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Abstract

Sequential learning methods such as active learning and Bayesian optimization select the
most informative data to learn about a task. In many medical or engineering applications,
the data selection is constrained by a priori unknown safety conditions. A promising line
of safe learning methods utilize Gaussian processes (GPs) to model the safety probability
and perform data selection in areas with high safety confidence. However, accurate safety
modeling requires prior knowledge or consumes data. In addition, the safety confidence
centers around the given observations, which leads to local exploration. As transferable
source knowledge is often available in safety critical experiments, we propose to consider
transfer safe sequential learning to accelerate the learning of safety. We further consider a
pre-computation of source components to reduce the additional computational load that
is introduced by incorporating source data. In this paper, we theoretically analyze the
maximum explorable safe regions of conventional safe learning methods. Furthermore, we
empirically demonstrate that our approach 1) learns a task with lower data consumption, 2)
globally explores multiple disjoint safe regions under guidance of the source knowledge, and
3) operates with computation comparable to conventional safe learning methods.

1 Introduction

Despite the great success of machine learning, accessing data is a non-trivial task. One prominent approach
is to consider experimental design (Lindley, 1956; Chaloner & Verdinelli, 1995; Brochu et al., 2010). In
particular, active learning (AL) (Krause et al., 2008; Kumar & Gupta, 2020) and Bayesian optimization
(BO) (Brochu et al., 2010; Snoek et al., 2012) resort to a sequential data selection process. The methods
initiate with a small amount of data, iteratively compute an acquisition function, query new data according
to the acquisition score, receive observations from the oracle, and update the belief, until the learning goal
is achieved, or until the acquisition budget is exhausted. These learning algorithms often utilize Gaussian
processes (GPs Rasmussen & Williams (2006)) as surrogate models for the acquisition computation.

In many applications such as spinal cord stimulation (Harkema et al., 2011) and robotic learning (Berkenkamp
et al., 2016; Dominik Baumann et al., 2021), the algorithms must respect some a priori unknown safety
concerns. One effective approach of performing safe learning is to model the safety constraints with additional
GPs (Sui et al., 2015; Schreiter et al., 2015; Zimmer et al., 2018; Yanan Sui et al., 2018; Matteo Turchetta
et al., 2019; Berkenkamp et al., 2020; Sergeyev et al., 2020; Dominik Baumann et al., 2021; Li et al., 2022).
The algorithms initiate with given safe observations. A safe set is then defined to restrict the exploration to
regions with high safety confidence. The safe set expands as the learning proceeds, and thus the explorable
area grows. Safe learning is also considered in related domains such as Markov Decision Processes (Matteo
Turchetta et al., 2019) and reinforcement learning (Garcia et al., 2015).

In this paper, we focus on GPs as they are often considered the gold-standard when it comes to calibrated
uncertainties. While such safe learning methods have achieved a huge impact, few challenges remain. Firstly,
GP priors need to be given prior to the exploration (Sui et al., 2015; Berkenkamp et al., 2016; 2020) or fitted
with initial data (note that accessing the data is expensive) (Schreiter et al., 2015; Zimmer et al., 2018; Li
et al., 2022). In addition, safe learning algorithms suffer from local exploration. GPs are typically smooth
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Figure 1: Illustration: safe sequential learning with transfer (top) and conventional (bottom) learning.

and the uncertainty increases beyond the reachable safe set boundary. Disconnected safe regions will be
classified as unsafe and will remain unexplored. We provide a detailed analysis and illustration of explorable
regions in Section 3. In reality, local exploration increases the effort of deploying safe learning algorithms
because the domain experts need to provide safe data from multiple safe regions.

Our contribution: As safe learning (Schreiter et al., 2015; Sui et al., 2015) is always initialized with
prior knowledge, we fairly assume correlated experiments have been performed and the results are available.
This assumption enables transfer learning (Figure 1), where the benefit is twofold: 1) exploration as well as
expansion of safe regions are significantly accelerated, and 2) the source task may provide guidance on safe
regions disconnected from the initial target data and thus helps us to explore globally. Concrete applications
are ubiquitous, including simulation to reality (Marco et al., 2017), serial production, and multi-fidelity
modeling (Li et al., 2020).

Transfer learning can be achieved by considering the source and target tasks jointly as multi-output GPs (Jour-
nel & Huijbregts, 1976; Alvarez et al., 2012). However, GPs are notorious for the cubic time complexity
due to the inversion of Gram matrices (Section 3). Large amount of source data thus introduce pronounced
computational time, which is often a bottleneck in real experiments. We further modularize the multi-output
GPs such that the source relevant components can be pre-computed and fixed. This alleviates the complexity
of multi-output GPs while the benefit is retained.

In summary, we 1) introduce the idea of transfer safe sequential learning supported by a thorough mathematical
formulation, 2) derive that conventional no-transfer approaches have an upper bound of explorable region, 3)
provide a modularized approach to multi-output GPs that can alleviate the computational burden of source
data, with our technique being more general than the previous method in Tighineanu et al. (2022), and 4)
demonstrate the empirical efficacy.

Related work: Safe learning is considered in many problems such as Markov Decision Processes (Matteo
Turchetta et al., 2019) and reinforcement learning (Garcia et al., 2015). In this paper, we focus on GP
learning problems. In Gelbart et al. (2014); Hernandez-Lobato et al. (2015); Herndndez-Lobato et al. (2016),
the authors investigated constrained learning with GPs. The authors integrated constraints directly into
the acquisition function (e.g. discounting the acquisition score by the probability of constraint violation).
These works do not exclude unsafe data from the search pool, and the experimenting examples are mostly
not safety critical. A safe set concept was introduced for safe BO (Sui et al., 2015) and safe AL (Schreiter
et al., 2015). The concept was then extended to BO with multiple safety constraints (Berkenkamp et al.,
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2020), to AL for time series modeling (Zimmer et al., 2018), and to AL for multi-output problems (Li et al.,
2022). For safe BO, Sui et al. Yanan Sui et al. (2018) proposed to conduct the safe set exploration and
BO in two distinguished stages. All of these methods suffer from local exploration (Section 3). Sergeyev
et al. (2020) considered disjoint safe regions, assuming regions separated only by a small gap where the
constraint function(s), with the noise, shortly goes beneath (but still close to) the safety threshold. Dominik
Baumann et al. (2021) proposed a global safe BO method on dynamical systems, assuming that unsafe areas
are approached slowly enough and that there exists an intervention mechanism which stops the system quickly
enough. None of these methods exploits transfer safe learning which can allow for global exploration on any
systems given prior source knowledge.

Transfer learning and multi-task learning have caught increasing attention. In particular, multi-output GP
methods have been developed for multi-task BO (Swersky et al., 2013; Poloczek et al., 2017), sim-to-real
transfer for BO (Marco et al., 2017), and multi-task AL (Zhang et al., 2016). However, GPs have time
complexity cubic to the number of observations, competed by multiple outputs. In Tighineanu et al. (2022),
the authors assume a specific structure of the multi-output kernel, and factorize the computation with an
ensembling technique. This eases the computational burdens for transfer sequential learning. In our paper,
we propose a modularized transfer safe learning to facilitate real experiments while avoiding cubic complexity.
Our modularization technique can be generalized to arbitrary multi-output kernels.

Paper structure: The remaining of this paper is structured as follows: we provide the goal of safe
sequential learning in Section 2; in Section 3, we introduce the background and analyze the local exploration
problem of safe learning; Section 4 elaborates our approach under a transfer learning scenario; Section 5 is
the experimental study; finally, we conclude our paper in Section 6.

2 Problem statement

Preliminary: Throughout this paper, we inspect regression output and safety values. Each input « €
X C RP has a corresponding noisy regression output y € R and the corresponding noisy safety values jointly
expressed as a vector z = (z!,...,27) € R/,

Assumption 2.1. y = f(x) + €f,27 = ¢’(x) + €45, where ef ~ N (0,0]%), €qi ™~ ./\/(O,ogj). In addition,

ys = fs(®s) + €5, 2 = ¢d(xs) + €, Where ef ~ N(O,ai), €5 ~ N(O,a?). {f, ¢’} are our target
black-box function and safety functions; {fs, ¢l } are our source main and safety functions, where s is the
index of source task(s).

The source and target tasks may have different numbers of safety conditions, but we can add trivial constraints
(e.g. 1 > —00) to any of the tasks in order to have the same number of constraints J. The notation is
summarized in Table 1.

Safe learning problem statement: We are given a small number of safe observations Dy

init

{wliNmuayl:Nmit’ZliNmit}’ wliNim‘Jt = {m17"'7wNinit} c A/]’ Y1:Ninsw = {ylv"'vmeit}J gNR and safety
: . 1 . 1 . — — 1 init

observations zi.n,.,, = (2% .., 2" )N = (zI:Nm“,...,zl:Nm,it)_ = {z, = (z,.., 2z5) 2y, In prac-

tice, the initial data usually meet the safety constraints, i.e. 2z > Tj for all observation index n and
1 1 s H source J—

constraint index j. We are further given source data D" = {Zs1.N,,urce Us,1:Nauree s 28,1 Napuree J»

T, 1:Neguree = 1%s5,1s - T, Nopurce ] S Xy YsliNopuree = 1Ys,ls s Ys,Noouree ] & Ry Z51Njpuree = {20 =

(z;,n7 ,z;’n)|n = 1,.e; Nyource} € R7, and Ngouree is the number of all source data points. In our main

paper, we consider only one source task for simplicity, while Appendix E provides formulation and ablation
studies on more source tasks. We assume Ngyrce 18 large enough, and we do not need to explore for the source
task. This is often the case when there is plenty of data from previous versions of systems or prototypes.
Notably, the source data do not need to be measured with the same safety constraints as the target task. For
example, in a sim-to-real transfer (Marco et al., 2017), the source dataset can be obtained unconstrained.

The goal is to evaluate the function f : X — R where each evaluation is expensive. In each iteration, we
select a point @, € Xpoor C X to evaluate. &ppor € X is the search pool which can be the entire space X or a
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Table 1: Key notation

Symbols | Meaning
Dy ={z1.n,y1.N, 21.~n } | dataset of the target task, N = Njnit, ..., Ninit + num__steps
z{ N = {z{ , .y 2%} | safety observations of the j-th constraint (unknown function ¢7)
z1.n = (215, s 2{.n) | safety observations of all constraints jointly
Devree | dataset of the source task {5 1:N,ouree s Us,1: Novuree s 25,1 Noource |

Nsource

y = f(x) + €5 | observation of unknown function f ~ GP(0,ks),ef ~ N (07 UJ%)

2l = ¢J(x) 4+ €, | observation of unknown constraint ¢/ ~ GP(0, kg ), €45 ~ N (0, USJ)
¢’ (x) > T; | j-th safety condition

ys = fs(xs) + €5, | source task observation prior fs ~ GP(0,ky,), e, ~ N (0, 0]205)

2] = ql(x,) + €, | source task constraint prior gl ~ GP(0, kyi)eg ~N (O, 0})
f: X x {task indices} — R | fs and f jointly as a multi-task function
q’ : X x {task indices} -+ R | ¢ and ¢ jointly as a multi-task function

f ~GP(0,ky¢) | multi-task GP prior, kernel kf parameterized by 87 = (6;,,60)
g ~GP (O, kqj) multi-task GP prior, kernel kg; parameterized by 84 = (qu 045)

predefined subspace of X', depending on the applications. This selection should respect the a priori unknown
safety constraints Vj = 1,...,J, ¢/ (z,) > T;, where true ¢’ are inaccessible. Then, a budget consuming
labeling process occurs, and we obtain a noisy ¥, and noisy safety values z,. The labeled points are then
added to Dy;,,,, (observed dataset becomes Dy, ,,+1), and we proceed to the next iterations (Algorithm 1).
In the following, IV will be the size of observed dataset of the target task, and it varies from Nj,;; to
Ninit + num__steps (number of AL steps, i.e. AL budget). The notation is summarized in Table 1.

This problem formulation applies to both AL and BO. In this paper, we focus on AL problems. The goal
is using the evaluations to make accurate predictions f(X), and the points we select would favor general
understanding over space X', up to the safety constraints.

3 Background & local exploration of safe learning methods

In this section, we introduce GPs, safe learning algorithms for GPs, and then provide detailed analysis and
illustration of the local exploration problem.

Gaussian processes (GPs): A GP is a stochastic process specified by a mean and a kernel function (Ras-
mussen & Williams, 2006; Kanagawa et al., 2018; Schoelkopf & Smola, 2002). Without loss of generality, we
assume the GPs have zero mean. In addition, without prior knowledge to the data, it is common to assume
the governing kernels are stationary.

Assumption 3.1. For g = f,q',....q7, g ~ GP(0,k,) and ky(z,2’) == ky(x — ') < 1 are stationary.

Bounding the kernels by 1 provides advantages in theoretical analysis (Srinivas et al., 2012) and is not
restrictive because the data are usually normalized to zero mean and unit variance.

The GP assumptions (Assumption 2.1 and Assumption 3.1) indicate that each of {f,¢',...,¢”} has a
predictive distribution given as the following. We write down the distribution for f at a test point x., while
the distributions of ¢/ can be obtained by replacing f with ¢/ and yi.x with z{ y: p (f(z.)|T1.8, y1:8) =

N (g (@.),0% (@),

fop, N (Ts)

‘7;,1\/(5‘3*)

—1
pen =k(zin, )’ (Kf + UJZJ) Y1:N s
N — kf

—1
0]20 ($*,$*)—kf(w1:N7$*)T (Kf-I-OJQJ) kr(x1.n, ),
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where kf(z1.n, ) = (kf(z1,2s), ... kf(zy, x.)) € RV*1 and Ky € RV*N is a matrix with [K/]
ky(x;, ;). Typically, ks is parameterized and can be fitted together with O'ch.

ij

Safe learning: A core of safe learning methods (Sui et al., 2015; Yanan Sui et al., 2018; Berkenkamp et al.,
2020; Dominik Baumann et al., 2021) is to compare the safety confidence bounds with the thresholds and
define a safe set Sy C Xpoor as

Sy = N_1{z € Xpoot|pigs v (®) — B %0 n(z) > Tj}, (2)

where 8 € RT is a parameter for probabilistic tolerance control (Sui et al., 2015; Berkenkamp et al., 2020). This
definition is equivalent to V& € Sy, p (¢ () = T1, ...,q' () > Ty) > (1 — @)’ when a = 1—®(3'/2) (Schreiter
et al., 2015; Zimmer et al., 2018; Li et al., 2022).

In each iteration, a new point is queried by mapping safe candidate inputs to acquisition scores:
T, = argmax,cgs, o (x|Dy), (3)

where Dy is the current observed dataset and a is an acquisition function. In AL problems, a prominent
acquisition function is the predictive entropy: a(x|Dy) = Hy [z|Dy] = % log (271'60’?»’]\,(:8)) (Schreiter et al.,
2015; Zimmer et al., 2018; Li et al., 2022). We use a(@|Dn) = > c(; 41,47} Hg [®|Dn] to accelerate the
exploration of safety models. It is possible to exchange the acquisition function by the SafeOpt criteria for
safe BO problems (Sui et al., 2015; Berkenkamp et al., 2020; Rothfuss et al., 2022)).

Remark 3.2. Notably, solving such a constrained optimization (Equation (3)) is challenging. In the
literature (Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022; Sui et al., 2015; Berkenkamp et al., 2020),
this is solved on a discrete pool with finite elements, i.e. Npoor = |Xpoot| < 00. One would apply Equation (1)
to the entire pool X0, to determine the safe set, then optimize the acquisition scores over the safe set. The
time complexity of making GP inference is O (NpootN?) + O (N?). Note that we compute the pool only once
to solve Equation (3). Usually, the size of the discretized pool is not the main computational bottleneck, e.g.
Npool can be up to perhaps tens or hundreds of thousands. The main bottleneck is still the training of GPs
which will be described later. Training a GP takes O (N 3) for multiple times. This factor depends on the
optimizer, the number of kernel parameters, and numerical stability. Often, the complexity of training is
significantly larger than making a GP inference, despite Npoo much larger than V.

In our paper, we inherit this finite discrete pool setting. The whole learning process is summarized
in Algorithm 1.

Algorithm 1 Sequential Learning

Require: Dy, ;,, Xpoot, B o o
1: for N = Ninity ...y Ninst + num__steps do

2: Fit GPs (kf,kqj,O'JQz,O'gj)

3: T, ¢ argmax,cs, a(x|Dy)

4: Evaluate at x, to get y. and z,

5: DN+1 — DN U {13*, Yxs Z*}, Xpool — Xpool \ {17*}
6: end for

Safe learning suffer from local exploration: In this section, we analyze the upper bound of explorable
safe regions. Commonly used stationary kernels (Assumption 3.1) measure the difference of a pair of points
while the actual point values do not matter. These kernels have the property that closer points correlate
strongly while distant points result in small kernel values. We first formulate this property as the following
assumption.

Assumption 3.3. Given a kernel function k : X x X = R, assume V§ > 0, Ir > 0 s.t. [z — /|| > r =
k(x,z’) < § under L2 norm.

We provide expression of popular stationary kernels (RBF kernel and Matérn kernels), as well as their
relations between input distance r and covariance ¢ in the Appendix B.3.
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In the following, we derive a theorem showing that standard kernels only allow local exploration of safety
regions. The main idea is: when a point x, is far away from the observations, we can get very small ¢ (i.e.
small covariance measured by kernel). Thus the prediction at @, is weakly correlated to the observations. As
a result, the predictive mean is close to zero (prior) and the predictive uncertainty is large, both of which

imply that the method has small safety confidence, i.e. p ((qj (z.) > Tj)|z1.N, z{;N) is small. Here we assume
that ¢ > T} is not a trivial condition. In other words, 7} is in sensitive domain of ¢,

Theorem 3.4 (Local exploration of single-output GPs). We are given V., € X, x1.y C X, a kernel k,; satisfy-
3 8 ) :j;cale
¢ ~ GP(0,ky) is a GP, z].y = (z,...,23) is a set of observed noisy values (Assumption 2.1) and

(2], ..y 221l < V'N. Then V5 € (0, \/kgcaleaqj/\/]V), Ir > 0 s.t. when Ming,cq,,. ||« — x;|| > 7, the proba-

. . Né/o2, —T;
bility thresholded on a constant T} is bounded by p ((qﬂ (z4) > Tj)|z1.N, z{:N) <o <\/k§m,e/—(q\1/ﬁé/aqj)2)'

ing Assumption 3.3 (distant points result in weak correlation) and ky;(-,-) < 1. Denote k =max kg (-,-).

Our theorem (proof in the Appendix B.4) provides the maximum safety probability of a point as a function
of its distance to the observed data in X'. Therefore, it measures an upper bound of explorable safe area.
Notice that 2], 5| < VN is not very restrictive because an unit-variance dataset has ||z, || = v/N. This
theorem indicates that a standard GP with commonly used kernels explores only neighboring regions of the
initial @1.. In practice, we consider safe AL on a discrete pool X001 € X, which means the GP explores
only neighboring discretized points.

Remark 3.5. In Section 4, we will see that our new transfer safe sequential learning framework may explore
beyond the neighborhood of target «1.y, taken the source data into consideration.

In the following, we plug exact numbers into Theorem 3.4 for an illustration.

Example 3.6. We consider a one-dimensional toy dataset visualized in Figure 2. Assume N = 10, O'g =0.01
and constraint 7' = 0. We omit safety constraint index j because J = 1 here. o,/ VN is roughly 0.0316. In
this example, the generated data have ||z1.x| < v/10. We train an unit-variance (kseqre = maz ke(-,)=1)
Matérn -5/2 kernel on this example, and we obtain lengthscale a2 0.1256. This kernel is strictly decreasing,
so Assumption 3.3 is satisfied. In particular, r = 4.485 % 0.1256 = 0.563316 = ¢ < 0.002, noticing that

N&/o2-T
6=0002=> ¢ ————
1—-(VNé/og)?

from Theorem 3.4 that safe regions that are 0.563316 further from the observed ones are always identified
as unsafe and is not explorable. In Figure 2, the two safe regions are more than 0.7 distant from each
other, indicating that the right safe region is never explored by conventional safe learning methods. Please
see Appendix B for numerical details and additional illustrations.

) ~ ®(2). When the safety tolerance is set to /2 = 2, we can thus know

True safety constraint
\ Data, after exploration

| I |

-1

Unfound safe region

Initial safe region Surrogate model’
Initial data

Figure 2: The safety function ¢(z) = sin (10x3 — o — 10) + %xz — % The observations are with noise drawn
from N(0,0.12).
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Our probability bound & ( ) is the worst case obtained with very mild assumptions.

Empirically, the explorable regions found by GP models are smaller (see Figure 2 and appendix Figure 6).

4 Modularized GP transfer learning

In the previous section, we introduced GP safe learning technique, and we analyzed the local exploration
problem. In this section, we present our transfer learning strategy, where the aim is to facilitate safe learning
and to enable global exploration if properly guided by the source data.

Modeling the data with source knowledge: The idea is to extend the GPs (Assumption 3.1) to
multi-output models (Journel & Huijbregts, 1976; Alvarez et al., 2012; Tighineanu et al., 2022). We have
source task index s, as described previously. We say here that ¢ is the index of our target task (note that we
have only one target task). For example, ¢ = 0 can be target task, s = 1, ... can be indices of multiple source
tasks. In our main paper, we consider one source task, so the task indices s,t are just binary. Scenarios of
more source tasks are provided in Appendix E. We concatenate the source and target tasks and then define
notation f : X x index_space — R and ¢’ : X x index_space — R, where f(-,s) = fs(-), f(-,t) = f(*),
@’ (-,8) = ¢I(-) and @’(-,t) = ¢/ (+). Please also see Table 1 for the summary of our notation. The multi-task
functions can then be modeled with GP as well.

Assumption 4.1. f ~ GP(0,ks) and ¢ ~ GP (O,kqj) for some stationary kernels kg, kg @ (X x
index__space) X (X x index__space) — R.

Then, we can concatenate the data with task indices and express the GP predictive distributions. Recall
first that Nsource is the number of source data. Let &4 1:n,,0,0. = {(€s,i,S)|Tsi € T 1:Nyguree y Nd 1.8 =
{(xi,t)|x; € x1.n} denote the input data concatenated with the task indices. &. = (x,,t) is a test point
with target task index. Then the predictive distribution given in Equation (1) becomes (similarly, we write
down the distribution for £, while distributions for g/ can be obtained by replacing f with g7 and y. with 27)

~ —1 [ Ys,1:Nsource
ppN (@) = vy Q! ( S 1yl-N ) ,

0F n(#2) = kg (@, 8.) — v; Qf oy,

B 1:Nuguree | 4 (4)
() o)

0y - (Kf + U,%TSINsowe Ky..f )
K. s Ky +ojln

Where be = k.f(£57_1:Nsource7isyliNsource)’ Kf37f = kf(isyl:Nsource7£1:N) a'nd Kf = k‘f(ilN7 ilN) The
GP model f (and ¢’) is governed by the multitask kernel k¢ (and kg, for each safety function) and noise
parameters Ji , O’J% (and ojj , agj) which can be fitted with observations.

In this formulation, the covariance bound ¢ in Theorem 3.4 takes the source input 5 1.n,,,,.. into consideration.
Thus, comparing to modeling solely with target task, incorporating a source task provides the potential to
significantly enlarge the area with high safety confidence (i.e. region not bounded by Theorem 3.4). We show
empirically in Section 5 that global exploration is indeed easier to achieve with appropriate s 1:n,,.,..-
Remark 4.2. In our paper, we assume all safety constraints are independent. If this is not the case, one may
still model different safety constraints with our notation. This has no impact on any of our arguments. For
example, we have J unknown constraints where the first three of the target task ¢!, ¢%, ¢> are not independent,
and the corresponding source ¢!, ¢%, ¢> may or may not be independent. Then Assumption 4.1 still holds if
we consider the safety functions in the following way: we have safety functions ¢'22,¢%,...,¢7 and ¢}%,¢?, ...,
where joint functions ¢'**(-,j = 1,2,3) = ¢/ (-), i®*(-,j = 1,2,3) == ¢ (), ¢>*(, ) = ¢/ (-), 42 (-, J) = ¢1 (")
This allows one to model the dependent safety constraints jointly with ¢*?? (and ¢!?3), and can be simply
achieved by augmenting the data such that they have not only task indices but also safety constraint indices. If

we consider the safety function in this way, we resort the problem back to J — 2 independent safety constraints.
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Thus, dependent safety constraints have no impact to the argument that single-task methods explore locally
around the scarce target data while multi-task approaches expand the exploration by incorporating the source
knowledge.

Algorithm 2 Modularized SL

Require: D" D, .., Xpool, B O «
. Fit GPs and then fix Hfs,qu,ofs,aqz
: Compute and fix Ly, L
: for N = Nipity .o, Ninit + num__steps do
Fit GPs (remaining parameters 07,0,,0,0,)
T, < argmax,cs. a(x|Dy)
Evaluate at x, to get y. and z,
Dny1 < Dy U {w*7 Yy Z*}; Xpool — Xpool \ {IB*}
end for

NPT e

In-experiment speed-up via source pre-computation: Computation of Q;l (and €g4;) has cubic com-
plexity O ((Nsoume + N)3) in time, for N = Njnit, ..., Ninit + num__steps. This computation is also required
for fitting the models: common fitting techniques include Type II ML, Type IT MAP and Bayesian treat-
ment (Snoek et al., 2012; Riis et al., 2022) over kernel and noise parameters (Rasmussen & Williams, 2006), all of

J
which involves computing the marginal likelihoods N ((ys’lz;N”“”e) |0, Qf) and N ( (ZS’“JVS”"C> |0, qu> .
1:N Z1.N

In our paper, Bayesian treatment is not considered because MC sampling is time-consuming.

The goal now is to avoid calculating Q;l and Q;jl repeatedly in the experiments. For brevity, we describe
how we do this with Q]Zl, while the same principle applies to Q;jl. For GP models, the inversion is achieved
by performing a Cholesky decomposition L(2y), i.e. Qp = L(Q)L(2f)", where L(Qy) is a lower triangular
matrix (Rasmussen & Williams, 2006), and then for any matrix C, L(Q2¢)~'C' is computed by solving a linear
system.

We propose to perform the cholesky decomposition in two steps, as described below. The aim here is to
compute part of L(Qf) beforehand. The key idea is to cluster the parameters of ks into 8¢ = (6y,,05),
where the source kg ((+,5), (-, s)) is independent of ¢. Then, as s 1.n,,.,,.. IS invariant, Ky, adapts only
to 6f,. Given that the source tasks are well explored, the source likelihood p(ys1:n. ...
N(yS,liNsouTce |05 Kfs + 012‘5 INsou7'ce)
assume Ky, (i.e. 6f,) and UJ%S remain fixed in the experiments, this allows us to isolate the source relevant
computations, as the source relevant block (top left block) of L(2y) is also fixed. We can then prepare a safe
learning experiment with pre-computed Ly, = L(Ky, + UJQCS In......). The same procedure applies to each

L5 1:Noouree) =
can be barely increased while we explore for the target task. Thus we

@’. The learning procedure is summarized in Algorithm 2. In each iteration (line 4 of Algorithm 2), the
time complexity becomes O(N2,,,..N) + O(Nsource N2) + O(N?) instead of O ((Nsource + N)?). We provide
mathematical details in the Appendix C. Our technique can be applied to any multi-output kernel because
the clustering 8¢ = (6y,,0s) does not require independence of kf ((-,s), (,t)) and kg ((-,t), (-,t)) from ..

The same principle applies to q7.

Kernel selection: In the following, we briefly review existing multi-output GP models and motivate
selection of the model we use later in our experiments. Here, each g € {f,q',..., qJ} is a multi-output
GP correlating source and target tasks. The task indices are binary: s = 0 is source and ¢t = 1 is
target. A widely investigated multi-output framework is the linear model of corregionalization (LMC):

Wl23 + Ks Wl,sVVl,t
kg :ZI<W£ Wie WE+k

s YV It

standard kernel as in Assumption 3.1, and (W;W/ + diag(ks, x)) learns the task correlation induced by the
I-th latent function (Alvarez et al., 2012). Here, each g has its own kernel, but we omit g in the parameter
subscripts for brevity. When pairing this kernel with our Algorithm 2, we observe that the training can

) ® ki(-,-), i.e. a 2 x 2 matrix specified by task indices, where k;(-,-) is a
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Table 2: Number of discovered regions

methods | GP1D+z GP2D+z Branin
num__steps 50 100 100
EffTransHGP | 1.79+0.07 2.774+0.13 2+0
FullTransHGP | 1.78 £ 0.07 3+ 0.14213 24+0
FullTransLMC | 1.78 £0.08 2.68 +0.14 24+0
Rothfuss2022 | 1.22 £0.05 1.07 +0.03 1+0
SAL 1+£0 1.29 +0.09 1+£0

Transfer learning discovers multiple disjoint safe regions while baselines stick to neighborhood of the initial
region. In appendix Figure 12, we track the number of explored regions per iteration.

become unstable due to multiple local optima in the first phase (line 1 of Algorithm 2). This may be because
LMC learns joint patterns from all present tasks.

In Poloczek et al. (2017); Marco et al. (2017); Tighineanu et al. (2022), the authors consider a hierarchical GP
(HGP): kg = <ng-, % o k)S(—ijk) ( )>, Similarly, each g has its own kernel, but we omit g in the parameter

S(, - s(, - (e

subscripts for brevity. HGP is a variant of LMC, where the target task is treated as a sum of the source
(modeled by k) and the target-source residual (modeled by k;). This formulation has the benefit that the
fitting of source (ks) and residual (k;) are separated and thus makes HGP a good model to run Algorithm 2
(set 0, the parameters of ks and 6y, the parameters of k;).

In Tighineanu et al. (2022), the authors derived an ensembling technique allowing also for a source pre-
computation. Their technique is equivalent to our method when we use HGP, but our approach can be
generalized to any multi-output kernels (with implicit restriction that a source fitting of the chosen model
needs to be accurate) while the ensembling technique is limited to HGP.

In our experiments, we perform Algorithm 2 with HGP as our main pipeline, and Algorithm 1 with LMC
(more flexible in learning yet slow) and with HGP as full transfer scenarios. The base kernels kg, k¢, k; are all
Matérn-5/2 kernel with D lengthscale parameters (X C RP). The scaling variance of k; is fixed to 1 because
it can be absorbed into the output-covariance terms (see above). One can of course change the base kernel as
long as it is suitable for the application. Although we did not pair Algorithm 2 with LMC as discussed above,
note that our modularized computation scheme can still benefit the general LMC in closely related settings,
e.g. (i) datasets in which more than one source task is available or (ii) sequential learning schemes that only
refit the GPs after receiving a batch of query points.

5 Experiments

In this section, we perform safe AL experiments to answer the following questions: 1) do multi-output GPs
facilitate learning of disconnected safe regions, 2) is it more data efficient to learn with transfer safe learning
than applying a conventional method, and 3) how is the runtime of our modularized approach compared
with the baseline?

We compare five experimental setups: 1) Eff TransHGP: Algorithm 2 with multi-output HGP, 2) FullTran-
sHGP: Algorithm 1 with multi-output HGP, 3) FullTransLMC: Algorithm 1 with multi-output LMC, 4)
Rothfuss et al. 2022: GP model meta learned with the source data by applying Rothfuss et al. (2022), and 5)
SAL: the conventional Algorithm 1 with single-output GPs and Matérn-5/2 kernel.

For the safety tolerance, we always fix § = 4, i.e. a =1 — ®(Y/2) = 0.02275 (Equation (2)), implying that
each fitted GP safety model allows 2.275% unsafe tolerance. Notice that with Rothfuss et al. (2022), the
GP model parameters are meta learned up-front with source data, and remain fixed during the experiments.
Rothfuss et al. 2022 considered safe BO problems. We change the acquisition function to entropy so it
becomes a safe AL method. Our code will be published on GitHub.
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Figure 3: Safe AL experiments on three benchmark datasets. GP data: f and safety function ¢ > 0 over
X =[-2,2]P, D =1 (Nsource = 50, Ninix = 10, 50 data points are queried) or D = 2 (Nyource = 250,
Ninit = 20, 100 data points are queried). Branin data: constraint ¢ = f > 0 (Section 5.1), Ngource = 100,
Ninit = 20, 100 data points are queried. The results are mean and one standard error of 100 (GP data) or 25
(Branin data) experiments. The test points for RMSEs are sampled from all of the true safe area, including
the regions individual methods (e.g. SAL) may fail to explore. Note that FullTransLMC has more than ten
model parameters, while in GP1D dataset we start with N = 10. The TP/FP safe areas are portion of the
input space area. Ground true safe area portion of each dataset is marked black in the second column. Please
also see appendix Figure 12 for fitting time and region cluster of each query.

Table 3: Training time of f and q

datasets | EffTransHGP  FullTransHGP FullTransLMC Rothfuss2022 SAL
(NSO’LLTC€7 N)
GP1D+z | 8.947 +0.198 9.171 +£0.133 26.56 + 0.628 0.0£0.0 6.881 +0.083
(100,10 + 50)
GP2D+z | 10.734+0.190 39.31 +0.639 202.8 +-12.43 0.0+£0.0 8.044 4-0.142
(250,20 + 100)
Branin | 3.754 +0.121 8.129 4+ 0.267 21.16 £ 1.207 0.04+0.0 4.691 £ 0.078

(100, 20 + 100)
Hartmann3 | 3.662 =+ 0.089 9.092 £ 0.467 34.43 +1.664 0.0£0.0 4.073 +0.083
(100,20 + 100)
PEngine | 9.596 4+ 0.418 124.99 + 5.608 615.7 + 27.99 0.0 £0.0 4.686 £+ 0.243
(500,20 + 100)
GEngine | 18.525 +2.508 503.11 £63.94 4357.8 + 661.4 0.0£0.0 10.485 £ 0.578
(500, 20 + 150)

Track safe regions: We start from 3 simple simulated problems with input dimension D =1 or D =2
(GP1D, GP2D, Branin problems). In such cases, it is analytically and computationally possible to cluster the
disconnected safe regions via connected component labeling (CCL) algorithms (He et al., 2017). This means,
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Figure 4: Safe AL experiments on Hartmann3 and two types of engine modeling problems. Hartmann3:
Nsource = 100, N is from 20 to 120, results are mean and one standard error of 25 experiments. PEngine:
Nsource = 500, N is from 20 to 120, results are mean and one standard error of 5 repetitions. GEngine:
Nsource = 500, N is from 20 to 220, plotted every 50 queries, results are mean and one standard error of 5
repetitions. Please see Figure 5 for the zoom-in RMSE plot of GEngine.

in each iteration of the experiments, we track to which safe region each observation belongs (Table 2). In
these initial experiments, we generate one source dataset and one target dataset such that the target task has
at least two disjoint safe regions, each of which has a portion also safe in the source problem. The design is
due to the selection of our kernels. Our base kernel, the Matérn-5/2 kernel, correlates closeness of data points,
and LMC and HGP rescale the Matérn-5/2 kernel measures for different tasks, which means patterns of the
same area in the space are transferred. Modeling a more complicated transferring pattern, e.g. correlation on

an abstract feature space, may require a careful selection of an appropriate base kernel (see e.g. Bitzer et al.
(2022)).

General test and real-world problems, no safe regions clustering: We further consider 3 problems
Hartmann3 (D = 3), PEngine (D = 2) and GEngine (D = 13). PEngine datasets have noisy
measurements where true grid values cannot be accessed, which makes the CCL algorithm inaccurate. The
safe region clustering is thus not performed in this problem. Hartmann3 has higher dimension, so it is
computationally not possible to cluster the safe regions. GEngine datasets have noisy measurements and
are high dimensional. The CCL algorithm cannot be leveraged.

Metrics: The learning result of f is shown as RMSEs between the GP predictive mean and test y sampled
from true safe regions. To measure the performance of g, we use the area of Sy (Equation (2)), as this
indicates the explorable coverage of the space. In particular, we look at the area of Sy N Sgrue (true positive
or TP area, the larger the better) and Sy N (X' \ Sirue) (false positive or FP area, the smaller the better).
Here, Strye C Xpoor is the set of true safe candidate inputs, and this is available since our datasets in the

11
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experiments are prepared as executed queries. With GP1D, GP2D and Branin data, CCL (He et al., 2017) is
performed to cluster which safe region each query belongs to (Table 2).

5.1 AL results on problems with tractable safe regions

Datasets: We adapt algorithm 1 of Kanagawa et al. (2018) to generate multi-output GP samples. The first
output is treated as our source task and the second output as the target task. We have one main function f
and an additional safety function gq. Numerical details and example datasets are plotted in Appendix D. We
generate 10 datasets and repeat the AL experiments five times for each dataset. For Branin data, we take
the numerical setting from Rothfuss et al. (2022); Tighineanu et al. (2022) to generate five different datasets.
With each dataset, we repeat the experiments for five times.

Result: In Figure 3, we show the results of GP1D, GP2D and of Branin data. We see that EffTransHGP,
FullTransHGP and FullTransLMC experiments achieve accurate and much larger safe set coverage (larger TP
area and small FP area). In addition, the learning of f is more efficient with Eff TransHGP, FullTransHGP
and FullTransLMC as the RMSE drops faster compared to the baseline methods. Note that the test points
are sampled from all of the true safe area, including the part baseline SAL fails to explore. It is thus not
guaranteed that RMSE of SAL monotonically decreases (Branin). We observe from the experiments that the
meta learning approach, Rothfuss et al. 2022, fails to generalize to larger area, which might be due to a lack
of data in target task representativeness (one source, very few for meta learning) or/and in quantity.

In Table 2, we count the number of safe regions explored by the queries. This confirms the ability to explore
disjoint safe regions. One remark is that Branin function is smooth and has two clear safe regions; while
huge stochasticity exists in GP data and we may have various number of small or large safe regions scattered
in the space. Table 3 shows the model fitting time, confirming that EffTransHGP has comparable time
complexity as baseline SAL, as opposed to FullTransHGP and FullTransLMC. We provide additional ratios
of safe queries in appendix Table 4, which is a sanity check that the methods are indeed safe.

Please note the learning flexibility is FullTransLMC > FullTransHGP > EffTransHGP, and our experimental
results are consistent to this intuition (RMSE of FullTransLMC in 1D data is worse because we starts with
10 data points which is less than the number of LMC parameters, Figure 3).

In the main experiments, Ngource (the number of source data points) is fixed for each problem. In our Ap-
pendix E, we provide ablation studies on the Branin dataset, where we vary the number of source data points
and number of source tasks.

5.2 AL results on general test and real-world problems

Hartmann problem: We take the numerical setting from Rothfuss et al. (2022); Tighineanu et al. (2022)
to generate five different Hartmann3 datasets. Here the source task, the source data and the initial target
data are all sampled randomly, in contrast to GP1D, GP2D and Branin, where we enforce disjoint safe regions
and overlapped source and initial target region.

With each dataset, we repeat the experiments for five times. Please see Appendix D.2 for details. In this
experiment, EffTransHGP, FullTransLMC and FullTransHGP provide much smaller RMSEs and larger safe
area (Figure 4).

PEngine datasets: This is a real world problem, with interpolation performed for our experiments. We have
two datasets, measured from the same prototype of engine under different conditions. Both datasets measure
the temperature, roughness, emission HC, and emission NOx. We perform independent AL experiments to
learn about roughness (Figure 4) and temperature (put in appendix Figure 13), both constrained by the
normalized temperature values ¢ < 1.0. The safe set is around 0.5293 of the entire space. The raw datasets
have two free variables and two contextual inputs which are supposed to be fixed, i.e. a total of D = 4 inputs.
The contextual inputs are recorded with noise, so we interpolate the values with a multi-output GP simulator,
trained on the full datasets. Thus this experiment is performed on a semi-simulated condition (free input
variables D = 2). Details are given in Appendix D.2.

12
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The safe set of this target task is not clearly separated into multiple disjoint regions. Thus the conventional
method can eventually identify most part of the safe area. Nevertheless, we still see a much better RMSEs
and much less data consumption for large safe set coverage (Figure 4). We also observe that Rothfuss et al.
2022 failed to generalize the meta-learned source knowledge to the entire target space exploration.

GEngine datasets: Next, we apply our method to a high-
dimensional, real-world problem consisting of two datasets, each
recorded by a related but distinct engine, with one serving as the
source task and the other as the target task Both datasets were
published by Li et al. (2022). Each dataset is split into training
set and test set. We use the source training set and target
training set to run our AL experiments, and we use the target
test set to evaluate the RMSE and the safe set. The datasets are : : . i . i i : ‘

dynamic, and a history structure is applied, concatenating the OB e A e
relevant past points into the inputs, which results in an input

dimension D = 13. We provide further details in Appendix D.2. Figure 5: The RMSE zoom-in version of
GEngine in Figure 4.

GEngine, zoom in

RMSE of f

This problem measures the emissions and temperature as well.
We learn the normalized emission (f), subject to normalized
temperature —1.5 < ¢ < 0.5. This constraint is equivalent to two safety conditions —1.5 < ¢ and —0.5 < —q.
For the source tasks, the constraint is —2 < g; < 0.5. The temperature lower bound matters mainly to the
outliers, it is the upper bound 0.5 that plays the major role. Overall, such constraint means around 65% of
the target dataset is safe. We provide an appendix Figure 9 to illustrate the raw data distributions. In this
problem, the effect of one single query on the GP hyperparameters is not obvious. Therefore, to speed up the
experiments, we train the hyperparameters only every 50 queries (and at the beginning). We query for 200
iterations.

Overall, we observe a clear outperformance of the HGP-based multitask approaches, as they explore the safe
set with significantly fewer target task queries while being better or at least as good as their competitors in
terms of test error and proportion of false positives. As shown in Figure 4, the HGP methods, particularly
EffTransHGP, identify around two-thirds of the safe set with 50 queries, and they have almost no false safe
classifications. In contrast, with the same number of queries, the baseline SAL discovers less than half of the
safe set. From the RMSEs, HGP learns the main function as well as the baseline SAL (Figure 5). In this
problem, training the LMC model seems to be more challenging. Only after the second training iteration
(iteration 100) does the RMSE of FullTransLMC stabilize, and the number of false safe classifications reduces.
Initially, LMC appears to be overconfident regarding safety conditions, which we think might be due to
the higher input dimensions leading to a larger number of hyperparameters. Nevertheless, the queries of
FullTransLMC are still more than 90% safe, as shown in appendix Table 4.

6 Conclusion

We propose a transfer safe sequential learning to facilitate real experiments. We demonstrate its pronounced
acceleration of learning which can be seen by a faster drop of RMSE and a larger safe set coverage. At the
same time, our modularized multi-output modeling 1) retains the potential of performing global GP safe
learning and 2) alleviates the cubic complexity in the experiments, leading to a considerable reduce of time
complexity.

Limitations: Our modularized method is in theory compatible with any multi-output kernel, in contrast
to the ensemble technique in Tighineanu et al. (2022) which is only valid for a specific kernel. However, one
limitation of source precomputation is that it requires to fix correct source relevant hyperparameters solely
with source data (e.g. HGP is a good candidate due to its separable source-target structure while LMC,
which learns joint patterns of tasks, will not be fixed correctly with only source data). Another limitation is
that the benefit of transfer learning relies on multi-task correlation. This means transfer learning will not
be helpful when the correlation is absent, or when the source data are not present in our target safe area.
Modeling with more complicated base kernel (we use Matérn-5/2 kernel) may enable more sophisticated
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multi-task correlations, but this is beyond the scope of this paper (see e.g. Bitzer et al. (2022) for kernel
selections).

Future work: In this paper, we focus on problems of hundreds or up to thousands of data points (source
and target data). If we wish to scale further up to tens of thousands or millions of data points, approximated
models such as sparse GP models (Titsias, 2009; Hensman et al., 2015) may be required. These sparse
GP models infer with a few inducing points, representing the original observation set. However, a suitable
method of the inducing points selection remains opened (Moss et al., 2023; Pescador-Barrios et al., 2024).
For example, the safety model needs inducing points approximating a good safe set, while the acquisition
function needs to consider how the inducing points change after each query (or each batch of queries).
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A Appendix Overview

Appendix B provides detailed analysis and illustrations of our main theorem. In Appendix C, we demonstrate
the math of our source pre-computation technique. Appendix D contains the experiment details and
Appendix E the ablation studies, additional plots and tables.

B GPs with classical stationary kernels cannot jump through an unsafe valley

B.1 Bound of explorable region of safe learning methods

In our main script, we provide a bound of the safety probability. The theorem is restated here.
Theorem 3.3. We are given Va, € X, 1.y C X, a kernel k,; satisfying Assumption 3.3 and kg (-,-) < 1.
Denote k7 '

scale °

noisy values (Assumption 2.1) and ||(z],..,24)|| < VN. Then V5 € (0,4/k .00 /VN),3r > 0
s.t. when ming,eq,. | @« — ;]| > r, the probability thresholded on a constant 7T} is bounded by

, . Né&/o?, =T}
I(x,) > T; . J ) < y il .
p ((q (:I: ) = Tj)|w1.N7 AN S o (\/kimze_(\/ﬁé/”qu)

= maz ky(,-). ¢ ~ GP(0,ky) is a GP, 2],y = (z{,,zf\,) is a set of observed

In this section, we illustrate a concrete example of our theorem, where conventional methods cannot explore
the entire safe set in the space. Then we provide the proof of this theorem.

B.2 Single-output GP does not reach disconnected safe region

We plug some exact numbers into the probability bound. Consider an one dimensional situation as Figure 2
and Figure 6. We omit j because J = 1 here. Assume

1. N =10,
2. 02 = 0.01,

3. T =0 (notice 2],y is normalized to 0-mean and unit-variance).

In this example, the generated data have ||z1.n|| < VN (see Figure 2 for the rough functional values). Noticed
also that o,/v/N is around 0.0316. We fix kgeqre == max k,(-,-) = 1 (the surrogate model in Figure 2). Then

our theoretical bound of the safety probability is ® (%) = (\/%)
In our main script, @, is unsafe if p ((qJ(:B*) > Tj)|x1.N, z{:N) <1—®(—pY?) = &(p/?). We set the safety

tolerance to 51/2 = 2. The decision boundary of our theorem \/% = 2 means § ~ 0.002.

From Appendix B.3 we see that || — z’|| > 4.485 = § < 0.002 for unit lengthscale Matérn-5/2 kernel. With
a lengthscale parameter [, this becomes Hmfliw” > 4485 & || — a'|| > 4.485 x [. Therefore § < 0.002 if
||z —a'|| > 4.485 = L.

The GP model trained on this example has lengthscale ~ 0.1256 (the surrogate model in Figure 2 and
in left of Figure 6), so points that are at least 4.485 x 0.1256 = 0.563316 away from the observations are
always identified unsafe. Thus the safe region on the right is never inferred as safe and is not explored with
conventional single-output GP model ( Figure 6, left), because the distance between the two disjoint safe
regions is around 0.7. We also show empirically that a multi-output GP model transfer safety confidence
from a source task and identify safe region Ssyup2( Figure 6, right).

B.3 r-0 relation for commonly used kernels

Our main theorem consider kernels satisfying Assumption 3.2 which is restated here:
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f’.subi ‘SSNFJE

data

Figure 6: The safety function ¢(z) = sin (10353 — b — 10) + %xQ — % Safety threshold is set to T'= 0. The
observations are with noise drawn from A(0,0.01). Left: a GP with Matérn-5/2 kernel (lengthscale = 0.1256)
is shown. The red lines indicate the largest observed & and the closest safe point of another region. The gap
between the red lines is close to 0.7, which is beyond explorable region of conventional safe learning methods.

Right: the multi-output model uses an LMC kernel with 2 latent Matérn-5/2 kernels (Alvarez et al., 2012).

Additional noisy data from function g,(z) = sin (102® — 5z — 10) + sin(z?) — 3 are provided (yellow). Ssyuu

and Sgyup2 are the safe set inferred by the LMC.

Assumption 3.2. Given a kernel function k : X x X — R, assume V§ > 0, Ir > 0 s.t. |z — /|| > r =
k(x,2’) < under L2 norm.

Notice that this assumption is weaker than k being strictly decreasing (see e.g. Lederer et al. (2019)), and it
does not explicitly force stationarity.

Here we want to find the exact r for commonly used kernels, given a §. The following kernels (denoted
by k(-,-)) are described in their standard forms. In the experiments, we often add a lengthscale | and
variance Kscale; 1.€. kparameterized(T, ') = kscatek(x /1, &' /1) where kycqre and I are trainable parameters. The
lengthscale [ can also be a vector, where each component is a scaling factor of the corresponding dimension of
the data.

RBF kernel
ka,a) = exp (~ & — /|>/2):

k(z,a') <0< |lx—a'| > y/log 35.

E.g 6 <03 < ||z — 2| > 1.552
§<0.1<« ||z—a| > 2146
§<0.002 < ||z — x'|| > 3.526

Matérn-1/2 kernel
k(z,x') = exp (—||& — @'||): k(z,2') <6< ||z — /| > log 5.

Eg 6§ <03 < |z —2'|| >1.204
§<0.1<« ||z—2| >2.303
§<0.002 < ||l&— || > 6.217
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Matérn-3/2 kernel
k(z,2') = (1+ V3||lz — 2'|]) exp (- V3] = — a'[]):
E.g 6§ <03 < ||z — /| > 1.409
§<0.1 < ||z —a|| > 2.246
6 <0.002 < ||z — | > 4.886

Matérn-5/2 kernel
k(z, @) = (1+ V5|lz — a'|| + 3llz — a'||*) exp (—V5||lz — 2'[]):
Eg 6§ <03« ||z —a'| > 1.457
§<0.1 < ||z—a'|| >2214
§ <0.002 < || — x'|| > 4.485

B.4 Proof of our main theorem

We first introduce some necessary theoretical properties in Appendix B.4.1, and then use the properties to
prove Theorem 3.3 in Appendix B.4.2.

B.4.1 Additional lemmas

Definition B.1. Let £ : X x X — R be a kernel, A C X be any dataset of finite number of elements, and
let o be any positive real number, denote Q4 ,2 == k(A, A) + 1.

Definition B.2. Given a kernel k: X x X — R, dataset A C X, and some positive real number o, then for
x € X, the k-, A-, and o?-dependent function h(zx) = k(A, a‘,)TQ;L‘ 2 is called a weight function (Silverman,
1984).

Proposition B.3. C € RM*M js ¢ positive definite matriz and b € RM is a vector. Amas is the mazimum
eigenvalue of C. We have ||Cbl|2 < Apmaz||b|2-

Proof of Proposition B.3.
Because C is positive definite (symmetric), we can find orthonormal eigenvectors {ey, ..., epr} of C' that form
a basis of RM. Let ); be the eigenvalue corresponding to e;, we have \; > 0.

As {ey,...,epn} is a basis, there exist by,....,bpsr € R sit. b = Zf\il bie;. Since {e;} is orthonormal,
[bll3 = 32, b7. Then

M M
ICbllz = | Y bidieillz = 4| > b2A2
i=1 i=1

M
Z b12>‘%nax = /\mam

i=1

IN

M
Z bzz = Amabe||2
i=1

O

Proposition B.4. VA C X, any kernel k, and any positive real number o, an eigenvalue A of Qi a o2 (Defi-
nition B.1) must satisfy A > o>.

Proof of Proposition B.J.
Let K = k(A, A). We know that
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1. K is positive semidefinite, so it has only non-negative eigenvalues, denote the minimal one by Ag,
and

2. 02 is the only eigenvalue of o21.

Then Weyl’s inequality immediately gives us the result: A > Ax + o2 > o2. O

Corollary B.5. We are given Vx, € X, A C X, any kernel k satisfying Assumption 3.2 and any positive
real number . Let M := number of elements of A, and let B € RM be a vector. Then ¥5 > 0,3r > 0 s.t.
when ming c ||z, — &'|| > r, we have

1. |h(z,)B| < VMS§||B||/o? (see also Definition B.2),
2. k(zy, @) — k(A,z)TQ Y k(A z.) > k(z.,z.) — M&%/0? (see also Definition B.1).

Proof of Corollary B.5.
Let K :==k(A, A).

Proposition B.4 implies that the eigenvalues of (K + 021 )71 are bounded by %
In addition, ming e a|lx. — || > r = all components of row vector k(x., A) are in region [0, J].
1. Apply Cauchy-Schwarz inequality (line 1) and Proposition B.3 (line 2), we obtain
(A, 2.)" (k(A, A) +0°1) " B| < |[k(A,2.)"|||| (K + o) B]|
< KA, 2.)] 5Bl
< (6. 8) | 25 1B
- YT8|B|

g
2. (K+0%I )_1 is positive definite Hermititian matrix, so

kA, z.)7 (K +0%1) " k(A z.)

IN

1
k(A )|

1
— Mé2.

o2

IN

Then, we immediately see that
_ 1
k@, @) — k(A2)" (K +0°1) 7 KA,z.) 2 k@) — 5 |k(A, )|
o
1
> k(@ @) — — Mo>.
> k(@ 22) — —

O

Remark B.6. A CDF of a standard Gaussian distribution is often denoted by p(z < T) = ®(T),z ~ N(0,1).
Notice that p(z < -T)=®(-T)=1—-0(T) =p(x > T).

B.4.2 Main proof

Theorem 3.3. We are given Va, € X, 1.y C X, a kernel k; satisfying Assumption 3.3 and k,; (-,-) < 1.

Denote kicale = maz ky(,"). ¢ ~ GP(0,ky) is a GP, 2] 5 = (2],...,2}) is a set of observed

noisy values (Assumption 2.1) and ||(z{,,z§v)|| < V/N. Then ¥§ € (O,N/kgcaleaq]‘/\/ﬁ),ﬂr > 0
s.t. when ming eq,. ||« — x;|| > r, the probability thresholded on a constant Tj is bounded by

) . N5/02~—Tj
I(xy) > T5)|®1.N, 27 ) <o : -z .
P ((q (33 ) fel ])|$1,N AN ) > (\/kﬁwze(\/ﬁé/‘jﬂy)
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Proof.
From Equation (1) in the main script, we know that

p (¢ @)lenn, Aoy ) =N (@ltgr v (@), 0% (@)
-1 .
fgs N () = Egs (1.8, )T (kqj (T1:n,x1:N) + UngN) 2N
—1
(?J N(w*) = k ((L'*, (B*) - kq]‘ (iL'lzN7 w*)T (kqj (w1:N7 ml:N) + Jgj IN) kqj (w1:N7 df*)

We also know that (Remark B.6)

p (@ (@) > Ty, y) =10 (MN(:C)>

O'qf,N(m*)
_ 3 <qu,N(93*) - Tj> .
04i N ()
; =T VNS|| 2. o2, —T
From Corollary B.5, we get “q;’fv(m(m) )T] < 1=1.x01/0y; . This is valid because we assume § <
g7, N \Tx \/kqj(w*,m*)fNé /oqj

\/kicaleaqj /V/N. Then with ||/ || < V/N and the fact that ® is an increasing function, we immediately see
the result

N(;/O' - Tj
\/kscale \/75/0—!1J)

p((@ (@) 2 Tlern.2ly) <@

C Multi-output GPs with source pre-computation

Given a multi-output GP g ~ GP (0,ky), g € {f.q",...,q”}, where kq is an arbitrary kernel, the main
computational challenge is to compute the inverse or Cholesky decomposition of

K, + 0?2 In .. K,
Qg:( TURE T K, +gU2IN>

Such computation has time complexity O (( source + IN)3 ) We wish to avoid this computation repeatedly.

As in our main script, kg is parameterized and we write the parameters as 84 = (6,,,6,), where kq ((-, 3), (-, s))

is independent of 6. kg ((-,8), (1)) and kg ((-,t), (-,t)) does not need to be independent of 6,

Here we propose to fix K, (i.e. 0, ) and Jgs and precompute the Cholesky decomposition of the source
components, Ly, = L(Ky, + 05 In then

source )’

L, 0
o= (0 o(5) ®
K= Ky + 02y — (L, Ky, )" L K, .
This is obtained from the definition of Cholesky decomposition, i.e. Qg = L (Qg) L (Qg)T7 and from the fact

that a Cholesky decomposition exists and is unique for any positive definite matrix.

The complexity of computing L (€4) thus becomes O(NZ,, ..N) + O(Nsource N?) + O(N?) instead of

O ((Nmumg + N)3 ) In particular, computing L Kg st is O(N2Z ,...N), acquiring matrix product K,
is O(Nyource N?) and Cholesky decomposition L(Kt) is O(N3).
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The learning procedure is summarized in Algorithm 2 in the main script. We prepare a safe learning
experiment with D" “and initial Dy; we fix 0y, 0 i 0f.>0, to appropriate values, and we precompute
Ly,,L,;. During the experiment, the fitting and inference of GPs (for data acquisition) are achieved by
incorporating Equation (5) in Equation (4) of the main script (Section 4).

g f

T T T T T
-2 -1 0 1 2

Figure 7: Example simulated GP data of D = 1, f is the function we want to learn (top), under an additional
safety constraint g > 0 (bottom). The curves are true source (yellow) and target (black) functions. The dots
are safe source data and a pool of initial target ticket (this pool of target data are more than those actually
used in the experiments).
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Figure 8: Example simulated GP data of D = 2, f is the function we want to learn (left), with an additional
safety function g (middle), and the green is true safe regions g > 0 (right). The top is source task and the
bottom is target task. The dots are safe source data and a pool of initial target ticket (this pool of target
data are more than those actually used in the experiments).
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D Experiment details

D.1 Labeling safe regions

The goal is to label disjoint safe regions, so that we may track the exploration of each land. In our experiments,
the test safety values are always available because we are dealing with executed pool of data. It is thus
possible to access safety conditions of each test point as a binary label. We perform connected component
labeling (CCL, see He et al. (2017)) to the safety classes over grids (grids are available, see the following
sections). When D = 1, this labeling is trivial. When D = 2, we consider 4-neighbors of each pixel (He et al.,
2017). With simulated datasets, the ground truth is available, and thus CCL is deterministic. The CCL can
be computationally intractable on high dimension (number of grids grows exponentially), and this method
can be inacurrate over real data where observations are noisy and grid values need interpolation from the
measurements.

After clustering the safe regions over grids, we identify which safe region each test point x, belongs to by
searching the grid nearest to @.. See main Table 2 and the queried regions count of Figure 12 for the results.

D.2 Numerical details

When we run algorithm 1 and 2 (in the main paper), we set N;,;; (number of initial observed target data),
Nsource (number of observed source data) and N, (size of discretized input space Xpo0;) as follows:

1. GP1D: Ngource = 100, Nipir = 10, run Algorithm 1 or Algorithm 2 for 50 iterations, and Npeer = 5000;

2. GP2D: Njoyree = 250, Nipst = 20, run Algorithm 1 or Algorithm 2 for 100 iterations, and Npoo =
5000;

3. Branin & Hartmann3: Ng,yurece = 100, Nipie = 20, run Algorithm 1 or Algorithm 2 for 100 iterations,
and Npee = 5000;

4. PEngine: Ngoyrce = 500, Ny = 20, run Algorithm 1 or Algorithm 2 for 100 iterations, and

Npoot = 3000
5. GEngine: Ngource = 500, Ninie = 20, run Algorithm 1 or Algorithm 2 for 200 iterations, and
Npoot = 10000.

In the following, we describe in details how to prepare each dataset.

We first sample source and target test functions and then sample initial observations from the functions.
With GP1D, GP2D and Branin problems (Section 5.1), we reject the sampled functions unless all of the
following conditions are satisfied: (i) the target task has at least two disjoint safe regions, (ii) each of these
regions has a common safe area shared with the source, and (iii) for at least two disjoint target safe regions,
each aforementioned shared area is larger than 5% of the overall space (in total, at least 10% of the space is
safe for both the source and the target tasks).

In our general test problems, i.e. Hartmann3 (Section 5.2), we generate functions as they are. In other words,
we do not restrict the datasets to any safe region characteristics.

GP data: We generate datasets of two outputs. The first output is treated as our source task and the
second output as the target task.

To generate the multi-output GP datasets, we use GPs with zero mean prior and multi-output kernel
212=1 WiWL @Fk(-,-), where ® is the Kronecker product, each W, is a 2 by 2 matrix and k; is a unit variance
Matérn-5/2 kernel (Alvarez et al., 2012). All components of W, are generated in the following way: we
randomly sample from a uniform distribution over interval [—1,1), and then the matrix is normalized such
that each row of W; has norm 1. Each k; has an unit variance and a vector of lengthscale parameters,
consisting of D components. For GP1D and GP2D problems, each component of the lengthscale is sampled
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from a uniform distribution over interval [0.1,1). We adapt algorithm 1 of Kanagawa et al. (2018) for GP
sampling, detailed as follows:

1. sample input dataset X € R"*P within interval [~2,2], and n = 1007.
2. for [ = 1,2, compute Gram matrix K; = k;j(X, X).

3. compute Cholesky decomposition L; = LW, W' ® K;) = LIW,WI)®L(K)) (i.e. WW!®K, = L,LT,
Ll c R2*n><2*n).

4. for 1 = 1,2, draw u; ~ N (0, Ip,,) (u; € RZ*mx1),

5. obtain noise-free output dataset F' = 212:1 Ly,

X .
6. reshape F' = (ch"((Xii))> e R¥™1into F = (f(X,s) f(X,t)) € R™2

7. normalize F' again s.t. each column has mean 0 and unit variance.

8. generate initial observations (more than needed in the experiments, always sampled from the largest
safe region shared between the source and the target).

During the AL experiments, the generated data X and F' are treated as grids. We construct an oracle on
continuous space [—2,2]” by interpolation. During the experiments, the training data and test data are
blurred with a Gaussian noise of standard deviation 0.01.

Once we sample the GP hyperparameters, we sample one main function f and an additional safety function
from the GP. During the experiments, the constraint is set to g > 0. For each dimension, we generate
10 datasets and repeat the AL experiments 5 times for each dataset. We illustrate examples of X and F
in Figure 7 and Figure 8.

Branin data: The Branin function is a function defined over (z1,z3) € X = [—5,10] x [0, 15] as

faperst (T1,22) = a(w2 — bz} + cxy — 1) + s(1 — t)cos(z1) + s,

where a, b, ¢, r, s,t are constants. It is common to set (a, b, c,r,s,t) = (1, 2 %, 6,10, é), which is our setting
for target task.

We take the numerical setting of Tighineanu et al. (2022); Rothfuss et al. (2022) to generate five different
source datasets (and later repeat 5 experiments for each dataset):

a ~Uniform(0.5,1.5),

b ~Uniform(0.1,0.15),
¢ ~Uniform(1.0,2.0),

r ~Uniform(5.0,7.0),

s ~Uniform(8.0,12.0),
t ~Uniform(0.03,0.05).

After obtaining the constants for our experiments, we sample noise free data points and use the samples to
normalize our output

fap,erst (21, 22)) — mean(fa,p,c,r,s,t)
fa,b,cﬂ‘,s,t ((xlaxQ))normalize = s St’d(fa,b,c,r,s,t) TR,

Then we set safety constraint f > 0 and sample initial safe data. The sampling noise is Gaussian during the
experiments.
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Hartmann3 data: The Hartmann3 function is a function defined over € X = [0, 1] as

4 3
fa1)a2)a33a4 ((.’1?1,.’172, 333)) = Za’iexp - ZAi;j(xj - Pi;j)z ’
i j=1

3 10 30
0.1 10 35
A= 3 10 30)°
0.1 10 35
3689 1170 2673
P—10-4 4699 4387 7470

1091 8732 5547 |°
381 5743 8828

where a1, as, as, aq are constants. It is common to set (ai, a9, as,as) = (1,1.2,3,3.2), which is our setting for
target task.

We take the numerical setting of Tighineanu et al. (2022) to generate five different source datasets (and later
repeat 5 experiments for each dataset):

a1 ~Uniform(1.0,1.02),
as ~Uniform(1.18,1.2),
ag ~Uniform(2.8,3.0),
aq ~Uniform(3.2,3.4).

After obtaining the constants for our experiments, we sample noise free data points and use the samples to
normalize our output

fa az,as,a ((xl T2 .Ig)) _mean(fa az,as,a )
fa17a27a37a4 ((x17x27x3))normalize = S S,td(?fm,az,as,ad B .

Then we set safety constraint f > 0 and sample initial safe data. The sampling noise is Gaussian during the
experiments.

PEngine data We have 2 datasets, measured from the same prototype of engine under different conditions.
Both datasets measure the temperature, roughness, emission HC, and emission NOx. The inputs are engine
speed, relative cylinder air charge, position of camshaft phaser and air-fuel-ratio. The contextual input
variables "position of camshaft phaser' and "air-fuel-ratio" are desired to be fixed. These two contextual
inputs are recorded with noise, so we interpolate the values with a multi-output GP simulator. We construct
a LMC trained with the 2 datasets, each task as one output. During the training, we split each of the datasets
(both safe and unsafe) into 60% training data and 40% test data. After the model parameters are selected,
the trained models along with full dataset are utilized as our GP simulators (one simulator for each output
channel, e.g. temperature simulator, roughness simulator, etc). The first output of each GP simulator is
the source task and the second output the target task. The simulators provide GP predictive mean as the
observations. During the AL experiments, the input space is a rectangle spanned from the datasets, and
Xpoot 1s & discretization of this space from the simulators with Npoor = 3000. We set Nyoyrce = 500, N = 20
(initially) and we query for 100 iterations (N = 20 4+ 100). When we fit the models for simulators, the test
RMSEs (60% training and 40% test data) of roughness is around 0.45 and of temperature around 0.25.

In a sequential learning experiment, the surrogate models are trainable GP models. These surrogate models
interact with the simulators, i.e. take A0 from the simulators, infer the safety and query from X0, and
then obtain observations from the simulators. In our main Algorithms 1 to 2, the surrogate models are the
GP models while the GP simulators are systems that respond to queries ..
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Figure 9: The historgram of GEngine data. The first 5 columns are inputs without NX history structure, the
second last column is the output we model with f, fs, and the last column is the temperature constraint.
The rows are the following in order: (1) source task training set, (2) source task test set (not used in the
experiments), (3) target task training set, and (4) target task test set. Blues are the histograms of raw data,
and oranges are subsets if we add constraints on the temperature channel.

GEngine data This problem has two datasets, one taken as the source task and one as the target task.
Both datasets were published by Li et al. (2022). Each dataset is split into training set and test set. The
original datasets have the following inputs: (1) the first dataset has speed, load, lambda, ignition angle, and
fuel cutoff (dimension D = 5) which we take as the source task (2) speed, load, lambda, and ignition angle
(D = 4, no fuel cutoff) which we take as the target task. The 5th input of the source data, fuel cutoft, is
irrelevant and we exclude it (not used in the original paper). Please see Figure 9 for the data histogram. The
datasets are dynamic and are available with a nonlinear exogenous (NX) history structure, concatenating the
relevant past points into the inputs (handled by Li et al. (2022) in their published code). The final input
dimension of this problem is D = 13. As outputs, the source dataset measures the temperature, emission
particle numbers, CO, CO2, HC, NOx, O2 and temperature. The target dataset measures particle numbers,
HC, NOx and temperature. We take HC as our main learning output and temperature as the constraints.

Both the source and target datasets have hundreds of thousands of data, but Li et al. (2022) discover that
the performance saturates with few thousand randomly selected points or with few hundred actively selected
points. We thus decide to run our experiments with N, = 10000, a random subset of the training set.
This pool subset is sampled before we compute the acquisition scores in each iteration. Furthermore, we
start our AL experiments with N;,;; = 20 and we query for 200 iterations. The initial target data are
sampled from the following input domain (written in the original space, no NX history structure here)
[-1,-0.7] x (=00, —0.5] x [0,0.5] x [0,0.2]. This domain is chosen by taking the density peak of the inputs,
see row 3 of Figure 9 for the data histogram. Note that values of datasets were normalized.

In this problem, the effect of one single query on the GP hyperparameters is not obvious. Therefore, to
speed up the experiments, we train the hyperparameters only every 50 queries (and at the beginning). The
constraint is temperature —1.5 < ¢ < 0.5, and source temperature —2 < g5 < 0.5. The temperature lower
bound matters only to the outliers, it is the upper bound 0.5 that plays the major role. The overall safe set is
around 65% of the input space (target test set).

26



Under review as submission to TMLR

E Ablation Studies and Further Experiments
In this section, we provide ablation studies on the size of source dataset.

One source task, varied Ny ..t We perform experiments on the Branin function. The results are
presented in Figure 10. The first conclusion is that all of the multioutput methods outperform baseline safe
AL (safe AL result shown in Figure 3). Note again that the RMSEs are evaluated on the entire space while
the baseline safe AL explore only one safe region. In addition, we observe that more source data result in
better performances, i.e. lower RMSE and larger safe set coverage (TF area), while there exist a saturation
level at around Ngoyree = 100.

Multiple source tasks: Next, we wish to manipulate the number of source tasks. Before presenting
the results, we first introduce the model on multiple source tasks. In this paragraph, we say Dgoyrce is the
number of source tasks. As described in Section 4, each g € {f,q',...,q”} is a multi-output GP correlating
source and target tasks. The LMC, linear model of corregionalization, can be taken without any change:
kg = >, (WiW/[ + diag{x}) ® ki(-,-), where k;(-,-) is a standard single task kernel as in Assumption 3.1,
and W; and k are vector of (Dsource + 1) elements (Alvarez et al., 2012). The HGP can be extended in two
ways, models in Poloczek et al. (2017) or in Tighineanu et al. (2022). Here we take the model from Tighineanu
et al. (2022): kg = Z?;g“"'“ Mask; @ k;(+,), Mask; € RPsourcet1xDsourcet1 jg 3 matrix where the first i
rows and columns are zero and the other entries are all one (all elements of Masky are ones). One can see
that if Dgoyrce = 1, then we get the HGP described in Section 4 by reindexing k¢ and k; here.

In this study, we generate source data with constraints, but disjoint safe regions requirement when we sample
the source tasks and data (in Section 5.1, the data are generated s.t. source and target task has large enough
shared safe area). We consider 1, 3 or 4 source tasks, and we generate 20 or 30 data points per task. In
general, we see that 3 source tasks significantly outperform 1 source task while the performance saturates as
adding 10 more points per source task seems to benefit more than adding one more source task. Note here
that all source data are generated independently, i.e. the observations of each task are not restricted to the
same input locations.

Further plots and experiments: In Section 5.1, we track the safe region of each query in AL experiments.
We measure the model fitting time per iteration as well. The main Table 2 and Table 3 present only the
summary results. In Figure 12, we additionally provide the region clustering and fitting time w.r.t. AL
iterations. Furthermore, Table 4 counts among the AL selected queries which, after a safety measurements
are accessed, satisfy the safety constraints. This table is a sanity check that the methods are selecting points
safely.

With the PEngine datasets, we perform additional experiments of learning f = q =temperature, and the
results are shown in Figure 13.
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Table 4: Ratio of safe queries

methods | GP1D + z GP2D + z Branin Hartmann3 GEngine
num__steps 50 100 100 100 200
Eff TransHGP | 0.986 £ 0.001 0.974 +0.002  0.999 + 0.0006  0.972 + 0.003 0.936 4 0.003
FullTransHGP | 0.979 +0.004 0.952 +0.005 0.9996 £ 0.0004 0.972 £+ 0.003  0.947 £+ 0.01
FullTransLMC | 0.984 +0.002 0.969 £0.002  0.993 £0.0009  0.968 + 0.003  0.91 £ 0.008
Rothfuss2022 | 0.975 £+ 0.003 0.905 4+ 0.006 1.0+ 0.0 0.84 +0.011  0.765 + 0.035
SAL | 0.995+0.001 0.958 &+ 0.005 1.0+ 0.0 0.966 +0.002  0.954 + 0.005

Ratio of all queries selected by the methods which are safe in the ground truth (initial data not included,
see Section 5 for the experiments). This is a sanity check in additional to FP safe set area, demonstrates
that all the methods are safe during the experiments. Note that our benchmark problems all have around
35% to 65% of the space unsafe. Note that § = 4 implies that, with a well-fitted safety GP, we tolerate a
2.275% probability of unsafe evaluations. PEngine results are not shown because the queries are all safe (the
modeling FP safe set area is almost zero in this problem, see Figure 4 and Figure 13).
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Figure 10: Safe AL experiments: Branin data with different number of source data. Each multi-task method
is plotted in one column. The results are mean and one standard error of 25 experiments per setting. X,y is
discretized from X with Npee = 5000. The TP/FP areas are computed as number of TP/FP points divided
by Npoor (i.e. TP/FP as portion of Xps0r). The third row shows the number of disjoint safe regions explored
by the queries. The fifth row, the unsafe queries ratio, are presented as percentage of number of iterations
(e.g. at the 2nd-iteration out of a total of 100 iterations, one of the two queries is unsafe, then the ratio is 1
divided by 100). The last row demonstrates the model fitting time. At the first iteration (iter 0-th), this
includes the time for fitting both the source components and the target components (Eff TransHGP). With
Rothfuss et al. 2022, source fitting is the meta learning phase.

29




Under review as submission to TMLR

EffTransHGP FullTransLMC FullTransHGP Rothfuss et al. 2022
Branin Branin Branin Branin
10° 10° 100 10°
s s s s
3 107! 3 107! i 107t 3§ 107t
2 H H H
Z z & Z
P hatratierisis ottt
1072 1072 1072 1072
o 20 40 60 80 100 4 20 Y 60 80 100 4 20 40 60 80 100 o 20 40 60 80 100
035 03s 035
! I
2030 /“"'_—'_“’ 20301 e = =030
s s s s
§ o025 § 025 5 § o025
2 2 2 g
8 8 8 8
o2 o2 §o2 §o20
g 2 2 g
2 015 2 015 Z 015 £ 015
8 8 H 8
g g g g
@ 0.10 2 010 3 010 @ 010
g 2 2 2
= g = =
005 005 005 005
0.00 000 0.00 0.00
o 20 40 60 80 100 o 20 ) 60 80 100 o 20 40 60 80 100 o 20 40 60 80 100
20 20 2.0 20
L 18 18 L 18 .18
s s 5 5
g 8 8 8
216 216 216 216
s & 5 §
] s s )
13 £ 14 £
5 14 5 14 g 14 g 14
2 2 2 2
g g g g
12 12 12 12
10 10 10 10
o 20 20 60 80 100 0 20 0 60 80 100 4 20 40 60 80 100 0 20 40 60 80 100
0.030 0.030 0.030 0030
— Nsource: 20,Ninit:20 | | | e Nsource: 20, Nini:20 | [ e Nsource: 20, Ninit: 20 Nsource: 20, Ninit: 20
o025 —— Nsource: 30, Ninit: 20 | 0 - Nsource: 30, Ninit: 20 | - Nsource: 30, Ninit:20 | Nsource: 30, Ninit: 20
H —— Nsource: 3x20, Ninit: 20 | Nsource: 3x20, Ninit: 20 | § <+ Nsource: 3x20, Ninit: 20 | Nsource: 3x20, Ninit: 20
£ —— Nsource: 3x30, Ninit: 20 | £ Nsource: 3x30, Ninit: 20 | £ Nsource: 3x30, Ninit: 20 | £ Nsource: 3x30, Ninit: 20
5 H H H
& 0020 —— Nsource: 4x20, Ninit: 20 | 3. 0.020 + Nsource: 4x20, Ninit: 20 | & 0020 Nsource: 4x20, Ninit: 20 | 8 0.020 Nsource: 4x20, Ninit: 20
g —— Nsource: 4x30, Ninit: 20 | § Nsource: 4x30, Ninit: 20 | & Nsource: 4x30, Ninit: 20 | & Nsource: 4x30, Ninit: 20
5 5 5 5
< 0015 < 0015 < 0015 < 0015
H z z z
8 0010 8 0010 8 0010 8 0010
I} 8 2 I}
K K K K
£ 0.005 £ 0.005 £ 0.005 £ 0.005
0000 e 0.000 0.000 g“ - 0.000
o 20 40 60 80 100 0 20 40 60 80 100 4 20 40 60 80 100 20 40 60 80 100
2.00 2.00 2.00 2.00
175 175 175 175
g 150 £ 150 g 150 g 150
S S 2 S
%125 7125 7125 %125
£ 100 2 100 2 100 2 100
g g g g
H H g g
S 075 &o075 5075 & o075
@ @ K] @
2 050 2 050 2 050 2 050
H H H H
025 025 025 025
0.00 : 000 0.00 0.00
o 20 20 60 80 100 0 20 ) 60 80 100 [ 20 40 60 80 100 o 20 40 60 80 100
102 102 102 10%
T T T T
£ o £ o o £ o £ o
= 10 = 10 . i eSS 210 = 10
) i A £ o AN I ) e )
£ Lo v £ El ot N A g
10° 100 100 10°
0 4 o o
o 20 20 60 80 100 4 20 £ 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
iteration iteration iteration iteration

Figure 11: Safe AL experiments: Branin data with multiple source tasks. Each multi-task method is plotted
in one column. We consider 1, 3 or 4 source tasks and sample 20 or 30 data points per task. The remaining
setting is the same as described in Figure 10. RMSE plots are plotted in log scale.
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Figure 12: Safe AL experiments on three benchmark datasets: GP data with X = [-2,2]”, D =1 or 2,
constrained to ¢ > 0, and the benchmark Branin function with constraint f > 0. The results are mean and
one standard error of 100 (GP data) or 25 (Branin data) experiments. Xpo0 is discretized from X with
Npoot = 5000. We set Nyoyree = 100 and N is from 10 (Oth iteration) to 60 (50th iteration) for GP1D,
Nyource = 250, N is 20 to 120 for GP2D, and Ngpuree = 100, N is 20 to 120 for Branin. The first, second
and fourth rows are presented in Figure 3 of the main paper. The TP/FP areas are computed as number
of TP/FP points divided by Npoo (i.e. TP/FP as portion of &Xpo0). The third row shows the number of
disjoint safe regions explored by the queries (main Table 2 is taken from the last iteration here). The fifth
row, the unsafe queries ratio, are presented as percentage of number of iterations (e.g. at the 2nd-iteration
out of a total of 50 iterations, one of the two queries is unsafe, then the ratio is 1 divided by 50). The last
row demonstrates the model fitting time. At the first iteration (iter 0-th), this includes the time for fitting
both the source components and the target components (Eff TransHGP). With Rothfuss et al. 2022, source
fitting is the meta learning phase.
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Figure 13: Safe AL experiments on PEngine temperature, AL on f (temperature) constrained by ¢ = f < 1.0.
Baseline is safe AL without source data. Transfer is LMC without modularization. Efficient transfer is HGP
with fixed and pre-computed source knowledge. Ngource = 500, Nis from 20 to 120. The results are mean

and one standard error of 5 repetitions. The fitting time is in seconds.
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