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Abstract

In recent years, a proliferation of methods were developed for cooperative multi-
agent reinforcement learning (c-MARL). However, the robustness of c-MARL
agents against adversarial attacks has been rarely explored. In this paper, we pro-
pose to evaluate the robustness of c-MARL agents via a model-based approach,
named c-MBA. Our proposed attack can craft much stronger adversarial state per-
turbations of c-MARL agents to lower total team rewards than existing model-free
approaches. Our numerical experiments on two representative MARL benchmarks
illustrate the advantage of our approach over other baselines: our model-based
attack consistently outperforms other baselines in all tested environments.

1 Introduction

Deep neural networks are known to be vulnerable to adversarial examples, where a small and
often imperceptible adversarial perturbation can easily fool the state-of-the-art deep neural network
classifiers [22, 16, 4, 19]. Since then, a wide variety of deep learning tasks have been shown to also
be vulnerable to adversarial attacks, ranging from various computer vision tasks to natural language
processing tasks [7, 25, 8, 1].

While most of the existing DRL attack algorithms focus on the single DRL agent setting, in this
work we propose to study the vulnerability of multi-agent DRL, which has been widely applied in
many safety-critical real-world applications including swarm robotics [3], electricity distribution, and
traffic control [18]. In particular, we focus on the collaborative multi-agent reinforcement learning
(c-MARL) setting, where a group of agents is trained to generate joint actions to maximize the team
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reward. We note that c-MARL is a more challenging yet interesting setting than the single DRL agent
setting, as now one also needs to consider the interactions between agents, which makes the problem
becomes more complicated.

Our contribution can be summarized as follows:

• In this work, we propose the first model-based adversarial attack framework on c-MARL,
where we name it c-MBA (Model-Based Attack on c-MARL). We formulate the attack
into a two-step process and solve for adversarial state perturbation efficiently by existing
proximal gradient methods. We show that our model-based attack is stronger and more
effective than all of existing model-free baselines.

• We show on both the multi-agent MuJoCo and multi-agent particle environments that our
c-MBA consistently outperforms the SOTA baselines in all tested environments. We show
that c-MBA can reduce the team reward up to 8−9× when attacking the c-MARL agents. In
addition, c-MBA with the proposed victim selection strategy matches or even outperforms
other c-MBA variants in all environments with up to 80% of improvement on reducing team
reward.

Paper outline. Section 2 discusses related works in adversarial attacks for DRL and present general
background in c-MARL setting. We describe our proposed attack framework c-MBA in Section 3.
Section 4 presents the evaluation of our approach on several standard c-MARL benchmarks. Finally,
we summarize our results and future directions in Section 5.

2 Related work and background

Related work. Most of existing adversarial attacks on DRL agents are on single agent [6, 12, 9, 24]
while there is only two other works [11, 5] that focus on the c-MARL setting. Whereas [5] considers
a different problem than ours where they want to find an optimally "sparse" attack by finding an attack
with minimal attack steps, [11] proposes a two-step attack procedure to generate state perturbation
for c-MARL setting which is the most relevant to our work. However, there are two major differences
between our work and [11]: (1) their attack is only evaluated under the StarCraft Multi-Agent
Challenge (SMAC) environment [21] where the action spaces are discrete; (2) their approach is
model-free as they do not involve learning the dynamics of the environment and instead propose to
train an adversarial policy for a fixed agent to minimize the the total team rewards. The requirement
on training an adversarial policy is impractical and expensive compared to learning the dynamics
model. To the best of our knowledge, there has not been any work considering adversarial attacks
on the c-MARL setting using model-based approach on continuous action spaces. In this paper, we
perform adversarial attacks on agents trained using MADDPG [14] on two multi-agent benchmarks
including multi-agent MuJoCo and multi-agent particle environments. Note that in the setting of
adversarial attacks, once the agents are trained, policy parameters will be frozen and we do not require
any retraining of the c-MARL agents during our attack.

Background in c-MARL. We consider multi-agent tasks with continuous action spaces modeled as
a Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [17]. A Dec-POMDP
has a finite set of agents N = {1, · · · , n} associated with a set of states S describing global states, a
set of continuous actions Ai, and a set of individual state Si for each agent i ∈ N . Given the current
state sit ∈ Si, the action ait ∈ Ai is selected by a parameterized policy πi : Si → Ai. The next state
for agent i is determined by the state transition function Pi : S ×Ai → S , and agent i will receive a
reward rit calculated from a reward function Ri : S × Ai → R and observe a new state sit+1 ∈ Si.
In addition, Dec-POMDP is associated with an initial state distribution P0 and a discount factor γ.
Training a c-MARL agent is to find a joint policy that maximize the total team rewards

∑
i,t r

i
t. Note

that for the ease of exposition, we do not differentiate state and observation in this work and use them
interchangeably throughout the paper.

3 c-MBA: Model-based attack for c-MARL

Our goal is to generate adversarial perturbations imposed to the victim agents’ input (state) in order
to deteriorate the total team reward. The added perturbations encourages the victim agents’ state to be
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close to a desired failure state corresponding to low reward. To avoid sampling from the environment,
we use a pre-trained model that learns the dynamics of the environment to predict the next state from
the perturbed state and current action, then find the suitable noise that minimizes the distance between
the predicted next state and a predefined target state. In this section, we assume the target state is
given and we consider learning this failure state in a data-driven approach in our future work. The
overall attack can be formulated as an optimization problem as follows.

Formally, we consider a multi-agent setting with |N | = n agents, each agent i ∈ N receives state sit
locally and takes action ait following the pre-trained c-MARL policy πi(sit). Let st = (s1t , · · · , snt ) ∈
S be the joint global state at time step t which is concatenated from local states sit for each agent
i ∈ N . We also denote the joint action at = (a1t , · · · , ant ) concatenated from each agent’s action ait.
Let Vt ⊆ N be the set of victim agents at time step t, i.e. the set of agents that can be attacked. Let
f : S × A → S be a parameterized function that approximates the dynamics of the environment,
where A is the set of concatenated actions, one from each Ai. Let sfail be the targeted failure state
which can lead to poor performance to the agent. We denote ε as an upper bound on budget constraint
w.r.t some ℓp-norm ∥·∥p. The state perturbation ∆s = (∆s1, · · · ,∆sn) (we suppress the dependence
on t of ∆s to avoid overloading the notation) to st is the solution to the following problem:

min
∆s=(∆s1,··· ,∆sn)

d(ŝt+1, sfail)

s.t. ŝt+1 = f(st, at)
ait = πi(sit +∆si), ∀i ∈ N
∆si = 0, ∀ i /∈ Vt

ℓS ≤ st +∆s ≤ uS∥∥∆si
∥∥
p
≤ ε, ∀i ∈ Vt

(1)

where 0 is a zero vector, and the state vector follows a boxed constraint specified by ℓS and uS .

Let us first provide some insights for the formulation (1). For each agent i, using the trained policy πi,
we can compute the corresponding action ait given its (possibly perturbed) local state sit or sit +∆si.
From the concatenated state-action pair (st, at), we can predict the next state ŝt+1 via the learned
dynamics model f . Then by minimizing the distance between ŝt+1 and the targeted failure state sfail
subject to the budget constraint, we are forcing the victim agents to move closer to a damaging failure
state in the next time step leading to low team reward.

Note that problem (1) can be reformulated as a constrained nonconvex problem which can be
efficiently solved by first-order method to obtain a stationary point. We defer the details to Appendix A.
Here, the convergence guarantee is that the perturbation found by solving the optimization problem
(1) will make the next state (predicted by our dynamics model) closest to the failure state given the
budget constraint. Finally, the full attack algorithm of c-MBA at timestep t can be summarized in
Alg. 1.

Algorithm 1 c-MBA algorithm at timestep t

1: Initialization:
2: Given st, sfail, π, f , Vt; initialize ∆s = ε ∗ sign(x) for x ∼ N(0, 1), attack budget ε, p;

choose learning rate η > 0
3: For k = 0, · · · ,K − 1 do
4: Compute at = (a1t , · · · , ant ) where ait = πi(sit +∆si) if i ∈ Vt and ait = πi(sit) otherwise.
5: Update ∆s as ∆sk+1 = projCp,ε,t

[∆sk − η∇∆sd(f(st, at), sfail)].
6: End For

One of the key enabler to solve (1) is the availability of the learned dynamics model f . If the dynamics
is known, we can solve (1) easily with proximal gradient methods. However, in practice when we
often do not have the full knowledge of the environment and in order to solve (1), we need to learn the
dynamics model via some function approximator such as neural networks. We describe the process
of training a dynamics model in Appendix B.

4 Experiments

We perform the attack on multi-agent MuJoCo (MA-MuJoCo) environments [2] including Ant(4x2),
HalfCheetah(2x3), HalfCheetah(6x1), and Walker2d(2x3). The pair name(config) indicates the
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name of MuJoCo environment along with the agent partition, where a configuration of 2x3 means
there are in total 2 agents and each agent has 3 actions. We provide more details on the construction
of these agents in Appendix C.

1. Uniform: the perturbation follows the Uniform distribution U(−ε, ε).
2. Gaussian: the perturbation follows the Normal distribution N (0, ε).
3. Lin et al. (2020) + iFGSM: Since there is no other work performing adversarial attack for

continuous action space in c-MARL, we adapt the approach in [11] to form another baseline.
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Figure 1: c-MBA vs baselines when attacking one agent in 2 MA-MuJoCo environments - Exp. (I).

One key component to perform c-MBA attack is the definition of the failure state. We provide more
details on the failure state corresponding to each environment in Appendix C. We evaluate c-MBA
comprehensively using 3 experiments. Due to space constraint, we only present part of our results
here and we defer the full results in Appendix D.

• Experiment (I) – model-free baselines vs model-based attack c-MBA using ℓ∞-
constrained perturbation: we compare c-MBA with other baselines when attacking
individual agent under ℓ∞ constraint.

• Experiment (II) – attacking multiple agents using model-free baselines vs model-based
attack c-MBA with ℓ∞ perturbation: we report results on attacking multiple agents
simultaneously. This setting is not previously considered in [11].

• Experiment (III) – model-free baselines vs model-based attack c-MBA on ℓ1 perturba-
tion: we compare c-MBA with other baselines when attacking individual agent under ℓ1
constraint. The results of this experiment are presented in Appendix D.
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Figure 2: c-MBA vs baselines in Ant(4x2) when attacking two agents - Exp. (II).

Experiment (I) – model-free baselines vs model-based attack c-MBA on ℓ∞ perturbation. In
this experiment, we run the 3 baseline attacks along with two variants of our model-based attack on
the four MA-MuJoCo environments with one victim agent (nv = 1). Fig. 1 illustrate the performance
when we perform these attacks on each agent with different attack budget using ℓ∞-norm where our
model-based attack outperforms all the other baselines. In particular, our model-based attack yields
much lower rewards under relatively low budget constraints (when ε ∈ [0.05, 0.2]) compared to other
baselines.
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Experiment (II) – attacking two agents using model-free baselines vs model-based attack c-MBA
using ℓ∞ constrained: We conduct experiments using model-free and model-based approaches
to simultaneously attack two agents in Ant(4x2) environment. Fig. 2 illustrate the performance of
various attacks. We also observe that our c-MBA attack outperforms other baselines.

5 Conclusions

In this paper, we propose a new attack algorithm named c-MBA for evaluating the robustness of
c-MARL environment. Our c-MBA algorithm is the first model-based attack to craft adversarial
observation perturbations and we have shown that c-MBA outperforms existing model-free baselines
attack by a large margin undermulti-agent MuJoCo benchmarks.
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Appendix

A Details on how to solve (1) efficiently

Problem (1) can be efficiently solved by proximal-gradient-based methods [15]. Firstly, by substitut-
ing at and ŝt+1 with their definitions, (1) is equivalent to

min
x

d(f(st, π(st + x)), sfail)

s.t. x ∈ Cp,ε,t
(2)

where Cp,ε,t := {x = (x1, · · · , xn) : ℓS − st ≤ x ≤ uS − st,
∥∥xi

∥∥
p
≤ ε for i ∈ Vt, and xi =

0 for i /∈ Vt}. When f and π are represented by neural network and if we choose the distance function
as d(a, b) = ∥a− b∥2, (2) is a constrained nonconvex problem, then We can use the projected gradient
descent (PGD) algorithm [15] to solve (2). The PGD iteration to update xk at iteration k starting
from x0 can be described as

xk+1 = projCp,ε,t

[
xk − η∇xd(f(st, π

i(st + x)), sfail)
]

where projCp,ε,t
(·) is the projection to the convex set Cp,ε,t and η is the learning rate. The projection

is simple to calculate since Cp,ε,t is the intersection of a ℓp-norm ball and boxed constraint.

B Details on Training Dynamics Model

The parameter w for the dynamics model f is the solution of the following optimization problem

min
ϕ

∑
t∈D

∥f(st, at;ϕ)− st+1∥2 (3)

where D is a collection of state-action transitions {(st, at, st+1)}t∈D and st+1 is the actual state
that the environment transitions to after taking action at determined by a given policy. In particular,
we separately collect transitions using the pre-trained policy πtr and a random policy πrd to obtain
Dtrain and Drandom. The motivation of using the random policy to sample is to avoid overfitting the
dynamics model to the trained policy. Then the dataset D is built as D = Dtrain∪Drandom. Since (3)
is a standard supervised learning problem, the dynamics model f can be solved by existing gradient-
based methods. We describe the whole process of training the dynamics model in Algorithm 2 in
Appendix B.

Algorithm 2 Training dynamics model
1: Initialization: Given pre-trained policy πtr and a random policy πrd; initialize dynamics model

parameter ϕ0.
2: Form D = Dtrain ∪Drandom by collecting a set of transitions Dtrain and Drandom using policy

πtr and πrd, respectively.
3: For k = 0, 1, · · · do

ϕk+1 = GradientBasedUpdate(D, ϕk)

4: End For

For each environment, we collect 1 million transitions using the trained MARL policy πtr and a
random policy πrd. We partition the collected data into train and test set with a ratio 90-10. The
dynamics model is represented by a fully-connected neural network. The network contains 4 hidden
layers with 1000 neurons at each layer and the activation function for each hidden layer is ReLU.
We train the network for 100 epochs using AdamW [13] with early stopping where the learning rate
is tuned in the set {0.001, 0.0005, 0.0001, 0.00005, 0.00001} to obtain the model with the best test
mean squared error. Please refer to our submitted code for further details.
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C More Details on Experiment Setup in Section 4

Experiment setup. We use MADDPG [14] to train MARL agents for the four MA-MuJoCo
environments as well as the multi-agent particle environment. Using the trained agents, we collect
datasets containing one million transitions to train the dynamics model for each environment. The
dynamics model is a fully connected neural network with three hidden layers of 1000 neurons. We
use AdamW [13] as the optimizer and select the best learning rate from {1, 5}×{10−5, 10−4, 10−3}
(the best learning rate is the one achieving lowest prediction error on a test set of 80, 000 samples).
For our model-based attack, we run PGD algorithm for K = 30 steps to solve (2). We perform each
attack over 16 episodes then average the rewards. We also illustrate the standard deviation of rewards
using the shaded area in the plots.

To obtain the Lin et al. (2020) + iFGSM baseline, we train an adversarial policy for one agent
to minimize the total team reward while the remaining agents use the trained MARL policy. This
adversarial policy is trained for 1 million timesteps. We then use this trained policy to generate
a "target" action and use iterative FGSM method [10, 4] to generate the adversarial observation
perturbation for the agents’ input. Note that the adversarial policy is trained on the same agent that is
being attacked.

Agent partitioning for MA-MuJoCo environments. Each of the original MuJoCo agent in the
single-agent setting contains multiple joints and the way these joints are partitioned will lead to
different multi-agent configurations. These configurations are described as follows:

• Walker (2x3) environment: this environment has 6 joints, 3 for each leg and the whole agent
is divided into 2 group of joints {1, 2, 3} and {4, 5, 6} representing two legs [20, Fig. 4F].

• HalfCheetah(2x3) environment: there are two agents, each represents a front or rear leg
with joints {1, 2, 3} and {4, 5, 6} [20, Fig. 4C].

• HalfCheetah(6x1) environment: each agent represents each of the total 6 joints [20, Fig.
4D].

• Ant(4x2) environment: each agent controls one leg with two joints out of 4 legs [20, Fig.
4J].

Specifying target observation for each environment. To perform our model based attack, we need
to specify a target observation that potentially worsens the total reward. Currently, we do not have a
general procedure to specify this target observation. We specify the target observations based on prior
knowledge about the environments as follows. In multi-agent MuJoCo environments, each agent
has access to its own observation of the agent consisting the position-related and velocity-related
information. The position-related information includes part of x, y, z coordinates and the quarternion
that represents the orientation of the agent. The velocity-related information contains global linear
velocities and angular velocities for each joint in a MuJoCo agent. We refer the reader to [23] for more
information about each MuJoCo environment. Now we describe the design of this target observation
for each environment as follows:

• Walker(2x3) environment: Since the episode ends whenever the agent falls, i.e. the z
coordinate falls below certain threshold. In this environment, the target observation has a
value of 0 for the index that corresponds to the z coordinate of the MuJoCo agent (index 0).

• HalfCheetah(2x3) and HalfCheetah(6x1) environments: As the goal is to make agent
moves as fast as possible, we set the value at index corresponding to the linear velocity to 0
(index 8).

• Ant(4x2) environment: As the agent can move freely in a 2D-plan, we set the index
corresponding to the x, y linear velocities to 0 (indices 13 and 14).

D Additional Experiments

In this section, we present experimental results in addition to ones presented in Section 4.

Full results for Experiment (I) – model-free baselines vs model-based attack c-MBA on ℓ∞
perturbation . We first show the full results on running c-MBA and three other baselines in 4
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MA-MuJoCo environments under ℓ∞-norm budget constraint in Fig. 3. c-MBA performs the best in
all cases and significantly outperforms other baselines in majority of the cases.
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Figure 3: c-MBA vs baselines when attacking one agent in 4 MA-MuJoCo environments - Exp. (I).

Full results of Experiment (II) – attacking two agents using model-free baselines vs model-based
attack c-MBA using ℓ∞ constrained: We conduct experiments using model-free and model-based
approaches to simultaneously attack two agents in Ant(4x2) environment. Fig. 4 illustrate the
performance of various attacks. We observe that our c-MBA attack outperforms other baselines in 5
out of 6 settings, and especially it’s able to achieve low reward (close to or below 0) at lower attack
budget levels. For example, at ε = 0.025, the team reward reduction of c-MBA is 68%, 522%, 713%
more than the three model-free baselines.
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Figure 4: c-MBA vs baselines in Ant(4x2) when attacking two agents - Exp. (II).

Experiment (III): model-free baselines vs model-based attack c-MBA on ℓ1 perturbation.
In addition to the ℓ∞-norm budget constraint, we also evaluate adversarial attacks using the ℓ1-
norm constraint. Note that using ℓ1-norm for budget constraint is more challenging as the attack
needs to distribute the perturbation across all observations while in the ℓ∞-norm the computation
of perturbation for individual observation is independent. Fig. 5 illustrate the effect of different
attacks on HalfCheetah(6x1) and Walker2d(2x3) environments, respectively. Our c-MBA is able to
outperform other approaches in almost all settings. In HalfCheetah(6x1), using ε = 1.0 under ℓ1
budget constraint, the amount of total team reward reduced by c-MBA variants is up to 156%, 37%,
and 42% more than Lin et al. (2020) + iFGSM, Gaussian, and Uniform baselines, respectively.
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Figure 5: c-MBA vs baselines in HalfCheetah(6x1) and Walker2d(2x3) - Exp. (III).
In summary, our c-MBA attack is able to shows its advantage in all tested multi-agent environment
where it achieves lower reward with smaller budget level.
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