
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PATCHDNA: A FLEXIBLE AND BIOLOGICALLY-
INFORMED ALTERNATIVE TO TOKENIZATION FOR
DNA

Anonymous authors
Paper under double-blind review

ABSTRACT

DNA language models are emerging as powerful tools for representing genomic
sequences, with recent progress driven by self-supervised learning. However,
performance on downstream tasks is sensitive to tokenization strategies reflect-
ing the complex encodings in DNA, where both regulatory elements and single-
nucleotide changes can be functionally significant. Yet existing models are fixed
to their initial tokenization strategy; single-nucleotide encodings result in long
sequences that challenge transformer architectures, while fixed multi-nucleotide
schemes like byte pair encoding struggle with character level modeling. Drawing
inspiration from the Byte Latent Transformer’s combining of bytes into patches,
we propose that ‘patching’ provides a competitive and more efficient alternative to
tokenization for DNA sequences. Furthermore, patching eliminates the need for
a fixed vocabulary, which offers unique advantages to DNA. Leveraging this, we
propose a biologically informed strategy, using evolutionary conservation scores
as a guide for ‘patch’ boundaries. By prioritizing conserved regions, our approach
directs computational resources to the most functionally relevant parts of the DNA
sequence. We show that models up to an order of magnitude smaller surpass cur-
rent state-of-the-art performance in existing DNA benchmarks. Importantly, our
approach provides the flexibility to change patching without retraining, overcom-
ing a fundamental limitation of current tokenization methods.

1 INTRODUCTION

Self-supervised learning has led to a surge of interest in DNA language models, sequence models
trained on raw nucleotide data to produce general-purpose genomic representations. These models
have shown promise across diverse tasks, from identifying regulatory elements to variant effect pre-
diction (Brixi et al., 2025; Nguyen et al., 2023; Schiff et al., 2024). A central challenge in adapting
language modeling to DNA is how to tokenize the input sequence. Unlike natural language, where
subword or word-level tokenization can exploit semantic structure and redundancy (Mielke et al.,
2021), genomic sequences encode both fine-grained (e.g. letter level single-nucleotide variants)
and coarse-grained (regulatory elements) information, often within the same genomic region. The
choice of tokenization thus directly impacts both resolution and efficiency.

Existing DNA models typically fix their tokenization strategy prior to training. Models that operate
at the single-nucleotide level preserve maximal resolution but produce extremely long sequences that
challenge transformer architectures. Conversely, fixed multi-nucleotide schemes such as k-mers or
byte pair encoding improve efficiency but often lose critical single-base information. Prior work has
shown that downstream performance can be highly sensitive to this tradeoff (Lindsey et al., 2024;
Patel et al., 2024). Therefore exploring alternative tokenization strategies and their suitability for
encoding DNA sequences is a compelling research direction.

The Byte Latent Transformer (BLT), originally proposed for natural language processing, intro-
duces a dynamic alternative to tokenization, that segments input sequences into variable-length
patches based on predictive entropy (Pagnoni et al., 2024). This enables models to allocate at-
tention and computation to regions of high uncertainty, capturing context-dependent structure more
effectively. Recognizing the potential advantages that patching offers for genomic data, we intro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

duce PatchDNA, a model that represents DNA sequences as contiguous, dynamically determined
patches rather than individual tokens (Figure 1). This general framework aligns naturally with the
structure of genomic data and offers clear advantages over traditional tokenization for DNA. Patch-
ing improves efficiency as patch sizes can far exceed the size of tokens, while preserving single-
nucleotide resolution. Moreover, the lack of fixed vocabulary also offers greater flexibility than
tokenization, enabling the design of more biologically informed approaches.

Our key contributions can be summarized as follows:

• We extend dynamic patching for DNA by modifying the BLT framework and show that
patches are a better alternative to token-level representations of genomic sequences in effi-
ciency and flexibility.

• We introduce a novel conservation-guided patching scheme that leverages evolutionary
signals to guide patch boundaries, providing a biologically informed inductive bias.

• We introduce re-patching, allowing the patching strategy of the model to be changed after
pretraining, overcoming a fundamental limitation of current tokenization methods. This
enables flexible downstream application with minimal computational overhead.

Through extensive experiments, we show that conservation-guided patching systematically achieves
the strongest results, while alternative patching strategies remain competitive. We further demon-
strate the flexibility of the framework through re-patching, enabling models to adapt their patching
strategy for different downstream tasks with no retraining from scratch. Our results demonstrate the
value of patching in advancing genomic language modeling.

Figure 1: Overview of PatchDNA. (A) Unlike fixed tokenization methods, PatchDNA segments
sequences into biologically meaningful patches without relying on a fixed vocabulary. (B) During
pretraining, patch boundaries are guided by evolutionary conservation scores, enabling the model
to focus computational resources on functionally important regions. (C) We introduce re-patching,
enabling flexible downstream application with no retraining from scratch.

2 EXISTING DNA TOKENIZATION SCHEMES

Several tokenization strategies offer trade-offs between vocabulary size, biological interpretability,
computational efficiency and exhaustiveness of coverage:

K-mers: The input sequence is split into fixed-length sub-strings of length k, as done in the Nu-
cleotide Transformer (Dalla-Torre et al., 2025). However, small changes to the input sequence can
drastically alter the tokenized sequence, making it difficult for the model to align representations of
near-identical inputs. This inconsistency hinders efficient learning and may degrade model perfor-
mance (Zhou et al., 2023).

Byte-Pair Encoding (BPE) To address issues with k-mer tokenization, DNABERT2 (Zhou et al.,
2023) applies BPE (Sennrich et al., 2016) to DNA. This method iteratively merges the most frequent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

co-occurring nucleotides into variable-length tokens, enabling the discovery of common sequence
motifs while controlling vocabulary growth. This is a popular approach, utilized by other DNA
models such as GENA-LM (Fishman et al., 2025) and MistralDNA (Mourad, 2024). However,
BPE-tokenized models have shown poor performance on character-level tasks in natural language,
such as spelling (Pagnoni et al., 2024). This is a particularly relevant issue in DNA, where letter
level single nucleotide variants are critical.

Learnable tokenization: Approaches such as VQDNA (Li et al., 2024) and MxDNA (Qiao et al.,
2024) learn discrete embeddings or mixture-of-experts assignments for sequence fragments, produc-
ing vocabularies tailored to genomic corpora. Although adaptive, these methods introduce additional
training and inference overhead while not reducing the input sizes to the transformer, and the learned
vocabulary are opaque.

Single nucleotide: Despite these innovations, no single tokenization paradigm consistently outper-
forms others across diverse genomic tasks (Dotan et al., 2024; Lindsey et al., 2024; Patel et al., 2024).
Consequently, the canonical nucleotide-level representation is still widely used, for instance in Hye-
naDNA (Nguyen et al., 2023), Caduceus (Schiff et al., 2024) and the 40B-parameter Evo2 (Brixi
et al., 2025). This resolution is essential for fine-grained tasks such as variant effect prediction,
which aims to accurately model DNA functional impact Benegas et al. (2025). However, it is com-
putationally inefficient, as genomic sequences are far longer than natural language, and key regula-
tory elements, such as enhancers, can be over 100kb from their targets genes (Sanyal et al., 2012).
Thus, effective sequence compression is critical for scalable DNA modeling.

The approach presented here explores an alternative to tokenization that maintains single-nucleotide
granularity, compresses low-information regions, remains interpretable, and allows post-training
adaptation. This unique combination of features is unmet by existing methods and yields superior
model performance.

3 PATCHDNA: BIOLOGICALLY-INFORMED MODELING OF DNA

3.1 PATCHING PRELIMINARIES

We follow the patching framework set out by the BLT (Pagnoni et al., 2024). Let x =
(x1, x2, . . . , xn) be a vector denoting a sequence of n bytes. A patching function is defined as
fp : x 7→ b ∈ {0, 1}n, where bi = 1 indicates that position i marks the beginning of a new
patch, and bi = 0 otherwise. To ensure existence of at least a single patch we set b1 = 1. This
binary sequence b = (b1, b2, . . . , bn) partitions the input sequence x into m =

∑n
i=1 bi contiguous

subsequences, or patches, p = (p1, p2, . . . , pm).

We distinguish between tokens and patches in the context of sequence modeling. Tokens are prede-
fined groupings of bytes drawn from a finite vocabulary V , which is determined prior to training. In
contrast, patches are variable-length subsequences derived computationally from the input x by the
patching function fp, without relying on a fixed vocabulary.

Entropy-based patching: In BLT, patch boundaries are determined dynamically based on pre-
dictive uncertainty. Specifically, the patching function relies on the estimated conditional entropy
Ĥ(xi | x1, . . . , xi−1) computed by a lightweight next-token prediction model. A new patch is ini-
tiated when the entropy exceeds a predefined threshold θH . Formally, the entropy-based patching
function is defined as:

fentropy(xi+1) =

{
1 if Ĥ(xi | x1, . . . , xi−1) > θH ,

0 otherwise,
The threshold θH controls a tradeoff between granularity and efficiency: lower values yield smaller
patches and longer sequences; higher values result in coarser patches and improved efficiency.

Generalized patching strategy: We define a flexible class of patching functions fp where bound-
aries are determined when the scoring function gp, evaluated over the input sequence, exceeds a
predefined threshold θp:

fp(xi+1) =

{
1 if gp(xi) > θp,

0 otherwise.
Throughout, we use gp and θp to define the patching strategy.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 APPLICATION OF PATCHING FOR DNA MODELING

The novelty of our work lies in demonstrating the unique advantages of patching for DNA language
models. While the BLT framework was developed for NLP, its potential extensions to genomics
remain unexplored. Unlike BLT, we move beyond entropy-based patching and show that the lack
of fixed vocabulary allows more tailored patching functions that can be designed to incorporate
domain-specific inductive biases. Leveraging this, we propose biologically informed patching ap-
proaches, where we highlight the superiority of conservation-based patching compared to previous
methods. We further extend the framework in several ways. First, we introduce re-patching, allow-
ing patching strategies to be modified after pretraining, a capability particularly valuable for DNA
and potentially other domains. Second, while BLT primarily focuses on generation, we demonstrate
that extracting embeddings at single-nucleotide resolution provides unique advantages for genomic
analysis. Finally, DNA sequences are much longer than typical NLP inputs. While BLT only con-
siders sequence lengths up to 16k bytes, we process sequences exceeding 100k nucleotides by using
larger average patch sizes, yielding far fewer FLOPs than existing DNA models at similar lengths
(see Table 18 in Section A.3.4). Achieving equivalent efficiency with tokenization would require
20-mer tokens, leading to an intractable vocabulary of size 420. Together, these extensions establish
patching as a practical and scalable paradigm for modeling realistic DNA sequences.

3.3 CONSERVATION-DRIVEN PATCHING

We apply the generalized patching framework to genomic sequences by treating each byte as one of
the four canonical nucleotides (A, C, G, T) or the unknown base N. While entropy-based patching in
BLT is motivated by linguistic ambiguity, we hypothesize that in the genomic domain, computational
focus should instead align with regions of high evolutionary conservation (Figure 1B).

To implement this, we define the scoring function gp as the PhyloP conservation score (Pollard
et al., 2010; Siepel et al., 2005), a scalar value derived from multi-species alignments (Edgar &
Batzoglou, 2006) that quantifies the evolutionary constraint at each nucleotide. In Section 4, we
demonstrate that conservation-based patching serves as a strong general-purpose strategy for DNA
language models, offering robust performance across diverse downstream tasks.

3.4 RE-PATCHING

Genomic tasks often require modeling context or cell-type-specific signals, and the optimal patching
strategy may vary by task. As discussed in Section 2, different tokenization schemes can yield
varying performance across distinct genomic tasks.

To accommodate this, we introduce re-patching, a novel capability to redefine patch boundaries after
pretraining. Unlike models constrained by fixed token vocabularies, our approach enables post-hoc
modification on the patching function fp, which depends only on the scoring function gp and thresh-
old θp. This makes it straightforward to substitute gp in inference or fine-tuning time with task- or
tissue-specific epigenetic signals, such as chromatin accessibility measured by DNase-seq (Klemm
et al., 2019). See Section A.6 for further implementation details. As shown in Section 4.5, this sim-
ple adaptation yields substantial gains on cell-type–specific benchmarks, without requiring model
retraining from scratch. Importantly, our approach is not constrained by a need for biological infor-
mation, but can exploit it to guide patching when available and informative. When conservation or
other biological signals are absent, the model can readily turn to alternative patching strategies, such
as fixed patching, without requiring architectural changes (see Table 12 Section A.3.1).

3.5 ARCHITECTURE

The backbone for the work above is the BLT model (Pagnoni et al., 2024), which is an autoregressive
model consisting of three main components: a small local encoder, a deep latent global transformer,
and a small local decoder.

Local encoder: This is a shallow transformer that computes patch-level representations from a
single-nucleotide input sequence x, using patch boundaries provided by the patching function fp.
It alternates between sliding window self-attention layers (operating over the nucleotide sequence)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and cross-attention layers, following the Perceiver architecture (Jaegle et al., 2021). Patch represen-
tations are queries, which attend only to the nucleotides (keys) within their respective patch.

Latent global transformer: This is a standard transformer (Vaswani et al., 2017), using rotary
positional encodings (Su et al., 2021), operating on the patch embeddings produced by the local
encoder. It models long-range interactions across the full sequence using global attention. Since the
patch sequence p is much shorter than the input sequence x, this module can be made significantly
deeper, allowing the bulk of the model’s capacity to focus on global reasoning without incurring
prohibitive computational cost.

Local decoder: This lightweight transformer updates the nucleotide-level representations from the
local encoder to incorporate the patch embedding output from the global transformer. Like the local
encoder, it alternates between sliding window self-attention and cross-attention layers. In this case,
the single-nucleotide embeddings serve as queries, while the patch embeddings act as keys and
values. A language modeling head is applied to the final nucleotide embeddings to produce logits
for next-nucleotide prediction during autoregressive pretraining.

3.5.1 PRETRAINING AND DOWNSTREAM USAGE

We pretrain PatchDNA on the human reference genome using a next-nucleotide prediction objec-
tive, following the same training and validation splits as Caduceus (Schiff et al., 2024) and Hye-
naDNA (Nguyen et al., 2023), as originally defined by Kelley (2020). During pretraining, we set
the patching threshold θp to the 95th percentile of the scoring function gp (based on PhyloP conser-
vation scores, or entropy), resulting in an average patch size of approximately 20 nucleotides. See
Section A.7 for results using other conservation scoring and sensitivity analysis at other thresholds.
This enables efficient training with input contexts up to 131,000 base pairs. To our knowledge, this
is the first transformer-based architecture in DNA language modeling capable of efficiently handling
such long sequences at scale. We pretrain two main models: PatchDNA, a 19.2M parameter model
with a 16 kbp context window, and PatchDNA-7M, a 7.7M parameter model with a 131 kbp con-
text window. The latter is designed to enable fairer comparisons with other long-range sequence
models, such as Caduceus (7.7M) and HyenaDNA (6.6M). We set a maximum patch size to prevent
over-compression of the DNA sequence in non-conserved regions. Full hyperparameter and training
details are provided in Section A.2.

While the original BLT paper focused on generation tasks in natural language processing, we show
that when pretrained on genomic sequences, the decoder’s nucleotide-level embeddings yield mean-
ingful representations for a wide range of downstream tasks. These embeddings retain single-
nucleotide resolution, making them particularly well suited for fine-grained genomic prediction
problems. For all downstream applications, we extract the penultimate layer of the decoder as a
nucleotide-level embedding representation.

4 EXPERIMENTS

We compare against a range of strong baselines (see Section A.1), including small models such as
HyenaDNA (Nguyen et al., 2023) and Caduceus (Schiff et al., 2024) both with around 7 million pa-
rameters, as well as large-scale DNA models ranging from 110 million to 500 million parameters, in-
cluding GENA-LM (Fishman et al., 2025), DNABERT2 (Zhou et al., 2023), MistralDNA (Mourad,
2024) and the Nucleotide Transformer variants (Dalla-Torre et al., 2025). In Section A.4, we present
extensive ablations where we compare to PatchDNA-Entropy and PatchDNA-FixedPS20 models
pretrained and evaluated with entropy and fixed patching.

4.1 NUCLEOTIDE TRANSFORMER BENCHMARK

The NT benchmark spans 18 supervised classification tasks (300–1000 bp sequences) across three
categories: regulatory element detection, splice site prediction, and chromatin profile annotation.
Each task is framed as a supervised classification problem, and all models are evaluated using a
standardized protocol repeated across five random seeds. Specifically, a frozen pretrained model en-
codes each DNA sequence into a latent embedding space, and a linear probe is trained on top of these
fixed representations, similar to Marin et al. (2024). This setup enables a controlled comparison of
representational quality irrespective of the underlying architecture.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2 shows mean Matthews Correlation Coefficient (MCC) per category. PatchDNA achieves
the highest average MCC in regulatory elements and splicing tasks, and remains competitive on
chromatin profile classification, matching larger-scale models such as NT-MS-500M. Detailed re-
sults for all 18 tasks are given in Section A.3.1. We further show that PatchDNA outperforms
strong baselines under finetuning (Section A.3.1), in addition to the probing results reported here.

Figure 2: Mean MCC across task categories on the NT benchmark. Models are grouped by size:
orange shades indicate small models, and grey shades represent large models. Error bars denote one
standard deviation across five seeds.

4.2 DART-EVAL BENCHMARK

Next, we evaluate our model on DART-Eval (Patel et al., 2024), a benchmark covering five regu-
latory genomics tasks. These include distinguishing regulatory sequences from matched controls
(Task 1), detecting transcription factor (TF) motifs (Task 2), identifying cell-type-specific signa-
tures (Task 3), predicting regulatory activity levels (Task 4), and variant effect prediction (Task 5).
The benchmark combines both classification and regression tasks, with settings that test zero-shot
capabilities and supervised probing.

We use the official DART-Eval implementation and adopt the zero-shot configuration wherever it
is available, specifically for Tasks 1, 2 and 5. These tasks are evaluated directly using model like-
lihoods or embeddings, without any additional training. For Tasks 3 and 4, which lack zero-shot
variants, we follow the standard protocol and train probes on top of frozen embeddings. For Tasks 4
and 5, where multiple sub tasks exist, we report the mean across the tasks. Detailed results for sub
tasks can be found in the A.3.2.

For competing models, we report the values given in the original benchmark, which have been
performed on one seed. As shown in Table 1, our model achieves the best overall performance on
DART-Eval, with the best mean rank (2) across all five tasks. PatchDNA-Entropy is second
best on the benchmark, highlighting the benefit of patching and the BLT architecture independently
of conservation-based patching. While other models show strength on individual tasks, such as
NT-MS-500M on Task 5 or HyenaDNA on Task 3, they do not generalize as broadly.

4.3 BEND

The BEND benchmark (Marin et al., 2024) combines sequence-level classification tasks, such as
chromatin accessibility, histone modification, and CpG methylation, with nucleotide-level classifi-
cation tasks like gene finding. Gene finding requires multi-class annotation of each base over se-
quences up to 14 kbp, making it a fine-grained task that depends on both local context and long-range
dependencies. Our patching strategy, combined with cross-attention, enables precise nucleotide rep-
resentations while flexibly aggregating context.

We follow the original BEND evaluation protocol, by training a probe on top of frozen embeddings.
For competing models, we report the values given in the original benchmark, which have been
performed on one seed. As shown in Table 2, PatchDNA achieves consistently strong performance,
outperforming other models in 3 out of 4 tasks. On the gene finding task, it outperforms larger
models such as GENA-LM-Large and DNABERT2 ranking second only to NT-MS-500M; a model

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on the DART-Eval benchmark. Raw task metrics are shown, taking the mean
across sub tasks for Task 4 and Task 5. Overall mean rank across all tasks is computed in the final
column.

Model Task 1 Task 2 Task 3 Task 4 Task 5 Mean rank
Accuracy Accuracy Accuracy Spearman R AUROC

PatchDNA 0.966 0.725 0.457 0.440 0.555 2.0
PatchDNA-Entropy 0.965 0.650 0.465 0.400 0.523 3.0
HyenaDNA 0.891 0.645 0.587 0.384 0.515 3.8
GENA-LM-Large 0.947 0.620 0.383 0.472 0.505 4.2
NT-MS-500M 0.745 0.565 0.420 0.422 0.566 4.8
Caduceus-ps 0.971 0.570 0.281 0.297 0.514 5.8
DNABERT2 0.876 0.590 0.371 0.419 0.493 6.0
MistralDNA 0.863 0.625 0.329 0.363 0.498 6.4

with 25 fold greater capacity (500M vs 19.2M parameters), and pre-trained on a substantially larger,
multi-species dataset. Results on the remaining tasks in BEND are reported in Section A.3.3.

Table 2: Performance across BEND short and long range tasks. Gene finding is reported with MCC,
while other tasks are reported with AUROC.

Model Gene finding Chromatin accessibility Histone modification CpG Methylation
MCC AUROC AUROC AUROC

PatchDNA 0.58 0.84 0.79 0.92
PatchDNA-Entropy 0.37 0.83 0.78 0.90
NT-MS-500M 0.64 0.80 0.76 0.91
GENA-LM-Large 0.52 0.76 0.78 0.91
Caduceus-ph 0.44 0.80 0.79 0.90
HyenaDNA 0.35 0.84 0.76 0.91
DNABERT-2 0.43 0.81 0.78 0.90

4.4 CAGE PREDICTION BENCHMARK

To evaluate performance on long DNA sequences, we benchmark PatchDNA on CAGE predic-
tion (Trop et al., 2025). CAGE (Cap Analysis of Gene Expression) quantifies gene expression and
identifies transcription start sites. The prediction task involves regressing expression values across
bins in a 114,688 bp input sequence, leveraging distal regulatory elements that may lie kilobases
away from the target gene.

We follow the setup from Trop et al. (2025), using 50 CAGE tracks and the full 114 kbp context
window. We only compare to other DNA language models that can handle such long sequences in
one forward pass. For fair comparison, we use the PatchDNA-7M model to match the parameter
budget of HyenaDNA and Caduceus. All models are fine-tuned for one epoch using an MLP
head and evaluated using Pearson correlation at the gene, cell, and full-track levels, following the
metrics introduced in Enformer (Avsec et al., 2021). We give detailed explanations of these metrics
in Supplementary A.3.4.

As shown in Table 3, PatchDNA-7M outperforms all baselines across evaluation metrics, achieving
the highest gene- and cell-level Pearson correlations. To further boost performance, we introduce a
variant that adjusts the patching strategy during fine-tuning by leveraging cCRE annotations (Moore
et al., 2020) to focus attention on known regulatory regions. This modification, which is applied
only at fine-tuning time, and can only be done with PatchDNA, leads to additional gains. This
demonstrates that our framework can flexibly incorporate biological priors without requiring model
retraining or changes to the underlying architecture. PatchDNA also offers practical efficiency
advantages, finetuning up to 4× faster than HyenaDNA (see Table 18, Section A.3.4), highlighting
the benefit of moving beyond single-nucleotide tokenization. For results on other long range tasks,
see Section A.3.6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance on the CAGE prediction task. We report mean Pearson correlation across
genes, cells, and full sequence bins. Error bars denote one standard deviation across five seeds.

Model Gene Pearson Cell Pearson Full Pearson
PatchDNA-7M 0.369 ± 0.001 0.771 ± 0.002 0.471 ± 0.002
PatchDNA-7M + cCRE-aware re-patching 0.373 ± 0.001 0.792 ± 0.002 0.408 ± 0.004
HyenaDNA 0.362 ± 0.001 0.745 ± 0.002 0.290 ± 0.004
Caduceus-ph 0.362 ± 0.001 0.750 ± 0.002 0.309 ± 0.003
Caduceus-ps 0.365 ± 0.001 0.766 ± 0.001 0.420 ± 0.006

4.5 CELL TYPE SPECIFIC RE-PATCHING

Because the DNA sequence is invariant across cell types, sequence-only models often struggle with
context-specific tasks such as predicting cell-type-specific expression (Patel et al., 2024). We show
that our model can be adapted to such tasks with minimal modification and without changing the
architecture or retraining from scratch. Using the setup in Section 4.4, we evaluate performance on
CAGE prediction across three cell types: K562, hepatocytes, and neurons. For each task, we predict
expression for a single CAGE track corresponding to the target cell type.

Cell-type-specific epigenetic inputs like DNase-seq data can help provide cellular context by high-
lighting regulatory regions of the genome that are accessible and potentially active in transcription
(Carter & Zhao, 2021). While previous methods like EPInformer (Lin et al., 2024) and Seq2Exp (Su
et al., 2025) rely on custom architectures that fuse sequence with epigenetic inputs, we instead only
re-patch the DNA using DNase-seq signal from the target cell type. This only alters the patches,
preserving the underlying model architecture while focusing computation on regulatory regions in-
ferred from chromatin accessibility.

As shown in Table 4, PatchDNA outperforms all competing baselines on cell type-specific CAGE
prediction. Given that Caduceus-ps outperforms Caduceus-ph in Section 4.4, we only compare to
Caduceus-ps in this task. Incorporating DNase-aware patching further improves performance across
all three cell types, demonstrating that context-specific patching is highly informative for modeling
regulatory activity. Table 5 shows that these gains are maximized when the DNase-seq signal used
for patching matches the target tissue. In contrast, mismatched signals lead to consistently lower
performance, highlighting the importance of aligning the patching strategy with the underlying cel-
lular context. Notably, these improvements are achieved without altering the model architecture or
retraining from scratch.

Table 4: Performance on cell type-specific CAGE prediction, reported as Pearson correlation across
cells. Error bars denote one standard deviation across five seeds.

Model K562 Hepatocyte Neuron
PatchDNA-7M 0.754 ± 0.003 0.717 ± 0.002 0.799 ± 0.001
PatchDNA-7M + DNase-aware re-patching 0.828 ± 0.001 0.727 ± 0.001 0.831 ± 0.001
HyenaDNA 0.703 ± 0.012 0.667 ± 0.006 0.763 ± 0.003
Caduceus-ps 0.732 ± 0.006 0.705 ± 0.001 0.798 ± 0.002

Table 5: Performance on DNase-aware cell type-specific CAGE prediction, reported as Pearson
correlation across cells. Maximum performance is achieved when patching is guided by DNase-
seq signal from the corresponding tissue (the diagonal), and applied during fine-tuning. Error bars
denote one standard deviation across five seeds.

Model K562 Hepatocyte Neuron
PatchDNA-7M DNase-aware (K562) 0.828 ± 0.001 0.713± 0.001 0.807± 0.002
PatchDNA-7M DNase-aware (Hepatocyte) 0.775± 0.002 0.727 ±0.001 0.822± 0.001
PatchDNA-7M DNase-aware (Neuron) 0.770± 0.001 0.707± 0.001 0.831 ±0.001

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 DISCUSSION

We introduce PatchDNA, a novel DNA language modeling framework that replaces fixed tok-
enization with a dynamic patching mechanism, which improves efficiency, enables models to focus
adaptively on functionally relevant genomic regions, and provides flexibility through re-patching.
By introducing conservation-driven and context-aware patching strategies, PatchDNA allocates
model capacity to the most informative regions of the genome, without relying on fixed vocabular-
ies. Beyond pretraining, PatchDNA introduces re-patching: the ability to redefine patch boundaries
post hoc. This property allows our model to use tissue-specific or task-specific signals to adapt to
downstream tasks, such as cell-type–specific expression prediction, without retraining from scratch.
Furthermore, our framework supports re-patching with alternative strategies when biological signals
are unavailable, demonstrating that it is not dependent on such inputs but can flexibly exploit them
whenever they are present and informative.

Through extensive benchmarking, we demonstrate that PatchDNA consistently outperforms or
matches state-of-the-art models across regulatory element prediction, splicing, and gene expression
tasks, while training significantly faster. Complementary ablations further highlight the effectiveness
of our approach: conservation-guided patching outperforms entropy-based and fixed-size baselines,
as well as using PhyloP conservation scores directly (see Section A.4). Notably, while raw conser-
vation scores are only weakly correlated with task labels in most benchmarks, conservation-based
patching still yields substantial gains, demonstrating that PatchDNA extracts richer, functionally
grounded representations than conservation scores alone.

5.1 LIMITATIONS AND FUTURE WORK

While PatchDNA offers a versatile framework for DNA modeling, several limitations remain. First,
the architecture we used is autoregressive and decoder-only, which limits its ability to fully cap-
ture the bidirectional context that is often critical in genomics (Schiff et al., 2024). Extending the
framework to support bidirectional encoding could further improve performance on context-rich
tasks (Schiff et al., 2024; Schmidinger et al., 2025). Second, we currently pretrain only on the hu-
man reference genome. Incorporating multi-species data (see Section A.5) or genetic variation from
population-scale datasets could expand the model’s applicability and improve generalization to un-
seen genomic contexts (Brixi et al., 2025; Dalla-Torre et al., 2025). Another open direction is the
incorporation of reverse-complement (RC) equivariance, which is a desirable inductive bias in DNA
modeling (Mallet & Vert, 2021).

While we demonstrate re-patching on selected tasks, future work should evaluate the generality
of this mechanism across a broader range of biological applications, including regulatory activity
prediction and variant effect interpretation (Avsec et al., 2021; Linder et al., 2025). PatchDNA
provides a modular foundation to explore these extensions with minimal architectural changes. Fur-
thermore, assessing the scaling-law behavior of these models and comparing their performance to
existing approaches will be an important avenue for future work (Nguyen et al., 2024).

We hope that our general framework will serve as a foundation for future work, inspiring the de-
velopment of new patching strategies and advancing the broader field of DNA language models
through task- and biology-aware modeling in contrast to the current emphasis on scaling laws Brixi
et al. (2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We provide detailed hyperparameters and setup for pretraining the PatchDNA models in Section A.2.
For downstream tasks, we provide the methodology we use in A.3, where we default to established
practices in the literature where available. All datasets that we use are publicly available and links
are given in each section where we use external datasets (Section A.2, Section A.3). All baselines
that we use from literature can be downloaded from publicly available sources, with links given in
Section A.1.

REFERENCES

Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-Barwinska,
Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R. Kelley. Effective gene
expression prediction from sequence by integrating long-range interactions. Nature Methods, 18:
1196–1203, 2021. doi: 10.1038/s41592-021-01252-x.

Gonzalo Benegas, Chengzhong Ye, Carlos Albors, Jianan Canal Li, and Yun S Song. Genomic
language models: opportunities and challenges. Trends in Genetics, 2025.

Garyk Brixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,
Gabriel A Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling and
design across all domains of life with evo 2. BioRxiv, pp. 2025–02, 2025.

Benjamin Carter and Keji Zhao. The epigenetic basis of cellular heterogeneity. Nature Reviews
Genetics, 22(4):235–250, 2021.

Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for
human genomics. Nature Methods, 22(2):287–297, 2025.

Edo Dotan, Gal Jaschek, Tal Pupko, and Yonatan Belinkov. Effect of tokenization on transformers
for biological sequences. Bioinformatics, 40(4):btae196, 2024.

Robert C Edgar and Serafim Batzoglou. Multiple sequence alignment. Current opinion in structural
biology, 16(3):368–373, 2006.

Veniamin Fishman, Yuri Kuratov, Aleksei Shmelev, Maxim Petrov, Dmitry Penzar, Denis Shepelin,
Nikolay Chekanov, Olga Kardymon, and Mikhail Burtsev. Gena-lm: a family of open-source
foundational dna language models for long sequences. Nucleic Acids Research, 53(2):gkae1310,
2025.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and João Carreira.
Perceiver: General perception with iterative attention. In Proceedings of the International Confer-
ence on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning Research,
pp. 4651–4664. PMLR, 2021.

David R. Kelley. Cross-species regulatory sequence activity prediction. PLoS Computational Biol-
ogy, 16(7):e1008050, 2020. doi: 10.1371/journal.pcbi.1008050.

Sandy L Klemm, Zohar Shipony, and William J Greenleaf. Chromatin accessibility and the regula-
tory epigenome. Nature Reviews Genetics, 20(4):207–220, 2019.

Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Jiangbin Zheng, Yufei Huang, and Stan Z
Li. Vqdna: Unleashing the power of vector quantization for multi-species genomic sequence
modeling. arXiv preprint arXiv:2405.10812, 2024.

Jiecong Lin, Ruibang Luo, and Luca Pinello. Epiformer: A scalable deep learning framework for
gene expression prediction by integrating promoter-enhancer sequences with multimodal epige-
nomic data. bioRxiv, pp. 2024–08, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Johannes Linder, Divyanshi Srivastava, Han Yuan, Vikram Agarwal, and David R Kelley. Predicting
rna-seq coverage from dna sequence as a unifying model of gene regulation. Nature Genetics, pp.
1–13, 2025.

LeAnn M. Lindsey, Nicole L. Pershing, Anisa Habib, W. Zac Stephens, Anne J. Blaschke, and
Hari Sundar. A comparison of tokenization impact in attention based and state space genomic
language models. bioRxiv, 2024. doi: 10.1101/2024.09.09.612081. URL https://doi.
org/10.1101/2024.09.09.612081. Preprint.

Vincent Mallet and Jean-Philippe Vert. Reverse-complement equivariant networks for dna se-
quences. Advances in neural information processing systems, 34:13511–13523, 2021.

Frederikke Isa Marin, Felix Teufel, Marc Horlacher, Dennis Madsen, Dennis Pultz, Ole Winther,
and Wouter Boomsma. BEND: Benchmarking DNA language models on biologically meaningful
tasks. The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=uKB4cFNQFg.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y Lee, Benoı̂t Sagot, et al. Between words and characters: A brief
history of open-vocabulary modeling and tokenization in nlp. arXiv preprint arXiv:2112.10508,
2021.

Jill E Moore, Michael J Purcaro, Henry E Pratt, Charles B Epstein, Noam Shoresh, Jessika Adrian,
Trupti Kawli, Carrie A Davis, Alexander Dobin, et al. Expanded encyclopaedias of dna elements
in the human and mouse genomes. Nature, 583(7818):699–710, 2020.

Raphaël Mourad. Mistral-dna: Mistral model for genomics. https://medium.com/
@morphos77/mistral-dna-mistral-model-for-genomics-e800e8349ed4,
2024.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, Stefano Ermon, Christopher
Ré, and Stephen Baccus. Hyenadna: Long-range genomic sequence modeling at single nucleotide
resolution. Advances in Neural Information Processing Systems, 36, 2023.

Eric Nguyen, Michael Poli, Matthew G Durrant, Brian Kang, Dhruva Katrekar, David B Li, Liam J
Bartie, Armin W Thomas, Samuel H King, Garyk Brixi, et al. Sequence modeling and design
from molecular to genome scale with evo. Science, 386(6723):eado9336, 2024.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.

Aman Patel, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski, and Anshul Kundaje.
Dart-eval: A comprehensive dna language model evaluation benchmark on regulatory dna. arXiv
preprint arXiv:2412.05430, 2024.

Katherine S Pollard, Melissa J Hubisz, Kate R Rosenbloom, and Adam Siepel. Detection of non-
neutral substitution rates on mammalian phylogenies. Genome research, 20(1):110–121, 2010.

Lifeng Qiao, Peng Ye, Yuchen Ren, Weiqiang Bai, Chaoqi Liang, Xinzhu Ma, Nanqing Dong, and
Wanli Ouyang. Model decides how to tokenize: Adaptive dna sequence tokenization with mxdna.
Advances in Neural Information Processing Systems, 37:66080–66107, 2024.

Amartya Sanyal, Bryan R Lajoie, Gaurav Jain, and Job Dekker. The long-range interaction land-
scape of gene promoters. Nature, 489(7414):109–113, 2012.

Yair Schiff, Chia Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. In Proceedings of the
41st International Conference on Machine Learning (ICML), 2024.

11

https://doi.org/10.1101/2024.09.09.612081
https://doi.org/10.1101/2024.09.09.612081
https://openreview.net/forum?id=uKB4cFNQFg
https://openreview.net/forum?id=uKB4cFNQFg
https://medium.com/@morphos77/mistral-dna-mistral-model-for-genomics-e800e8349ed4
https://medium.com/@morphos77/mistral-dna-mistral-model-for-genomics-e800e8349ed4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Niklas Schmidinger, Lisa Schneckenreiter, Philipp Seidl, Johannes Schimunek, Pieter-Jan Hoedt,
Johannes Brandstetter, Andreas Mayr, Sohvi Luukkonen, Sepp Hochreiter, and Günter Klam-
bauer. Bio-xlstm: Generative modeling, representation and in-context learning of biological and
chemical sequences. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.
org/P16-1162.

Adam Siepel, Gill Bejerano, Jakob S Pedersen, Angie S Hinrichs, Minmei Hou, Kate Rosenbloom,
Hiram Clawson, John Spieth, LaDeana W Hillier, Stephen Richards, et al. Evolutionarily con-
served elements in vertebrate, insect, worm, and yeast genomes. Genome research, 15(8):1034–
1050, 2005.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. “roformer: En-
hanced transformer with rotary position embedding”, 2021.

Xingyu Su, Haiyang Yu, Degui Zhi, and Shuiwang Ji. Learning to discover regulatory elements
for gene expression prediction. In Proceedings of the International Conference on Learning
Representations (ICLR), 2025.

Evan Trop, Yair Schiff, Edgar Mariano Marroquin, Chia Hsiang Kao, Aaron Gokaslan, McKinley
Polen, Mingyi Shao, Aymen Kallala, Bernardo P de Almeida, Thomas PIERROT, Yang I Li, and
Volodymyr Kuleshov. The genomics long-range benchmark: Advancing DNA language models.
2025. URL https://openreview.net/forum?id=8O9HLDrmtq.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, volume 30, 2017.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006, 2023.

12

https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://openreview.net/forum?id=8O9HLDrmtq

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DETAILS OF PRETRAINED BASELINE MODELS

Table 6: Overview of pretrained DNA language models used in this study. We list HuggingFace
IDs, number of parameters, and species coverage.

Model HuggingFace ID Parameters Species

HyenaDNA LongSafari/hyenadna-large-1m-seqlen-hf 6.6M Human
Caduceus-ps kuleshov-group/caduceus-ps seqlen-131k d model-256 n layer-16 7.7M Human
Caduceus-ph kuleshov-group/caduceus-ph seqlen-131k d model-256 n layer-16 7.7M Human
DNABERT2 zhihan1996/DNABERT-2-117M 117M Multispecies
GENA-LM-Base AIRI-Institute/gena-lm-bert-base-t2t 110M Human
GENA-LM-Large AIRI-Institute/gena-lm-bert-large-t2t 336M Multi-species
MistralDNA RaphaelMourad/Mistral-DNA-v1-1.6B-hg38 1.6B Human
NT-MS-500M InstaDeepAI/nucleotide-transformer-v2-500m-multi-species 500M Multi-species
NT-MS-100M InstaDeepAI/nucleotide-transformer-v2-100m-multi-species 100M Multi-species
MxDNA github.com/qiaoqiaoLF/MxDNA/tree/full-model 100M Human

A.2 PRETRAINING DETAILS

ARCHITECTURE HYPERPARAMETERS

Table 7: Architecture hyperparameters for PatchDNA and PatchDNA-7M. The patching threshold
is the 95% quantile of all PhyloP scores

Hyperparameter PatchDNA PatchDNA-7M
Num Local Encoder Layers 4 2
Num Local Decoder Layers 4 2
Num Global Transformer Layers 8 3
Embedding Dimension 256 256
Context Length 16,000 131,072
Max Patch Length 128 1,024
Number of Global Transformer Heads 8 4
Number of Local Encoder Heads 8 4
Number of Local Decoder Heads 8 4
PhyloP Patching Threshold 1.5 1.5
Num parameters 19.2M 7.7M

TRAINING HYPERPARAMETERS

We use the same optimizer, learning rate, weight decay, and gradient clipping as Pagnoni et al.
(2024).

Table 8: Training hyperparameters for PatchDNA and PatchDNA-7M.

Hyperparameter PatchDNA PatchDNA-7M
Learning Rate 0.0004 0.0004
Training Steps 100,000 100,000
Weight Decay 0.1 0.1
Optimizer AdamW AdamW
Batch Size 64 8
Gradient Clipping 1.0 1.0
Training Time (4×A100 80GB) ∼18 hours ∼10 hours

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

PATCHING ABLATION CONFIGURATIONS

• PatchDNA Entropy: Uses identical hyperparameters to PatchDNA, except it employs a
small entropy model for patching with a threshold of 1.37 (which is 95% quantile of all
scores from the entropy model across the genome). Hyperparameter details for the entropy
model are in Table 9.

• PatchDNA Fixed Patch Size 20: Shares the same hyperparameters as PatchDNA, but
uses a fixed patch size of 20. i.e., every 20 nucleotides are in one patch. We use this
because a patching threshold of the 95% quantile of all scores gives an average patch size
of approximately 20.

Table 9: Hyperparameters for the entropy model used in PatchDNA Entropy.

Hyperparameter Value
Number of Layers 8
Embedding Dimension 256
Context Length 8,192
Sliding window 512
Number of Heads 8
Batch size 256
Learning Rate 0.0004
Training Steps 100,000
Weight Decay 0.1
Optimizer AdamW
Gradient Clipping 1.0
Num parameters 6.8M

DATA

We use the same train and validation splits as HyenaDNA (Nguyen et al., 2023)
and Caduceus (Schiff et al., 2024), which originate from Kelley (2020), available at
https://console.cloud.google.com/storage/browser/basenji barnyard/data

We use the PhyloP scores (Siepel et al., 2005; Pollard et al., 2010) downloaded from
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/

CODE

We use publicly available code from Pagnoni et al. (2024) to define the model architecture. All code,
including model checkpoints, will be released upon publication.

A.3 BENCHMARK TASKS DETAILS

A.3.1 NUCLEOTIDE TRANSFORMER BENCHMARK

We evaluated model performance on the Nucleotide Transformer (NT) benchmark, a diverse collec-
tion of 18 classification tasks designed to assess the biological utility of pretrained DNA language
models. The benchmark was accessed via the HuggingFace Hub1, and includes pre-defined train
and test splits for each task. For each task, we further partitioned the provided training set into 90%
training and 10% validation splits. All experiments were repeated across five random seeds, with
each seed generating a new train/validation split to evaluate consistency and robustness.

To ensure fair and consistent evaluation across models, we adopted a linear probing protocol. Specif-
ically, each pretrained model was frozen and used to encode input DNA sequences into latent em-
beddings, over which a linear classifier was trained. The input representation dimensionality varied

1https://huggingface.co/datasets/InstaDeepAI/nucleotide transformer downstream tasks revised

14

https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

across models: PatchDNA, Caduceus-ph and HyenaDNA produced 256-dimensional embed-
dings, while GENA-LM-Base and NT-MS-500M yielded 768 and 1024-dimensional embeddings,
respectively.

All models were evaluated under identical training conditions: a batch size of 64, a total of 50 train-
ing epochs, and optimization using AdamW with a learning rate of 5e−4 and weight decay of 0.01.
For each model and seed, we report performance on the official test set using Matthews Correla-
tion Coefficient (MCC), averaged across all runs. Full per-task results with standard deviations are
presented in Supplementary Table 10.

Table 10: Detailed performance across all 18 tasks in the Nucleotide Transformer Benchmark.

Dataset promoter all promoter no tata promoter tata enhancers enhancers types splice sites acceptors
Model

PatchDNA 0.779 ± 0.007 0.786 ± 0.003 0.853 ± 0.009 0.475 ± 0.004 0.441 ± 0.005 0.669 ± 0.006
PatchDNA Entropy 0.719 ± 0.007 0.743 ± 0.003 0.749 ± 0.04 0.454 ± 0.01 0.421 ± 0.008 0.497 ± 0.005
Caduceus-ph 0.679 ± 0.001 0.727 ± 0.002 0.67 ± 0.0 0.429 ± 0.002 0.39 ± 0.002 0.448 ± 0.002
HyenaDNA 0.712 ± 0.002 0.729 ± 0.001 0.71 ± 0.009 0.414 ± 0.005 0.38 ± 0.004 0.391 ± 0.009
GENA-LM-Base 0.7 ± 0.008 0.741 ± 0.013 0.707 ± 0.02 0.488 ± 0.01 0.452 ± 0.008 0.54 ± 0.007
NT-MS-500M 0.718 ± 0.003 0.741 ± 0.004 0.685 ± 0.032 0.485 ± 0.003 0.445 ± 0.003 0.468 ± 0.005
MxDNA 0.729 ± 0.006 0.757 ± 0.007 0.759 ± 0.011 0.458 ± 0.004 0.428 ± 0.004 0.57 ± 0.004

Dataset splice sites all splice sites donors H2AFZ H3K27ac H3K27me3 H3K36me3
Model

PatchDNA 0.454 ± 0.018 0.692 ± 0.014 0.396 ± 0.005 0.41 ± 0.022 0.557 ± 0.004 0.542 ± 0.004
PatchDNA Entropy 0.311 ± 0.011 0.512 ± 0.007 0.401 ± 0.007 0.352 ± 0.008 0.529 ± 0.004 0.498 ± 0.006
Caduceus-ph 0.267 ± 0.002 0.455 ± 0.003 0.337 ± 0.002 0.28 ± 0.003 0.476 ± 0.003 0.354 ± 0.003
HyenaDNA 0.258 ± 0.008 0.387 ± 0.005 0.444 ± 0.004 0.375 ± 0.003 0.507 ± 0.002 0.498 ± 0.001
GENA-LM-Base 0.312 ± 0.005 0.578 ± 0.007 0.403 ± 0.012 0.449 ± 0.01 0.565 ± 0.013 0.553 ± 0.006
NT-MS-500M 0.336 ± 0.005 0.509 ± 0.004 0.392 ± 0.005 0.398 ± 0.004 0.536 ± 0.004 0.496 ± 0.006
MxDNA 0.34 ± 0.006 0.585 ± 0.006 0.366 ± 0.004 0.363 ± 0.004 0.532 ± 0.003 0.474 ± 0.006

Dataset H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K9me3 H4K20me1
Model

PatchDNA 0.406 ± 0.009 0.459 ± 0.004 0.614 ± 0.006 0.47 ± 0.011 0.393 ± 0.012 0.576 ± 0.008
PatchDNA Entropy 0.381 ± 0.009 0.457 ± 0.013 0.583 ± 0.006 0.458 ± 0.023 0.346 ± 0.009 0.554 ± 0.005
Caduceus-ph 0.333 ± 0.001 0.403 ± 0.005 0.489 ± 0.002 0.379 ± 0.005 0.214 ± 0.007 0.513 ± 0.004
HyenaDNA 0.387 ± 0.004 0.493 ± 0.006 0.627 ± 0.005 0.485 ± 0.004 0.291 ± 0.013 0.554 ± 0.004
GENA-LM-Base 0.42 ± 0.01 0.486 ± 0.006 0.624 ± 0.011 0.5 ± 0.005 0.4 ± 0.013 0.604 ± 0.01
NT-MS-500M 0.391 ± 0.009 0.47 ± 0.005 0.622 ± 0.007 0.514 ± 0.005 0.304 ± 0.016 0.561 ± 0.001
MxDNA 0.387 ± 0.004 0.458 ± 0.003 0.568 ± 0.0 0.463 ± 0.013 0.36 ± 0.016 0.559 ± 0.003

FINETUNING RESULTS

Using the same finetuning protocol and hyperparameters as Qiao et al. (2024), we fully finetune all
models across 3 seeds for a maximum of 20 epochs. The results in Table 11 show that PatchDNA
performs strongly across the benchmark, outperforming all other models in 11 out of 18 tasks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 11: Comparison of finetuning results on NT benchmark.

Dataset promoter all promoter no tata promoter tata enhancers enhancers types splice sites acceptors
Model

PatchDNA 0.791 ± 0.009 0.788 ± 0.005 0.84 ± 0.019 0.528 ± 0.009 0.496 ± 0.008 0.754 ± 0.04
PatchDNA Entropy 0.725 ± 0.008 0.73 ± 0.007 0.785 ± 0.016 0.523 ± 0.001 0.488 ± 0.008 0.868 ± 0.015
Caduceus-ps 0.742 ± 0.01 0.764 ± 0.013 0.761 ± 0.028 0.51 ± 0.017 0.471 ± 0.006 0.765 ± 0.006
HyenaDNA 0.693 ± 0.007 0.724 ± 0.004 0.831 ± 0.057 0.479 ± 0.005 0.45 ± 0.003 0.82 ± 0.015
GENA-LM-Base 0.738 ± 0.007 0.736 ± 0.025 0.689 ± 0.038 0.483 ± 0.023 0.467 ± 0.012 0.76 ± 0.005
NT-MS-100M 0.737 ± 0.019 0.756 ± 0.003 0.818 ± 0.052 0.513 ± 0.001 0.478 ± 0.002 0.952 ± 0.002
MxDNA 0.734 ± 0.013 0.755 ± 0.01 0.831 ± 0.038 0.519 ± 0.014 0.48 ± 0.01 0.812 ± 0.032
PhyloP 0.405 ± 0.002 0.393 ± 0.006 0.469 ± 0.006 0.181 ± 0.007 0.167 ± 0.002 0.543 ± 0.001

Dataset splice sites all splice sites donors H2AFZ H3K27ac H3K27me3 H3K36me3
Model

PatchDNA 0.76 ± 0.019 0.706 ± 0.026 0.523 ± 0.01 0.486 ± 0.015 0.607 ± 0.008 0.621 ± 0.007
PatchDNA Entropy 0.884 ± 0.013 0.654 ± 0.016 0.521 ± 0.009 0.484 ± 0.035 0.595 ± 0.004 0.584 ± 0.02
Caduceus-ps 0.796 ± 0.021 0.771 ± 0.013 0.507 ± 0.007 0.475 ± 0.021 0.591 ± 0.009 0.607 ± 0.008
HyenaDNA 0.849 ± 0.006 0.84 ± 0.029 0.481 ± 0.005 0.44 ± 0.003 0.554 ± 0.014 0.549 ± 0.002
GENA-LM-Base 0.764 ± 0.013 0.781 ± 0.004 0.466 ± 0.035 0.495 ± 0.01 0.588 ± 0.004 0.602 ± 0.021
NT-MS-100M 0.966 ± 0.0 0.962 ± 0.003 0.501 ± 0.009 0.496 ± 0.009 0.599 ± 0.009 0.617 ± 0.004
MxDNA 0.86 ± 0.007 0.931 ± 0.021 0.512 ± 0.003 0.489 ± 0.031 0.599 ± 0.015 0.618 ± 0.002
PhyloP 0.283 ± 0.004 0.547 ± 0.001 -0.017 ± 0.062 0.105 ± 0.028 0.233 ± 0.032 0.304 ± 0.003

Dataset H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K9me3 H4K20me1
Model

PatchDNA 0.48 ± 0.003 0.573 ± 0.004 0.634 ± 0.005 0.569 ± 0.01 0.47 ± 0.017 0.637 ± 0.007
PatchDNA Entropy 0.472 ± 0.011 0.568 ± 0.021 0.589 ± 0.01 0.546 ± 0.009 0.473 ± 0.019 0.626 ± 0.027
Caduceus-ps 0.471 ± 0.014 0.565 ± 0.008 0.617 ± 0.009 0.526 ± 0.009 0.435 ± 0.015 0.639 ± 0.009
HyenaDNA 0.438 ± 0.007 0.523 ± 0.025 0.618 ± 0.007 0.497 ± 0.014 0.371 ± 0.026 0.617 ± 0.008
GENA-LM-Base 0.465 ± 0.014 0.538 ± 0.027 0.61 ± 0.055 0.525 ± 0.007 0.44 ± 0.009 0.644 ± 0.011
NT-MS-100M 0.487 ± 0.01 0.551 ± 0.005 0.624 ± 0.003 0.531 ± 0.002 0.469 ± 0.006 0.646 ± 0.01
MxDNA 0.497 ± 0.001 0.563 ± 0.012 0.627 ± 0.017 0.534 ± 0.015 0.467 ± 0.023 0.646 ± 0.007
PhyloP 0.006 ± 0.041 -0.02 ± 0.058 0.009 ± 0.084 0.026 ± 0.041 0.072 ± 0.035 0.059 ± 0.103

On splice sites, Lindsey et al. (2024) show that a model trained with single nucleotide tokenization
significantly outperforms an equivalent BPE based model. They also postulate that consistent token
size facilitates the model’s learning of specific distances for these tasks. Inspired by this, we re-patch
the model after pretraining, using single nucleotide patching with the same base model. Table 12
shows the expected improvement demonstrated by prior work. Although single-nucleotide patch-
ing introduces additional computational overhead during fine-tuning, re-patching avoids the costly
requirement of pretraining from scratch at this resolution.

Table 12: Comparison of PatchDNA vs PatchDNA with single nucleotide re-patching on splice site
tasks.

PatchDNA PatchDNA re-patch size 1
Pre-training patching PhyloP PhyloP
Finetuning Patching PhyloP Single Nucleotide
splice sites acceptors 0.754 ± 0.040 0.946 ± 0.002
splice sites all 0.760 ± 0.019 0.953 ± 0.006
splice sites donors 0.706 ± 0.026 0.948 ± 0.002

A.3.2 DART-EVAL

We evaluated our model’s performance by adding it to each task using the original evaluation code
provided by the authors at https://github.com/kundajelab/DART-Eval. To ensure consistency, we
maintained the original experimental setup and report the published results for all other baseline
models directly from the original paper (Patel et al., 2024). We use 1 A100 80GB GPU for each
task.

For Task 1 and Task 2, we use the zero-shot likelihoods formulation, while for Task 5, we apply the
zero-shot embeddings approach. When both likelihoods and embeddings could be used, we choose

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

between them based on the relative performance of models across tasks. For example, in Task 2,
embeddings from all DNA models perform significantly worse than likelihoods, making the latter
the preferred choice. For Task 2, we report median accuracy.

For Task 3 and Task 4, where no zero-shot formulation exists, a lightweight probe is trained on top
of frozen model embeddings.

For Task 2, no conservation scores are available, so we re-patch to single nucleotide scores at infer-
ence time, showing the flexibility of our modeling approach when conservation scores are unavail-
able.

VISUALIZATION OF OVERALL PERFORMANCE

Figure 3: Radar plot showing normalized performance across all five tasks, with the best and worst
performance for each task scaled to 1 and 0 respectively. Each axis corresponds to a different task,
and larger enclosed area indicates stronger overall performance.

EXTENDED RESULTS

We present extended results for Tasks 3, 4 and 5 in Tables 13, 15, 14. In the main results in the
paper, we report the Overall Accuracy for Task 3, the mean Spearman r across the 5 cell types for
Task 4, and the mean AUROC for Task 5.

Table 13: Accuracy and AUROC across different cell types for Task 3 in DART-Eval

Model Overall Accuracy GM12878 H1ESC HEPG2 IMR90 K562
PatchDNA 0.457 0.740 0.817 0.806 0.783 0.710
Caduceus 0.281 0.535 0.622 0.680 0.576 0.587
DNABERT2 0.371 0.652 0.757 0.762 0.691 0.691
GENA-LM-Large 0.383 0.627 0.787 0.773 0.714 0.693
HyenaDNA 0.587 0.849 0.889 0.862 0.882 0.799
Mistral-DNA 0.329 0.582 0.678 0.723 0.643 0.646
NT-MS-500M 0.420 0.744 0.795 0.783 0.779 0.711

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 14: Zero-shot AUROC performance using embedding-based predictions for African and
Yoruban datasets for Task 5 in DART-Eval

Model African AUROC Yoruban AUROC
PatchDNA 0.545 0.564
Caduceus 0.519 0.508
DNABERT2 0.480 0.505
GENA-LM-Large 0.508 0.501
HyenaDNA 0.515 0.515
Mistral-DNA 0.520 0.475
NT-MS-500M 0.519 0.613

Table 15: Spearman r among positives across five cell types for Task 4 in DART-Eval

Model GM12878 H1ESC HEPG2 IMR90 K562
PatchDNA 0.434 0.636 0.400 0.319 0.412
Caduceus 0.251 0.371 0.312 0.149 0.401
DNABERT2 0.395 0.584 0.357 0.275 0.483
GENA-LM-Large 0.490 0.678 0.401 0.329 0.461
HyenaDNA 0.362 0.538 0.345 0.237 0.438
Mistral-DNA 0.293 0.500 0.349 0.244 0.431
NT-MS-500M 0.410 0.595 0.337 0.270 0.499

A.3.3 BEND BENCHMARK

This section reports on the remaining BEND benchmark tasks(Marin et al., 2024). Table 2 focuses
on short- and medium-range tasks, whereas the BEND enhancer task requires 100 kbp inputs. We
evaluate this task only for models that can process such long sequences in a single forward pass.
Specifically, we compare PatchDNA-7M (131 kbp context) with HyenaDNA Large and Caduceus-
ph (Table 16). The enhancer task is a binary classification task that predicts whether a 128 bp region
lies within an enhancer, using a 100 kbp surrounding context.

We additionally report zero-shot performance on the BEND Variant Effect Prediction (VEP) tasks,
see Table 17. As highlighted by Dart-Eval (Patel et al., 2024), these tasks do not account for linkage
disequilibrium, leading to potentially noisy labels and reduced reliability. For this reason, we include
the results for completeness but exclude them from the primary comparisons.

Table 16: Enhancer annotation task performance. These results compare models capable of handling
100kbp sequence length inputs in a single pass. We report AUPRC across 10 cross validation folds.

Model AUPRC
PatchDNA (131k) 0.037 ± 0.026
HyenaDNA Large 0.031 ± 0.019
Caduceus-ph 0.032 ± 0.020

Table 17: Zero-shot variant effect prediction (VEP) performance in terms of AUROC.

Model eQTL Disease
AUROC AUROC

PatchDNA 0.49 0.82
HyenaDNA 0.51 0.45
GENA-LM Large 0.49 0.55
NT-MS-500M 0.48 0.48
DNABERT-2 0.49 0.51

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3.4 CAGE PREDICTION BENCHMARK

We use the CAGE dataset from https://huggingface.co/datasets/InstaDeepAI/genomics-long-range-
benchmark, consisting of 50 CAGE tracks selected from the original 638 in the Basenji dataset.

Each model receives a sequence of 114,688 single nucleotides. We extract per-nucleotide embed-
dings and pass them through a two-layer MLP, where the hidden dimension is set to twice the
embedding size and the output dimension is 50, following the setup in Brixi et al. (2025). The MLP
outputs are mean-pooled over non-overlapping windows of 128 nucleotides, resulting in a final out-
put of shape 896×50.

Training is performed using the Poisson negative log-likelihood loss, as in Enformer (Avsec et al.,
2021). We fully finetune each model for one epoch, consistent with Brixi et al. (2025). We use the
Adam optimizer, with a learning rate of 5e− 5 and a total batch size of 8.

For baseline models, HyenaDNA, Caduceus-ps and Caduceus-ph we use the pretrained
weights available via Hugging Face, with model identifiers listed in Table 6.

For regulatory element based patching, we use annotations from Moore et al. (2020), creating a
score function, gp , that assigns a value of 1 to nucleotides in these regions, and 0 otherwise. We
then use a patching threshold, θp, of 0.99.

All experiments are repeated with five random seeds. We report the mean and standard deviation
of performance on the test set, using the same metrics as Avsec et al. (2021), described in Section
A.10. Finetuning runtimes for one epoch are reported in Table 18.

Table 18: One epoch finetuning time and FLOPS for various models, using 4 A100 80GB GPUs on
CAGE prediction benchmark. The peak VRAM usage is normalised by batch size.

Model Time (minutes) FWD FLOPS (G) Peak VRAM usage (GB)
PatchDNA 22.4 678.60 14.1
HyenaDNA 76.6 1493.96 20.4
Caduceus-ph 99.2 3142.71 18.1
Caduceus-ps 238.3 6285.42 36.2

A.3.5 CELL TYPE SPECIFIC RE-PATCHING

We pick paired CAGE-DNase tracks from the Basenji dataset (Kelley, 2020), focusing on Neurons,
Hepatocytes and K562. The ids for the tracks that we used are in Table 19. We keep the same
train/validation/test splits. For each cell type we follow the same protocol outlined in Section A.3.4,
where instead of predicting 50 tracks we predict only 1 track. Since only 1 track is predicted, we opt
to focus on cell correlation.

DNase patching details The DNase-seq data used for patching were obtained from the ENCODE
Project portal (https://www.encodeproject.org/) using the ENCODE ids in Table 19.
We use a patching threshold, θp, of 0.99 for all DNase sources.

Table 19: Dataset identifiers for paired DNase-seq and CAGE expression tracks used in the cell-
type-specific prediction task.

Cell Type DNase ENCODE ID CAGE FANTOM5 ID
K562 ENCFF413AHU CNhs11250
Hepatocyte ENCFF136YOJ CNhs12338
Neuron ENCFF399ISP CNhs12338

A.3.6 THE GENOMICS LONG RANGE BENCHMARK

To evaluate performance on additional long-range prediction tasks, we use the Genomics Long
Range Benchmark (Trop et al., 2025). We use a sequence length of 131 kbp, and restrict com-
parisons to architectures capable of processing this full context in a single forward pass, namely

19

https://www.encodeproject.org/

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

HyenaDNA and Caduceus. Following the benchmark protocol, we adopt the authors’ recommended
hyperparameters and report the mean performance across five random seeds on the designated held-
out test set (Table 20). Across these tasks, PatchDNA-7M delivers competitive or superior results,
outperforming baseline models on 6 out of 7 tasks.

We further show results on the zeroshot tasks in Table 21. We use the same protocol for extracting
zero shot scores as detailed in (Trop et al., 2025) for masked language models (Caduceus-ph), and
autoregressive models (PatchDNA, HyenaDNA). On Pathogenic Clinvar, our model outperforms
HyenaDNA and Caduceus-ph. On the Causal eQTL and OMIM tasks, all models perform close to
random, consistent with the reported difficulties that DNA language models have in the zero shot
setting on these tasks (Trop et al., 2025).

Table 20: Performance on Genomics Long Range Benchmark on all finetuning tasks. Results are
reported across 5 seeds on the held out test set.

Model Causal eQTL Pathogenic ClinVar Bulk RNA Histone Marks DNA Accessibility Promoter Enhancer
AUROC AUROC R2 AUPRC AUPRC AUPRC AUROC

PatchDNA-7M 0.714 ± 0.005 0.796 ± 0.009 0.500 ± 0.005 0.309 ± 0.005 0.220 ± 0.007 0.781 ± 0.031 0.836 ± 0.003
HyenaDNA 0.715 ± 0.003 0.622 ± 0.044 0.458 ± 0.002 0.252 ± 0.006 0.108 ± 0.004 0.694 ± 0.033 0.760 ± 0.022
Caduceus-ph 0.717 ± 0.010 0.699 ± 0.010 0.491 ± 0.014 0.260 ± 0.009 0.128 ± 0.007 0.764 ± 0.021 0.829 ± 0.002

Table 21: Performance on Genomics Long Range Benchmark zeroshot tasks.

Model Causal eQTL Pathogenic ClinVar OMIM
AUROC AUROC AUPRC

PatchDNA-7M 0.487 0.586 0.00208
Caduceus-ph 0.479 0.501 0.00177
HyenaDNA 0.481 0.494 0.00187

A.4 ABLATIONS

We present ablations to assess (i) how a conservation score only baseline performs, (ii) the effective-
ness of conservation-based patching versus entropy and fixed size patching, and (iii) the contribution
of patching and the BLT architecture itself.

PatchDNA-Entropy and PatchDNA-FixedPS20 are pretrained and evaluated with entropy-
and fixed- patching at matched efficiency to conservation-based patching (see Section A.2 for hyper-
parameters). For reference, we also include NT-MS-500M, the largest baseline in our benchmarks
(500M parameters, multi-species).

We also construct a PhyloP baseline. For sequence-level tasks, PhyloP scores are pooled across the
sequence by summation. For binary classification, we report AUROC or MCC depending on the
established metric in literature for the benchmark. In the case of MCC, we fit a small linear probe
to the scores to obtain binary predictions. For multiclass classification, we train a probe on PhyloP
scores. For regression, we report direct correlation between scores and labels. For variant effect
prediction, we follow Brixi et al. (2025) by taking the PhyloP score at the variant site and computing
AUROC against effect/no-effect labels.

Across benchmarks, conservation-based patching outperforms entropy and fixed patching, high-
lighting the advantage of a biologically informed patching strategy. Furthermore, entropy and fixed
patching remain strong competitors in comparison to NT-MS-500M, highlighting the strength of
patching and the BLT architecture itself in DNA modeling. We also directly examine the relationship
between conservation scores and task labels. We find that conservation scores alone cannot repro-
duce model performance. In most tasks, there is weak or no correlation to labels, and PatchDNA
still outperforms baselines. In tasks where conservation is more predictive, conservation based
patching achieves substantial gains over the PhyloP baseline.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 22: Performance across NT benchmark, with a linear probe on top of model embeddings. All
results are using MCC. PhyloP baseline uses a linear probe.

Task PatchDNA PatchDNA-Entropy PatchDNA-FixedPS20 NT-MS-500M PhyloP

H2AFZ 0.396 ± 0.005 0.401 ± 0.007 0.405 ± 0.005 0.392 ± 0.005 -0.017 ± 0.062
H3K27ac 0.410 ± 0.022 0.352 ± 0.008 0.386 ± 0.006 0.398 ± 0.004 0.105 ± 0.028
H3K27me3 0.557 ± 0.004 0.529 ± 0.004 0.522 ± 0.008 0.536 ± 0.004 0.233 ± 0.032
H3K36me3 0.542 ± 0.004 0.498 ± 0.006 0.486 ± 0.017 0.496 ± 0.006 0.304 ± 0.003
H3K4me1 0.406 ± 0.009 0.381 ± 0.009 0.392 ± 0.005 0.391 ± 0.009 0.006 ± 0.041
H3K4me2 0.459 ± 0.004 0.457 ± 0.013 0.469 ± 0.012 0.470 ± 0.005 -0.020 ± 0.058
H3K4me3 0.614 ± 0.006 0.583 ± 0.006 0.592 ± 0.010 0.622 ± 0.007 0.009 ± 0.084
H3K9ac 0.470 ± 0.011 0.458 ± 0.023 0.486 ± 0.015 0.514 ± 0.005 0.026 ± 0.041
H3K9me3 0.393 ± 0.012 0.346 ± 0.009 0.350 ± 0.013 0.304 ± 0.016 0.072 ± 0.035
H4K20me1 0.576 ± 0.008 0.554 ± 0.005 0.563 ± 0.005 0.561 ± 0.001 0.059 ± 0.103
enhancers 0.475 ± 0.004 0.454 ± 0.010 0.448 ± 0.013 0.485 ± 0.003 0.181 ± 0.007
enhancers types 0.441 ± 0.005 0.421 ± 0.008 0.413 ± 0.014 0.445 ± 0.003 0.167 ± 0.002
promoter all 0.779 ± 0.007 0.719 ± 0.007 0.719 ± 0.005 0.718 ± 0.003 0.405 ± 0.002
promoter no tata 0.786 ± 0.003 0.743 ± 0.003 0.751 ± 0.009 0.741 ± 0.004 0.393 ± 0.006
promoter tata 0.853 ± 0.009 0.749 ± 0.040 0.765 ± 0.018 0.685 ± 0.032 0.469 ± 0.006
splice sites acceptors 0.669 ± 0.006 0.497 ± 0.005 0.512 ± 0.012 0.468 ± 0.005 0.543 ± 0.001
splice sites all 0.454 ± 0.018 0.311 ± 0.011 0.310 ± 0.013 0.336 ± 0.005 0.283 ± 0.004
splice sites donors 0.692 ± 0.014 0.512 ± 0.007 0.521 ± 0.019 0.509 ± 0.004 0.547 ± 0.001

Table 23: Performance on DART-Eval. Task 3 is a 5 way classification task, where random perfor-
mance is approximately 0.200. Task 4 is a regression task, Task 5 is a variant effect prediction task.

Model Task 1 Task 2 Task 3 Task 4 Task 5
Accuracy Accuracy Accuracy Spearman R AUROC

PatchDNA 0.966 0.725 0.457 0.440 0.555
PatchDNA-FixedPS20 0.967 0.675 0.477 0.417 0.539
PatchDNA-Entropy 0.965 0.650 0.465 0.400 0.523
NT-MS-500M 0.745 0.565 0.420 0.422 0.566
PhyloP N/A N/A 0.260 0.027 0.536

Table 24: Performance across BEND short and long range tasks. Gene finding is a multi class
classification task, reported with MCC, while other tasks are binary classification.

Model Gene finding Chromatin accessibility Histone modification CpG Methylation
MCC AUROC AUROC AUROC

PatchDNA 0.58 0.84 0.79 0.92
PatchDNA-FixedPS20 0.38 0.83 0.78 0.90
PatchDNA-Entropy 0.37 0.83 0.78 0.90
NT-MS-500M 0.64 0.80 0.76 0.91
PhyloP 0.19 0.54 0.51 0.49

A.5 SCALING PATCHDNA TO MULTIPLE SPECIES AND TO MULTIPLE GENOMES WITHIN THE
SAME SPECIES

PhyloP scores quantify conservation at each genomic position using multi-species alignments. By
leveraging evolutionary constraints, biologically relevant indicators of functional importance across
species, the conservation-based patching approach is conceptually robust. Since PhyloP tracks are
available for many organisms and genome assemblies, extending our model to a multi-species frame-
work is straightforward.

We constructed a mouse version of the CAGE prediction task, by selecting 50 mouse CAGE tracks
from the Basenji dataset. We applied PatchDNA using PhyloP conservation scores from the 60-
way multi-species alignment for mouse (mm10.60way.phyloP60way.bw). The setup was the
same as in Section 4.4: all models were fine-tuned for one epoch using an MLP head. Due to
time constraints, we report only the Full Pearson correlation between predicted and observed CAGE
signal across gene-cell pairs (computing gene-wise and cell-wise correlations required incorporating

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

transcription start site annotations for the mouse genome, which we plan to include in the final
version). Despite being trained on the human genome, PatchDNA achieves strong performance on
this task, outperforming HyenaDNA. This result highlights PatchDNA’s ability to generalize across
species, leveraging evolutionary priors without retraining.

Results are reported on the test set, averaged across 6 random seeds.

Model Full Pearson
HyenaDNA-1m-seqlen 0.219± 0.004
PatchDNA-7M 0.338± 0.004

Table 25: Mouse CAGE prediction results using conservation-based PatchDNA.

A.6 PSEUDOCODE FOR RE-PATCHING

We also provide a simplified algorithm for establishing the patch boundaries below:

Algorithm 1 DetectPatchBoundaries

Require: Input byte sequence input of length L; genome scores genome scores of length L;
threshold τ

Ensure: List patch boundaries
1: Initialize empty list patch boundaries← []
2: append-front 1 to patch boundaries
3: append-front 0 to patch boundaries
4: for i← 0 to L− 1 do
5: if genome scores[i] > τ then
6: append i to patch boundaries
7: end if
8: end for
9: return patch boundaries

Integrating re-patching is straightforward. The patchDNA backbone accepts a patching mode
argument specifying the patching strategy, which dynamically defines the patch boundaries. These
boundaries are used by the local encoder and decoders to determine how patches interact via cross-
attention. This method is entirely data driven and does not require retraining. Below is a simple
example:

model = PatchDNA.load_checkpoint("best.ckpt") # Trained with PhyloP
data_cfg = {

"genome_score_fn": "dnase_k562", # instead of phylop
other cfg items
}

dataset = Dataset.from_config(data_cfg)
model.architecture.patcher.threshold = 0.99
model.architecture.patcher.patching_mode = "custom_genome_scores"

inference or finetune loop ...
preds = trainer.validate(model, datamodule)

A.7 ALTERNATIVE CONSERVATION SCORES AND SENSITIVITY TO THRESHOLDS

PhastCons is an alternative conservation scoring method, but we deprioritized using it due to its
window-based smoothing which results in lack of single nucleotide granularity. We present results
in Table 27, showing that it underperforms compared to PhyloP on 3 out of the 4 tasks.

We pick the 95% threshold for efficiency reasons, as this allows us to easily train models at long
sequences. Lower thresholds result in more number of patches, on average, increasing the computa-
tional cost. However, to investigate performance at other thresholds, we’ve run threshold-sensitivity

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

analyses for Dart-eval on the 7M-parameter PatchDNA using less stringent cutoffs (Task 4 was
omitted due to increased computational costs). We highlight that performance does not change
significantly between various thresholds (Table 26).

Table 26: Performance comparison of PatchDNA-7M variants on a subset of Dart-eval tasks

Model Avg. Patch Size Task 1 Task 2 Task 3 Task 5
Accuracy Accuracy Accuracy AUROC

PatchDNA-7M 75% 4 0.938 0.645 0.343 0.524
PatchDNA-7M 90% 10 0.940 0.650 0.357 0.525
PatchDNA-7M 95% 20 0.950 0.650 0.380 0.539

Table 27: Performance comparison of PatchDNA-7M with PhastCon on a subset of Dart-eval tasks

Model Avg. Patch Size Task 1 Task 2 Task 3 Task 5
Accuracy Accuracy Accuracy AUROC

PatchDNA-7M 75% PhastCon 4 0.882 0.615 0.332 0.534
PatchDNA-7M 90% PhastCon 10 0.932 0.645 0.326 0.542
PatchDNA-7M 95% PhastCon 20 0.943 0.640 0.333 0.549

We also investigate the impact of varying the threshold across a broad set of downstream tasks via
re-patching. We use the main PatchDNA model, which has been trained using a PhyloP threshold
which results in an average patch size of 20. We then identify thresholds corresponding to average
patch sizes of 4, 10, 20, 40, 60, and 80, and evaluate the model with these alternative thresholds on
both short-range and long-range tasks (Table 28 and Table 29).

In Table 28, we observe that smaller average patch sizes generally yield the best performance, al-
though the improvements are modest for the regulatory element and chromatin profile tasks (Figure
4). For the splice-site tasks, the differences are more pronounced, which is expected given that these
tasks benefit from finer-grained sequence resolution (see Table 12 in Section A.3.1).

A similar trend appears for the long-range CAGE task (Table 29). Performance declines gradually
as the average patch size increases, but the drop is modest: even at the largest patch size of 80,
PatchDNA still outperforms the second-best model in the benchmark (Caduceus-ps).

These results suggest that while finer patching can provide advantages, particularly for tasks requir-
ing high-resolution sequence information, the model remains broadly robust across a wide range
of patch sizes. Notably, smaller patch sizes incur higher computational cost, as they increase the
number of patches that must be processed. In conventional tokenization schemes, modifying an
analogous parameter (such as the k in k-mer tokenization) would necessitate training a new founda-
tion model from scratch. In contrast, our framework enables users to re-patch post hoc to achieve
smaller effective patch sizes, avoiding the substantial computational expense of pretraining a new
model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 28: Results on the finetuned Nucleotide Transformer benchmark using a PatchDNA model
pretrained with conservation scores and re-patched at different average patch sizes. Test MCC is
shown and averaged across 3 seeds with reported standard deviations.

Task Average Patch Size
4 10 20 40 60 80

H2AFZ 0.517 ± 0.014 0.511 ± 0.001 0.523 ± 0.010 0.515 ± 0.014 0.506 ± 0.015 0.519 ± 0.009
H3K27ac 0.526 ± 0.017 0.510 ± 0.020 0.486 ± 0.015 0.495 ± 0.036 0.487 ± 0.045 0.486 ± 0.032
H3K27me3 0.616 ± 0.011 0.614 ± 0.016 0.607 ± 0.008 0.590 ± 0.014 0.588 ± 0.026 0.596 ± 0.011
H3K36me3 0.632 ± 0.006 0.631 ± 0.009 0.621 ± 0.007 0.620 ± 0.001 0.607 ± 0.002 0.606 ± 0.009
H3K4me1 0.489 ± 0.004 0.475 ± 0.009 0.480 ± 0.003 0.476 ± 0.011 0.474 ± 0.002 0.473 ± 0.010
H3K4me2 0.570 ± 0.003 0.581 ± 0.017 0.573 ± 0.004 0.570 ± 0.004 0.570 ± 0.007 0.575 ± 0.003
H3K4me3 0.641 ± 0.016 0.617 ± 0.016 0.634 ± 0.005 0.633 ± 0.015 0.613 ± 0.022 0.628 ± 0.017
H3K9ac 0.589 ± 0.012 0.572 ± 0.007 0.569 ± 0.010 0.565 ± 0.011 0.567 ± 0.015 0.556 ± 0.007
H3K9me3 0.485 ± 0.021 0.480 ± 0.018 0.470 ± 0.017 0.495 ± 0.039 0.473 ± 0.032 0.475 ± 0.027
H4K20me1 0.670 ± 0.008 0.650 ± 0.006 0.637 ± 0.007 0.635 ± 0.003 0.626 ± 0.015 0.627 ± 0.009
enhancers 0.554 ± 0.005 0.536 ± 0.013 0.528 ± 0.009 0.521 ± 0.008 0.532 ± 0.001 0.524 ± 0.005
enhancers types 0.519 ± 0.012 0.501 ± 0.014 0.496 ± 0.008 0.484 ± 0.021 0.492 ± 0.004 0.497 ± 0.007
promoter all 0.781 ± 0.012 0.792 ± 0.012 0.791 ± 0.009 0.781 ± 0.003 0.791 ± 0.008 0.783 ± 0.010
promoter no tata 0.797 ± 0.008 0.795 ± 0.012 0.788 ± 0.005 0.796 ± 0.012 0.794 ± 0.006 0.783 ± 0.008
promoter tata 0.875 ± 0.013 0.829 ± 0.050 0.840 ± 0.019 0.847 ± 0.024 0.843 ± 0.011 0.830 ± 0.010
splice sites acceptors 0.868 ± 0.029 0.741 ± 0.026 0.754 ± 0.040 0.748 ± 0.044 0.778 ± 0.040 0.746 ± 0.040
splice sites all 0.849 ± 0.004 0.789 ± 0.008 0.760 ± 0.019 0.772 ± 0.016 0.803 ± 0.083 0.778 ± 0.084
splice sites donors 0.744 ± 0.005 0.721 ± 0.024 0.706 ± 0.026 0.714 ± 0.029 0.705 ± 0.029 0.690 ± 0.012

Figure 4: Results on finetuned Nucleotide Transformer benchmark, grouping tasks by category
(Table 28). Using a PatchDNA model pretrained with conservation scores and re-patched at different
average patch sizes

Table 29: Results on CAGE benchmark using a PatchDNA model pretrained with conservation
scores and re-patched at different average patch sizes. Note that we exclude average patch size 4, as
this would be inefficient at a long sequence of < 100kbp. Results are averaged across 5 seeds, with
reported standard deviations.

Average Patch Size Gene Corr Cell Corr Full Pearson Forward FLOPS
10 0.369 ± 0.001 0.773 ± 0.0007 0.482 ± 0.000 855.64
20 0.369 ± 0.001 0.772 ± 0.0018 0.471 ± 0.002 678.55
40 0.368 ± 0.000 0.770 ± 0.0015 0.454 ± 0.005 627.88
60 0.367 ± 0.002 0.767 ± 0.0005 0.440 ± 0.003 616.61
80 0.367 ± 0.002 0.769 ± 0.0018 0.425 ± 0.004 612.02

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.8 INTERPRETABILITY: QUANTITATIVE ANALYSIS OF PATCH ALIGNMENT WITH CCRES

We believe that interpretability, particularly the alignment of patches with known functional genomic
elements, is important. To address this, we implemented an additional quantitative analysis compar-
ing the enrichment of PhyloP-derived patches specifically within cCRE versus non-cCRE genomic
regions. We used 5 independent random seeds, each with 5000 sampled genomic intervals of length
350 bp. For regulatory regions, we centered the windows on known cCREs (from ENCODE), while
control intervals were drawn from the genome to avoid any overlap with cCRE annotations. Using a
Mann–Whitney U test, we found that there were significantly more PhyloP-derived patches (median
difference: 32, Cliff’s δ = 0.618, p ≪ 0.001) within cCRE regions relative to randomly sampled
non-cCRE genomic windows.

Further, we compared the number of patches identified by entropy and PhyloP scores within cCRE
regions using the Wilcoxon signed-rank test. PhyloP-derived patches consistently identified signifi-
cantly more patches per region than entropy-derived patches (median difference: 12 patches, Cliff’s
δ = 0.155, Wilcoxon p ≪ 0.001). While this effect is statistically robust across seeds, the effect
sizes are smaller than those observed in the cCRE vs. control comparisons.

A.9 COMPUTATIONAL EFFICIENCY OF PATCHING AND RE-PATCHING

The re-patching itself incurs no additional computational overhead: the local encoder and decoder
already expect a patch-based layout, which can be swapped in without changing the architecture.
The patch size distribution will have a direct effect on computations. The computational complexity
of marking patch boundaries is an O(L) operation (with L being the sequence length): we make a
single pass over the sequence, inserting boundaries whenever a pre-established threshold is reached.
In our implementation this step runs on the CPU, though an entropy-based patching strategy would
necessitate executing a small model on the GPU and will have different computational complexity
considerations. To clarify this further, we present the theoretical computational cost (in GFLOPs) in
Table 30 comparing PatchDNA directly against its single-nucleotide baseline, where the patch size
is fixed at 1. These theoretical estimates were calculated using the formulas described in the BLT
paper, as the BLT implementation uses FlexAttention (which Pytorch FLOP profilers don’t support).

Table 30: Forward FLOPs comparison across models at different sequence lengths.

Model 511 bp FWD FLOPS (G) 16 kbp FWD FLOPS (G)
PatchDNA (19.2 M) 5.64 179.07
Single-nucleotide baseline (19.2 M) 11.80 1384.53
PatchDNA (7.7 M) 2.79 88.6
Single-nucleotide baseline (7.7 M) 5.36 548.62

A.10 METRICS

Matthews Correlation Coefficient (MCC) The Matthews Correlation Coefficient is a robust sta-
tistical rate which takes into account true and false positives and negatives and is regarded as a
balanced measure that can be used even if the classes are of very different sizes.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP , TN , FP , and FN are the numbers of true positives, true negatives, false positives, and
false negatives, respectively.

A.10.1 ENFORMER EVALUATION METRICS

To assess model performance in predicting gene expression, we follow Pearson correlation evalu-
ation strategies as proposed in the Enformer manuscript (Avsec et al., 2021). The following three
metrics are used to evaluate model predictions: gene correlation, cell correlation, and full correla-
tion.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Let Ŵ ∈ RB×C and W ∈ RB×C denote the predicted and observed CAGE matrices across the
genome, where B is the number of genomic bins (each spanning 128 base pairs) and C is the
number of cell types.

To obtain gene-level predictions, we extract the row of Ŵ and W corresponding to the bin that
contains the transcription start site (TSS) of each gene. This gives the predicted and observed gene
expression matrices Ŷ , Y ∈ RG×C , where G is the number of genes.

Gene Correlation Gene correlation evaluates how well the model captures cell type–specific ex-
pression patterns for each gene. Prior to computing this metric, both predicted and observed gene
expression values are log-transformed as:

Ŷ ← log(Ŷ + 1), Y ← log(Y + 1)

For each gene g ∈ {1, . . . , G}, we compute the Pearson correlation across all cell types:

rgene
g = corr(Ŷg,:, Yg,:)

The final gene correlation score is the average over all genes:

rgene =
1

G

G∑
g=1

rgene
g

Cell Correlation Cell correlation evaluates how well the model predicts gene expression patterns
across genes within each cell type. As with gene correlation, a log-transformation is applied to all
input values before computing correlation.

For each cell type c ∈ {1, . . . , C}, we compute the Pearson correlation across genes:

rcell
c = corr(Ŷ:,c, Y:,c)

The final cell correlation score is the average over all cell types:

rcell =
1

C

C∑
c=1

rcell
c

Full Correlation Full correlation measures how well the model predicts CAGE signal profile
across the genome.

For each cell type c ∈ {1, . . . , C}, we compute the Pearson correlation across bins:

rfull
c = corr(Ŵ:,c,W:,c)

The final full correlation score is the average over all the cell types

rfull =
1

C

C∑
c=1

rfull
c

A.11 LLM USAGE

We have used LLMs to improve grammar and wording throughout the manuscript.

26

	Introduction
	Existing DNA tokenization schemes
	PatchDNA: Biologically-informed modeling of DNA
	Patching preliminaries
	Application of patching for DNA modeling
	Conservation-driven patching
	Re-patching
	Architecture
	Pretraining and downstream usage

	Experiments
	Nucleotide Transformer benchmark
	DART-Eval benchmark
	BEND
	CAGE prediction benchmark
	Cell type specific re-patching

	Discussion
	Limitations and future work

	Reproducibility statement
	Appendix
	Details of Pretrained Baseline Models
	Pretraining details
	Benchmark Tasks details
	Nucleotide Transformer Benchmark
	DART-Eval
	BEND benchmark
	CAGE prediction benchmark
	Cell type specific re-patching
	The Genomics Long Range Benchmark

	Ablations
	Scaling PatchDNA to multiple species and to multiple genomes within the same species
	Pseudocode for re-patching
	Alternative conservation scores and sensitivity to thresholds
	Interpretability: Quantitative Analysis of Patch Alignment with cCREs
	Computational efficiency of patching and re-patching
	Metrics
	Enformer evaluation metrics

	LLM usage

