscillation periods (whole period (2 · τtotal) is 54 time steps). More
specifically, all cell assemblies are synchronized almost perfectly and arranged uniformly along the
time axis as in Fig.12. Part-level cell assemblies are coordinated within the lifetime of whole-level
cell assemblies (Fig.5a). It is the ideal case, with 0 perturbation level in Fig.5bcde or Fig.13 ∼ Fig.16.

Then, for Fig.5bcd or Fig.13 ∼ Fig.15, we randomly and independently perturb the timing of spikes
into nearby time points:

ti −→ ti ±∆t, ∆tτ (23)

where ti is the spike timing of ith neuron, i ∈ N . N is the number of total considered neurons
(part-level or whole-level or both levels). τ is the timescale controlling the perturbation level. If
τ = 0, perturbation is zero. If τ equals half the length of the oscillation period (0.5 · τtotal), the
perturbation will lead to pure random firings like Fig.13 ∼ Fig.15, bottom. As a result, we define
the perturbation level in Fig.5bcd as τ/(0.5 · τtotal), ranging from 0% to 100%. A more detailed
perturbation process is shown in Fig.13 to Fig.15. In Fig.5b or Fig.13, the perturbation is applied to
both part and whole level so that all scores smoothly decrease from 1 to near 0. In Fig.5c or Fig.14,
the perturbation is only applied to the part level, so that the Whole Score is not affected but both Part
Score and Nest Score smoothly decrease from 1 to near 0. In Fig.5d or Fig.15, the perturbation is
only applied to the whole level, so that the Part Score is not affected but both Whole Score and Nest
Score smoothly decrease from 1 to near 0. In a word, in Fig.5c and Fig.5d (Fig.14 and Fig.15), we
isolatedly verify the property of Part / Whole Score, which shows that they are capable of capturing
the quality of node-level representation of a tree structure. In Fig.5b or Fig.13, we provide more
common cases where both part and whole level degrades, which shows that three scores consistently
measure the coherence of neuronal representation.

For Fig.5e or Fig.16, to isolatedly verify the role of Nest Score. We firstly build up perfect synchro-
nized cell assemblies as in the perfect nested case (Fig.5a), but then perturb the timing of each ’cell
assembly’ at different levels. All spikes within the same synchronized cell assembly are perturbed
with the same ∆t and different cell assemblies are perturbed by independent ∆t (Fig.5e top or Fig.16).
Similarly, we define perturbation level as τ/0.5 · (τtotal), where τ is the timescale controlling the
perturbation. A more detailed perturbation process is shown in Fig.16. As shown in Fig.5e or Fig.16,
the Nest Score decreases smoothly while Part / Whole Scores remain constant. Notably, the perturba-
tion can lead to wrong hierarchical coordination: whole-level cell assemblies are synchronized with
part-level cell assemblies of different assignments (incoherence). Thus, the Nest Score can decrease
into values even lower than 0.

A.4.6 THE SHIFT: FROM SYNCHRONIZATION TO POLYCHRONIZATION

In the neural system of the brain, the synchronization matters since the coincident arrival of spike
trains could have a much larger effect on the target neuron. Therefore, it is the “synchronization” in
the viewpoint of the reader neuron that really matters (Buzsáki, 2010). However, due to the diverse
axonal delay (tens of milliseconds) of different neurons, coincidently arrived spikes are usually fired
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Figure 13: Perturbation study by adding increasing random noise to both part-level and whole-
level spike patterns. Visualizations of the perturbed spiking pattern at different perturbation levels
(0%to100%) are shown, corresponding to the Fig.5b. Both part-level and whole-level gradually
degrades into random firings.
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Figure 14: Perturbation study by adding increasing random noise to only part-level spike patterns.
Visualizations of the perturbed spiking pattern at different perturbation levels (0%to100%) are shown,
corresponding to the Fig.5c. Part-level is degraded gradually while whole level remains unchanged.
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Figure 15: Perturbation study by adding increasing random noise to only whole-level spike patterns.
Visualizations of the perturbed spiking pattern at different perturbation levels (0%to100%) are shown,
corresponding to the Fig.5d. Whole-level is degraded gradually while part level remains unchanged.
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Figure 16: Perturbation study by adding increasing random noise to each assembly (both part-level
and whole level). Visualizations of the perturbed spiking pattern at different perturbation levels
(0%to100%) are shown, corresponding to the Fig.5e. Relative coordination among cell assemblies is
gradually changed while the synchronization of each cell assembly is unchanged.
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Table 1: Parameters of the evaluation. τp, τw is the time scale parameter for computing the VP-
distance in each case. Shift is the fixed modified time steps for computing Nest Score and for
visualization. The segment length of spike trains for (1) computing scores (τl) and (2) for visualization
is also shown.

Dataset Ts Squares SHOPs Double MNIST
τp 2 2 3 2
τw 6 7 6 4
shift 10 9 6 2
segment length (score,τl) 160 75 42 32
segment length (visualization) 200 100 100 70

at different timings, yet with fixed temporal shifts. This phenomenon is called polychonization, or
polychonized neuronal groups (PNG) (Izhikevich, 2006), which generalizes the concept of synchro-
nization and is a more natural outcome of a real-world neural system, with potentially heterogeneous
parameter settings. In other words, polychony and synchrony bear the same spirit of fixed temporal
correlation, but polychonization could tolerate a fixed temporal shift among spike timings. While in
an external observer’s viewpoint, two things are different, in the viewpoint of the internal readout
neuron, both can be the same thing.

In other words, if we shift all timing patterns with a fixed shift parameter, it is equivalent to the original
pattern in the sense that the temporal shift can be compensated by the fixed axonal delay when being
read out by a downstream module. Motivated by this fact, such slight fixed shifts are compensated
(ignored) before computing the Nest Score6. In other words, in the Composer, whole-level and
part-level cell assemblies are allowed to have a slight fixed temporal shift (translation slightly along
the time axis). The representation is regarded as unaffected as long as the shift is a constant (Table.1).

A.4.7 GENERALIZE TO EVALUATE OTHER MODELS

The metric proposed in this paper is also applicable to neural models that exploit similarity or
coherence measures to group neural representations into part-whole hierarchies. GLOM (Hinton,
2021) is one interesting example and its implementation, Agglomerator (Garau et al., 2022) is
compared as the benchmark. To measure the similarity among vectors, the Victor-Purpura metric is
not needed anymore. Therefore, it is more direct to take each vector as a sample and the different
dimensions of the vectors as the features in a clustering algorithm. In this way, three Silhouette-based
coherence measures of spike trains could be naturally generalized to account for real-valued vectors.
For example:

Part Score = Silhouette(D(lp, lp), label1) (24)

Whole Score = Silhouette(D(lw, lw), label2) (25)

Nest Score = α · Silhouette(D(lp, lw), label2) (26)

For GLOM (Hinton, 2021), lp and lw is the feature vector for each part-level column and whole-level
column7. Besides, Euclidean metric for real-valued vector suffice for measuring the similarity: D.

6Let s′i denotes the shifted spiking patterns of the original spiking pattern si, then: s′2(t) = s2(t+ shift)
while s′1(t) = s1(t). In other words, we slightly shift whole-level assemblies “backwards” relative to part-level
spiking patterns for computing the Nest Score and for visualization. In Fig.6, we shift the γi and Γ in the same
way for the same reason. The shift time step is very small and is a constant (Table.1)

7An interesting point is that the islands of identical vectors in GLOM are parallel to the correlated cell
assemblies in the Composer, as long as we take each temporally unfolded spike train as the (binary) vector in
each GLOM’s column.
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labeli is the ground-truth parsing8. α is a normalization factor that can be determined based on the
“ideal” case.

For complex-valued network(Löwe et al., 2022), which could potentially form compositional struc-
tures by similarity among the phase of complex values9. lp and lw is the phase vector for part-level
and whole-level. Similarly, Euclidean metric suffices for measuring the similarity among phase
vectors: D.

Taken together, the proposed metric can be generalized to evaluated related models that (1) represent
part-whole structure by certain type of coherence measure and (2) being tested on synthetic datasets
where ground truth is available.

8We are aware that the proposed coherence metric still requires the ground truth (labeli), which is a limitation
to evaluate the performance on real-valued datasets. However, evaluating grouping or parsing without ground
truth is a well-known big challenge for these fields and we leave this hard problem to future works.

9Currently, this line of work can not account for hierarchical object level since the grouping mechanism is
realized as special activation function, which can not be flexibly modified to, for example, distinguish different
object levels. In contrast, the time window of readout neurons in the Composer can be flexibly configured to
shape different dynamics for different part-whole levels.
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Table 2: Time scale constants of the Composer

Dataset Ts Squares SHOPs Double MNIST
T 3000 3000 3000 3000
τd 80 75 42 16
τδ1 36 36 20 16
τδ2 35 35 20 15
τr1 15 24 12 16
τr2 14 24 12 15
τ1 2 2 3 2
τ2 6 12 6 8
τD 18 30 10 8
τΓ 15 16 8 8
τd′ 80 75 42 16

A.5 HOW THE COMPOSER WORKS

In the main text, we introduced the architecture of the Composer, the neuroscientific motivation of the
architecture and the intuition of how the architecture generates the nested dynamics. However, while
in the main text, we briefly mentioned that time scale parameters and the priors in DAE contribute
to the emergence of part-whole structure, we leave out the details on parameter setting and training
scheme into this Section and the following Section. Besides, the ablation study in the main text
(for time scale parameter and for the DAE in Fig.9) is exemplified on one of the datasets for clarity,
leaving out similar results on other datasets into this Section and the following Section.

In this section, we provide more details about practical implementations on how the model works.
We first clarify the initialization of the dynamics in Section A.5.1 and Table.3. Then, we discuss the
time scale parameter settings (Table.2) and ablation of time scale parameters in Section.A.5.2 and
Section.A.5.4. In next Section.A.6, we provide training details of the DAE and more ablations about
DAE (Section.A.6.5). Taken together, a more complete picture of how different modules contribute
to the Composer is unfolded.

To have a intuitive impression of the dataflows in the Composer, a zip file containing videos visualizing
the dynamics of the Composer is provided in SI (60MB).

A.5.1 INITIALIZATION OF THE DYNAMICS

The dynamics of Composer is gated by the top-down feedback (output from DAE or integrated spikes
from higher-level SCS). However, at the initial phase, what should be the value of DAE output or
higher-level feedback? One simple solution is to initialize the feedback as (uniform) random noise.

To formulate, eq.1 and eq.4 in main text are slightly extended to clarify the initialization process:

ρ1(t) = x · (γ1 · Γ1 + r1(t) · ϵ1) (27)

ρ2 = (λ · x+ (1− λ) ·D) · (γ2 + r2(t) · ϵ2) (28)

where, the term ri(t) · ϵi is only for random initialization (See Table.3). ϵi is sampled from uniform
distribution U [0, 1] and ri(t) is the temporary amplitude of the noise, which is decayed rapidly along
the simulation (decay rate ∼ 0.8, Table.3). In other words,

ri(t) = ri · (0.8)−t/τd , i = 1, 2 (29)

where ri is the initial amplitude of the noise. During simulation, the noise is decayed every τd time
steps for simplicity.
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Table 3: hyper-parameters of the Composer (besides time scale constants). g (eq.2) is the (inhibitory)
gating effect of relative refractory period (τδ − τr), same for whole-level and part-level for simplicity.
λ in eq.4 describes the skip connection. r1, r2 describes the initialization (eq.29).

Dataset Ts Squares SHOPs Double MNIST
g 0.5 0.3 0.3 0
λ 0.3 0.4 0.4 0.4
noise decay 0.8 0.8 0.8 0.8
r1

1
40

2
3

1
9

1
8

r2
1
40

2
3

1
9

1
8

A.5.2 TIME SCALES

The Composer is inspired by the neural syntax hypothesis(Buzsáki, 2010), which argues that the
hierarchical organization of cell assemblies should be readout by hierarchical organization of time
windows. In fact, it is likely in the Composer that the hierarchical organization of time window also
encourages the emergence of hierarchical cell assemblies. Motivated by the hypothesis, spikes in SCS
are all integrated within a narrow time window (implemented as a integration function Ii of certain
time constant τi, i ∈ {1, 2, D,Γ}) before the downstream processing. The time scale parameters
related to the model are shown in Table.2, which has appeared in eq.1 to eq.7 in the main text. T is
the entire simulation length. τd is the coupling delay of the top-down feedback inside the column,
shared for both part-level and whole-level. τδ1 is the total refractory period of part-level spiking
neurons and τδ2 is that of the whole-level spiking neurons. τr1 is the absolute refractory period of
part-level spiking neurons and τr2 is that of the whole-level spiking neurons. τ1 is the integrative
time window from part-level SCS to part-level DAE (eq.3) and τ2 is that from the whole-level SCS to
whole-level DAE (eq.6). τD is the integrative time window from the part-level SCS to the whole-level
SCS (eq.7, right). τΓ is the time window of the top-down feedback from the whole-level SCS to
the part-level SCS (eq.7, left). τd′ is the coupling delay of the cross-level top-down feedback from
the whole-level SCS to the part-level SCS (eq.7, left). In this work, we set τd′ = τd for simplicity.
Roughly speaking, we have:

τd = τd′ > τδ1 ∼ τδ2 > τr1 ∼ τr2 > τ2 ∼ τD ∼ τΓ > τ1 (30)

Notably, part-level and whole-level columns are characterized by two timescale parameters (readout
time window of SCS): τ1 < τ2, which softly shape the timescale (fast or slow) of the intra-column
dynamics, which is inspired by the timescale hierarchy along the cortical hierarchy (Mahjoory et al.,
2019) and the neural syntax hypothesis (Buzsáki, 2010).

If we take each time step as 1 millisecond in the brain, then the refractory period τδ is around tens of
milliseconds and the absolute refractory period τr is around ten milliseconds. The coupling delay is
around 50 millisecond (Singer, 2021). The integrative time window matches that of the coincidence
detector (several millisecond (König et al., 1996)). The frequency of oscillatory activity is around ten
of milliseconds, within the Gamma band (Tallon-Baudry & Bertrand, 1999).

A.5.3 ABLATION STUDY OF THE TIMESCALE PARAMETERS

In Fig.9b in the main text, we provide the ablation study of the timescale parameters. Here we provide
more discussions (Fig.17).

Firstly, the coupling delay τd = τd′ is most essential for the capability of the Composer. As shown
in Fig.9 and Fig.17, once removed, the parsing representation fails directly. As motivated by the
neuroscientific studies on cortical dynamics (Singer, 2021), the delay coupling is also essential
for generating the proper dynamical states in the Composer. How to understand this? As shown
in Fig.2c,h, we need a chain of transient attractors to form a sequence oscillatory cell assemblies.
Therefore, the positive feedback (the top-down feedback from DAE or from higher-level SCS) is
desirable to wait for the modulated SCS neurons to recover from the refractory period. So that the
cell assemblies sequence becomes a stable attractive states of the column dynamics. This idea is
proved in (Zheng et al., 2022) for a single column. In general, the feedback delay provide a “time
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Figure 17: Ablation study on all datasets, providing additional results for Fig.9b in main text.
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window” for different metastable states to compete to emerge and disappear. It is notable that the
effect of delay is soft and the Composer is robust to the shift of delay within a reasonable range (See
Sensitivity Test).

Secondly, the refractory period (τr1, τr2) has a secondary effect on the Composer. As shown in
Fig.2c,h, the refractory period contributes to destroying the attractor dynamics (Fig.2b) to be transient
(Fig.2c). If the refractory period is removed, the nested oscillatory states are not likely to be stable
states any more. Therefore, all scores degrade for different degree.

Thirdly, the integration timescales (τ1, τ2, τD) also matters significantly. But the effect is relatively
soft. As argued in (Buzsáki, 2010), the time window of readout neurons determines what they can
“see”, which in turn determines what downstream modules (DAE) predict as top-down feedback. If
the time window is very narrow, it is less plausible for the readout to “see” larger spatial-temporal
scale coherence (or assemblies), which encodes higher-level objects. As a result, it is less likely to
provide top-down predictive feedback for high-level objects. Instead, low-level objects are more
likely to be captured by readout and top-down feedback. Taken together, the integration time window
shapes the spatial-temporal scale of the cell assembly sequences and the time scale of the network
dynamics (frequency of the oscillation).

Fourthly, the removal of the relative refractory period slightly degrades the nestedness of the Composer.
The explanation is that: Representing the part-whole hierarchy is a combinatorial problem in nature,
which needs to be iteratively “searched”. For example, when the object number increases as in the Ts
dataset, the number of assemblies increases. Given larger number of assemblies as tree nodes, the
possible configurations of the parse tree (correct or incorrect) gets exponentially larger. Therefore, the
searching becomes harder because the searching space enlarges exponentially. However, while hard
refractory period forces the system to switch among different states (spike fires at wrong timings),
the ’hardness’ could prevent efficient self-correcting once the system gets into a wrong state (because
the hard refractory period constraints the available next firing timing). Thus, introducing a relative
refractory period can help the system jump out of the local minimum, once it ’finds’ much better
states. It is likely that for this reason, enforcing g = 0 in Fig.9 in the main text slightly degrades the
Nest Score.

A.5.4 PARAMETER SENSITIVITY TEST

We provide a sensitivity test of parameters on SHOPs dataset in Fig.18. The score is relatively robust
with the perturbation of the parameters, as long as the parameter is within the suitable range described
by eq.30. Therefore, although including so many time scale hyper-parameters may be undesirable
for machine learning models, these hyper-parameters only “softly” influence the performance of the
Composer. Actually, we do not perform precise parameter tuning and these time scale parameters
are “minimally” required for a brain-inspired model that takes time-scale interactions into account.
In other words, we somehow need a time window to readout the spike in SCS, and that is all the
Composer requires. Since the time scale parameters have a relatively wide effective range, the
Composer is potentially generalizable to broadly bridge neuroscience and machine learning to study
human-like vision in the future.
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Figure 18: The sensitivity test of time scale parameters on SHOPs dataset. Black-dashed line
indicates the value used for the Composer in the main text (Table.2). The value of parameters are
perturbed to show how parsing degrades w.r.t parameter change. (a) The delay parameter of DAE
feedback, same for part / whole level; (b) entire refractory period for part-level; (c) entire refractory
period for whole level; (d)absolute refractory for part level; (e) absolute refractory for whole level; (f)
the inhibitory effect of the relative refractory function; (g) the integration time window for part-level
spiking neurons; (h) the integration window for whole-level spiking neurons; (i) the factor of the
partial influence from skip connection; (j) the integration time window from part-level to whole level;
(k) the integration time window from whole-level to part level; (l) the length of (spike train) segment
used for evaluating the parsing quality (Table.1).
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A.6 TRAINING DETAILS

A.6.1 RESOURCES

Our experiments have been performed on ubuntu 16.04.12 with devices: CPU (Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.4GHz) and 4×GeForce RTX 2080 Ti. The python version is 3.6.3.

A.6.2 NETWORK ARCHITECTURE AND TRAINING HYPERPARAMETERS

The details of training neural networks are shown in Table.4. All networks are trained with stochastic
gradient descent (SGD).

Table 4: Details of training DAE

Dataset encoder decoder [c]learning
rate noise [c]minibatch
size [c]epoch
num

[l]Ts
(part) [l]FC(1600, 1000)
Sigmoid() [l]FC(1000, 1600)
Sigmoid() 1e-3 0.5 16 200

[l]Ts
(whole) [l]FC(1600, 1000)
Sigmoid() [l]FC(1000, 1600)
Sigmoid() 1e-3 0.5 16 200

[l]Squares
(part) [l]FC(3600, 400)
Sigmoid() [l]FC(400, 3600)
Sigmoid() 1e-3 0.8 16 200

[l]Squares
(whole) [l]FC(3600, 400)
Sigmoid() [l]FC(400, 3600)
Sigmoid() 1e-3 0.6 16 200

[l]SHOPs
(part) [l]FC(3600, 400)
Sigmoid() [l]FC(400, 3600)
Sigmoid() 1e-3 0.7 16 200

[l]SHOPs
(whole) [l]FC(3600, 400)
Sigmoid() [l]FC(400, 3600)
Sigmoid() 1e-3 0.7 16 200

[l]Double-MNIST
(part) [l]FC(6400, 2000)
Sigmoid() [l]FC(2000, 6400)
Sigmoid() 1e-3 0.5 16 200

[l]Double-MNIST
(whole) [l]FC(6400, 2000)
Sigmoid() [l]FC(2000, 6400)
Sigmoid() 1e-3 0.5 16 200

A.6.3 DATASET FOR TRAINING DAE

The details of training dataset are shown in Table.5. Examples of the training data are visualized in
Fig.19. The setting of DAE training dataset follows the convention in Zheng et al. (2022).
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Figure 19: Examples of the training data to train part/whole level DAE.

Table 5: Training dataset details

Dataset Training size Input dimension [c]Object
number
[l]Ts (part) 60000 40× 40 1

[l]Ts (whole) 60000 40× 40 1

[l]Squares (part) 60000 60× 60 1

[l]Squares (whole) 60000 60× 60 1

[l]SHOPs (part) 20000 60× 60 1

[l]SHOPs (whole) 20000 60× 60 1

[l]Double-MNIST (part) 60000 80× 80 1

[l]Double-MNIST (whole) 60000 80× 80 1

A.6.4 LOSS FUNCTION

The DAE (either part or whole) are trained to minimize the MSE loss between the output of DAE and
original image:

loss(x) = (x−DAEi(x̃))
2, i = 1, 2 (31)

where x is the original single-object image in Fig.19. x̃ is the corrupted version of x. Notably, the
training of DAE has an unsupervised form and does not provide any explicit information on how to
bind distributed features into the tree nodes or to form the parsing tree (coordination of multi-level
tree nodes)10. These compositional structure all emerged during the simulation dynamics. All the
training does is to provide the minimal prior about what (on average) the object (part/whole) looks
like, so that the model could make sense of the multi-object scene at all. It is plausible that such priors
of “object prototype” also exist in the brain to help parse the scene. For example, before parsing the
face (Fig.1a in the main text), a person should have a prior about the eye, nose, and mouth. Such
prior of content should also influence the outcome of the parsing structure.

In this paper, we treated these senses of the object (part or whole) as prior knowledge and explored
how the parsing structure emerges on the condition of the prior knowledge. While some of the prior
may be hard-wired in the brain through evolution, others may also be learned during development.
The learning aspect of these priors is not discussed in this preliminary model, but recent work by
Zheng et al. (2023) provides insight into how it could potentially be achieved: the general architecture

10In other words, the pre-training is only for representation content instead of representation structure.
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Figure 20: Loss vs Score (additional results). (a)(b)(c) results on SHOPs dataset; (d)(e)(f) results on
Ts dataset. (a)(d) Relations between scores and total loss of part / whole level DAE (loss1 + loss2);
(b)(e) Relations between scores and total loss of part-level DAE (loss1); (c)(f) Relations between
scores and loss of whole-level DAE (loss2); All results are consistent.

in this work, including the explicit separation of columns levels, the delay-coupled-bottom-up-top-
down column architecture and hierarchical organization of time-scale constants, could be treated
as the “inductive bias” of the end-to-end training. On the one hand, these biological constraints
guarantee the nested states to be stable states of the network dynamics, given that the DAE is selective
for different level objects (part/whole). On the other hand, the limited time window may also bias
the DAE to “learn” to predict objects consistent with the scales of the time-window, because the
time window softly determines what DAE can see “clearly” (Zheng et al., 2023). Taken together,
instead of training DAE separately, we could treat the entire model as a recurrent spiking neural
network and train the model by back-propagation through time (BPTT) (Wu et al., 2018). The loss
function is only need to be modified minimally: the MSE loss between the entire scene (containing
multiple whole-level objects) and the averaged top-down feedback (eg.γ1(t), or Γ(t)). Due to the
constraint of hierarchical temporal structure of the model (inductive bias), it is more efficient to
learn a part-whole hierarchy representation to predict the whole image. Then, the single-object prior
is possible to be learned in a fully unsupervised manner. We leave it as a promising future work:
how neural syntax can be learned from predicting the external world, consistent with neuroscientific
hypothesis (Buzsáki et al., 2014).

A.6.5 ABLATION STUDY OF THE DAE

In Fig.9a, we conduct ablation studies to the DAE module in order to find out the relation between the
parsing scores and the total training loss of part-level and whole-level DAEs. We randomly selected
100 learning rates from (10−3, 1) and for each selected learning rate we trained one part-level DAE
and one whole-level DAE. So there are 100 part-level DAEs and 100 whole-level DAEs for each
dataset (100 DAE pairs). Then we evaluate the parsing score of the Composer equipped with each of
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the 100 DAE pair. Specifically, the x-axis in Fig.9a is the summed loss of both DAE1 and DAE2

that are trained with the same randomly selected learning rate. During the evaluation, exceptional
data points where loss gets unreasonably large due to sick learning rate are removed.

Lastly, we find that the overall relationship between the DAEs and Scores is consistent across datasets
and not closely dependent on which DAE is used for comparison. For example, we show more results
in Fig.20. The relationship is consistent across different cases. For this reason, we show one of the
results (Fig.20)a in the main text without losing generality.

Taken together, the positive relationship between lower denoising loss and higher scores indicates
that there are direct interplays between the DAE and the parsing ability of the Composer. It make
sense since the quality of DAE affects the quality of associatvive memory in Fig.2b and in turn affects
the quality of coherence structure in Fig.2c,h,i.
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A.7 BIO-PLAUSIBILITY

In this section, we list and provide detailed discussion about the biological correlates of the design of
the Composer in hope of inspiring future innovations.

1. Delay-coupled oscillatory neural network: In a recent work, Singer (2021) describes the
cerebral cortex as a delay-coupled recurrent oscillator network, which is very different from
the architecture in the deep learning field. In the Composer, such architecture is captured,
integrated within the deep learning framework, and acting as an essential ingredient of
the mechanism (Section.A.5.3). The coupling delay provide a time window for alternative
cell assemblies compete to emerge and disappear in order . In other words, the coupling
delay makes the system non-Markovian and of infinite dimension (approximately, see
Izhikevich (2006)), so that the coding scheme and the capability of associative memory is
much enlarged11

2. Feed-forward and feed-back pathway along the cortical hierarchy: In general, the cortex
is organized into similar columns (Douglas & Martin, 2004), which is composed of six
layers from layer I to layer VI (Fig.2d,g). Cortex are spatially organized corresponding
to the spatial structure of the external physical world and hierarchically organized into
levels. These basic features are captured in our model and act as essential elements for
representation hypothesis: the representation of the part-whole hierarchy depends on such
spatial and hierarchical organization. Notably, in a neurology paper (Markov et al., 2013),
the author also specifies the organization of the feedforward and feedback hierarchy. In
detail, there are recognizable feedforward and feedback pathways between layer II/III of
higher and lower level columns. This corresponds to the cross-level interaction between the
part-level SCS and whole-level SCS in our model. Lastly, Markov et al. (2013) also shows
that a long-distance feedforward path from lower level to high level exists in layer IIIb.
These are realized as the skip connections from external driving input (x) to the whole level
SCS layer in the Composer (eq.4). More generally, the feedback from higher levels contains
signals originating from both layer II/III and layer V/VI (corresponding to the latent space
in the Composer). It is left to future work to study the “cross-level” interaction between
pixel-level SCS and the latent space of DAEs.

3. Time scale hierarchy: Along the cortical hierarchy, there is a gradient of timescale hierarchy
(Mahjoory et al., 2019)—’We found that the dominant peak frequency in a brain area
decreases significantly, gradually and robustly along the posterior-anterior axis, following
the global cortical hierarchy from early sensory to higher order areas’. Such time scale
hierarchy is exploited in our model as the basis for representing hierarchical inclusion
relationships among part-level cell assemblies and whole-level cell assemblies. However,
since the frequency spectra are not unlimited, the capability of the part-whole representation
may be limited by the range of the total frequency bands. Here, we treat such limitation as a
shared weakness of our model and the brain, since the temporal resolution of cross-frequency
coupling has shown to be a constraint for the capability of working memory of humans
(7 ± 2) (Nicola & Clopath, 2019). Indeed, Hinton (2021) argued that human also has a
limited range of the hierarchy depth to represent instantaneously (∼ 5 levels). At least three
frequency bands could be explored in the future: gamma band, alpha band, and theta band.

4. Topographical mapping: As mentioned above, the spatial organization of the cortical
column has a topographical correspondence to the physical world, called the topographical
mapping (Eickhoff et al., 2017). Such location-wise representation is exploited in Hinton
(2021) as a core basis to represent the part-whole hierarchy and is similarly essential for
our model. The topographical relationship enables the representation of objects as a set of
(grouped) spatial regions with correlated activation patterns (grouped pixels with similar
spike trains in the Composer or grouped columns with identical vectors, so called “identical
islands of vectors” in GLOM). Besides, the location-wise representation also helps to clarify
the inclusion relationship between whole and part across the hierarchy, both in our model
and in GLOM. For example, the spatial region for part objects should also be spatially
covered by their whole objects. However, spatial organization itself is not sufficient to
represent part-whole hierarchy, because multiple co-activated features within the same level

11Each memory is realized as a trajectory instead of a single fixed point. The trajectory is the combination of
transient fixed points so that the attractive states "in-principle" expand combinatorially or exponentially.
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can lead to ambiguity (the binding problem see Malsburg (1994)). As a result, we need
similarity measure or coherence measure to specify “which is which”. This insight motivates
the representation hypothesis of both spatial hierarchy in terms of topographical mapping
and temporal hierarchy in terms of neuronal coherence.

5. Abstract away the cortical BU/TD processing as autoencoder: Predictive coding (Rao
& Ballard, 1999) was first proposed by Dana H. Ballard and Rajesh P. N. Rao to explain
the extra-classical receptive-field effects in primary visual cortex. Then, the predictive
coding theory was mapped to the canonical circuit of cortical circuit (Bastos et al., 2012)
and served as a unified theory of brain function (Friston, 2010). In the predictive coding
model, the bottom-up and top-down feedback attention (BU/TD) is formalized as the
autoencoder architecture, and the reconstruction error should be minimized to achieve
minimal “prediction error” or “surprise”. Such architecture is exploited in our model to
realize the inner-column bottom-up / top-down pathways (BU/TD) and reconstruction error
is minimized as the objective function of training. Interestingly, such predictive feedback
is also related to the temporal coherence both in the cortex (Engel et al., 2001) and in
the Composer. Interestingly, “abstracting away certain part of a dynamical system in
neuroscience as a learnable neural network” has the advantage of building-up more flexible
dynamical models by training on large datasets. Therefore, it is plausible to generate new
hypothesis beyond the traditional ones (Eckstein et al., 2023; Peterson et al., 2021).

6. Sparse code and dense code: The dual coding scheme in the cortical circuits has been
recognized when representing features: ultra-sparse coding in the superficial layer (layer
II/III) and dense coding in deeper layer (layer V/VI) (Tang et al., 2018; Wang, 2018). While
the latter encodes the statistical aspects of features, the former might additionally encodes
the relationships. In this work, the dual coding scheme is realized as the sparse spike code
in SCS and real-valued dense vector code in the DAE’s latent space. The synchrony in the
SCS additionally encodes the relationship among objects.

7. Relative refractory period: Strictly speaking, the absolute refractory period (ARP) refers to
the phase immediately after a spike initialization (∼ 2 ms). The later phase where a spike is
harder to be triggered (though not impossible) is referred to as the relative refractory period
(RRP) (Dayan & Abbott, 2001). If we take 1-time step as 1 millisecond in real-world time,
then the absolute refractory period is around 10 milliseconds (Table.2) in the Composer,
which is much longer than the strict absolute refractory period. Therefore, the picture
should be clarified as follows: the excitability of spiking neurons after a spike increases
gradually, in the form of 1− e−t/τ . At the beginning phase, the excitability is low enough
to prevent the neuron from firing a second spike given the conventional stimulus strength,
but since the excitability increases rapidly during this phase, the relative period length is
small compared to the whole refractory period. This beginning phase where the excitability
is low enough compared to the stimulus strength but of fast increasing rate is treated as
the absolute refractory period. In contrast, during the rest of the period, the excitability
has recovered to the extent where neurons might generate a second spike but with a much
lower probability. Since the recovery is much slower during the second phase, the temporal
range is much longer than that of the first phase. This slow recovery phase is modeled as
the relative refractory period in this work. The total refractory period can expand from tens
of milliseconds to much longer, depending on the channel type on the axon of the neuron
(Gerstner et al., 2014). On the other hand, it is also conventional in numerical modeling
that the absolute refractory period is modeled no less than 5 ms. In sum, the time scale of
refractoriness fits the conventional setting of biological systems.

8. Dentritic computation of pyramidal cell: The driving signal and modulatory signal are
distinguished in the cortical circuit (Lee & Sherman, 2010), where the driving signal acts
on the proximal site of dendrites (near to the soma) and the modulatory signal acts on the
distal sites (far from soma) (Spruston, 2008). The two types of inputs interact in a non-linear
way. Such non-linear interaction between driving input and modulatory input is captured as
the multiplication between the bottom-up integration and top-down modulation, realized as
the pyramidal cells in the SCS (Fig.3ab in the main text). Such a gating effect inside the
column is essential for the emergence of cell assemblies and the gating effect across levels
is essential for the coordination of cell assemblies into nested temporal structure, so called
nested neuronal coherence.
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9. Coincidence detector: Abeles (1982) argued that cortical neurons in superficial layers
are coincidence detectors, which detect sparse synchronous events within a narrow time
window. In our model, the time constant of the integrative time window is small (τ1 ∼
2ms, τ2 ∼ 5ms). As a result, the inner-level bottom-up integration of spiking activity in
the superficial layer (pixel-wise SCS) is modeled as coincidence detectors. Such a narrow
time window enables two things: (1) stochastic spikes fired at extremely adjacent time steps
should be detected as a single event; (2) the temporal resolution of the synchronous event is
kept within a small time-scale (∼ τ1, τ2). Both are important to form a high-quality parse
tree. Interestingly, a similar concept has also been developed in Hinton (2021), named as
’coincidence filtering’.

10. Meta-stability of cortical network: “...Single-trial analyses of ensemble activity in alert
animals demonstrate that cortical circuit dynamics evolve through temporal sequences of
metastable states. Metastability has been studied for its potential role in sensory coding,
memory, and decision-making. Yet, very little is known about the network mechanisms
responsible for its genesis...” (Mazzucato et al., 2015). In this work, we build such a system
of metastable states (Fig.2) by integrating the spiking neural network (SNN) and artificial
neural network (DAE as ANN) and further demonstrates its computational role in vision.

11. Neuronal assembly as code words: “A widely discussed hypothesis in neuroscience is that
transiently active ensembles of neurons, known as “cell assemblies,” underlie numerous
operations of the brain, from encoding memories to reasoning. However, the mechanisms
responsible for the formation and disbanding of cell assemblies and the temporal evolution
of cell assembly sequences are not well understood...I suggest that the hierarchical organi-
zation of cell assemblies may be regarded as a neural syntax...”(Buzsáki, 2010). Besides,
assemblies are shown to be able to realize arbitrary computation function (Papadimitriou
et al., 2019). By combining machine learning models and neuroscientific constraints, we
show how cell assembly can be transiently formed and disbanded, and be organized into a
sequence at each level, and be hierarchically organized into spatial-temporal nested structure
to express the neural syntax. More generally, various features, even of a continuous nature
are represented as neuronal assemblies in the brain (population binary code), this coding
scheme provides the basis to enable the Composer to deal with continuous features (RGB
color) in the future (Stockman, 2019). The reservoir of neuronal assemblies could be more
efficiently realized in neuromorphic devices (Pei et al., 2019) to account for larger range of
features. From the viewpoint of a recent paper on assembly formation (Miehl et al., 2022),
our model generate the assemblies by DAE-induced symmetry-breaking, which is one of
the mechanism for assembly-generation.

12. Temporal binding theory and feature integration theory: Temporal binding theory
(Engel & Singer, 2001; Malsburg, 1994) and feature integration theory (Wolfe, 2020) are
two mainstream theories to solve the binding problem: how distributed information is bound
together to form the whole. The former is based on time coding and neuronal synchrony
while the latter is based on top-down attention searching on a spatial map. The temporal
synchrony, temporal coding, top-down attention, and spatial map are all captured in this
model. Thus it is promising to explore whether it could serve as a canonical model to unify
the two theories.

13. The role of sequential / spatial attention: The binding of distributed features or the
segmentation of objects are also argued to be related to spatially-shift attentions (Roelfsema,
2023). In the Composer, such spatial / sequential attention co-emerges during the simulation
(Fig.6e). Beyond theories that only highlight the role of attention, we further treat sequential
attention and neuronal coherence as a “symbiotic couple”, and can be unified in a bigger
picture of associative memory: both attention and neuronal coherence are partial description
of certain-type associative memory (Fig.2). This bigger picture is consistent with recent
findings (Ramsauer et al., 2020), which suggests that associative memory and attention is
actually the same thing, but viewed from different angles.

14. Temporal-spatial theory of consciousness: “We postulate four different neuronal mecha-
nisms accounting for the different dimensions of consciousness: (i) “temporospatial nested-
ness” of the spontaneous activity accounts for the level/state of consciousness as the neural
predisposition of consciousness (NPC); (ii) “temporospatial alignment” of the pre-stimulus
activity accounts for the content/form of consciousness as the neural prerequisite of con-
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sciousness (preNCC); (iii) “temporo-spatial expansion” of early stimulus-induced activity
accounts for phenomenal consciousness as neural correlates of consciousness (NCC); (iv)

“temporo-spatial globalization” of late stimulus-induced activity accounts for the cognitive
features of consciousness as the neural consequence of consciousness (NCCcon).” (Northoff
& Huang, 2017). In this work, the temporospatial nestedness emerges and indicates the
perceptual awareness (eg. recognizing the part-whole relationship), and the temporospatial
alignment clarifies the content/form of the scene. The underlining assumption is that: the
perceptual awareness emerges only if a part-whole relationship (of a visual scene or of a
cognitive concept or of a plan or of a solution of certain problems) is well-organized in the
internal representation of the brain (neural syntax). The quality of the representation reflect
the “level of awareness” (eg. clear sight or dreamy sight). This assumption might be verified
or falsified in future works.

15. Gamma oscillation and perceptual awareness: “...One theory suggests that rhythmic
synchronization of neural discharges in the gamma band (around 40 Hz) may provide the
necessary spatial and temporal links that bind together the processing in different brain
areas to build a coherent percept. In this article we propose that this mechanism could
also be used more generally for the construction of object representations that are driven
by sensory input or internal, top-down processes...” (Tallon-Baudry & Bertrand, 1999). In
this work, the spiking activity in the SCS approximately oscillates at the gamma band (tens
of milliseconds if each time-step is regarded as 1 millisecond.) The gamma oscillation
dynamically groups neurons into object representations (the representation hypothesis in the
main text).

16. Preconfigured brain: In a recent “inside-out” conceptual framework of the brain, as
Gyorgy Buzaki put it—“...This is the organization I call the preformed or preconfigured
brain: a preexisting dictionary of nonsense words combined with internally generated
syntactical rules. The neuronal syntax with its hierarchically organized rhythms determines
the lengths of neuronal messages and shapes their combinations. Thus, brain syntax preexists
prior to meaningful content...“Preconfigured” usually means experience-independent. The
backbone of brain connectivity and its emerging dynamics are genetically defined. In a
broader sense, the term “preconfigured” or “preexisting” is also often used to refer to a
brain with an existing knowledge base, ....In the preconfigured brain model, learning is
a matching process, in which preexisting neuronal patterns, initially nonsensical to the
organism, acquire meaning with the help of experience...” (Buzsáki, 2019). Thus, the
well-trained DAE in this paper could be treated as an essential preconfigured structure due
to genetic codes or the life-long calibration of the sensory-action loop, which captures a
range of object prototypes. Plasticity may only provide a secondary role to increase the
precision of the ’good-enough’ model (Buzsáki, 2019). Overall, the Composer is highly
motivated by the Buzaki’s insights.

17. Plasticity: One of the designs that may depart from biology is that the connection weights
are trained based on a gradient-based method instead of a correlation-based method, like
Hebbian rule or spike timing plasticity (Gerstner et al., 2014). However, this could be
explained from two points of view. First, as argued above, the well-trained DAE could
be regarded as the preconfigured structure which is gradually searched from evolution
(amount to stochastic gradient-based search). Second, since the DAE structure in this
model is relatively simple, the training objective (minimizing reconstruction error, the
difference between input and feedback) could be interpreted as increasing the correlation
between sensory neurons and modulatory neurons, so that the gradient-based training equals
correlation-based plasticity. Indeed, Melchior & Wiskott (2019) shows that gradient-based
learning and Hebbian plasticity can be unified in case of a simple autoencoder. Further,
we could imagine that there is a two-stage learning algorithm, like the wake-sleep cycle:
during the day, the system infers entities based on learned weight, during the night, the
learned objects replay and the system efficiently updates the weight by association, which
corresponds to the training phase of the DAE. Similar treatment has also been discussed in
Hinton (2021).

18. Inner-layer recurrent connection: Another design feature that may depart from the
biological brain is that the spike coding space (SCS) itself is not recurrent in our model.
However, this could also be explained from at least two points of view. First, the feedforward
and recurrent connection usually have different functional roles in the cortical circuit,

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

and have different levels of domination. For example, layer IV in the visual cortex are
mainly feedforward and the recurrent effect are relatively weak. As a result, the inner-layer
recurrence of SCS are treated as secondary compared to the recurrence of inner-column
top-down feedback or inter-level top-down feedback. So that it is temporally ignored for
simplicity. Further, the localized inner-level recurrence may play a secondary role (different
from that of top-down feedback) to speed up the convergence by forming a grid frame (by
spatially-organized connection) to encode the prior of the proximity property of objects
(Gestalt principles(Wagemans et al., 2012)). Secondly, the entire two-layer column could
be recognized as a single layer, with DAE parameterizing the recurrent connection weight
among spiking neurons, similar to Dmitry Krotov’s idea in Kozachkov et al. (2023). And the
general mechanism still works. In other words, there is no restriction to view the two-level
system as a column or a layer. In either case, the models maintain their bio-plausibility.

19. Polychronization refers to the generalization of absolute synchronization into structured
asynchrony. As argued in Izhikevich (2006), due to the heterogeneity and conduction delay
of the neural system, polychrony is more plausible than absolute synchrony. While the
externally observed spike firing time is asynchronous, the arriving time of asynchronous
spikes to downstream readout neurons is (internally) synchronous. In other words, the shift in
spiking time is balanced out by the shift in conduction delay. According to the Buzsaki’s idea
(Buzsáki, 2010), the more rigorous definition of cell assemblies should be based on internal
observation (downstream readout neurons) instead of external observation (human observer).
Therefore, polychronous representation is in essence also synchronous representation. In
Composer, due to the cross-level coupling-delay the part-level cell assemblies and whole-
level cell assemblies seems to have a fixed temporal shift (Table.1). However, from a readout
neuron perspective (eg. SCS spiking neurons), the spike arrival of whole level feedback
(γ) is just in time to enslave the spike firing of part-level SCS neurons. For this reason, we
ignored the slight temporal shift when computing the score (Section.A.4.6). Besides, to
make the visualization more intuitive, we compensate the temporal shift for visualization
in Fig.6, Fig.7 in the main text: synchronization is more intuitive to capture the nestedness
than polychronization, although they all indicates the coherence state.
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Table 6: Scores of the Composer

Dataset Ts Squares SHOPs Double MNIST
Part Score 0.73± 0.005 0.67± 0.007 0.67± 0.008 0.17± 0.003
Whole Score 0.69± 0.001 0.87± 0.003 0.87± 0.003 0.39± 0.005
Nest Score 0.28± 0.004 0.81± 0.003 0.82± 0.004 0.39± 0.002

Table 7: Scores of the Agglomerator

Dataset Ts Squares SHOPs Double MNIST
Part Score −0.24± 0.002 −0.35± 0.002 −0.25± 0.001 −0.18± 0.003
Whole Score −0.28± 0.002 −0.16± 0.001 −00.18± 0.002 0.00± 0.001
Nest Score 0.40± 0.003 −0.37± 0.003 −0.36± 0.001 0.01± 0.004

A.8 BENCHMARKING

A.8.1 THE SCORES OF THE COMPOSER

Here we list the scores of the Composer corresponding to Fig.10 in the main text. The value in
Table.6 is the mean averaged scores on 1000 randomly selected samples and 5 random seeds are used.
The error bar is very low.

A.8.2 THE SCORES OF THE AGGLOMERATOR

Here we list the scores of the Agglomerator corresponding to Fig.10 in the main text. The value in
Table.7 is the mean averaged scores on 1000 randomly selected samples and 5 random seeds are used.
The error bar is very low.

A.8.3 INTRODUCING THE AGGLOMERATOR

The Agglomerator (Garau et al., 2022) is a GLOM (Hinton, 2021) inspired implementation to deal
with the part-whole hierarchy. The basic idea is to use similarity measures among vectors, which are
called columns, to dynamically group neural representation into "identical islands of vectors". The
spatial inclusion relationship among islands is interpreted as the part-whole hierarchy. We show the
simplified architecture and representation scheme of the Agglomerator in Fig.21, in case the reader is
not familiar with the model.

More specifically, columns are organized into different levels. At each level, columns are spatially
located on a grid mesh, like the topographical mapping. Different levels have different spatial scales,
reflected by different radii of horizontal connection among columns within the levels.

To put it in a nutshell, the Agglomerator also attempts to exploit (spatial) neuronal coherence
to dynamically form the tree node at each level and to coordinate the nodes naturally by spatial
nestedness. It is the comparability of the representation / architecture that we choose Agglomerator
as an appropriate benchmarks and recent SOTA. However, as shown in Table.7, they failed to form
the node-level representation at all in the four explicit datasets, indicated by the Part Score and Whole
Score lower than 0. Since in GLOM, hierarchical coordination is not reflected by the cross-level
similarity among vectors (but only by spatial relationship of islands), the Nest Score does not reveal
more insight except that representations between levels are not as coherent as in the Composer.

A.8.4 HOW COHERENCE IS MEASURED IN THE AGGLOMERATOR?

Actually, it is direct to generalize the coherence metrics to account for evaluating the identical islands:

Part Score = Silhouette(D2(lp, lp), label1) (32)

Whole Score = Silhouette(D2(lw, lw), label2) (33)

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Figure 21: Illustration of the architecture of the Agglomerator: How part-whole hierarchy should be
represented as spatially nested islands of identical vectors and how evaluation is achieved.

Nest Score = Silhouette(D2(lp, lw), label2) (34)

where D2 is the Euclidean distance metric, lp ∈ R(w∗h,d) is the part-level column representation. w
and h is the size of the grid mesh of columns, d is the dimension of each column. Here, the dimension
d is parallel to the time dimension in the Composer. If identical islands are formed, Part / Whole
Scores should reach values near 1.

A.8.5 THE ARCHITECTURE DETAIL OF THE AGGLOMERATOR

We bear the most parameters and architecture settings from the original paper. The detailed parameter
setting is shown in Table.8. An illustration of what these parameters refer to is shown in Fig.21.

Here, K = 3 is the number of levels, where the first level (bottom) is the output of the tokenizer and
only extracted features are represented at the bottom level. Therefore, we consider the second level
as the part-level and the third (top) level as the whole-level. T is the number of iteration steps.

d is the dimension of representation at each column and w, h are the width of the grid mesh of
columns (shared among levels). n = w ∗ h is the total number of columns. c is the input channel
number, since the datasets are all binary we choose the input channel number to be 1. W,H are the
size of the image. The max epoch = 100 is also consistent with the pre-training process in the original
paper. The evaluation is conducted after 100 epochs of the contrastive pre-training.

In this paragraph, we present a detailed description of the key networks employed in Agglomerator.
The network structure of the convolution tokenizer is outlined in Table 9. Within this table, the
variable ed denotes the embedding dimension of Agglomerator, which is specifically set to 12, 12, 5,
and 12 for SHOPs, Squares, Double-Digit-MNIST, and Ts datasets, respectively. The output of the
convolution tokenizer network is subsequently rearranged (reshaped) and fed into the bottom-up and
top-down column networks, which exhibit the structure presented in Table 10. Here, the variable d1
in the bottom-up column network is set to 96, 96, 250, and 96 for the four datasets accordingly; d1 in
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Table 8: Parameter details for benchmarking

Parameter Ts SHOPs Squares Double-Digit MNIST
K 3 3 3 3

d 48 48 48 125

T 5 5 5 5

w,h 10 15 15 8

c 1 1 1 1

max epoch 100 100 100 300

batch size 32 32 32 128

learning rate 0.05 0.05 0.05 0.05

W, H 40 60 60 80

[l]number of
training objects 6 3 3 2

the top-down column network is set to 48, 48, 125, and 48. d2 in the bottom-up network is set to
384, 384, 1000, and 384 respectively; d2 in the top-down network is set to 192, 192, 500, and 192.
Additionally, np signifies the number of patches (same as n = w ∗ h in Table.8) and takes the values
225, 225, 64, and 100, respectively. Lastly, the structure of the network utilized in contrastive learning
is depicted in Table 11. In this context, pd represents the patch dimension and assumes the values 48,
48, 125, and 48 for SHOPs, Squares, Double-Digit-MNIST, and Ts datasets, correspondingly. It is
worth noting that the np values remain consistent with the settings in column networks.

Table 9: Parameter details for convolution network

Network Structure
[l]Conv2d(1, ed // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
BatchNorm2d(ed // 2)
ReLU()
[l]Conv2d(ed // 2, ed // 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
BatchNorm2d(ed // 2)
ReLU()
[l]Conv2d(ed // 2, e_d, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
BatchNorm2d(ed // 2)
ReLU()
[l]MaxPool2d(kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

Table 10: Parameter details for column network

Network Structure
LayerNorm(np)
[l]Conv1d(d1, d2)
GELU (for bottom-up network) or Siren (for top-down network)
LayerNorm(np)
Conv1d(d2, d1)

A.8.6 DOWN-SCALING OF THE GROUND TRUTH

In the Agglomerator, original W ∗H images are firstly tokenized into n = w ∗ h patches, with w =
W/4 and h = H/4. These tokenized embeddings are treated as bottom-level column representations.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Table 11: Parameter details for contrastive head

Network Structure
LayerNorm(pd)
Dropout(p=0.3)
Rearrange(’b n d - b (n d)’)
LayerNorm(np * pd)
Dropout(p=0.3)
Linear(np * pd, np * pd)
LayerNorm(np * pd),
GELU()
LayerNorm(np * pd)
Dropout(p=0.3)
Linear(np * pd, 512)

Due to the down-sampling effect of the tokenizer, the number of columns is smaller than the original
pixels. Further, since the Agglomerator is super-computationally expensive, scaling as O(w4),
reserving the original dimensionality of images (w = W,h = W ) is not computationally plausible.
Therefore, we impose down-sampling to the ground truth with the same reduction ratio, so that the
dimension of column embedding (w × h× d) matches the down-sampled ground truth (w × h). The
down-sampling is based on majority rule.

A.8.7 THE FAILURE OF THE AGGLOMERATOR

As shown in Table.7, the Agglomerator failed in all cases. As far as we know, in the original
paper of the Agglomerator (Garau et al., 2022), the representation is not quantitatively evaluated in
terms of the hierarchical structure but for classification accuracy and object detection. Also, in the
visualization, the representation across levels is more likely to extract features at different scales,
instead of forming an interpretable part-whole hierarchy. As far as we understand, although the
motivation and basic idea of the representation hypothesis are very promising, the representation
hypothesis is not explicitly verified or falsified by quantitative metric. As shown in Table.7, it is
worth re-evaluating the parsing ability of the Agglomerator on images with more ’explicit’ part-whole
relationships and more appropriate ’quantitative metrics’ as we do.

Another explanation is the symmetry in our dataset. In the original paper, the seeming parsing of
different parts is likely due to the different colors associated with the parts. In other words, It is
observed that the Agglomerator only groups locations of similar color into islands (like feature
extraction), instead of parsing the object based on knowledge of the object-centric representation
(e.g. same object can have different colors and different objects can share the same color). To
put it in another way, the grouping in the Agglomerator is due to the external asymmetry in the
scene, e.g. different colors. However, in our dataset, all objects have the same color (black), and the
symmetry-breaking process for grouping needs to occur internally. Therefore, the symmetry (shared
color among objects) can challenge the Agglomerator to parse the scene.

On the other hand, failure on our synthetic dataset and metrics neither excludes its potential validity
in other cases nor excludes the possibility that it can be improved to solve the problems. Compared
with our model, the Aggglomerator’s architecture is more flexible in dealing with real-world images,
and training on larger real-world datasets can be very different from training on small-scale synthetic
datasets. Therefore, the limitation of our dataset and metric is also notable. Besides, the downsampling
of the ground truth is likely to magnify the failure of the Agglomerator since the Silhouette Score is
more sensitive to incoherence when the sample number is lower (w× h < W ×H). It is partially the
reason why the score tends to be lower than 0. However, the results indeed show that SOTA models
can fail when explicitly evaluated.

To put it in a nutshell, we highlight that the problem of representing part-whole hierarchy needs to be
more explicitly evaluated to verify or falsify the proposed model. As far as we know, representing the
part-whole hierarchy is far from being solved and combining real-world data and synthetic data is
essential to evaluate models in the future.
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A.9 DETAILS ON EXPERIMENTS AND ADDITIONAL RESULTS.

A.9.1 CONVERGENCE

In Fig.8, we show the convergence of scores along the iteration. 100 randomly selected samples are
used,and the score are evaluated every 100 time steps (so 3000/100=30 data point in total for each
score).

Convergence on the SHOPs dataset achieves the best overall results. However, the potential overlap
of part-level objects when composing the whole-level object imposes additional challenges on
recognizing the part-level objects, indicated by the relatively lower Part Score in Fig.8a.

Convergence on the Squares dataset is very interesting. On the one hand, the Whole Score takes the
lead all the time, indicating that global information is firstly recognized by the Composer, which is
very similar to human vision (Lee & Nguyen, 2001) and is also consistent with Gestalt psychology.
On the other hand, the Part Score and Nest Score undergo an initial descending period before going
up. Here, we explain this phenomenon: Compared with the very starting phase, where spikes
are randomly and densely fired, the emergence of whole-level squares around 500 ∼ 1000 time
steps provide new conditions on the part level. While this has benefits in the long run, it could
degrade the representation in the short run, because the Composer needs to rethink its representation
and make modifications. For example, the part-level firing becomes sparser, and there are more
incorrect synchronizations. This may degrade the part-level grouping and hierarchical coordination
(nestedness). In other words, the fact that each whole object is composed of four parts complicates
the self-correcting / searching process, after the whole-level objects are recognized. Fortunately, after
a short period of self-correcting, the Scores go up again and gradually converge to expected neuronal
coherence as in other cases.

Convergence on the Ts dataset is very challenging due to the object number is much larger. On the
one hand, the Composer needs to distinguish 6 wholes and 12 parts. On the other hand, 6 whole
objects and 12 part objects impose 612 potential combinations of part-whole relationships (each part
can choose to belong to one of the six wholes). Therefore, it takes time to search for / sample the
optimal configuration. Even if the parts/wholes are grouped by neuronal coherence, there is a high
possibility that the parts and wholes are not well coordinated to form proper nested structure. Since
the neural computation in the brain can also be regarded as sampling (Buesing et al., 2011), these
challenges may also cause problems in perception like the binding problem (Engel & Singer, 2001;
Von der Malsburg, 1999). Therefore, on the Ts dataset, the Nest Score lags behind the other scores.

Convergence on Double-Digit MNIST is also challenging for the Composer because the objects are of
much higher diversity. Therefore, it is harder for the Composer to clearly distinguish the objects and
to form well-synchronized cell assemblies. Therefore, the Part Score is lower than other scores and
the variance is higher than in other cases. However, it is surprising that the Composer still achieves
good parsing, indicated by the convergent Nest Score, even though objects are less recognizable.

A.9.2 VISUALIZATION

In Fig.6 in the main text, we visualize the spiking pattern, attention map, and local field potential
along the convergent process. To better visualize the cell assemblies, we reorder the index of neurons
on the y-axis (Fig.6c) so that neurons encoding the same object are close on the y-axis. Besides, in
order to distinguish different cell assemblies more clearly, we color the spikes based on the ground
truth assignment of the neurons in SCS (= pixels in the image), so that the color of the cell assembly
indicates what object the cell assembly represents. In other words, the represented objects can be
directly recognized by comparing the color of the cell assembly and ground truth. This fact can be
verified by comparing the circled cell assemblies in Fig.6c, the circled zoomed-in spike patterns
in Fig.6d, and the circled objects in the ground truth (Fig.6a). It is clear that the synchronized
cell assemblies gradually emerges from randomness along the simulation. Each synchronized cell
assembly represents the parts/wholes of the object. Cell assemblies at different levels are coordinated
properly according to the part-whole relationship.

Surprisingly, the emergent parsing tree reform itself during the dynamics in Fig.6 c: From phase
II to phase III, the part assemblies (colored by deep and light green) reversed their order! This
observation demonstrates the multi-stable property of the part-whole solution in the Composer, which
is a dynamical system in nature. This property is essential to account for the uncertainty and diversity
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Figure 22: Additional visualization on SHOPs dataset.

of the part-whole relationship and challenges most traditional artificial neural networks with only
feedforward connection or only by supervised training (Greff et al., 2020).

In Fig.6e, it is also observed that different types of top-down attention also emerge into structured
patterns. To keep consistent with Fig.6c, the neuron indexes are also reordered and the attention map
is also colored based on the ground truth. The depth of the color reflects the value of the attention
map. It is observed that the structured pattern has the same order as the spiking pattern, yet of
long timescales. This indicates that attention plays a role in modulating the spike timing in SCS.
However, such modulation is not single-way, but a iterative interplay between bottom-up integration
and top-down modulation. Therefore, both DAE and SCS play essential roles in solving the parsing
problem.

In Fig.6, we also shows the emergence of the oscilatory LFP at the part level, which is the summed
top-down feedback: LFP1(t) =

∑N
i=1 γ1i(t), where i is the neuron index in the part level.

A.9.3 MORE VISUALIZATIONS

In Fig.7, we briefly show the visualization results on other datasets. Here we provide more detailed
visualization results on the four datasets Fig.22 to Fig.29. Two cases are provided for each dataset,
including one normal case and one fail case.

We also provide a zip file containing videos to visualize temporal evolution of neuronal activities in
SI, about 60MB.
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Figure 23: Additional visualization on SHOPs dataset: The fail case, when objects sickly overlap.

Figure 24: Additional visualization on Squares dataset: Squares are not overlap.
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Figure 25: Additional visualization on Squares dataset: Two Squares heavily overlap but the nested
structure remains.

Figure 26: Additional visualization on Ts dataset. Colored circled indicates the coordinated cell
assemblies. Same color indicates the part-whole relationship.
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Figure 27: Additional visualization on Ts dataset. Nestedness is not as clear as fig.26.

Figure 28: Additional visualization on Double-Digit-MNIST dataset.
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Figure 29: Additional visualization on Double-Digit-MNIST dataset: Digits are crowded and the
coherence structure is weaker.

A.9.4 MULTI-STABILITY

In Fig.1 of the main text, we demonstrated one of the challenge of representing part-whole hierarchy
as the diverse interpretation of a given visual scene, based on self-consistency among contents. To
showcase that Composer is capable of generating multiple part-whole relationship given an ambiguous
visual scene, we uses a new dataset, Teris dataset. Part objects are squares, and whole objects are
composed of 4 squares in various ways (Fig.30). So there are 15 possibilities.

We follow the same training protocol as introduced in A.6. Then we test the parsing result given an
ambiguous image (Fig.30top-left), which is composed of two Teris objects. And there are alternative
interpretations, shown in Fig.30 middle and right respectively.

To visualize the part-whole structure of spiking activity, we assign a color to each block in the image
(Fig.30bottom-left), and color-code the neurons / spikes based on it. This process is similar to the
main text. However, since the whole-level grouping is ambiguous, there is no "ground truth" at all
and the coloring is only for visualization purpose.

Surprisingly, we observed that two different type of part-whole hierarchy emerges, corresponding to
different interpretation of the ambiguous image. This addiction result showcase the content-sensitive
structure inference ability of Composer.

A.9.5 THREE-LEVELS

As argued in the main text, the proposed framework can be generalized to more than 2 levels in
principle, because the columns and cross-level pathways can be reused for multiple levels. Here, we
provide an implementation of such generalization, where a three-level Composer are realized to parse
samples in the SHOPs dataset. For SHOPs, We take the whole scene as the additional level: scene
level.

As shown in Fig.31, hierarchically organized cell assemblies and hierarchical attention sequence
emerges. Since the top level is the whole scene, there is no need to switch. So the scene assemblies
slowly oscillate collectively and the top-level attention sustains. Here, for simplicity, we use whole-
level ground truth to color the neuron / spikes at the scene-level.
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Figure 30: The composer can infer different reasonable part-whole structures when the input is
“ambiguous” in terms of compositional structure. We train the model in a new Tetris dataset. Part
objects are squares, and whole objects are composed of 4 squares in various ways (15 possibilities).
Then when it tries to decompose the ambiguous input. Multiple part-whole structure emerges as
mentioned in Fig1 in main paper.

Figure 31: Extending the Composer to 3 levels to account for scene-level, the top-level neurons fires
coherently at slow time scale (s3(t)).

This additional result offers evidence that the Composer architecture is capable of being generalized
to additional levels.
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