

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PATCHDNA: A FLEXIBLE AND BIOLOGICALLY-INFORMED ALTERNATIVE TO TOKENIZATION FOR DNA

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 DNA language models are emerging as powerful tools for representing genomic
014 sequences, with recent progress driven by self-supervised learning. However,
015 performance on downstream tasks is sensitive to tokenization strategies reflect-
016 ing the complex encodings in DNA, where both regulatory elements and single-
017 nucleotide changes can be functionally significant. Yet existing models are fixed
018 to their initial tokenization strategy; single-nucleotide encodings result in long
019 sequences that challenge transformer architectures, while fixed multi-nucleotide
020 schemes like byte pair encoding struggle with character level modeling. Drawing
021 inspiration from the Byte Latent Transformer’s combining of bytes into patches,
022 we propose that ‘patching’ provides a competitive and more efficient alternative to
023 tokenization for DNA sequences. Furthermore, patching eliminates the need for
024 a fixed vocabulary, which offers unique advantages to DNA. Leveraging this, we
025 propose a biologically informed strategy, using evolutionary conservation scores
026 as a guide for ‘patch’ boundaries. By prioritizing conserved regions, our approach
027 directs computational resources to the most functionally relevant parts of the DNA
028 sequence. We show that models up to an order of magnitude smaller surpass cur-
029 rent state-of-the-art performance in existing DNA benchmarks. Importantly, our
030 approach provides the flexibility to change patching without retraining, overcom-
031 ing a fundamental limitation of current tokenization methods.

1 INTRODUCTION

032 Self-supervised learning has led to a surge of interest in DNA language models, sequence models
033 trained on raw nucleotide data to produce general-purpose genomic representations. These models
034 have shown promise across diverse tasks, from identifying regulatory elements to variant effect pre-
035 diction (Brixi et al., 2025; Nguyen et al., 2023; Schiff et al., 2024). A central challenge in adapting
036 language modeling to DNA is how to tokenize the input sequence. Unlike natural language, where
037 subword or word-level tokenization can exploit semantic structure and redundancy (Mielke et al.,
038 2021), genomic sequences encode both fine-grained (e.g. letter level single-nucleotide variants)
039 and coarse-grained (regulatory elements) information, often within the same genomic region. The
040 choice of tokenization thus directly impacts both resolution and efficiency.

041 Existing DNA models typically fix their tokenization strategy prior to training. Models that operate
042 at the single-nucleotide level preserve maximal resolution but produce extremely long sequences that
043 challenge transformer architectures. Conversely, fixed multi-nucleotide schemes such as k-mers or
044 byte pair encoding improve efficiency but often lose critical single-base information. Prior work has
045 shown that downstream performance can be highly sensitive to this tradeoff (Lindsey et al., 2024;
046 Patel et al., 2024). Therefore exploring alternative tokenization strategies and their suitability for
047 encoding DNA sequences is a compelling research direction.

048 The Byte Latent Transformer (BLT), originally proposed for natural language processing, intro-
049 duces a dynamic alternative to tokenization, that segments input sequences into variable-length
050 patches based on predictive entropy (Pagnoni et al., 2024). This enables models to allocate at-
051 tention and computation to regions of high uncertainty, capturing context-dependent structure more
052 effectively. Recognizing the potential advantages that patching offers for genomic data, we intro-

duce PatchDNA, a model that represents DNA sequences as contiguous, dynamically determined patches rather than individual tokens (Figure 1). This general framework aligns naturally with the structure of genomic data and offers clear advantages over traditional tokenization for DNA. Patching improves efficiency as patch sizes can far exceed the size of tokens, while preserving single-nucleotide resolution. Moreover, the lack of fixed vocabulary also offers greater flexibility than tokenization, enabling the design of more biologically informed approaches.

Our key contributions can be summarized as follows:

- We extend dynamic patching for DNA by modifying the BLT framework and show that patches are a better alternative to token-level representations of genomic sequences in efficiency and flexibility.
- We introduce a novel conservation-guided patching scheme that leverages evolutionary signals to guide patch boundaries, providing a biologically informed inductive bias.
- We introduce re-patching, allowing the patching strategy of the model to be changed after pretraining, overcoming a fundamental limitation of current tokenization methods. This enables flexible downstream application with minimal computational overhead.

Through extensive experiments, we show that conservation-guided patching systematically achieves the strongest results, while alternative patching strategies remain competitive. We further demonstrate the flexibility of the framework through re-patching, enabling models to adapt their patching strategy for different downstream tasks with no retraining from scratch. Our results demonstrate the value of patching in advancing genomic language modeling.

Figure 1: Overview of PatchDNA. **(A)** Unlike fixed tokenization methods, PatchDNA segments sequences into biologically meaningful patches without relying on a fixed vocabulary. **(B)** During pretraining, patch boundaries are guided by evolutionary conservation scores, enabling the model to focus computational resources on functionally important regions. **(C)** We introduce re-patching, enabling flexible downstream application with no retraining from scratch.

2 EXISTING DNA TOKENIZATION SCHEMES

Several tokenization strategies offer trade-offs between vocabulary size, biological interpretability, computational efficiency and exhaustiveness of coverage:

K-mers: The input sequence is split into fixed-length sub-strings of length k , as done in the Nucleotide Transformer (Dalla-Torre et al., 2025). However, small changes to the input sequence can drastically alter the tokenized sequence, making it difficult for the model to align representations of near-identical inputs. This inconsistency hinders efficient learning and may degrade model performance (Zhou et al., 2023).

Byte-Pair Encoding (BPE) To address issues with k-mer tokenization, DNABERT2 (Zhou et al., 2023) applies BPE (Sennrich et al., 2016) to DNA. This method iteratively merges the most frequent

108 co-occurring nucleotides into variable-length tokens, enabling the discovery of common sequence
 109 motifs while controlling vocabulary growth. This is a popular approach, utilized by other DNA
 110 models such as GENA-LM (Fishman et al., 2025) and MistralDNA (Mourad, 2024). However,
 111 BPE-tokenized models have shown poor performance on character-level tasks in natural language,
 112 such as spelling (Pagnoni et al., 2024). This is a particularly relevant issue in DNA, where letter
 113 level single nucleotide variants are critical.

114 **Learnable tokenization:** Approaches such as VQDNA (Li et al., 2024) and MxDNA (Qiao et al.,
 115 2024) learn discrete embeddings or mixture-of-experts assignments for sequence fragments, produc-
 116 ing vocabularies tailored to genomic corpora. Although adaptive, these methods introduce additional
 117 training and inference overhead while not reducing the input sizes to the transformer, and the learned
 118 vocabulary are opaque.

119 **Single nucleotide:** Despite these innovations, no single tokenization paradigm consistently outper-
 120 forms others across diverse genomic tasks (Dotan et al., 2024; Lindsey et al., 2024; Patel et al., 2024).
 121 Consequently, the canonical nucleotide-level representation is still widely used, for instance in Hy-
 122 enaDNA (Nguyen et al., 2023), Caduceus (Schiff et al., 2024) and the 40B-parameter Evo2 (Brixi
 123 et al., 2025). This resolution is essential for fine-grained tasks such as variant effect prediction,
 124 which aims to accurately model DNA functional impact Benegas et al. (2025). However, it is com-
 125 putationally inefficient, as genomic sequences are far longer than natural language, and key regula-
 126 tory elements, such as enhancers, can be over 100kb from their targets genes (Sanyal et al., 2012).
 127 Thus, effective sequence compression is critical for scalable DNA modeling.

128 The approach presented here explores an alternative to tokenization that maintains single-nucleotide
 129 granularity, compresses low-information regions, remains interpretable, and allows post-training
 130 adaptation. This unique combination of features is unmet by existing methods and yields superior
 131 model performance.

133 3 PATCHDNA: BIOLOGICALLY-INFORMED MODELING OF DNA

135 3.1 PATCHING PRELIMINARIES

137 We follow the patching framework set out by the BLT (Pagnoni et al., 2024). Let $\mathbf{x} =$
 138 (x_1, x_2, \dots, x_n) be a vector denoting a sequence of n bytes. A patching function is defined as
 139 $f_p : \mathbf{x} \mapsto \mathbf{b} \in \{0, 1\}^n$, where $b_i = 1$ indicates that position i marks the beginning of a new
 140 patch, and $b_i = 0$ otherwise. To ensure existence of at least a single patch we set $b_1 = 1$. This
 141 binary sequence $\mathbf{b} = (b_1, b_2, \dots, b_n)$ partitions the input sequence \mathbf{x} into $m = \sum_{i=1}^n b_i$ contiguous
 142 subsequences, or *patches*, $\mathbf{p} = (p_1, p_2, \dots, p_m)$.

143 We distinguish between tokens and patches in the context of sequence modeling. Tokens are pre-
 144 defined groupings of bytes drawn from a finite vocabulary \mathcal{V} , which is determined prior to training. In
 145 contrast, patches are variable-length subsequences derived computationally from the input \mathbf{x} by the
 146 patching function f_p , without relying on a fixed vocabulary.

147 **Entropy-based patching:** In BLT, patch boundaries are determined dynamically based on pre-
 148 dictive uncertainty. Specifically, the patching function relies on the estimated conditional entropy
 149 $\hat{H}(x_i | x_1, \dots, x_{i-1})$ computed by a lightweight next-token prediction model. A new patch is ini-
 150 tiated when the entropy exceeds a predefined threshold θ_H . Formally, the entropy-based patching
 151 function is defined as:

$$152 \quad f_{\text{entropy}}(x_{i+1}) = \begin{cases} 1 & \text{if } \hat{H}(x_i | x_1, \dots, x_{i-1}) > \theta_H, \\ 153 \quad 0 & \text{otherwise,} \end{cases}$$

154 The threshold θ_H controls a tradeoff between granularity and efficiency: lower values yield smaller
 155 patches and longer sequences; higher values result in coarser patches and improved efficiency.

156 **Generalized patching strategy:** We define a flexible class of patching functions f_p where bound-
 157 aries are determined when the scoring function g_p , evaluated over the input sequence, exceeds a
 158 predefined threshold θ_p :

$$160 \quad f_p(x_{i+1}) = \begin{cases} 1 & \text{if } g_p(x_i) > \theta_p, \\ 161 \quad 0 & \text{otherwise.} \end{cases}$$

Throughout, we use g_p and θ_p to define the patching strategy.

162 3.2 APPLICATION OF PATCHING FOR DNA MODELING
163

164 The novelty of our work lies in demonstrating the unique advantages of patching for DNA language
165 models. While the BLT framework was developed for NLP, its potential extensions to genomics
166 remain unexplored. Unlike BLT, we move beyond entropy-based patching and show that the lack
167 of fixed vocabulary allows more tailored patching functions that can be designed to incorporate
168 domain-specific inductive biases. Leveraging this, we propose biologically informed patching ap-
169 proaches, where we highlight the superiority of conservation-based patching compared to previous
170 methods. We further extend the framework in several ways. First, we introduce *re-patching*, allow-
171 ing patching strategies to be modified after pretraining, a capability particularly valuable for DNA
172 and potentially other domains. Second, while BLT primarily focuses on generation, we demonstrate
173 that extracting embeddings at single-nucleotide resolution provides unique advantages for genomic
174 analysis. Finally, DNA sequences are much longer than typical NLP inputs. While BLT only con-
175 siders sequence lengths up to 16k bytes, we process sequences exceeding 100k nucleotides by using
176 larger average patch sizes, yielding far fewer FLOPs than existing DNA models at similar lengths
177 (see Table 18 in Section A.3.4). Achieving equivalent efficiency with tokenization would require
178 20-mer tokens, leading to an intractable vocabulary of size 4^{20} . Together, these extensions establish
179 patching as a practical and scalable paradigm for modeling realistic DNA sequences.

180 3.3 CONSERVATION-DRIVEN PATCHING
181

182 We apply the generalized patching framework to genomic sequences by treating each byte as one of
183 the four canonical nucleotides (A, C, G, T) or the unknown base N. While entropy-based patching in
184 BLT is motivated by linguistic ambiguity, we hypothesize that in the genomic domain, computational
185 focus should instead align with regions of high evolutionary conservation (Figure 1B).

186 To implement this, we define the scoring function g_p as the PhyloP conservation score (Pollard
187 et al., 2010; Siepel et al., 2005), a scalar value derived from multi-species alignments (Edgar &
188 Batzoglou, 2006) that quantifies the evolutionary constraint at each nucleotide. In Section 4, we
189 demonstrate that conservation-based patching serves as a strong general-purpose strategy for DNA
190 language models, offering robust performance across diverse downstream tasks.

192 3.4 RE-PATCHING
193

194 Genomic tasks often require modeling context or cell-type-specific signals, and the optimal patching
195 strategy may vary by task. As discussed in Section 2, different tokenization schemes can yield
196 varying performance across distinct genomic tasks.

197 To accommodate this, we introduce *re-patching*, a novel capability to redefine patch boundaries after
198 pretraining. Unlike models constrained by fixed token vocabularies, our approach enables post-hoc
199 modification on the patching function f_p , which depends only on the scoring function g_p and thresh-
200 old θ_p . This makes it straightforward to substitute g_p in inference or fine-tuning time with task- or
201 tissue-specific epigenetic signals, such as chromatin accessibility measured by DNase-seq (Klemm
202 et al., 2019). See Section A.6 for further implementation details. As shown in Section 4.5, this sim-
203 ple adaptation yields substantial gains on cell-type-specific benchmarks, without requiring model
204 retraining from scratch. Importantly, our approach is not constrained by a need for biological infor-
205 mation, but can exploit it to guide patching when available and informative. When conservation or
206 other biological signals are absent, the model can readily turn to alternative patching strategies, such
207 as fixed patching, without requiring architectural changes (see Table 12 Section A.3.1).

208 3.5 ARCHITECTURE
209

210 The backbone for the work above is the BLT model (Pagnoni et al., 2024), which is an autoregressive
211 model consisting of three main components: a small local encoder, a deep latent global transformer,
212 and a small local decoder.

213 **Local encoder:** This is a shallow transformer that computes patch-level representations from a
214 single-nucleotide input sequence x , using patch boundaries provided by the patching function f_p .
215 It alternates between sliding window self-attention layers (operating over the nucleotide sequence)

216 and cross-attention layers, following the Perceiver architecture (Jaegle et al., 2021). Patch representations
 217 are queries, which attend only to the nucleotides (keys) within their respective patch.
 218

219 **Latent global transformer:** This is a standard transformer (Vaswani et al., 2017), using rotary
 220 positional encodings (Su et al., 2021), operating on the patch embeddings produced by the local
 221 encoder. It models long-range interactions across the full sequence using global attention. Since the
 222 patch sequence \mathbf{p} is much shorter than the input sequence \mathbf{x} , this module can be made significantly
 223 deeper, allowing the bulk of the model’s capacity to focus on global reasoning without incurring
 224 prohibitive computational cost.
 225

226 **Local decoder:** This lightweight transformer updates the nucleotide-level representations from the
 227 local encoder to incorporate the patch embedding output from the global transformer. Like the local
 228 encoder, it alternates between sliding window self-attention and cross-attention layers. In this case,
 229 the single-nucleotide embeddings serve as queries, while the patch embeddings act as keys and
 230 values. A language modeling head is applied to the final nucleotide embeddings to produce logits
 231 for next-nucleotide prediction during autoregressive pretraining.
 232

233 3.5.1 PRETRAINING AND DOWNSTREAM USAGE

234 We pretrain PatchDNA on the human reference genome using a next-nucleotide prediction objective,
 235 following the same training and validation splits as Caduceus (Schiff et al., 2024) and HyenaDNA
 236 (Nguyen et al., 2023), as originally defined by Kelley (2020). During pretraining, we set
 237 the patching threshold θ_p to the 95th percentile of the scoring function g_p (based on PhyloP conser-
 238 vation scores, or entropy), resulting in an average patch size of approximately 20 nucleotides. See
 239 Section A.7 for results using other conservation scoring and sensitivity analysis at other thresholds.
 240 This enables efficient training with input contexts up to 131,000 base pairs. To our knowledge, this
 241 is the first transformer-based architecture in DNA language modeling capable of efficiently handling
 242 such long sequences at scale. We pretrain two main models: PatchDNA, a 19.2M parameter model
 243 with a 16 kbp context window, and PatchDNA-7M, a 7.7M parameter model with a 131 kbp con-
 244 text window. The latter is designed to enable fairer comparisons with other long-range sequence
 245 models, such as Caduceus (7.7M) and HyenaDNA (6.6M). We set a maximum patch size to prevent
 246 over-compression of the DNA sequence in non-conserved regions. Full hyperparameter and training
 247 details are provided in Section A.2.
 248

249 While the original BLT paper focused on generation tasks in natural language processing, we show
 250 that when pretrained on genomic sequences, the decoder’s nucleotide-level embeddings yield mean-
 251 ingful representations for a wide range of downstream tasks. These embeddings retain single-
 252 nucleotide resolution, making them particularly well suited for fine-grained genomic prediction
 253 problems. For all downstream applications, we extract the penultimate layer of the decoder as a
 254 nucleotide-level embedding representation.
 255

256 4 EXPERIMENTS

257 We compare against a range of strong baselines (see Section A.1), including small models such as
 258 HyenaDNA (Nguyen et al., 2023) and Caduceus (Schiff et al., 2024) both with around 7 million pa-
 259 rameters, as well as large-scale DNA models ranging from 110 million to 500 million parameters, in-
 260 cluding GENA-LM (Fishman et al., 2025), DNABERT2 (Zhou et al., 2023), MistralDNA (Mourad,
 261 2024) and the Nucleotide Transformer variants (Dalla-Torre et al., 2025). In Section A.4, we present
 262 extensive ablations where we compare to PatchDNA-Entropy and PatchDNA-FixedPS20 models
 263 pretrained and evaluated with entropy and fixed patching.
 264

265 4.1 NUCLEOTIDE TRANSFORMER BENCHMARK

266 The NT benchmark spans 18 supervised classification tasks (300–1000 bp sequences) across three
 267 categories: regulatory element detection, splice site prediction, and chromatin profile annotation.
 268 Each task is framed as a supervised classification problem, and all models are evaluated using a
 269 standardized protocol repeated across five random seeds. Specifically, a frozen pretrained model en-
 270 codes each DNA sequence into a latent embedding space, and a linear probe is trained on top of these
 271 fixed representations, similar to Marin et al. (2024). This setup enables a controlled comparison of
 272 representational quality irrespective of the underlying architecture.
 273

270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 Figure 2 shows mean Matthews Correlation Coefficient (MCC) per category. PatchDNA achieves the highest average MCC in regulatory elements and splicing tasks, and remains competitive on chromatin profile classification, matching larger-scale models such as NT-MS-500M. Detailed results for all 18 tasks are given in Section A.3.1. We further show that PatchDNA outperforms strong baselines under finetuning (Section A.3.1), in addition to the probing results reported here.

287
 288
 289
 Figure 2: Mean MCC across task categories on the NT benchmark. Models are grouped by size:
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687

324
 325 Table 1: Performance on the DART-Eval benchmark. Raw task metrics are shown, taking the mean
 326 across sub tasks for Task 4 and Task 5. Overall mean rank across all tasks is computed in the final
 327 column.

328 Model	329 Task 1	330 Accuracy	331 Task 2	332 Accuracy	333 Task 3	334 Accuracy	335 Task 4	336 Spearman R	337 Task 5	338 AUROC	339 Mean rank
PatchDNA	0.966	0.725	0.457	0.440	0.555		2.0				
PatchDNA-Entropy	0.965	0.650	0.465	0.400	0.523		3.0				
HyenaDNA	0.891	0.645	0.587	0.384	0.515		3.8				
GENA-LM-Large	0.947	0.620	0.383	0.472	0.505		4.2				
NT-MS-500M	0.745	0.565	0.420	0.422	0.566		4.8				
Caduceus-ps	0.971	0.570	0.281	0.297	0.514		5.8				
DNABERT2	0.876	0.590	0.371	0.419	0.493		6.0				
MistralDNA	0.863	0.625	0.329	0.363	0.498		6.4				

340 with 25 fold greater capacity (500M vs 19.2M parameters), and pre-trained on a substantially larger,
 341 multi-species dataset. [Results on the remaining tasks in BEND are reported in Section A.3.3](#).

342 Table 2: Performance across BEND short and long range tasks. Gene finding is reported with MCC,
 343 while other tasks are reported with AUROC.

344 Model	345 Gene finding		346 Chromatin accessibility		347 Histone modification		348 CpG Methylation	
	349 MCC	350 AUROC	351 AUROC	352 AUROC	353 AUROC	354 AUROC	355 AUROC	356 AUROC
PatchDNA	0.58	0.84		0.79		0.92		
PatchDNA-Entropy	0.37	0.83		0.78		0.90		
NT-MS-500M	0.64	0.80		0.76		0.91		
GENA-LM-Large	0.52	0.76		0.78		0.91		
Caduceus-ph	0.44	0.80		0.79		0.90		
HyenaDNA	0.35	0.84		0.76		0.91		
DNABERT-2	0.43	0.81		0.78		0.90		

357 4.4 CAGE PREDICTION BENCHMARK

358 To evaluate performance on long DNA sequences, we benchmark PatchDNA on CAGE prediction
 359 (Trop et al., 2025). CAGE (Cap Analysis of Gene Expression) quantifies gene expression and
 360 identifies transcription start sites. The prediction task involves regressing expression values across
 361 bins in a 114,688 bp input sequence, leveraging distal regulatory elements that may lie kilobases
 362 away from the target gene.

363 We follow the setup from Trop et al. (2025), using 50 CAGE tracks and the full 114 kbp context
 364 window. We only compare to other DNA language models that can handle such long sequences in
 365 one forward pass. For fair comparison, we use the PatchDNA-7M model to match the parameter
 366 budget of HyenaDNA and Caduceus. All models are fine-tuned for one epoch using an MLP
 367 head and evaluated using Pearson correlation at the gene, cell, and full-track levels, following the
 368 metrics introduced in Enformer (Avsec et al., 2021). We give detailed explanations of these metrics
 369 in Supplementary A.3.4.

370 As shown in Table 3, PatchDNA-7M outperforms all baselines across evaluation metrics, achieving
 371 the highest gene- and cell-level Pearson correlations. To further boost performance, we introduce a
 372 variant that adjusts the patching strategy during fine-tuning by leveraging cCRE annotations (Moore
 373 et al., 2020) to focus attention on known regulatory regions. This modification, which is applied
 374 only at fine-tuning time, and can only be done with PatchDNA, leads to additional gains. This
 375 demonstrates that our framework can flexibly incorporate biological priors without requiring model
 376 retraining or changes to the underlying architecture. PatchDNA also offers practical efficiency
 377 advantages, finetuning up to 4× faster than HyenaDNA (see Table 18, Section A.3.4), highlighting
 378 the benefit of moving beyond single-nucleotide tokenization. [For results on other long range tasks,](#)
 379 [see Section A.3.6](#).

378 Table 3: Performance on the CAGE prediction task. We report mean Pearson correlation across
 379 genes, cells, and full sequence bins. Error bars denote one standard deviation across five seeds.
 380

381 Model	382 Gene Pearson	383 Cell Pearson	384 Full Pearson
PatchDNA-7M	0.369 ± 0.001	0.771 ± 0.002	0.471 ± 0.002
PatchDNA-7M + cCRE-aware re-patching	0.373 ± 0.001	0.792 ± 0.002	0.408 ± 0.004
HyenaDNA	0.362 ± 0.001	0.745 ± 0.002	0.290 ± 0.004
Caduceus-ph	0.362 ± 0.001	0.750 ± 0.002	0.309 ± 0.003
Caduceus-ps	0.365 ± 0.001	0.766 ± 0.001	0.420 ± 0.006

389 4.5 CELL TYPE SPECIFIC RE-PATCHING

391 Because the DNA sequence is invariant across cell types, sequence-only models often struggle with
 392 context-specific tasks such as predicting cell-type-specific expression (Patel et al., 2024). We show
 393 that our model can be adapted to such tasks with minimal modification and without changing the
 394 architecture or retraining from scratch. Using the setup in Section 4.4, we evaluate performance on
 395 CAGE prediction across three cell types: K562, hepatocytes, and neurons. For each task, we predict
 396 expression for a single CAGE track corresponding to the target cell type.

397 Cell-type-specific epigenetic inputs like DNase-seq data can help provide cellular context by high-
 398 lighting regulatory regions of the genome that are accessible and potentially active in transcription
 399 (Carter & Zhao, 2021). While previous methods like EPInformer (Lin et al., 2024) and Seq2Exp (Su
 400 et al., 2025) rely on custom architectures that fuse sequence with epigenetic inputs, we instead only
 401 re-patch the DNA using DNase-seq signal from the target cell type. This only alters the patches,
 402 preserving the underlying model architecture while focusing computation on regulatory regions in-
 403 ferred from chromatin accessibility.

404 As shown in Table 4, PatchDNA outperforms all competing baselines on cell type-specific CAGE
 405 prediction. Given that Caduceus-ps outperforms Caduceus-ph in Section 4.4, we only compare to
 406 Caduceus-ps in this task. Incorporating DNase-aware patching further improves performance across
 407 all three cell types, demonstrating that context-specific patching is highly informative for modeling
 408 regulatory activity. Table 5 shows that these gains are maximized when the DNase-seq signal used
 409 for patching matches the target tissue. In contrast, mismatched signals lead to consistently lower
 410 performance, highlighting the importance of aligning the patching strategy with the underlying cel-
 411 lular context. Notably, these improvements are achieved without altering the model architecture or
 412 retraining from scratch.

413 Table 4: Performance on cell type-specific CAGE prediction, reported as Pearson correlation across
 414 cells. Error bars denote one standard deviation across five seeds.

416 Model	417 K562	418 Hepatocyte	419 Neuron
PatchDNA-7M	0.754 ± 0.003	0.717 ± 0.002	0.799 ± 0.001
PatchDNA-7M + DNase-aware re-patching	0.828 ± 0.001	0.727 ± 0.001	0.831 ± 0.001
HyenaDNA	0.703 ± 0.012	0.667 ± 0.006	0.763 ± 0.003
Caduceus-ps	0.732 ± 0.006	0.705 ± 0.001	0.798 ± 0.002

422 Table 5: Performance on DNase-aware cell type-specific CAGE prediction, reported as Pearson
 423 correlation across cells. Maximum performance is achieved when patching is guided by DNase-
 424 seq signal from the corresponding tissue (the diagonal), and applied during fine-tuning. Error bars
 425 denote one standard deviation across five seeds.

427 Model	428 K562	429 Hepatocyte	430 Neuron
PatchDNA-7M DNase-aware (K562)	0.828 ± 0.001	0.713 ± 0.001	0.807 ± 0.002
PatchDNA-7M DNase-aware (Hepatocyte)	0.775 ± 0.002	0.727 ± 0.001	0.822 ± 0.001
PatchDNA-7M DNase-aware (Neuron)	0.770 ± 0.001	0.707 ± 0.001	0.831 ± 0.001

432 **5 DISCUSSION**

434 We introduce PatchDNA, a novel DNA language modeling framework that replaces fixed tokenization with a dynamic patching mechanism, which improves efficiency, enables models to focus
 435 adaptively on functionally relevant genomic regions, and provides flexibility through re-patching.
 436 By introducing conservation-driven and context-aware patching strategies, PatchDNA allocates
 437 model capacity to the most informative regions of the genome, without relying on fixed vocabularies.
 438 Beyond pretraining, PatchDNA introduces *re-patching*: the ability to redefine patch boundaries
 439 post hoc. This property allows our model to use tissue-specific or task-specific signals to adapt to
 440 downstream tasks, such as cell-type-specific expression prediction, without retraining from scratch.
 441 Furthermore, our framework supports re-patching with alternative strategies when biological signals
 442 are unavailable, demonstrating that it is not dependent on such inputs but can flexibly exploit them
 443 whenever they are present and informative.
 444

445 Through extensive benchmarking, we demonstrate that PatchDNA consistently outperforms or
 446 matches state-of-the-art models across regulatory element prediction, splicing, and gene expression
 447 tasks, while training significantly faster. Complementary ablations further highlight the effectiveness
 448 of our approach: conservation-guided patching outperforms entropy-based and fixed-size baselines,
 449 as well as using PhyloP conservation scores directly (see Section A.4). Notably, while raw conser-
 450 vation scores are only weakly correlated with task labels in most benchmarks, conservation-based
 451 patching still yields substantial gains, demonstrating that PatchDNA extracts richer, functionally
 452 grounded representations than conservation scores alone.
 453

5.1 LIMITATIONS AND FUTURE WORK

455 While PatchDNA offers a versatile framework for DNA modeling, several limitations remain. First,
 456 the architecture we used is autoregressive and decoder-only, which limits its ability to fully cap-
 457 ture the bidirectional context that is often critical in genomics (Schiff et al., 2024). Extending the
 458 framework to support bidirectional encoding could further improve performance on context-rich
 459 tasks (Schiff et al., 2024; Schmidinger et al., 2025). Second, we currently pretrain only on the hu-
 460 man reference genome. Incorporating multi-species data (see Section A.5) or genetic variation from
 461 population-scale datasets could expand the model’s applicability and improve generalization to un-
 462 seen genomic contexts (Brixi et al., 2025; Dalla-Torre et al., 2025). Another open direction is the
 463 incorporation of reverse-complement (RC) equivariance, which is a desirable inductive bias in DNA
 464 modeling (Mallet & Vert, 2021).
 465

466 While we demonstrate re-patching on selected tasks, future work should evaluate the generality
 467 of this mechanism across a broader range of biological applications, including regulatory activity
 468 prediction and variant effect interpretation (Avsec et al., 2021; Linder et al., 2025). PatchDNA
 469 provides a modular foundation to explore these extensions with minimal architectural changes. Fur-
 470 thermore, assessing the scaling-law behavior of these models and comparing their performance to
 471 existing approaches will be an important avenue for future work (Nguyen et al., 2024).
 472

473 We hope that our general framework will serve as a foundation for future work, inspiring the de-
 474 velopment of new patching strategies and advancing the broader field of DNA language models
 475 through task- and biology-aware modeling in contrast to the current emphasis on scaling laws Brixi
 476 et al. (2025).
 477

478
 479
 480
 481
 482
 483
 484
 485

486

6 REPRODUCIBILITY STATEMENT

488 We provide detailed hyperparameters and setup for pretraining the PatchDNA models in Section A.2.
 489 For downstream tasks, we provide the methodology we use in A.3, where we default to established
 490 practices in the literature where available. All datasets that we use are publicly available and links
 491 are given in each section where we use external datasets (Section A.2, Section A.3). All baselines
 492 that we use from literature can be downloaded from publicly available sources, with links given in
 493 Section A.1.

494

495 REFERENCES

496

497 Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-Barwinska,
 498 Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R. Kelley. Effective gene
 499 expression prediction from sequence by integrating long-range interactions. *Nature Methods*, 18:
 500 1196–1203, 2021. doi: 10.1038/s41592-021-01252-x.

501 Gonzalo Benegas, Chengzhong Ye, Carlos Albors, Jianan Canal Li, and Yun S Song. Genomic
 502 language models: opportunities and challenges. *Trends in Genetics*, 2025.

503

504 Garyk Bixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,
 505 Gabriel A Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling and
 506 design across all domains of life with evo 2. *BioRxiv*, pp. 2025–02, 2025.

507

508 Benjamin Carter and Keji Zhao. The epigenetic basis of cellular heterogeneity. *Nature Reviews
 509 Genetics*, 22(4):235–250, 2021.

510

511 Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
 512 Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
 513 Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for
 514 human genomics. *Nature Methods*, 22(2):287–297, 2025.

515

516 Edo Dotan, Gal Jaschek, Tal Pupko, and Yonatan Belinkov. Effect of tokenization on transformers
 517 for biological sequences. *Bioinformatics*, 40(4):btae196, 2024.

518

519 Robert C Edgar and Serafim Batzoglou. Multiple sequence alignment. *Current opinion in structural
 520 biology*, 16(3):368–373, 2006.

521

522 Veniamin Fishman, Yuri Kuratov, Aleksei Shmelev, Maxim Petrov, Dmitry Penzar, Denis Shepelin,
 523 Nikolay Chekanov, Olga Kardymon, and Mikhail Burtsev. Gena-lm: a family of open-source
 524 foundational dna language models for long sequences. *Nucleic Acids Research*, 53(2):gkae1310,
 2025.

525

526 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and João Carreira.
 527 Perceiver: General perception with iterative attention. In *Proceedings of the International Conference
 528 on Machine Learning (ICML)*, volume 139 of *Proceedings of Machine Learning Research*,
 pp. 4651–4664. PMLR, 2021.

529

530 David R. Kelley. Cross-species regulatory sequence activity prediction. *PLoS Computational Biology*,
 16(7):e1008050, 2020. doi: 10.1371/journal.pcbi.1008050.

531

532 Sandy L Klemm, Zohar Shipony, and William J Greenleaf. Chromatin accessibility and the regulatory
 533 epigenome. *Nature Reviews Genetics*, 20(4):207–220, 2019.

534

535 Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Jiangbin Zheng, Yufei Huang, and Stan Z
 536 Li. Vqdna: Unleashing the power of vector quantization for multi-species genomic sequence
 537 modeling. *arXiv preprint arXiv:2405.10812*, 2024.

538

539 Jiecong Lin, Ruibang Luo, and Luca Pinello. Epiformer: A scalable deep learning framework for
 540 gene expression prediction by integrating promoter-enhancer sequences with multimodal epigenomic
 data. *bioRxiv*, pp. 2024–08, 2024.

540 Johannes Linder, Divyanshi Srivastava, Han Yuan, Vikram Agarwal, and David R Kelley. Predicting
 541 rna-seq coverage from dna sequence as a unifying model of gene regulation. *Nature Genetics*, pp.
 542 1–13, 2025.

543

544 LeAnn M. Lindsey, Nicole L. Pershing, Anisa Habib, W. Zac Stephens, Anne J. Blaschke, and
 545 Hari Sundar. A comparison of tokenization impact in attention based and state space genomic
 546 language models. *bioRxiv*, 2024. doi: 10.1101/2024.09.09.612081. URL <https://doi.org/10.1101/2024.09.09.612081>. Preprint.

547

548 Vincent Mallet and Jean-Philippe Vert. Reverse-complement equivariant networks for dna se-
 549 quences. *Advances in neural information processing systems*, 34:13511–13523, 2021.

550

551 Frederikke Isa Marin, Felix Teufel, Marc Horlacher, Dennis Madsen, Dennis Pultz, Ole Winther,
 552 and Wouter Boomsma. BEND: Benchmarking DNA language models on biologically meaningful
 553 tasks. *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=uKB4cFNQFg>.

554

555 Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
 556 Raja, Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. Between words and characters: A brief
 557 history of open-vocabulary modeling and tokenization in nlp. *arXiv preprint arXiv:2112.10508*,
 558 2021.

559

560 Jill E Moore, Michael J Purcaro, Henry E Pratt, Charles B Epstein, Noam Shores, Jessika Adrian,
 561 Trupti Kawli, Carrie A Davis, Alexander Dobin, et al. Expanded encyclopaedias of dna elements
 562 in the human and mouse genomes. *Nature*, 583(7818):699–710, 2020.

563

564 Raphaël Mourad. Mistral-dna: Mistral model for genomics. <https://medium.com/@morphos77/mistral-dna-mistral-model-for-genomics-e800e8349ed4>,
 565 2024.

566

567 Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
 568 Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, Stefano Ermon, Christopher
 569 Ré, and Stephen Baccus. Hyenadna: Long-range genomic sequence modeling at single nucleotide
 570 resolution. *Advances in Neural Information Processing Systems*, 36, 2023.

571

572 Eric Nguyen, Michael Poli, Matthew G Durrant, Brian Kang, Dhruba Katrekar, David B Li, Liam J
 573 Bartie, Armin W Thomas, Samuel H King, Garyk Brix, et al. Sequence modeling and design
 574 from molecular to genome scale with evo. *Science*, 386(6723):eado9336, 2024.

575

576 Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
 577 Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
 578 scale better than tokens. *arXiv preprint arXiv:2412.09871*, 2024.

579

580 Aman Patel, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski, and Anshul Kundaje.
 581 Dart-eval: A comprehensive dna language model evaluation benchmark on regulatory dna. *arXiv
 582 preprint arXiv:2412.05430*, 2024.

583

584 Katherine S Pollard, Melissa J Hubisz, Kate R Rosenbloom, and Adam Siepel. Detection of non-
 585 neutral substitution rates on mammalian phylogenies. *Genome research*, 20(1):110–121, 2010.

586

587 Lifeng Qiao, Peng Ye, Yuchen Ren, Weiqiang Bai, Chaoqi Liang, Xinzhu Ma, Nanqing Dong, and
 588 Wanli Ouyang. Model decides how to tokenize: Adaptive dna sequence tokenization with mxdna.
 589 *Advances in Neural Information Processing Systems*, 37:66080–66107, 2024.

590

591 Amartya Sanyal, Bryan R Lajoie, Gaurav Jain, and Job Dekker. The long-range interaction land-
 592 scape of gene promoters. *Nature*, 489(7414):109–113, 2012.

593

594 Yair Schiff, Chia Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
 595 Caduceus: Bi-directional equivariant long-range dna sequence modeling. In *Proceedings of the
 596 41st International Conference on Machine Learning (ICML)*, 2024.

594 Niklas Schmidinger, Lisa Schneckenreiter, Philipp Seidl, Johannes Schimunek, Pieter-Jan Hoedt,
 595 Johannes Brandstetter, Andreas Mayr, Sohvi Luukkonen, Sepp Hochreiter, and Günter Klambauer. Bio-xlstm: Generative modeling, representation and in-context learning of biological and
 596 chemical sequences. In *Proceedings of the International Conference on Learning Representations*
 597 (*ICLR*), 2025.

598

599 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 600 subword units. In *Proceedings of the 54th Annual Meeting of the Association for Computational*
 601 *Linguistics (Volume 1: Long Papers)*, pp. 1715–1725, Berlin, Germany, 2016. Association for
 602 Computational Linguistics. doi: 10.18653/v1/P16-1162. URL <https://aclanthology.org/P16-1162>.

603

604 Adam Siepel, Gill Bejerano, Jakob S Pedersen, Angie S Hinrichs, Minmei Hou, Kate Rosenbloom,
 605 Hiram Clawson, John Spieth, LaDeana W Hillier, Stephen Richards, et al. Evolutionarily con-
 606 served elements in vertebrate, insect, worm, and yeast genomes. *Genome research*, 15(8):1034–
 607 1050, 2005.

608

609 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. “roformer: En-
 610 hanced transformer with rotary position embedding”, 2021.

611

612 Xingyu Su, Haiyang Yu, Degui Zhi, and Shuiwang Ji. Learning to discover regulatory elements
 613 for gene expression prediction. In *Proceedings of the International Conference on Learning*
 614 *Representations (ICLR)*, 2025.

615

616 Evan Trop, Yair Schiff, Edgar Mariano Marroquin, Chia Hsiang Kao, Aaron Gokaslan, McKinley
 617 Polen, Mingyi Shao, Aymen Kallala, Bernardo P de Almeida, Thomas PIERROT, Yang I Li, and
 618 Volodymyr Kuleshov. The genomics long-range benchmark: Advancing DNA language models.
 2025. URL <https://openreview.net/forum?id=809HLDrmfq>.

619

620 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 621 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information*
 622 *processing systems*, volume 30, 2017.

623

624 Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
 625 2: Efficient foundation model and benchmark for multi-species genome. *arXiv preprint*
 arXiv:2306.15006, 2023.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**
649650 **A.1 DETAILS OF PRETRAINED BASELINE MODELS**
651652
653 **Table 6: Overview of pretrained DNA language models used in this study. We list HuggingFace**
654 **IDs, number of parameters, and species coverage.**

655 Model	656 HuggingFace ID	657 Parameters	658 Species
659 HyenaDNA	660 LongSafari/hyenaDNA-large-1m-seqlen-hf	661 6.6M	662 Human
663 Caduceus-ps	664 kuleshov-group/caduceus-ps_seqlen-131k_d_model-256_n_layer-16	665 7.7M	666 Human
667 Caduceus-ph	668 kuleshov-group/caduceus-ph_seqlen-131k_d_model-256_n_layer-16	669 7.7M	670 Human
671 DNABERT2	672 zhihan1996/DNABERT-2-117M	673 117M	674 Multispecies
675 GENA-LM-Base	676 AIRI-Institute/gena-lm-bert-base-t2t	677 110M	678 Human
679 GENA-LM-Large	680 AIRI-Institute/gena-lm-bert-large-t2t	681 336M	682 Multi-species
683 MistralDNA	684 RaphaelMourad/Mistral-DNA-v1-1.6B-hg38	685 1.6B	686 Human
687 NT-MS-500M	688 InstaDeepAI/nucleotide-transformer-v2-500m-multi-species	689 500M	690 Multi-species
692 NT-MS-100M	693 InstaDeepAI/nucleotide-transformer-v2-100m-multi-species	694 100M	695 Multi-species
697 MxDNA	698 github.com/qiaoqiaolF/MxDNA/tree/full-model	699 100M	700 Human

664
665 **A.2 PRETRAINING DETAILS**
666667 **ARCHITECTURE HYPERPARAMETERS**
668669 **Table 7: Architecture hyperparameters for PatchDNA and PatchDNA-7M. The patching threshold**
670 **is the 95% quantile of all PhyloP scores**
671

672 Hyperparameter	673 PatchDNA	674 PatchDNA-7M
675 Num Local Encoder Layers	676 4	677 2
676 Num Local Decoder Layers	677 4	678 2
677 Num Global Transformer Layers	678 8	679 3
678 Embedding Dimension	679 256	680 256
679 Context Length	680 16,000	681 131,072
680 Max Patch Length	681 128	682 1,024
681 Number of Global Transformer Heads	682 8	683 4
682 Number of Local Encoder Heads	683 8	684 4
683 Number of Local Decoder Heads	684 8	685 4
684 PhyloP Patching Threshold	685 1.5	686 1.5
685 Num parameters	686 19.2M	687 7.7M

685
686 **TRAINING HYPERPARAMETERS**
687688 We use the same optimizer, learning rate, weight decay, and gradient clipping as Pagnoni et al.
689 (2024).
690691 **Table 8: Training hyperparameters for PatchDNA and PatchDNA-7M.**
692

693 Hyperparameter	694 PatchDNA	695 PatchDNA-7M
696 Learning Rate	697 0.0004	698 0.0004
697 Training Steps	698 100,000	699 100,000
698 Weight Decay	699 0.1	700 0.1
700 Optimizer	701 AdamW	702 AdamW
701 Batch Size	702 64	703 8
702 Gradient Clipping	703 1.0	704 1.0
703 Training Time (4×A100 80GB)	704 ~18 hours	705 ~10 hours

702
703 PATCHING ABLATION CONFIGURATIONS

704
705
706
707

- **PatchDNA Entropy:** Uses identical hyperparameters to PatchDNA, except it employs a
704 small entropy model for patching with a threshold of 1.37 (which is 95% quantile of all
705 scores from the entropy model across the genome). Hyperparameter details for the entropy
706 model are in Table 9.

707
708
709
710
711

- **PatchDNA Fixed Patch Size 20:** Shares the same hyperparameters as PatchDNA, but
708 uses a fixed patch size of 20. i.e., every 20 nucleotides are in one patch. We use this
709 because a patching threshold of the 95% quantile of all scores gives an average patch size
710 of approximately 20.

711
712

713 Table 9: Hyperparameters for the entropy model used in PatchDNA Entropy.
714

715	Hyperparameter	716	Value
717	Number of Layers	718	8
718	Embedding Dimension	719	256
719	Context Length	720	8,192
720	Sliding window	721	512
721	Number of Heads	722	8
722	Batch size	723	256
723	Learning Rate	724	0.0004
724	Training Steps	725	100,000
725	Weight Decay	726	0.1
726	Optimizer	727	AdamW
727	Gradient Clipping		1.0
	Num parameters		6.8M

728
729 DATA

730
731 We use the same train and validation splits as HyenaDNA (Nguyen et al., 2023)
732 and Caduceus (Schiff et al., 2024), which originate from Kelley (2020), available at
733 https://console.cloud.google.com/storage/browser/basenji_barnyard/data

734
735 We use the PhyloP scores (Siepel et al., 2005; Pollard et al., 2010) downloaded from
736 <https://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/>

737
738 CODE

739 We use publicly available code from Pagnoni et al. (2024) to define the model architecture. All code,
740 including model checkpoints, will be released upon publication.
741

742 A.3 BENCHMARK TASKS DETAILS
743744 A.3.1 NUCLEOTIDE TRANSFORMER BENCHMARK
745

746 We evaluated model performance on the Nucleotide Transformer (NT) benchmark, a diverse collec-
747 tion of 18 classification tasks designed to assess the biological utility of pretrained DNA language
748 models. The benchmark was accessed via the HuggingFace Hub¹, and includes pre-defined train
749 and test splits for each task. For each task, we further partitioned the provided training set into 90%
750 training and 10% validation splits. All experiments were repeated across five random seeds, with
751 each seed generating a new train/validation split to evaluate consistency and robustness.

752 To ensure fair and consistent evaluation across models, we adopted a linear probing protocol. Specif-
753 ically, each pretrained model was frozen and used to encode input DNA sequences into latent em-
754 beddings, over which a linear classifier was trained. The input representation dimensionality varied
755

¹https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised

756 across models: PatchDNA, Caduceus-ph and HyenaDNA produced 256-dimensional embeddings,
 757 while GENA-LM-Base and NT-MS-500M yielded 768 and 1024-dimensional embeddings,
 758 respectively.

759 All models were evaluated under identical training conditions: a batch size of 64, a total of 50 training
 760 epochs, and optimization using AdamW with a learning rate of $5e-4$ and weight decay of 0.01.
 761 For each model and seed, we report performance on the official test set using Matthews Correla-
 762 tion Coefficient (MCC), averaged across all runs. Full per-task results with standard deviations are
 763 presented in Supplementary Table 10.

771 Table 10: Detailed performance across all 18 tasks in the Nucleotide Transformer Benchmark.
 772

773 Dataset 774 Model	775 promoter_all	776 promoter_no_tata	777 promoter_tata	778 enhancers	779 enhancers_types	780 splice_sites_acceptors
PatchDNA	0.779 ± 0.007	0.786 ± 0.003	0.853 ± 0.009	0.475 ± 0.004	0.441 ± 0.005	0.669 ± 0.006
PatchDNA Entropy	0.719 ± 0.007	0.743 ± 0.003	0.749 ± 0.04	0.454 ± 0.01	0.421 ± 0.008	0.497 ± 0.005
Caduceus-ph	0.679 ± 0.001	0.727 ± 0.002	0.67 ± 0.0	0.429 ± 0.002	0.39 ± 0.002	0.448 ± 0.002
HyenaDNA	0.712 ± 0.002	0.729 ± 0.001	0.71 ± 0.009	0.414 ± 0.005	0.38 ± 0.004	0.391 ± 0.009
GENA-LM-Base	0.7 ± 0.008	0.741 ± 0.013	0.707 ± 0.02	0.488 ± 0.01	0.452 ± 0.008	0.54 ± 0.007
NT-MS-500M	0.718 ± 0.003	0.741 ± 0.004	0.685 ± 0.032	<u>0.485 ± 0.003</u>	<u>0.445 ± 0.003</u>	0.468 ± 0.005
MxDNA	<u>0.729 ± 0.006</u>	<u>0.757 ± 0.007</u>	<u>0.759 ± 0.011</u>	0.458 ± 0.004	0.428 ± 0.004	<u>0.57 ± 0.004</u>

781 Dataset 782 Model	783 splice_sites_all	784 splice_sites_donors	785 H2AFZ	786 H3K27ac	787 H3K27me3	788 H3K36me3
PatchDNA	0.454 ± 0.018	0.692 ± 0.014	0.396 ± 0.005	<u>0.41 ± 0.022</u>	<u>0.557 ± 0.004</u>	<u>0.542 ± 0.004</u>
PatchDNA Entropy	0.311 ± 0.011	0.512 ± 0.007	0.401 ± 0.007	0.352 ± 0.008	0.529 ± 0.004	0.498 ± 0.006
Caduceus-ph	0.267 ± 0.002	0.455 ± 0.003	0.337 ± 0.002	0.28 ± 0.003	0.476 ± 0.003	0.354 ± 0.003
HyenaDNA	0.258 ± 0.008	0.387 ± 0.005	0.444 ± 0.004	0.375 ± 0.003	0.507 ± 0.002	0.498 ± 0.001
GENA-LM-Base	0.312 ± 0.005	0.578 ± 0.007	<u>0.403 ± 0.012</u>	0.449 ± 0.01	0.565 ± 0.013	0.553 ± 0.006
NT-MS-500M	0.336 ± 0.005	0.509 ± 0.004	0.392 ± 0.005	0.398 ± 0.004	0.536 ± 0.004	0.496 ± 0.006
MxDNA	<u>0.34 ± 0.006</u>	<u>0.585 ± 0.006</u>	0.366 ± 0.004	0.363 ± 0.004	0.532 ± 0.003	0.474 ± 0.006

789 Dataset 790 Model	791 H3K4me1	792 H3K4me2	793 H3K4me3	794 H3K9ac	795 H3K9me3	796 H4K20me1
PatchDNA	0.406 ± 0.009	0.459 ± 0.004	0.614 ± 0.006	0.47 ± 0.011	0.393 ± 0.012	0.576 ± 0.008
PatchDNA Entropy	0.381 ± 0.009	0.457 ± 0.013	0.583 ± 0.006	0.458 ± 0.023	0.346 ± 0.009	0.554 ± 0.005
Caduceus-ph	0.333 ± 0.001	0.403 ± 0.005	0.489 ± 0.002	0.379 ± 0.005	0.214 ± 0.007	0.513 ± 0.004
HyenaDNA	0.387 ± 0.004	0.493 ± 0.006	0.627 ± 0.005	0.485 ± 0.004	0.291 ± 0.013	0.554 ± 0.004
GENA-LM-Base	0.42 ± 0.01	<u>0.486 ± 0.006</u>	<u>0.624 ± 0.011</u>	<u>0.5 ± 0.005</u>	0.4 ± 0.013	0.604 ± 0.01
NT-MS-500M	0.391 ± 0.009	0.47 ± 0.005	0.622 ± 0.007	0.514 ± 0.005	0.304 ± 0.016	0.561 ± 0.001
MxDNA	0.387 ± 0.004	0.458 ± 0.003	0.568 ± 0.0	0.463 ± 0.013	0.36 ± 0.016	0.559 ± 0.003

803 FINETUNING RESULTS

804 Using the same finetuning protocol and hyperparameters as Qiao et al. (2024), we fully finetune all
 805 models across 3 seeds for a maximum of 20 epochs. The results in Table 11 show that PatchDNA
 806 performs strongly across the benchmark, outperforming all other models in 11 out of 18 tasks.
 807

810
811
812 Table 11: Comparison of finetuning results on NT benchmark.
813
814

Dataset Model	promoter_all	promoter_no_tata	promoter_tata	enhancers	enhancers_types	splice_sites_acceptors
PatchDNA	0.791 ± 0.009	0.788 ± 0.005	0.84 ± 0.019	0.528 ± 0.009	0.496 ± 0.008	0.754 ± 0.04
PatchDNA Entropy	0.725 ± 0.008	0.73 ± 0.007	0.785 ± 0.016	0.523 ± 0.001	0.488 ± 0.008	0.868 ± 0.015
Caduceus-ps	0.742 ± 0.01	0.764 ± 0.013	0.761 ± 0.028	0.51 ± 0.017	0.471 ± 0.006	0.765 ± 0.006
HyenaDNA	0.693 ± 0.007	0.724 ± 0.004	0.831 ± 0.057	0.479 ± 0.005	0.45 ± 0.003	0.82 ± 0.015
GENA-LM-Base	0.738 ± 0.007	0.736 ± 0.025	0.689 ± 0.038	0.483 ± 0.023	0.467 ± 0.012	0.76 ± 0.005
NT-MS-100M	0.737 ± 0.019	0.756 ± 0.003	0.818 ± 0.052	0.513 ± 0.001	0.478 ± 0.002	0.952 ± 0.002
MxDNA	0.734 ± 0.013	0.755 ± 0.01	0.831 ± 0.038	0.519 ± 0.014	0.48 ± 0.01	0.812 ± 0.032
PhyloP	0.405 ± 0.002	0.393 ± 0.006	0.469 ± 0.006	0.181 ± 0.007	0.167 ± 0.002	0.543 ± 0.001

Dataset Model	splice_sites.all	splice_sites.donors	H2AFZ	H3K27ac	H3K27me3	H3K36me3
PatchDNA	0.76 ± 0.019	0.706 ± 0.026	0.523 ± 0.01	0.486 ± 0.015	0.607 ± 0.008	0.621 ± 0.007
PatchDNA Entropy	0.884 ± 0.013	0.654 ± 0.016	0.521 ± 0.009	0.484 ± 0.035	0.595 ± 0.004	0.584 ± 0.02
Caduceus-ps	0.796 ± 0.021	0.771 ± 0.013	0.507 ± 0.007	0.475 ± 0.021	0.591 ± 0.009	0.607 ± 0.008
HyenaDNA	0.849 ± 0.006	0.84 ± 0.029	0.481 ± 0.005	0.44 ± 0.003	0.554 ± 0.014	0.549 ± 0.002
GENA-LM-Base	0.764 ± 0.013	0.781 ± 0.004	0.466 ± 0.035	0.495 ± 0.01	0.588 ± 0.004	0.602 ± 0.021
NT-MS-100M	0.966 ± 0.0	0.962 ± 0.003	0.501 ± 0.009	0.496 ± 0.009	0.599 ± 0.009	0.617 ± 0.004
MxDNA	0.86 ± 0.007	0.931 ± 0.021	0.512 ± 0.003	0.489 ± 0.031	0.599 ± 0.015	0.618 ± 0.002
PhyloP	0.283 ± 0.004	0.547 ± 0.001	-0.017 ± 0.062	0.105 ± 0.028	0.233 ± 0.032	0.304 ± 0.003

Dataset Model	H3K4me1	H3K4me2	H3K4me3	H3K9ac	H3K9me3	H4K20me1
PatchDNA	0.48 ± 0.003	0.573 ± 0.004	0.634 ± 0.005	0.569 ± 0.01	0.47 ± 0.017	0.637 ± 0.007
PatchDNA Entropy	0.472 ± 0.011	0.568 ± 0.021	0.589 ± 0.01	0.546 ± 0.009	0.473 ± 0.019	0.626 ± 0.027
Caduceus-ps	0.471 ± 0.014	0.565 ± 0.008	0.617 ± 0.009	0.526 ± 0.009	0.435 ± 0.015	0.639 ± 0.009
HyenaDNA	0.438 ± 0.007	0.523 ± 0.025	0.618 ± 0.007	0.497 ± 0.014	0.371 ± 0.026	0.617 ± 0.008
GENA-LM-Base	0.465 ± 0.014	0.538 ± 0.027	0.61 ± 0.055	0.525 ± 0.007	0.44 ± 0.009	0.644 ± 0.011
NT-MS-100M	0.487 ± 0.01	0.551 ± 0.005	0.624 ± 0.003	0.531 ± 0.002	0.469 ± 0.006	0.646 ± 0.01
MxDNA	0.497 ± 0.001	0.563 ± 0.012	0.627 ± 0.017	0.534 ± 0.015	0.467 ± 0.023	0.646 ± 0.007
PhyloP	0.006 ± 0.041	-0.02 ± 0.058	0.009 ± 0.084	0.026 ± 0.041	0.072 ± 0.035	0.059 ± 0.103

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
On splice sites, Lindsey et al. (2024) show that a model trained with single nucleotide tokenization significantly outperforms an equivalent BPE based model. They also postulate that consistent token size facilitates the model’s learning of specific distances for these tasks. Inspired by this, we re-patch the model after pretraining, using single nucleotide patching with the same base model. Table 12 shows the expected improvement demonstrated by prior work. Although single-nucleotide patching introduces additional computational overhead during fine-tuning, re-patching avoids the costly requirement of pretraining from scratch at this resolution.

Table 12: Comparison of PatchDNA vs PatchDNA with single nucleotide re-patching on splice site tasks.

	PatchDNA	PatchDNA re-patch size 1
Pre-training patching	PhyloP	PhyloP
Finetuning Patching	PhyloP	Single Nucleotide
splice_sites_acceptors	0.754 ± 0.040	0.946 ± 0.002
splice_sites_all	0.760 ± 0.019	0.953 ± 0.006
splice_sites_donors	0.706 ± 0.026	0.948 ± 0.002

A.3.2 DART-EVAL

We evaluated our model’s performance by adding it to each task using the original evaluation code provided by the authors at <https://github.com/kundajelab/DART-Eval>. To ensure consistency, we maintained the original experimental setup and report the published results for all other baseline models directly from the original paper (Patel et al., 2024). We use 1 A100 80GB GPU for each task.

For Task 1 and Task 2, we use the zero-shot likelihoods formulation, while for Task 5, we apply the zero-shot embeddings approach. When both likelihoods and embeddings could be used, we choose

864 between them based on the relative performance of models across tasks. For example, in Task 2,
 865 embeddings from all DNA models perform significantly worse than likelihoods, making the latter
 866 the preferred choice. For Task 2, we report median accuracy.

867 For Task 3 and Task 4, where no zero-shot formulation exists, a lightweight probe is trained on top
 868 of frozen model embeddings.

870 For Task 2, no conservation scores are available, so we re-patch to single nucleotide scores at infer-
 871 ence time, showing the flexibility of our modeling approach when conservation scores are unavail-
 872 able.

876 VISUALIZATION OF OVERALL PERFORMANCE

894 Figure 3: Radar plot showing normalized performance across all five tasks, with the best and worst
 895 performance for each task scaled to 1 and 0 respectively. Each axis corresponds to a different task,
 896 and larger enclosed area indicates stronger overall performance.

901 EXTENDED RESULTS

903 We present extended results for Tasks 3, 4 and 5 in Tables 13, 15, 14. In the main results in the
 904 paper, we report the Overall Accuracy for Task 3, the mean Spearman r across the 5 cell types for
 905 Task 4, and the mean AUROC for Task 5.

909 Table 13: Accuracy and AUROC across different cell types for Task 3 in DART-Eval

911 Model	912 Overall Accuracy	913 GM12878	914 H1ESC	915 HEPG2	916 IMR90	917 K562
PatchDNA	0.457	0.740	0.817	0.806	0.783	0.710
Caduceus	0.281	0.535	0.622	0.680	0.576	0.587
DNABERT2	0.371	0.652	0.757	0.762	0.691	0.691
GENA-LM-Large	0.383	0.627	0.787	0.773	0.714	0.693
HyenaDNA	0.587	0.849	0.889	0.862	0.882	0.799
Mistral-DNA	0.329	0.582	0.678	0.723	0.643	0.646
NT-MS-500M	0.420	<u>0.744</u>	0.795	0.783	0.779	<u>0.711</u>

918
919
920
Table 14: Zero-shot AUROC performance using embedding-based predictions for African and
Yoruban datasets for Task 5 in DART-Eval

Model	African AUROC	Yoruban AUROC
PatchDNA	0.545	<u>0.564</u>
Caduceus	0.519	0.508
DNABERT2	0.480	0.505
GENA-LM-Large	0.508	0.501
HyenaDNA	0.515	0.515
Mistral-DNA	<u>0.520</u>	0.475
NT-MS-500M	0.519	0.613

921
922
923
924
925
926
927
928
929
Table 15: Spearman r among positives across five cell types for Task 4 in DART-Eval

Model	GM12878	H1ESC	HEPG2	IMR90	K562
PatchDNA	0.434	0.636	0.400	0.319	0.412
Caduceus	0.251	0.371	0.312	0.149	0.401
DNABERT2	0.395	0.584	0.357	0.275	<u>0.483</u>
GENA-LM-Large	0.490	0.678	0.401	0.329	0.461
HyenaDNA	0.362	0.538	0.345	0.237	0.438
Mistral-DNA	0.293	0.500	0.349	0.244	0.431
NT-MS-500M	0.410	0.595	0.337	0.270	0.499

930
931
932
933
934
935
936
937
938
939
940
941
A.3.3 BEND BENCHMARK942
943
944
945
946
947
948
This section reports on the remaining BEND benchmark tasks(Marin et al., 2024). Table 2 focuses
on short- and medium-range tasks, whereas the BEND enhancer task requires 100 kbp inputs. We
evaluate this task only for models that can process such long sequences in a single forward pass.
Specifically, we compare PatchDNA-7M (131 kbp context) with HyenaDNA Large and Caduceus-
ph (Table 16). The enhancer task is a binary classification task that predicts whether a 128 bp region
lies within an enhancer, using a 100 kbp surrounding context.949
950
951
952
We additionally report zero-shot performance on the BEND Variant Effect Prediction (VEP) tasks,
see Table 17. As highlighted by Dart-Eval (Patel et al., 2024), these tasks do not account for linkage
disequilibrium, leading to potentially noisy labels and reduced reliability. For this reason, we include
the results for completeness but exclude them from the primary comparisons.953
954
Table 16: Enhancer annotation task performance. These results compare models capable of handling
100kbp sequence length inputs in a single pass. We report AUPRC across 10 cross validation folds.

Model	AUPRC
PatchDNA (131k)	0.037 ± 0.026
HyenaDNA Large	0.031 ± 0.019
Caduceus-ph	0.032 ± 0.020

955
956
957
958
959
960
961
962
Table 17: Zero-shot variant effect prediction (VEP) performance in terms of AUROC.

Model	eQTL	Disease
	AUROC	AUROC
PatchDNA	0.49	0.82
HyenaDNA	0.51	0.45
GENA-LM Large	0.49	0.55
NT-MS-500M	0.48	0.48
DNABERT-2	0.49	0.51

972 A.3.4 CAGE PREDICTION BENCHMARK
973974 We use the CAGE dataset from <https://huggingface.co/datasets/InstaDeepAI/genomics-long-range-benchmark>, consisting of 50 CAGE tracks selected from the original 638 in the Basenji dataset.
975976 Each model receives a sequence of 114,688 single nucleotides. We extract per-nucleotide embeddings
977 and pass them through a two-layer MLP, where the hidden dimension is set to twice the
978 embedding size and the output dimension is 50, following the setup in Brix et al. (2025). The MLP
979 outputs are mean-pooled over non-overlapping windows of 128 nucleotides, resulting in a final out-
980 put of shape 896×50.
981982 Training is performed using the Poisson negative log-likelihood loss, as in Enformer (Avsec et al.,
983 2021). We fully finetune each model for one epoch, consistent with Brix et al. (2025). We use the
984 Adam optimizer, with a learning rate of $5e-5$ and a total batch size of 8.
985986 For baseline models, HyenaDNA, Caduceus-ps and Caduceus-ph we use the pretrained
987 weights available via Hugging Face, with model identifiers listed in Table 6.
988989 For regulatory element based patching, we use annotations from Moore et al. (2020), creating a
990 score function, g_p , that assigns a value of 1 to nucleotides in these regions, and 0 otherwise. We
991 then use a patching threshold, θ_p , of 0.99.
992993 All experiments are repeated with five random seeds. We report the mean and standard deviation
994 of performance on the test set, using the same metrics as Avsec et al. (2021), described in Section
995 A.10. Finetuning runtimes for one epoch are reported in Table 18.
996997 Table 18: One epoch finetuning time and FLOPS for various models, using 4 A100 80GB GPUs on
998 CAGE prediction benchmark. **The peak VRAM usage is normalised by batch size.**
9991000

Model	Time (minutes)	FWD FLOPS (G)	Peak VRAM usage (GB)
PatchDNA	22.4	678.60	14.1
HyenaDNA	76.6	1493.96	20.4
Caduceus-ph	99.2	3142.71	18.1
Caduceus-ps	238.3	6285.42	36.2

1001 A.3.5 CELL TYPE SPECIFIC RE-PATCHING
10021003 We pick paired CAGE-DNase tracks from the Basenji dataset (Kelley, 2020), focusing on Neurons,
1004 Hepatocytes and K562. The ids for the tracks that we used are in Table 19. We keep the same
1005 train/validation/test splits. For each cell type we follow the same protocol outlined in Section A.3.4,
1006 where instead of predicting 50 tracks we predict only 1 track. Since only 1 track is predicted, we opt
1007 to focus on cell correlation.
10081009 **DNase patching details** The DNase-seq data used for patching were obtained from the ENCODE
1010 Project portal (<https://www.encodeproject.org/>) using the ENCODE ids in Table 19.
1011 We use a patching threshold, θ_p , of 0.99 for all DNase sources.
10121013 Table 19: Dataset identifiers for paired DNase-seq and CAGE expression tracks used in the cell-
1014 type-specific prediction task.
10151016

Cell Type	DNase ENCODE ID	CAGE FANTOM5 ID
K562	ENCFF413AHU	CNhs11250
Hepatocyte	ENCFF136YOJ	CNhs12338
Neuron	ENCFF399ISP	CNhs12338

1021 A.3.6 THE GENOMICS LONG RANGE BENCHMARK
10221023 To evaluate performance on additional long-range prediction tasks, we use the Genomics Long
1024 Range Benchmark (Trop et al., 2025). We use a sequence length of 131 kbp, and restrict
1025 comparisons to architectures capable of processing this full context in a single forward pass, namely

1026 HyenaDNA and Caduceus. Following the benchmark protocol, we adopt the authors' recommended
 1027 hyperparameters and report the mean performance across five random seeds on the designated held-
 1028 out test set (Table 20). Across these tasks, PatchDNA-7M delivers competitive or superior results,
 1029 outperforming baseline models on 6 out of 7 tasks.

1030 We further show results on the zero-shot tasks in Table 21. We use the same protocol for extracting
 1031 zero shot scores as detailed in (Trop et al., 2025) for masked language models (Caduceus-ph), and
 1032 autoregressive models (PatchDNA, HyenaDNA). On Pathogenic Clinvar, our model outperforms
 1033 HyenaDNA and Caduceus-ph. On the Causal eQTL and OMIM tasks, all models perform close to
 1034 random, consistent with the reported difficulties that DNA language models have in the zero shot
 1035 setting on these tasks (Trop et al., 2025).

1036
 1037 **Table 20: Performance on Genomics Long Range Benchmark on all finetuning tasks. Results are**
 1038 **reported across 5 seeds on the held out test set.**

Model	Causal eQTL AUROC	Pathogenic ClinVar AUROC	Bulk RNA R^2	Histone Marks AUPRC	DNA Accessibility AUPRC	Promoter AUPRC	Enhancer AUROC
PatchDNA-7M	0.714 ± 0.005	0.796 ± 0.009	0.500 ± 0.005	0.309 ± 0.005	0.220 ± 0.007	0.781 ± 0.031	0.836 ± 0.003
HyenaDNA	0.715 ± 0.003	0.622 ± 0.044	0.458 ± 0.002	0.252 ± 0.006	0.108 ± 0.004	0.694 ± 0.033	0.760 ± 0.022
Caduceus-ph	0.717 ± 0.010	0.699 ± 0.010	0.491 ± 0.014	0.260 ± 0.009	0.128 ± 0.007	0.764 ± 0.021	0.829 ± 0.002

1044
 1045
 1046 **Table 21: Performance on Genomics Long Range Benchmark zero-shot tasks.**

Model	Causal eQTL	Pathogenic ClinVar	OMIM
	AUROC	AUROC	AUPRC
PatchDNA-7M	0.487	0.586	0.00208
Caduceus-ph	0.479	0.501	0.00177
HyenaDNA	0.481	0.494	0.00187

A.4 ABLATIONS

1057 We present ablations to assess (i) how a conservation score only baseline performs, (ii) the effectiveness
 1058 of conservation-based patching versus entropy and fixed size patching, and (iii) the contribution
 1059 of patching and the BLT architecture itself.

1060 PatchDNA-Entropy and PatchDNA-FixedPS20 are pretrained and evaluated with entropy-
 1061 and fixed- patching at matched efficiency to conservation-based patching (see Section A.2 for hyper-
 1062 parameters). For reference, we also include NT-MS-500M, the largest baseline in our benchmarks
 1063 (500M parameters, multi-species).

1064 We also construct a PhyloP baseline. For sequence-level tasks, PhyloP scores are pooled across the
 1065 sequence by summation. For binary classification, we report AUROC or MCC depending on the
 1066 established metric in literature for the benchmark. In the case of MCC, we fit a small linear probe
 1067 to the scores to obtain binary predictions. For multiclass classification, we train a probe on PhyloP
 1068 scores. For regression, we report direct correlation between scores and labels. For variant effect
 1069 prediction, we follow Brixi et al. (2025) by taking the PhyloP score at the variant site and computing
 1070 AUROC against effect/no-effect labels.

1071 Across benchmarks, conservation-based patching outperforms entropy and fixed patching, highlighting
 1072 the advantage of a biologically informed patching strategy. Furthermore, entropy and fixed
 1073 patching remain strong competitors in comparison to NT-MS-500M, highlighting the strength of
 1074 patching and the BLT architecture itself in DNA modeling. We also directly examine the relationship
 1075 between conservation scores and task labels. We find that conservation scores alone cannot repro-
 1076 duce model performance. In most tasks, there is weak or no correlation to labels, and PatchDNA
 1077 still outperforms baselines. In tasks where conservation is more predictive, conservation based
 1078 patching achieves substantial gains over the PhyloP baseline.

1080 Table 22: Performance across NT benchmark, with a linear probe on top of model embeddings. All
 1081 results are using MCC. PhyloP baseline uses a linear probe.
 1082

Task	PatchDNA	PatchDNA-Entropy	PatchDNA-FixedPS20	NT-MS-500M	PhyloP
H2AFZ	0.396 \pm 0.005	0.401 \pm 0.007	0.405 \pm 0.005	0.392 \pm 0.005	-0.017 \pm 0.062
H3K27ac	0.410 \pm 0.022	0.352 \pm 0.008	0.386 \pm 0.006	0.398 \pm 0.004	0.105 \pm 0.028
H3K27me3	0.557 \pm 0.004	0.529 \pm 0.004	0.522 \pm 0.008	0.536 \pm 0.004	0.233 \pm 0.032
H3K36me3	0.542 \pm 0.004	0.498 \pm 0.006	0.486 \pm 0.017	0.496 \pm 0.006	0.304 \pm 0.003
H3K4me1	0.406 \pm 0.009	0.381 \pm 0.009	0.392 \pm 0.005	0.391 \pm 0.009	0.006 \pm 0.041
H3K4me2	0.459 \pm 0.004	0.457 \pm 0.013	0.469 \pm 0.012	0.470 \pm 0.005	-0.020 \pm 0.058
H3K4me3	0.614 \pm 0.006	0.583 \pm 0.006	0.592 \pm 0.010	0.622 \pm 0.007	0.009 \pm 0.084
H3K9ac	0.470 \pm 0.011	0.458 \pm 0.023	0.486 \pm 0.015	0.514 \pm 0.005	0.026 \pm 0.041
H3K9me3	0.393 \pm 0.012	0.346 \pm 0.009	0.350 \pm 0.013	0.304 \pm 0.016	0.072 \pm 0.035
H4K20me1	0.576 \pm 0.008	0.554 \pm 0.005	0.563 \pm 0.005	0.561 \pm 0.001	0.059 \pm 0.103
enhancers	0.475 \pm 0.004	0.454 \pm 0.010	0.448 \pm 0.013	0.485 \pm 0.003	0.181 \pm 0.007
enhancers_types	0.441 \pm 0.005	0.421 \pm 0.008	0.413 \pm 0.014	0.445 \pm 0.003	0.167 \pm 0.002
promoter_all	0.779 \pm 0.007	0.719 \pm 0.007	0.719 \pm 0.005	0.718 \pm 0.003	0.405 \pm 0.002
promoter_no_tata	0.786 \pm 0.003	0.743 \pm 0.003	0.751 \pm 0.009	0.741 \pm 0.004	0.393 \pm 0.006
promoter_tata	0.853 \pm 0.009	0.749 \pm 0.040	0.765 \pm 0.018	0.685 \pm 0.032	0.469 \pm 0.006
splice_sites_acceptors	0.669 \pm 0.006	0.497 \pm 0.005	0.512 \pm 0.012	0.468 \pm 0.005	0.543 \pm 0.001
splice_sites_all	0.454 \pm 0.018	0.311 \pm 0.011	0.310 \pm 0.013	0.336 \pm 0.005	0.283 \pm 0.004
splice_sites_donors	0.692 \pm 0.014	0.512 \pm 0.007	0.521 \pm 0.019	0.509 \pm 0.004	0.547 \pm 0.001

1097
 1098 Table 23: Performance on DART-Eval. Task 3 is a 5 way classification task, where random performance
 1099 is approximately 0.200. Task 4 is a regression task, Task 5 is a variant effect prediction task.
 1100

Model	Task 1	Task 2	Task 3	Task 4	Task 5
	Accuracy	Accuracy	Accuracy	Spearman R	AUROC
PatchDNA	0.966	0.725	0.457	0.440	0.555
PatchDNA-FixedPS20	0.967	0.675	0.477	0.417	0.539
PatchDNA-Entropy	0.965	0.650	0.465	0.400	0.523
NT-MS-500M	0.745	0.565	0.420	0.422	0.566
PhyloP	N/A	N/A	0.260	0.027	0.536

1109
 1110 Table 24: Performance across BEND short and long range tasks. Gene finding is a multi class
 1111 classification task, reported with MCC, while other tasks are binary classification.
 1112

Model	Gene finding	Chromatin accessibility	Histone modification	CpG Methylation
	MCC	AUROC	AUROC	AUROC
PatchDNA	0.58	0.84	0.79	0.92
PatchDNA-FixedPS20	0.38	0.83	0.78	0.90
PatchDNA-Entropy	0.37	0.83	0.78	0.90
NT-MS-500M	0.64	0.80	0.76	0.91
PhyloP	0.19	0.54	0.51	0.49

1120
 1121 A.5 SCALING PATCHDNA TO MULTIPLE SPECIES AND TO MULTIPLE GENOMES WITHIN THE
 1122 SAME SPECIES
 1123

1124 PhyloP scores quantify conservation at each genomic position using multi-species alignments. By
 1125 leveraging evolutionary constraints, biologically relevant indicators of functional importance across
 1126 species, the conservation-based patching approach is conceptually robust. Since PhyloP tracks are
 1127 available for many organisms and genome assemblies, extending our model to a multi-species frame-
 1128 work is straightforward.

1129 We constructed a mouse version of the CAGE prediction task, by selecting 50 mouse CAGE tracks
 1130 from the Basenji dataset. We applied PatchDNA using PhyloP conservation scores from the 60-
 1131 way multi-species alignment for mouse (mm10.60way.phyloP60way.bw). The setup was the
 1132 same as in Section 4.4: all models were fine-tuned for one epoch using an MLP head. Due to
 1133 time constraints, we report only the Full Pearson correlation between predicted and observed CAGE
 signal across gene-cell pairs (computing gene-wise and cell-wise correlations required incorporating

transcription start site annotations for the mouse genome, which we plan to include in the final version). Despite being trained on the human genome, PatchDNA achieves strong performance on this task, outperforming HyenaDNA. This result highlights PatchDNA’s ability to generalize across species, leveraging evolutionary priors without retraining.

Results are reported on the test set, averaged across 6 random seeds.

Model	Full Pearson
HyenaDNA-1M-seqlen	0.219 ± 0.004
PatchDNA-7M	0.338 ± 0.004

Table 25: Mouse CAGE prediction results using conservation-based PatchDNA.

A.6 PSEUDOCODE FOR RE-PATCHING

We also provide a simplified algorithm for establishing the patch boundaries below:

Algorithm 1 DetectPatchBoundaries

Require: Input byte sequence *input* of length L ; genome scores *genome_scores* of length L ; threshold τ
Ensure: List *patch_boundaries*

- 1: Initialize empty list *patch_boundaries* $\leftarrow []$
- 2: **append-front** 1 to *patch_boundaries*
- 3: **append-front** 0 to *patch_boundaries*
- 4: **for** $i \leftarrow 0$ **to** $L - 1$ **do**
- 5: **if** *genome_scores*[i] $> \tau$ **then**
- 6: **append** i to *patch_boundaries*
- 7: **end if**
- 8: **end for**
- 9: **return** *patch_boundaries*

Integrating re-patching is straightforward. The patchDNA backbone accepts a *patching_mode* argument specifying the patching strategy, which dynamically defines the patch boundaries. These boundaries are used by the local encoder and decoders to determine how patches interact via cross-attention. This method is entirely data driven and does not require retraining. Below is a simple example:

```
model = PatchDNA.load_checkpoint("best.ckpt") # Trained with PhyloP
data_cfg = {
    "genome_score_fn": "dnase_k562", # instead of phylop
    # other cfg items
}
dataset = Dataset.from_config(data_cfg)
model.architecture.patcher.threshold = 0.99
model.architecture.patcher.patching_mode = "custom_genome_scores"

# inference or finetune loop ...
preds = trainer.validate(model, datamodule)
```

A.7 ALTERNATIVE CONSERVATION SCORES AND SENSITIVITY TO THRESHOLDS

PhastCons is an alternative conservation scoring method, but we deprioritized using it due to its window-based smoothing which results in lack of single nucleotide granularity. We present results in Table 27, showing that it underperforms compared to PhyloP on 3 out of the 4 tasks.

We pick the 95% threshold for efficiency reasons, as this allows us to easily train models at long sequences. Lower thresholds result in more number of patches, on average, increasing the computational cost. However, to investigate performance at other thresholds, we’ve run threshold-sensitivity

1188 analyses for Dart-eval on the 7M-parameter PatchDNA using less stringent cutoffs (Task 4 was
 1189 omitted due to increased computational costs). We highlight that performance does not change
 1190 significantly between various thresholds (Table 26).

1196 Table 26: Performance comparison of PatchDNA-7M variants on a subset of Dart-eval tasks

Model	Avg. Patch Size	Task 1	Task 2	Task 3	Task 5
		Accuracy	Accuracy	Accuracy	AUROC
PatchDNA-7M 75%	4	0.938	0.645	0.343	0.524
PatchDNA-7M 90%	10	0.940	0.650	0.357	0.525
PatchDNA-7M 95%	20	0.950	0.650	0.380	0.539

1211 Table 27: Performance comparison of PatchDNA-7M with PhastCon on a subset of Dart-eval tasks

Model	Avg. Patch Size	Task 1	Task 2	Task 3	Task 5
		Accuracy	Accuracy	Accuracy	AUROC
PatchDNA-7M 75% PhastCon	4	0.882	0.615	0.332	0.534
PatchDNA-7M 90% PhastCon	10	0.932	0.645	0.326	0.542
PatchDNA-7M 95% PhastCon	20	0.943	0.640	0.333	0.549

1223 We also investigate the impact of varying the threshold across a broad set of downstream tasks via
 1224 re-patching. We use the main PatchDNA model, which has been trained using a PhyloP threshold
 1225 which results in an average patch size of 20. We then identify thresholds corresponding to average
 1226 patch sizes of 4, 10, 20, 40, 60, and 80, and evaluate the model with these alternative thresholds on
 1227 both short-range and long-range tasks (Table 28 and Table 29).

1228 In Table 28, we observe that smaller average patch sizes generally yield the best performance, al-
 1229 though the improvements are modest for the regulatory element and chromatin profile tasks (Figure
 1230 4). For the splice-site tasks, the differences are more pronounced, which is expected given that these
 1231 tasks benefit from finer-grained sequence resolution (see Table 12 in Section A.3.1).

1232 A similar trend appears for the long-range CAGE task (Table 29). Performance declines gradually
 1233 as the average patch size increases, but the drop is modest: even at the largest patch size of 80,
 1234 PatchDNA still outperforms the second-best model in the benchmark (Caduceus-ps).

1235 These results suggest that while finer patching can provide advantages, particularly for tasks requir-
 1236 ing high-resolution sequence information, the model remains broadly robust across a wide range
 1237 of patch sizes. Notably, smaller patch sizes incur higher computational cost, as they increase the
 1238 number of patches that must be processed. In conventional tokenization schemes, modifying an
 1239 analogous parameter (such as the k in k-mer tokenization) would necessitate training a new founda-
 1240 tion model from scratch. In contrast, our framework enables users to re-patch post hoc to achieve
 1241 smaller effective patch sizes, avoiding the substantial computational expense of pretraining a new
 model.

Table 28: Results on the finetuned Nucleotide Transformer benchmark using a PatchDNA model pretrained with conservation scores and re-patched at different average patch sizes. Test MCC is shown and averaged across 3 seeds with reported standard deviations.

Task	Average Patch Size					
	4	10	20	40	60	80
H2AFZ	0.517 ± 0.014	0.511 ± 0.001	0.523 ± 0.010	0.515 ± 0.014	0.506 ± 0.015	0.519 ± 0.009
H3K27ac	0.526 ± 0.017	0.510 ± 0.020	0.486 ± 0.015	0.495 ± 0.036	0.487 ± 0.045	0.486 ± 0.032
H3K27me3	0.616 ± 0.011	0.614 ± 0.016	0.607 ± 0.008	0.590 ± 0.014	0.588 ± 0.026	0.596 ± 0.011
H3K36me3	0.632 ± 0.006	0.631 ± 0.009	0.621 ± 0.007	0.620 ± 0.001	0.607 ± 0.002	0.606 ± 0.009
H3K4me1	0.489 ± 0.004	0.475 ± 0.009	0.480 ± 0.003	0.476 ± 0.011	0.474 ± 0.002	0.473 ± 0.010
H3K4me2	0.570 ± 0.003	0.581 ± 0.017	0.573 ± 0.004	0.570 ± 0.004	0.570 ± 0.007	0.575 ± 0.003
H3K4me3	0.641 ± 0.016	0.617 ± 0.016	0.634 ± 0.005	0.633 ± 0.015	0.613 ± 0.022	0.628 ± 0.017
H3K9ac	0.589 ± 0.012	0.572 ± 0.007	0.569 ± 0.010	0.565 ± 0.011	0.567 ± 0.015	0.556 ± 0.007
H3K9me3	0.485 ± 0.021	0.480 ± 0.018	0.470 ± 0.017	0.495 ± 0.039	0.473 ± 0.032	0.475 ± 0.027
H4K20me1	0.670 ± 0.008	0.650 ± 0.006	0.637 ± 0.007	0.635 ± 0.003	0.626 ± 0.015	0.627 ± 0.009
enhancers	0.554 ± 0.005	0.536 ± 0.013	0.528 ± 0.009	0.521 ± 0.008	0.532 ± 0.001	0.524 ± 0.005
enhancers.types	0.519 ± 0.012	0.501 ± 0.014	0.496 ± 0.008	0.484 ± 0.021	0.492 ± 0.004	0.497 ± 0.007
promoter_all	0.781 ± 0.012	0.792 ± 0.012	0.791 ± 0.009	0.781 ± 0.003	0.791 ± 0.008	0.783 ± 0.010
promoter_no_tata	0.797 ± 0.008	0.795 ± 0.012	0.788 ± 0.005	0.796 ± 0.012	0.794 ± 0.006	0.783 ± 0.008
promoter_tata	0.875 ± 0.013	0.829 ± 0.050	0.840 ± 0.019	0.847 ± 0.024	0.843 ± 0.011	0.830 ± 0.010
splice_sites_acceptors	0.868 ± 0.029	0.741 ± 0.026	0.754 ± 0.040	0.748 ± 0.044	0.778 ± 0.040	0.746 ± 0.040
splice_sites_all	0.849 ± 0.004	0.789 ± 0.008	0.760 ± 0.019	0.772 ± 0.016	0.803 ± 0.083	0.778 ± 0.084
splice_sites_donors	0.744 ± 0.005	0.721 ± 0.024	0.706 ± 0.026	0.714 ± 0.029	0.705 ± 0.029	0.690 ± 0.012

Figure 4: Results on finetuned Nucleotide Transformer benchmark, grouping tasks by category (Table 28). Using a PatchDNA model pretrained with conservation scores and re-patched at different average patch sizes

Table 29: Results on CAGE benchmark using a PatchDNA model pretrained with conservation scores and re-patched at different average patch sizes. Note that we exclude average patch size 4, as this would be inefficient at a long sequence of < 100kbp. Results are averaged across 5 seeds, with reported standard deviations.

Average Patch Size	Gene Corr	Cell Corr	Full Pearson	Forward FLOPS
10	0.369 ± 0.001	0.773 ± 0.0007	0.482 ± 0.000	855.64
20	0.369 ± 0.001	0.772 ± 0.0018	0.471 ± 0.002	678.55
40	0.368 ± 0.000	0.770 ± 0.0015	0.454 ± 0.005	627.88
60	0.367 ± 0.002	0.767 ± 0.0005	0.440 ± 0.003	616.61
80	0.367 ± 0.002	0.769 ± 0.0018	0.425 ± 0.004	612.02

1296
1297

A.8 INTERPRETABILITY: QUANTITATIVE ANALYSIS OF PATCH ALIGNMENT WITH CCRES

1298
1299
1300
1301
1302
1303
1304
1305
1306

We believe that interpretability, particularly the alignment of patches with known functional genomic elements, is important. To address this, we implemented an additional quantitative analysis comparing the enrichment of PhyloP-derived patches specifically within cCRE versus non-cCRE genomic regions. We used 5 independent random seeds, each with 5000 sampled genomic intervals of length 350 bp. For regulatory regions, we centered the windows on known cCREs (from ENCODE), while control intervals were drawn from the genome to avoid any overlap with cCRE annotations. Using a Mann–Whitney U test, we found that there were significantly more PhyloP-derived patches (median difference: 32, Cliff’s $\delta = 0.618$, $p \ll 0.001$) within cCRE regions relative to randomly sampled non-cCRE genomic windows.

1307
1308
1309
1310
1311

Further, we compared the number of patches identified by entropy and PhyloP scores within cCRE regions using the Wilcoxon signed-rank test. PhyloP-derived patches consistently identified significantly more patches per region than entropy-derived patches (median difference: 12 patches, Cliff’s $\delta = 0.155$, Wilcoxon $p \ll 0.001$). While this effect is statistically robust across seeds, the effect sizes are smaller than those observed in the cCRE vs. control comparisons.

1312
1313

A.9 COMPUTATIONAL EFFICIENCY OF PATCHING AND RE-PATCHING

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

The re-patching itself incurs no additional computational overhead: the local encoder and decoder already expect a patch-based layout, which can be swapped in without changing the architecture. The patch size distribution will have a direct effect on computations. The computational complexity of marking patch boundaries is an $\mathcal{O}(L)$ operation (with L being the sequence length): we make a single pass over the sequence, inserting boundaries whenever a pre-established threshold is reached. In our implementation this step runs on the CPU, though an entropy-based patching strategy would necessitate executing a small model on the GPU and will have different computational complexity considerations. To clarify this further, we present the theoretical computational cost (in GFLOPs) in Table 30 comparing PatchDNA directly against its single-nucleotide baseline, where the patch size is fixed at 1. These theoretical estimates were calculated using the formulas described in the BLT paper, as the BLT implementation uses FlexAttention (which Pytorch FLOP profilers don’t support).

1325
1326

Table 30: Forward FLOPs comparison across models at different sequence lengths.

Model	511 bp FWD FLOPS (G)	16 kbp FWD FLOPS (G)
PatchDNA (19.2 M)	5.64	179.07
Single-nucleotide baseline (19.2 M)	11.80	1384.53
PatchDNA (7.7 M)	2.79	88.6
Single-nucleotide baseline (7.7 M)	5.36	548.62

1327

A.10 METRICS

1335
1336
1337
1338

Matthews Correlation Coefficient (MCC) The Matthews Correlation Coefficient is a robust statistical rate which takes into account true and false positives and negatives and is regarded as a balanced measure that can be used even if the classes are of very different sizes.

1339
1340
1341

$$\text{MCC} = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

1342
1343
1344

where TP , TN , FP , and FN are the numbers of true positives, true negatives, false positives, and false negatives, respectively.

1345
1346

A.10.1 ENFORMER EVALUATION METRICS

1347
1348
1349

To assess model performance in predicting gene expression, we follow Pearson correlation evaluation strategies as proposed in the Enformer manuscript (Avsec et al., 2021). The following three metrics are used to evaluate model predictions: gene correlation, cell correlation, and full correlation.

1350 Let $\hat{W} \in \mathbb{R}^{B \times C}$ and $W \in \mathbb{R}^{B \times C}$ denote the predicted and observed CAGE matrices across the
 1351 genome, where B is the number of genomic bins (each spanning 128 base pairs) and C is the
 1352 number of cell types.

1353 To obtain gene-level predictions, we extract the row of \hat{W} and W corresponding to the bin that
 1354 contains the transcription start site (TSS) of each gene. This gives the predicted and observed gene
 1355 expression matrices $\hat{Y}, Y \in \mathbb{R}^{G \times C}$, where G is the number of genes.

1356
 1357 **Gene Correlation** Gene correlation evaluates how well the model captures cell type-specific ex-
 1358 pression patterns for each gene. Prior to computing this metric, both predicted and observed gene
 1359 expression values are log-transformed as:

$$1361 \hat{Y} \leftarrow \log(\hat{Y} + 1), \quad Y \leftarrow \log(Y + 1)$$

1362
 1363 For each gene $g \in \{1, \dots, G\}$, we compute the Pearson correlation across all cell types:

$$1364 r_g^{\text{gene}} = \text{corr}(\hat{Y}_{g,:}, Y_{g,:})$$

1365
 1366 The final gene correlation score is the average over all genes:

$$1367 r^{\text{gene}} = \frac{1}{G} \sum_{g=1}^G r_g^{\text{gene}}$$

1368
 1369 **Cell Correlation** Cell correlation evaluates how well the model predicts gene expression patterns
 1370 across genes within each cell type. As with gene correlation, a log-transformation is applied to all
 1371 input values before computing correlation.

1372
 1373 For each cell type $c \in \{1, \dots, C\}$, we compute the Pearson correlation across genes:

$$1374 r_c^{\text{cell}} = \text{corr}(\hat{Y}_{:,c}, Y_{:,c})$$

1375
 1376 The final cell correlation score is the average over all cell types:

$$1377 r^{\text{cell}} = \frac{1}{C} \sum_{c=1}^C r_c^{\text{cell}}$$

1378
 1379 **Full Correlation** Full correlation measures how well the model predicts CAGE signal profile
 1380 across the genome.

1381
 1382 For each cell type $c \in \{1, \dots, C\}$, we compute the Pearson correlation across bins:

$$1383 r_c^{\text{full}} = \text{corr}(\hat{W}_{:,c}, W_{:,c})$$

1384
 1385 The final full correlation score is the average over all the cell types

$$1386 r^{\text{full}} = \frac{1}{C} \sum_{c=1}^C r_c^{\text{full}}$$

1387
 1388 **A.11 LLM USAGE**

1389
 1390 We have used LLMs to improve grammar and wording throughout the manuscript.

1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403