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Abstract
Learning to sample from intractable distributions
over discrete sets without relying on correspond-
ing training data is a central problem in a wide
range of fields, including Combinatorial Opti-
mization. Currently, popular deep learning-based
approaches rely primarily on generative models
that yield exact sample likelihoods. This work
introduces a method that lifts this restriction and
opens the possibility to employ highly expres-
sive latent variable models like diffusion models.
Our approach is conceptually based on a loss that
upper bounds the reverse Kullback-Leibler diver-
gence and evades the requirement of exact sample
likelihoods. We experimentally validate our ap-
proach in data-free Combinatorial Optimization
and demonstrate that our method achieves a new
state-of-the-art on a wide range of benchmark
problems.*

1. Introduction
Sampling from a known but intractable, high-dimensional
target distribution like the Boltzmann distribution is of high
relevance in many scientific fields like the prediction of
molecule configurations (Noé and Wu, 2018), lattice mod-
els in physics (Wu et al., 2019) and Monte Carlo integration
(Müller et al., 2019). Recently, the works of Hibat-Allah
et al. (2021) and Sanokowski et al. (2023) showed that Com-
binatorial Optimization (CO) can be concisely formulated
as such a distribution learning problem where the resulting
samples correspond to solutions of a CO problem. In all of
these domains, the energy function associated to the distri-
butions of interest is known but obtaining unbiased samples
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represents a formidable challenge. Problem areas like CO
or lattice models in physics are characterized by discrete
target distributions. In these applications, the approximation
of the target distribution is predominantly based on prod-
ucts of categorical distributions or autoregressive models.
While product distributions are computationally convenient
they lack expressivity due to their inability to represent
statistical inter-dependencies. Autoregressive models rely
on sequentially generating the components of the samples.
For the high-dimensional distributions that are frequently
encountered in the aforementioned application areas, this
procedure becomes prohibitively expensive. In addition,
there is typically no canonical ordering among the com-
ponents of samples. Hence, an autoregressive approach
appears as an unnatural approach. Intuitively, an issue with
the sequential sample generation procedure of autoregres-
sive models is that there is no possibility of correcting sub-
optimal decisions once they are made. More formally, it
can be shown that autoregressive models are less expressive
than energy-based models or latent variable models from a
computational complexity point of view (Lin et al., 2021).
Approximate likelihood models that utilize latent variables,
like Variational Autoencoders (VAE) (Kingma and Welling,
2014) and diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021), are trained using data
samples and a loss that is based on the Evidence Lower
Bound (ELBO). These models have the advantage that they
are more expressive and applicable in the discrete setting.
However, with these models, it is in general not feasible to
evaluate exact sample likelihoods. This problem precludes
their application in problems of data-free approximation
of target distributions which typically rely on exact sam-
ple likelihoods. Recent works that proposed methods to
apply diffusion models in data-free approximation of target
distributions are limited to the continuous setting (Berner
et al., 2022; Richter et al., 2023; Vargas et al., 2023; 2024).
To the best of our knowledge, the discrete setting remains
unexplored.
In this work, we propose in Sec. 3 an approach that allows
for the application of latent variable models like diffusion
models in the problem of data-free approximation of discrete
distributions. We demonstrate our method on paradigmatic
problems in this area from the field of CO and obtain state-
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Figure 1. Illustration of DiffUCO’s solution generation process on the example of finding the Maximum Independent Set (see Sec. 6.1) of
a graph. Solutions are generated in the reverse diffusion process that is modeled by iteratively sampling the time-conditioned model qθ .

of-the-art performance over a wide range of benchmarks. To
achieve this our method Diffusion for Unsupervised Combi-
natorial Optimization (DiffUCO) uses an upper bound on
the reverse Kullback-Leibler divergence as a loss function.
We show that the performance of the model consistently
improves as we increase the number of diffusion steps used
during training. Additionally, we find that during inference
the solution quality can be further improved by applying
more diffusion steps than during training (see Sec. 6.2). In
Sec. 4.1 we propose a significantly more efficient version of
a frequently used sampling strategy called Conditional Ex-
pectation. We show that combined with our diffusion model
this method allows for time-efficient generation of high-
quality solutions to CO problems. The proposed framework
yields a highly efficient and general way of employing latent
variable models like diffusion models in the ubiquitous chal-
lenge of data-free approximation of discrete distributions.

2. Problem Description
Following Lucas (2014) we will represent CO problems by
a corresponding energy function H : {0, 1}N → R which
assigns a scalar value called energy to a given solution
X ∈ {0, 1}N . The dimensionality of X is denoted as N
and is called the problem size. The Boltzmann distribution
associated to H is defined by:

pB(X,β) =
exp (−βH(X))

Z
, Z =

∑
X

exp (−βH(X)),

where the parameter T is typically referred to as the tem-
perature and β = 1/T as the inverse temperature. In the
context of CO the relevant feature of pB(X,β) is that as
β → ∞ it places all the probability mass on the solutions
with the lowest energy, i.e. on the optimal solutions of H .
It can be shown that the sample complexity of learning
pB(X,β) is in O(β2) (Sanokowski et al., 2023). Thus, the
more probability mass the Boltzmann distribution puts on
optimal solutions the harder it becomes to learn. For large N

this distribution is in general intractable, i.e. sampling from
this distribution is difficult for a wide range of frequently
encountered energy functions in statistical physics and CO.
Approximate sampling from such an intractable distribution
can be realized with Markov Chain Monte Carlo methods
but in complex, multi-modal distributions these methods
often exhibit insufficient mixing (Nicoli et al., 2020). There
is a growing interest in training neural networks qθ(X) to
approximate such a distribution. In these approaches, deep
generative models are used to efficiently obtain unbiased
samples from Boltzmann distributions (see Sec. 5). We call
the problem of data-free approximation of a target distri-
bution with a deep generative model Neural Probabilistic
Optimization (NPO). A common approach to NPO is to
minimize the reverse Kullback–Leibler divergence (KL)
DKL(qθ(X) || pB(X,β)) with respect to the model param-
eters θ. Multiplying this objective with T yields an ex-
pression that is proportional to the Variational Free Energy
Fθ(X,T ), which is given by:

L(θ) = E
X∼qθ(X)

[H(X) + T log qθ(X)] (1)

= E
X∼qθ(X)

[F̂θ(X, T )] := Fθ(X, T ), (2)

where F̂θ(X, T ) := H(X) + T log qθ(X) (Wu et al.,
2019). Minimizing this objective requires exact evalua-
tion of log qθ(X) not only to calculate the Variational Free
Energy objective but also to backpropagate through the ex-
pectation of this objective. This can for example be done
with REINFORCE (Williams, 1992) gradient estimator:

∇θL(θ) = E
X∼qθ(X)

[F̂θ(X, T )∇θ log qθ(X)].

To minimize this objective it is necessary to choose a gener-
ative model for which the sample likelihood qθ(X) can be
efficiently evaluated. Thus, optimizing this objective with a
latent variable model like VAEs or diffusion models is not
possible since these models do not allow an exact evaluation
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of qθ(X). In Sec. 3, we propose an objective based on an
upper bound of the reverse KL divergence that mitigates
this issue. In principle, also other divergences could be used
to approximate a given target distribution. For example,
both the reverse and the forward KL divergence are spe-
cial cases of Renyi divergences (van Erven and Harremoës,
2014) which all require exact evaluation of log qθ(X). By
introducing an upper bound on the divergence as we do
in Sec. 3, the evaluation of log qθ(X) is avoided. Which
divergence is the most suitable depends on the application
as Renyi divergences are either mass covering or mode seek-
ing (Minka et al., 2005). We will focus on the reverse KL
divergence and note that our framework can be applied to
any other Renyi divergence.

2.1. Unsupervised Neural Combinatorial Optimization

In Combinatorial Optimization (CO) the task is to find the
solution X ∈ {0, 1}N that minimizes an objective O :
{0, 1}N → R under the constraint that X is in the set of
feasible solutions f . In Lucas (2014) it is shown that many
of these CO problems can be described by identifying the
objective O with an energy function HQ in the form of:

HQ(X) =
∑
i,j

QijXiXj , (3)

Here, Qij is defined by the problem at hand, and for each
CO problem, it is easy to choose Q ∈ RN×N in a way so
that global minima correspond to the optimal solutions of
the problem (Lucas, 2014). In the context of optimization
and quantum computing, this kind of energy function is well
known as the Quadratic Unconstrained Binary Optimization
(QUBO) formulation of CO problems (Glover et al., 2022).
In these terms, the goal of UCO is to train a generative
model to sample low energy configurations X when condi-
tioned on a CO problem instance Q which is sampled from
a distribution ω(Q). The goal in UCO is to train a model
without the use of any example solutions. The correspond-
ing optimization task is to find parameters θ that minimize
the following loss:

L(θ) = EQ∼ω(Q)

[
EX∼qθ(X|Q)[HQ(X)]

]
. (4)

The square matrix Q can be regarded as the adjacency
matrix of a graph with weighted edges, which is why the
dependence on Q in qθ(X|Q) is often parameterized by a
Graph Neural Network (GNN) (Cappart et al., 2021). In-
stead of minimizing Eq. 3 directly, numerous approaches
(Hibat-Allah et al., 2021; Sun et al., 2022; Sanokowski et al.,
2022; 2023) instead frame this as an NPO problem by mini-
mizing Eq. 2. Here, ideas from Simulated Annealing (Kirk-
patrick et al., 1983) are borrowed, i.e. the objective is first
optimized at a high temperature and then the temperature
is gradually reduced according to a predefined temperature
schedule. In the limit of T → 0, Eq. 2 reduces to Eq. 4 (up

to the expectation over ω(Q)) which indicates that in this
limit the energy of the sampled solutions is minimized with-
out any additional entropy regularization. Consequently,
at the end of this annealing procedure, the average energy
of the model’s samples can be considered as a measure of
the residual bias of the learned approximation of the Boltz-
mann distribution. Sanokowski et al. (2023) motivate this
technique theoretically in the form of a curriculum learning
approach and it has been shown empirically (Hibat-Allah
et al., 2021; Sun et al., 2022; Sanokowski et al., 2023) that
this method leads to models with solutions of higher quality.

3. Neural Probabilistic Optimization Objective
for Approximate Likelihood Models

Training an approximate likelihood model to learn to gener-
ate samples from a target distribution* pB(X) in the data-
free setting is a challenging problem because the evaluation
of the sample likelihood within the reverse KL divergence
is intractable (see Sec. 5). In the following, we will derive
an objective that can be used with approximate likelihood
models like VAEs or diffusion models. For that consider the
task of approximating a target distribution pB(X) by using
the marginal sample probability of a latent variable model
qθ(X) =

∫
qθ(X|Z) q(Z) dZ, where q(Z) is an easy to

sample prior distribution over latent variables Z. Due to
the intractability of this marginalization it is not possible to
directly minimize DKL(qθ(X) || pB(X)). Instead we use a
simple tractable upper bound (see App. A.1 for a derivation)
which is given by:

DKL(qθ(X) || pB(X)) ≤ DKL(qθ(X,Z) || p(X,Z)),
(5)

where qθ(X,Z) = qθ(X|Z) q(Z) and p(X,Z) =
p(Z|X) pB(X). p(Z|X) can either be learned by param-
eterizing it with a neural network like it is done in a VAE
or it can be simply defined in a way so that p(Z|X) maps
samples X ∼ pB(X) onto a pre-defined stationary dis-
tribution q(Z) as it is done in diffusion models. The
advantage of this upper bound is that it is tractable as
qθ(X,Z) and p(X,Z) can be exactly evaluated and sam-
ples X,Z ∼ qθ(X,Z) are easy to obtain. Therefore, as we
have shown that the reverse KL of approximate likelihood
models DKL(qθ(X) || pB(X)) is bounded from above by
the reverse joint KL DKL(qθ(X,Z) || p(X,Z)), we can de-
crease the intractable reverse KL divergence by decreasing
the tractable reverse joint-KL divergence instead. Accord-
ing to Gibbs’ inequality the KL divergence between two
distributions is non-negative and equals zero iff the distri-
butions are identical. Thus, if the right-hand side of the
inequality is zero, the inequality becomes an equality. In
this case, the target distribution is exactly approximated.

*In contexts, where it is not relevant we suppress the depen-
dence of the Boltzmann distribution on β and denote it as pB(X).
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Otherwise, the right-hand side of the inequality bounds
the approximation error given by the KL divergence on
the left-hand side. In the following we call this objective
DKL(qθ(X,Z) || p(X,Z)) for NPO the Joint Variational
Upper Bound. Equation 5 is a special case of the data pro-
cessing inequality for Renyi divergences (van Erven and
Harremoës, 2014) and can therefore be applied analogously
to other Renyi divergences.

3.1. Training Diffusion Models with the Joint
Variational Upper Bound

To minimize the right-hand side of Eq. 5, we train a dif-
fusion model. As illustrated in Fig. 1 the forward dif-
fusion process transforms the target distribution pB(X0)
into a stationary distribution q(XT ) through iterative sam-
pling of a noise distribution p(Xt|Xt−1) for a total of
T iterations. The diffusion model is supposed to model
the reverse process, i.e. to map samples XT ∼ q(XT )
to X0 ∼ pB(X0) by iteratively sampling qθ(Xt−1|Xt).
The joint distribution of the reverse process is given by
qθ(X0:T ) = q(XT )

∏T
t=1 qθ(Xt−1|Xt) and we can easily

obtain samples X0:T ∼ qθ(X0:T ). The joint distribution of
the forward process p(X0:T ) = pB(X0)

∏T
t=1 p(Xt|Xt−1)

is analytically known, but in the data-free setting samples
X0:T ∼ p(X0:T ) are not available. We apply the upper
bound in Eq. 5 by substituting Z with X1:T and get the
inequality:

DKL(qθ(X0) || pB(X0)) ≤ DKL(qθ(X0:T ) || p(X0:T )).

We use this Joint Variational Upper Bound as a loss func-
tion and minimize it with respect to θ using RAdam (Liu
et al., 2020). The resulting expression can be simplified (see
App. A.2) to:

T DKL (qθ(X0:T ) || p(X0:T )) =

− T ·
T∑

t=1

EXT :t∼qθ(XT :t) [S(qθ(Xt−1|Xt))]

− T ·
T∑

t=1

EXT :t−1∼qθ(XT :t−1) [log p(Xt|Xt−1)]

+ EXT :0∼qθ(XT :0) [HQ(X0)] + C,
(6)

where S(qθ(Xt−1|Xt)) is the Shannon entropy of
qθ(Xt−1|Xt). The logarithm of the normalization constant
Z of the Boltzmann distribution is absorbed into the con-
stant C as it depends neither on X nor on θ.
The first term on the right-hand side of Eq. 6 represents an
entropy regularization that encourages our model to explore
the solution space in the initial phase of training, i.e. when
annealing starts with high values of T . The second term
represents a coupling between the forward diffusion and
the reverse diffusion. Essentially, it ensures that the model

yields reverse diffusion paths that are likely under the for-
ward diffusion process. The third term represents the CO
objective given in Eq. 4 and the fourth term is a collection
of additive constants that are independent of θ.
As it is done in Ho et al. (2020) we use a time-conditioned
diffusion model qθ(Xt−1|Xt, t), where we provide the
model with a one-hot encoding of the current time step
t. In the following, we omit the conditional dependence on
t for notational convenience.

3.2. Noise Distributions

Due to the discrete nature of UCO, noise distributions have
to be discrete. In this work, we apply the following two
noise distributions.

Categorical Noise Distribution. In Austin et al. (2021) the
categorical distribution is proposed as a noise distribution
in discrete diffusion models.
In the binary setting X ∈ {0, 1}N , this distribution is given
by p(Xt|Xt−1) =

∏N
i=1 p(Xt,i|Xt−1). Here, Xt,i is the

i-th component of Xt = (Xt,1, ..., Xt,N ) and p(Xt,i|Xt−1)
is a Bernoulli distribution which is given by

p(Xt,i|Xt−1) =

{
(1− βt)

1−Xt−1,i · βXt−1,i

t for Xt,i = 0

(1− βt)
Xt−1,i · β1−Xt−1,i

t for Xt,i = 1

where βt =
1

T−t+2 . Effectively, this distribution flips the
value of Xt−1,i with a probability of βt, independently of
the energy function and the value of Xt−1,i. At t = T this
noise distribution yields the uniform distribution which is
taken to be the stationary distribution.

Annealed Noise Distribution. When the Categorical Noise
Distribution is used, the second term on the right-hand side
of Eq. 6 becomes zero at T = 0 and does not contribute
to training. Therefore, we propose another noise distribu-
tion such that the resulting logarithm of the noise distri-
bution scales inversely with the temperature. That way T
cancels out and this loss term does not vanish anymore at
T = 0. We use the target distribution at higher tempera-
tures 1/(ββt) to construct a noise distribution according to
p(Xt|Xt−1) = pB(Xt, β βt), where βt ∈ [0, 1[. At βT = 0
the Boltzmann distribution is equal to a uniform distribution,
which is used as the stationary distribution q(XT ). In the
forward diffusion process, i.e. going from t = 0 to t = T ,
we sequentially decrease βt with a linear schedule according
to βt = 1− t

T . The resulting Annealed Noise Distribution
reads:

p(Xt|Xt−1) ∝ exp (−β βt X
T
t QXt),

where the normalization constant of pB(X,β βt) is omitted
since it is irrelevant to the optimization of the model for the
reason that is given in Sec. 3.1. In contrast to the Categorical
Noise Distribution, this noise distribution depends on the
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energy function of the considered problem. In the forward
direction, it initially favors to enter low-energy states and
gradually turns into a uniform random selection of solu-
tions. An empirical comparison between the Categorical
Noise Distribution and the Annealed Noise Distribution is
presented in Sec. 6.2.

4. Joint Variational Diffusion Models in
Neural Combinatorial Optimization

In the following, we discuss the calculation of the individual
terms in Eq. 6.
Each diffusion step is represented by a conditional mean-
field distribution:

qθ(Xt−1|Xt) =
∏
i

q̂θ(Xt)
Xt−1,i

i (1− q̂θ(Xt)i)
1−Xt−1,i ,

where q̂θ(Xt)i := qθ(Xt−1,i = 1|Xt)i.
With these product distributions, the expectation of HQ(X)
with respect to qθ(Xt−1|Xt) can be conveniently calculated
in closed form (see App. A.4):

EXt−1∼qθ(Xt−1|Xt)[HQ(Xt−1)] =
∑
i̸=j

Qij q̂θ(Xt)i q̂θ(Xt)j

+
∑
i

Qii q̂θ(Xt)i.

Likewise, we can compute the exact expectation of terms
that include the noise distribution and the entropy (see
App. A.4). The result for the entropy term reads:

S(qθ(Xt−1|Xt)) = −
∑
i

[q̂θ(Xt)i log q̂θ(Xt)i

−(1− q̂θ(Xt)i) log (1− q̂θ(Xt)i)] .

The ultimate goal of UCO is to train a model on a dataset
of CO problem instances Gm ∼ ω(Gm), which can then be
used at test time to generate solutions to i.i.d. CO problems
via a time-efficient inference process. In our approach, this
is realized by conditioning a diffusion model on each CO
problem instance and by using the empirical mean over Mω

problem instances. We implement such a conditional gen-
erative model via the GNN-based architecture described in
App. C.4. The corresponding overall loss function becomes:

Lθ =
T
Mω

Mω∑
m=1

DKL(qθ(X0:T |Gm) || p(X0:T |Gm)),

where the energy function is contained in the joint-target
distribution p(X0:T |Gm) and depends on the specific CO
problem instance at hand*. The expectations with respect
to qθ(X0:T |Gm) in the loss above are approximated with a

*In the following we suppress the conditional dependencies on
Gm to keep the notation simple.

Monte Carlo estimate based on MKL samples drawn from
the reverse process. We discuss the computation of the gra-
dients of our loss in App. A.3 and details on the optimizer
for the model parameters θ in App. C.5. In all of our ex-
periments, we use annealing, i.e. we linearly decrease the
temperature T from Tstart to zero. We show in Sec. 6.2 that
this indeed improves the solution quality of our model.

4.1. Conditional Expectation

Conditional Expectation (CE) is an iterative strategy to
obtain samples from a mean-field distribution that have a
better-than-average solution quality (Raghavan, 1988; Kar-
alias and Loukas, 2020). In the following, we consider a
mean-field distribution qθ(X) =

∏
i qθ(Xi) that is defined

by the vector of Bernoulli probabilities v with components
vi = qθ(Xi). In the first step of CE, we sort the components
of v in descending order. Then starting from i = 0 the i-th
component of the resulting vector is set to 0 to obtain a
vector ω0 and set to 1 to obtain another vector ω1. So in
this case ω0 = (0, p1, . . . , pN ) and ω1 = (1, p1, . . . , pN ).
Then H(ω0) and H(ω1) are computed and v is updated to
the configuration ωj , where j = argminl∈{0,1} H(ωl) and
retains the resulting value of vi in the following steps. Next
i is incremented to i + 1 and the process is repeated until
all vi are set to either 0 or 1.

Tokenized Conditional Expectation. In this work we
propose to combine CE with Subgraph Tokenization (ST)
(Sanokowski et al., 2023), where k ∈ N+ solution variables
are grouped together to form a subgraph token. In the case
of a token size k there are 2k possible configurations of a
given token. The CE procedure described above is carried
out analogously by consecutively selecting token configu-
rations ωj with j = argminl∈{1,. . . ,2k} H(ωl). Then i is
incremented to i + k and the next token gets its value as-
signed. This process above is repeated until all components
of v are set. When k is not exceedingly large the values
H(ωl) can be computed in parallel for all of the 2k con-
figurations. This leads to a computational speed up with
respect to CE since the number of iterations is reduced by a
factor of k. The corresponding efficiency improvement is
demonstrated experimentally in Sec. 6.1 and App. B.3.

4.2. EGN is secretly a one-step Joint Variational
Diffusion Model

The UCO methods Erdős Goes Neural (EGN, Karalias
and Loukas (2020)) and its annealed variant EGN-Anneal
(Sun et al., 2022) use a mean-field distribution qθ(X)
which is parameterized by a GNN. They also use Eq.
2 as a loss function, which corresponds to minimizing
DKL(qθ(X) || pB(X)). However, due to their reliance
on the deterministic CE sampling procedure, their mod-
els would only generate one solution, which is why
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they use additional random node features Z ∼ q(Z) so
that more than a single solution can be sampled from
the models. Consequently, these methods are actually
optimizing EZ∼q(Z)[DKL(qθ(X|Z) || pB(X))] which is
equal to DKL(qθ(X,Z) || pB(X)) − Ĉ, where Ĉ =∫
q(Z) log q(Z)dZ is constant. It can then be shown that:

DKL(qθ(X,Z) || pB(X)) + C

= DKL(qθ(X,Z) || p(X,Z)).
(7)

The right-hand side of this equation is equivalent to our loss
in Eq.6 when only one diffusion step is used, i.e. T = 1.
Finally, since for diffusion models, C and Ĉ are independent
of model parameters (see App. A.5) the gradients of the
left-hand side and right-hand side of the Eq. 7 are identical.
Consequently, it can be concluded that DiffUCO generalizes
EGN and EGN-Anneal.

5. Related Work
Variational Autoencoders. Variational Autoencoders
(VAEs) are latent variable models, where samples X are
drawn by first sampling latent variables Z from a prior
distribution q(Z) which are then processed by a stochas-
tic decoder qθ(X|Z) that is parameterized by a neural
network (Kingma and Welling, 2014). The goal is to
train the model on data X drawn from a data distribu-
tion pD(X) by minimizing the forward KL divergence
DKL(pD(X) || qθ(X)) = −EX∼pD(X)[log qθ(X)] + C.
As log qθ(X) = log

(∫
qθ(X|Z)q(Z) dZ

)
cannot be effi-

ciently evaluated, the negative ELBO is estimated via an
encoder network pΦ(Z|X) and used as an upper bound on
the forward KL divergence. Up to an additive constant, the
ELBO objective is equivalent to the joint forward KL diver-
gence DKL(pD,Φ(X,Z) || qθ(X,Z)) (Kingma et al., 2019).
In Ambrogioni et al. (2018) VAEs are used in variational in-
ference by using KL divergences between joint-probability
distributions.

Diffusion Models. Diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021) are latent variable
models that are typically trained with samples X0 from a
data distribution pD(X0). In the forward diffusion process
noise is sequentially added at time step t on Xt by sam-
pling a predefined noise distribution p(Xt|Xt−1). Starting
from X0 this process is repeated T times until the resulting
data follows approximately a known stationary distribution
q(XT ). The diffusion model qθ(Xt−1|Xt) learns the re-
verse diffusion process, i.e. to iteratively remove the noise
from samples of the stationary distribution. Once trained,
the repeated application of this model to samples of the
stationary distribution yields a generative process that ap-
proximates sampling from pD(X0). As in the case of VAEs,
sample probabilities cannot be efficiently computed. There-
fore, these models are typically trained via a loss that is

given by the negative ELBO. Discrete diffusion models
are studied in Austin et al. (2021), where several differ-
ent discrete noise distributions like the Categorical Noise
Distribution used in this work are proposed.

Neural Optimization. Optimization using neural net-
works is a problem that is extensively researched. The
objective is to find the optimal solution η of an objective,
i.e. minη O(η), where η can either be either a function
or a variable. Usually, the goal is to find η without using
training data. In UCO, for example, η ∈ {0, 1}N is a vec-
tor with binary variables. As described in Sec. 2 this is
frequently framed as a Neural Probabilistic Optimization
(NPO) problem, where the goal is to approximate a target
distribution with a neural network. Wu et al. (2019) use
autoregressive models to approximate discrete probability
distributions related to Ising models. Another example of
NPO are Boltzmann Generators (Noé and Wu, 2018), where
Normalizing Flows are used to learn the equilibrium distri-
bution of molecule configurations at a given temperature.
However, their method cannot be used in CO as Normal-
izing Flows are not applicable in the discrete setting. In
Müller et al. (2019) a Normalizing Flow is used for Monte
Carlo Integration. Another example of NPO is Variational
Monte Carlo, where neural networks are used to approxi-
mate the lowest energy state of a quantum system (Carleo
and Troyer, 2017).

Approximate Likelihood Models in Neural Probabilistic
Optimization In Wu et al. (2020) Normalizing Flows are
trained to approximate an annealed target distribution in
continuous NPO problems. Here, MCMC is used to intro-
duce randomness in the iterative sampling process and the
data processing inequality is used to obtain an upper bound
of the reverse KL divergence to train the model. In Berner
et al. (2022); Ghio et al. (2023); Richter et al. (2023); Vargas
et al. (2023; 2024); Akhound-Sadegh et al. (2024) diffusion
models are used in the continuous setting of NPO.

Neural Combinatorial Optimization. Neural CO aims at
the fast generation of high-quality solutions to CO problems.
In supervised CO, a generative model is typically trained us-
ing solutions to CO problems that are obtained by classical
solvers such as Gurobi (Gurobi Optimization, LLC, 2023)
or KaMIS (Lamm et al., 2017). In Sun and Yang (2023), for
example, discrete diffusion models are applied by training
them on data from solvers. In Li et al. (2018) (INTEL)
and Böther et al. (2022) (DGL) supervised learning is com-
bined with tree search refinement. As highlighted in Yehuda
et al. (2020), these supervised approaches suffer from the
problem of expensive data generation, leading to a growing
interest in Unsupervised CO (UCO). In UCO, the aim is to
train a model that learns how to solve CO problems without
relying on labeled training data. These methods commonly
rely on exact likelihood models, such as mean-field models
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(Karalias and Loukas, 2020; Sun et al., 2022; Wang and Li,
2023). These works highlight that the calculation of expecta-
tion values in the context of UCO is particularly convenient
with mean-field models due to their assumption of statistical
independence among the modeled random variables. As
outlined in Sec. 3 our diffusion model approach also en-
joys this feature. In Ahn et al. (2020) (LwtD) a mean-field
model is combined with Reinforcement Learning (RL) to
iteratively refine solutions. Sanokowski et al. (2023) demon-
strate that the statistical independence assumption in mean-
field models restricts the performance of these approaches
on particularly hard CO problems. They show that more ex-
pressive exact likelihood models like autoregressive models
exhibit performance benefits. However, these models suffer
from high memory requirements and long sampling time
which slows down the training process. Sanokowski et al.
(2023) (VAG-CO) argue that autoregressive methods should
be combined with RL to reduce the memory requirements
and speed up training. Khalil et al. (2017) use autoregres-
sive models combined with Q-learning to select the next
solution variable together with its value. Sanokowski et al.
(2023) address the problem of slow sampling in autoregres-
sive models by introducing Subgraph Tokenization. Zhang
et al. (2023) use GFlow networks (Bengio et al., 2021b),
which realizes autoregressive solution generation in UCO
via GFlowNets (Bengio et al., 2021a).

6. Experiments
In this work, we evaluate our method DiffUCO on five dif-
ferent CO problem types, namely Maximum Independent
Set (MIS), Maximum Clique (MaxCl), Minimum Dominat-
ing Set (MDS), Maximum Cut (MaxCut), and Minimum
Vertex Cover (MVC). The energy functions used by Dif-
fUCO for these CO problems can be found in Tab. 2. To
compare our method to recently published state-of-the-art
autoregressive models, we compare on MIS, MaxCl, MDS,
and MaxCut to published results reported in Let The Flows
Tell (LTFT, Zhang et al. (2023)) (see Tab. 1 and Tab. 3)
and on MVC we compare our method to published results
from Sanokowski et al. (2023) (see. Fig. 2, Left). For the
experiments on MIS and MaxCl, graphs are generated by
the so-called RB-Model (Xu et al., 2005), which is known
to yield hard instances of CO problems like MIS, MVC
and MaxCl (Tönshoff et al., 2020). On MDS and MaxCut
randomly generated Barabasi-Albert (BA) graphs (Barabási
and Albert, 1999) are used. For both of these graph types,
4000 graphs are used for training and 500 graphs are used
for the validation and testing, respectively. In either case,
we follow Zhang et al. (2023) and generate a small and a
large dataset with uniformly random sampled graph sizes
between 200-300 and 800-1200 nodes. In accordance with
Zhang et al. (2023) we label the methods in our tables either
as Operations Research (OR), Supervised Learning (SL), or

Unsupervised Learning (UL). On BA datasets, two Heuris-
tic (H) baselines namely Greedy and mean-field annealing
(MFA) are additionally used (Bilbro et al., 1988). The OR
methods have substantially longer running times than the
other methods, as they are usually run until the optimal so-
lution is found. Therefore, these results cannot be used to
compare the OR methods to the other methods. The OR
results are merely provided to showcase the quality of opti-
mal solutions to the CO problem datasets. For each method
we provide the inference time required to solve the test set
problems (see App. C.7).
First, we report the performance of our method DiffUCO
with and without CE and we investigate the runtime advan-
tage of combining CE with ST (see Sec. 4.1). We denote the
combination of CE and ST as DiffUCO: CE-STk, where k
is the token size used for ST. As DiffUCO: CE-ST1 equates
to CE without using ST, we will just denote it as DiffUCO:
CE. For the experiments in Tab. 1 and Tab. 3 we report
our results as a test set average over eight samples per CO
instance which is then averaged over three training seeds.
For more details about the experiments on MVC we refer to
the corresponding paragraphs. In Sec. 6.2 we show that Dif-
fUCO‘s solution quality can further be improved when more
diffusion steps are applied during evaluation time than we
use during training. Therefore, on benchmark datasets, we
always evaluate our method with three times more diffusion
steps than we have used during training (see App. C.2).

6.1. Benchmarks

Maximum Independent Set. The MIS problem is the
problem of finding the largest set within a graph under the
constraint that neighboring nodes are not both within the
set. We evaluate our method on RB-small and RB-large
and compare to published results from Zhang et al. (2023).
Results are shown in Tab. 1 (Left). The CE and CE-ST
variants of DiffUCO achieve the best results on RB-large
and marginally outperform LTFT on RB-small.

Minimum Dominating Set. On the MDS problem, the goal
is to find the set with the lowest number of vertices in a
graph so that at least one neighbor of each node is within
the set. We evaluate our method on the BA-small and BA-
large datasets and compare in Tab. 1 (Right) our results to
published results of Zhang et al. (2023). Here, DiffUCO and
its variants outperform all other methods on both datasets.

Maximum Clique. In MaxCl the goal is to find the largest
set of nodes, in which every node is connected to all other
nodes within the set. The MaxCl problem can be solved
by solving the MIS problem on the complementary graph
(see Tab. 2). We evaluate our method on the RB-small
datasets. Results are shown in Tab. 3 (Left). DiffUCO
CE-ST achieves the best results and outperforms LTFT in-
significantly.
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MIS RB-small RB-large

Method Type Size ↑ time ↓ Size ↑ time ↓
Gurobi (r) OR 19.98 47:34 40.90 2:10:26
KaMIS (r) OR 20.10 1:24:12 43.15 2:03:36

LwtD (r) UL 19.01 1:17 32.32 7:33
INTEL (r) SL 18.47 13:04 34.47 20:17
DGL (r) SL 17.36 12:47 34.50 23:54
LTFT (r) UL 19.18 0:32 37.48 4:22
DiffUCO UL 18.88± 0.06 0:07 38.10± 0.13 0:10

DiffUCO: CE UL 19.24± 0.05 0:54 38.87± 0.13 4:57
DiffUCO: CE-ST8 UL 19.24± 0.05 00:13 38.87± 0.13 1:05

MDS BA-small BA-large

Method Type Size ↓ time ↓ Size ↓ time ↓
Gurobi (r) OR 27.89 1:47 103.80 13:48

Greedy (r) H 37.39 2:13 140.52 35:01
MFA (r) H 36.36 2:56 126.56 36:31

EGN: CE (r) UL 30.68 1:00 116.76 3:56
EGN-Anneal: CE (r) UL 1:01 3:55 111.50 3:55

LTFT (r) UL 28.61 2:20 110.28 32:12

DiffUCO UL 28.30± 0.10 0:05 107.01± 0.33 0:05
DiffUCO: CE UL 28.20± 0.09 00:54 106.61± 0.30 3:28

DiffUCO: CE-ST8 UL 28.20± 0.09 0:13 106.61± 0.31 0:40

Table 1. Left: Average independent set size on the whole test dataset on the RB-small and RB-large dataset. The higher the better. Right:
Average dominating set size on the whole test dataset on the BA-small and BA-large datasets. The lower the set size the better. Left and
Right: Total evaluation time is shown in h:m:s. (r) indicates that results are reported as in Zhang et al. (2023). (CE) indicates that results
are reported after applying Conditional Expectation and (STk) indicates that results are reported by combining CE and ST at a specific k
for faster CE. The best neural method is marked as bold.

Problem Type Objective: minX∈{0,1}N H(X)

MIS H(X) = −A
∑N

i=1 Xi +B
∑

(i,j)∈E Xi ·Xj

MDS H(X) = A
∑N

i=1 Xi +B
∑N

i=1(1−Xi)
∏

j∈N (j)(1−Xj)

MaxCl H(X) = −A
∑N

i=1 Xi +B
∑

(i,j)/∈E Xi ·Xj

MaxCut H(σ) = −
∑

(i,j)∈E
1−σiσj

2
where σi = 2Xi − 1

MVC H(X) = A
∑N

i=1 Xi +B
∑

(i,j)∈E(1−Xi) · (1−Xj)

Table 2. Table with energy functions of the MIS, MDS, MaxCl,
MaxCut and MVC problems (Lucas, 2014). Choosing A < B
ensures that all minima of the energy function are feasible solutions.
In all of our Experiments, we chose A = 1.0 and B = 1.01.

Maximum Cut. The goal of the MaxCut problem is to sepa-
rate a graph into two different sets of nodes so that the num-
ber of edges between these two sets is as high as possible.
On MaxCut we evaluate our method on BA-small and BA-
large graphs, where we see in Tab. 3 (Right) that DiffUCO
and its variants are the best-performing UCO methods. On
BA-large our methods even outperform Gurobi with a long
time limit of 300 seconds per graph.

Minimum Vertex Cover. The MVC problem aims at find-
ing the smallest set of nodes so that every edge is connected
to at least one node in the set. On MVC we evaluate our
method on the RB-200 dataset (see App. C.3) as reported
in Sanokowski et al. (2023), where the method VAG-CO is
compared to EGN, EGN-Anneal, the greedy baseline DB-
Greedy (Tönshoff et al., 2020) and Gurobi at different time
limits. We compare to reported results from Sanokowski
et al. (2023), where the test set average of the best approx-
imation ratio AR∗ (the lower the better, see App. C.1) is
reported at different generation parameter values of p. The
parameter p controls the hardness of the CO problem on
RB-graphs, where lower values of p yield harder instances
(Tönshoff et al., 2020). Results are shown in Fig. 2 (Left),
where we see that DiffUCO significantly outperforms all
other UCO methods on all values for p. On hard instances,

i.e. low values of p, DiffUCO achieves a significantly lower
AR∗ than Gurobi, while needing only a fraction of its run-
time. However, we note that a fair comparison of our method
to Gurobi is difficult as Gurobi runs on CPUs and DiffUCO
mostly on GPUs.

Combination of CE and ST. Our experiments show that on
MIS and MaxCl the use of CE improves the performance
of our model significantly and that by using ST the compu-
tational cost of CE can be reduced by a large margin (see
Tab. 1 and Tab. 3).

6.2. Ablations

Figure 2 (Middle) shows that increasing the number of diffu-
sion steps during training consistently improves the perfor-
mance of DiffUCO. For this, we train the model for different
numbers of diffusion steps T ∈ {1, 2, 3, 4, 5} on the RB-
100 MIS dataset (see App. C.3) and observe in Fig. 2 that
the relative error ϵrel (the lower the better, see App. C.1)
decreases as T is increased, irrespectively of the used noise
distribution. We also see that the Categorical Noise Distribu-
tion (CND) (blue) performs similarly to the Annealed Noise
Distribution (AND) (orange) and that the use of annealing
is highly beneficial. If we compare CND w/o annealing to
AND w/o annealing we find that the results of the CND have
a higher variance but similar average results. A possible
reason for this is that the second term on the right-hand
side of Eq. 6 is zero for the CND when no annealing is
used. Therefore, this noise loss term provides no guidance
at intermediate diffusion steps which may make the train-
ing process more prone to being stuck in different local
minima depending on different weight initialization. We
conclude from this that the AND might be the preferable
noise distribution when no or only a little annealing is used.

More evaluation diffusion steps improve solution qual-
ity. In Fig. 2 (Right) we investigate whether the solution
quality of DiffUCO can be improved by applying more dif-
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MaxCl RB-small MaxCut BA-small BA-large

Method Type Size ↑ time ↓ Method Type Size ↑ time ↓ Size ↑ time ↓
Gurobi (r) OR 19.05 1:55 Gurobi tlim OR 730.87± 2.35 8:30 2944.38± 0.86 1:17:35:00

Greedy (r) H 13.53 0:25 Greedy (r) H 688.31 0:13 2786.00 3:07
MFA (r) H 14.82 0:27 MFA (r) H 704.03 1:36 2833.86 7:16

EGN: CE (r) UL 12.02 0:41 EGN: CE (r) UL 693.45 0:46 2870.34 2:49
EGN-Anneal: CE (r) UL 14.10 2:16 EGN-Anneal: CE (r) UL 696.73 0:45 2863.23 2:48

LTFT (r) UL 16.24 0:42 LTFT (r) UL 704 2:57 2864 21:20
DiffUCO UL 14.51± 0.39 0:04 DiffUCO UL 727.11± 2.31 0:04 2947.27± 1.50 0:04

DiffUCO: CE UL 16.22± 0.09 1:00 DiffUCO: CE UL 727.32± 2.33 1:00 2947.53± 1.48 3:47
DiffUCO: CE-ST8 UL 16.30± 0.08 0:13 DiffUCO: CE-ST8 UL 727.33± 2.31 0:13 2947.53± 1.49 0:53

Table 3. Left: Testset average clique size on the whole RB-small dataset. The larger the set size the better. Right: Average test set cut size
on the BA-small and BA-large datasets. The larger the better. Left and Right: Total evaluation time is shown in d:h:m:s. See Tab. 1 for the
meaning of (CE) and (CE-ST8). Gurobi tlim denotes that Gurobi was run with a time limit. On BA-small the time limit is set to 60 and
on BA-large to 300 seconds per graph. The best neural method is marked as bold.

Figure 2. Left: Comparison of AR∗ at different generation values p on the RB-small MVC dataset. t is the time that each method takes
to generate the solutions. Middle: Relative error over the number of diffusion steps used during training for the Categorical Noise
Distribution (CND) and the Annealed Noise Distributions (AND) in the setting with (w/ anneal) and without annealing (w/o anneal.).
Right: Solution quality (left axis) on the RB-small MIS dataset over the number of diffusion steps during evaluation. ϵ̂rel is the average
relative error on the test set and ϵ∗rel is the best test set relative error out of 8 model samples. The model is trained with 6 diffusion steps
(purple vertical line).

fusion steps during evaluation than during training. Here,
the model is trained with 6 diffusion steps (purple vertical
line) on the RB-small MIS dataset. Figure 2 (Right) shows
on the left axis the test dataset average relative error ϵ̂rel and
the best relative error ϵ∗rel out of 8 solutions per problem
instance over an increasing number of diffusion steps during
evaluation (for details see App. C.2). We also plot on the ad-
ditional y-axis the evaluation time on the whole dataset. The
results show that both, ϵ̂rel and ϵ∗rel consistently improve as
the number of steps is increased. This improvement comes
at the cost of a linearly increasing evaluation time cost.

7. Limitations and Future Work
While our method yields a model that can be used to gen-
erate high-quality solutions, the learned probability distri-
bution will in practice always have a bias, i.e. the model
samples do not exactly follow the target distribution. In sev-
eral interesting applications, a learned probability function
is only useful when it allows to obtain unbiased samples
from the target distribution (Wu et al., 2021; Nicoli et al.,
2020; McNaughton et al., 2020). Training DiffUCO on large

graph datasets with high connectivity is memory- and time-
expensive (see App. C.6). Therefore, it would be interesting
to consider approaches that improve upon these two aspects.
This could be achieved by reducing the computational graph
during backpropagation. The concept of latent diffusion
models (Rombach et al., 2022) and U-Net inspired GNN
architectures (Ronneberger et al., 2015) represent promising
research directions in this context.

8. Conclusion
In this work, we introduce the Joint Variational Upper
Bound as an efficiently computable loss that allows the
application of latent variable models like diffusion mod-
els in Neural Probabilistic Optimization. Specifically, we
demonstrate the excellent performance of diffusion models
in Unsupervised Combinatorial Optimization. Our method
outperforms recently presented methods on a wide range
of benchmarks. Finally, we show in experiments that the
application of variational annealing and additional diffusion
steps during inference consistently improves the solution
quality of the model.

9



A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization

Acknowledgements
The ELLIS Unit Linz, the LIT AI Lab, the Insti-
tute for Machine Learning, are supported by the Fed-
eral State Upper Austria. We thank the projects AI-
MOTION (LIT-2018- 6-YOU-212), DeepFlood (LIT-
2019-8-YOU-213), Medical Cognitive Computing Cen-
ter (MC3), INCONTROLRL (FFG-881064), PRIMAL
(FFG-873979), S3AI (FFG872172), DL for GranularFlow
(FFG-871302), EPILEPSIA (FFG-892171), AIRI FG 9-N
(FWF-36284, FWF36235), AI4GreenHeatingGrids(FFG-
899943), INTEGRATE (FFG-892418), ELISE (H2020-ICT-
2019-3 ID: 951847), Stars4Waters (HORIZON-CL6-2021-
CLIMATE01-01). We thank NXAI GmbH, Audi.JKU Deep
Learning Center, TGW LOGISTICS GROUP GMBH, Sil-
icon Austria Labs (SAL), FILL Gesellschaft mbH, Any-
line GmbH, Google, ZF Friedrichshafen AG, Robert Bosch
GmbH, UCB Biopharma SRL, Merck Healthcare KGaA,
Verbund AG, GLS (Univ. Waterloo) Software Competence
Center Hagenberg GmbH, TUV Austria, Frauscher Sen-
sonic, TRUMPF ¨ and the NVIDIA Corporation. We ac-
knowledge EuroHPC Joint Undertaking for awarding us
access to Karolina at IT4Innovations.

Impact Statement
In this work, we aim to improve data-free neural optimiza-
tion algorithms. We hope our work will contribute to ad-
vances in various scientific fields such as Combinatorial
Optimization.

10



A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization

References
Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learn-

ing what to defer for maximum independent sets. In
Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pages 134–144. PMLR, 2020. URL http://
proceedings.mlr.press/v119/ahn20a.html.

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey
Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu,
Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel,
Yoshua Bengio, et al. Iterated denoising energy matching
for sampling from boltzmann densities. arXiv preprint
arXiv:2402.06121, 2024.
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A. Derivations
A.1. Joint Variational Upper Bound

Consider the simple case of a one-step diffusion model. Here in the forward process the distribution pB(x) is directly
mapped to the stationary distribution q(z) by the application of a noise distribution p(z|x). In the reverse process, the
parameterized distribution qθ(x|z) directly maps samples from the stationary distribution q(z) to the target distribution
pB(x).

In the following we will derive that DKL(qθ(x) || pB(x)) is upper bounded by DKL(qθ(x, z) || pB(x, z)), where pB(x, z) =
p(z|x) pB(x) and qθ(x, z) = qθ(x|z) q(z).

Derivation via the chain-rule for Kl divergences:
This inequality follows directly from the chain-rule for KL divergences which states that:

DKL(qθ(x, z) || pB(x, z)) =
∫

qθ(x, y) log
qθ(x, y)

p(x, y)
dx dy

=

∫
qθ(x, y)

[
log

qθ(x)

p(x)
+ log

qθ(y|x)
p(y|x)

]
dx dy

= DKL(qθ(x) || pB(x)) + Eqθ(x) [DKL(qθ(z|x) || p(z|x))] .

According to Gibbs’ inequality, the second term on the right-hand side is non-negative which is sufficient to show the upper
bound.

Derivation via the Evidence Upper Bound:
Alternatively, the upper bound can be derived using the Evidence Upper Bound (EUBO) (Ji and Shen, 2019), where we use
qθ(x) =

qθ(x,z)
qθ(z|x) and

∫
qθ(z|x)dz = 1 and therefore

log qθ(x) =

∫
qθ(z|x) log qθ(x)dz =

∫
qθ(z|x)[log qθ(x, z)− log qθ(z|x)]dz

In the first step, we will derive an upper bound for log qθ(x) by using the EUBO that is based on the Gibbs’ inequality.

log qθ(x) =

∫
qθ(z|x)[log qθ(x, z)− log qθ(z|x)]dz ≤

∫
qθ(z|x)[log qθ(x, z)− log p(z|x)]dz

By using this inequality we can now show that DKL(qθ(x) || pB(x)) ≤ DKL(qθ(x, z) || pB(x, z)).

DKL(qθ(x) || pB(x)) =
∫

qθ(x) log
qθ(x)

pB(x)
dx ≤

∫
qθ(x)

[∫
qθ(z|x)

(
log qθ(x, z)− log p(z|x)

)
dz − log pB(x)

]
dx

By using ∫
qθ(x) log pB(x)dx =

∫ ∫
qθ(x, z) log pB(x)dzdx,

we can then write with − log p(z|x)− log pB(x) = − log pB(x, z)

DKL(qθ(x) || pB(x)) ≤
∫ ∫

qθ(x, z) [log qθ(x, z)− log p(z|x)− log pB(x)] dzdx

= DKL(qθ(x, z) || pB(x, z)),

which proves the inequality.
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A.2. Joint Variational Diffusion Model Objective

In this section, we aim to derive the objective shown in Eq.6.

Starting from

DKL(qθ(X0:T ) || p(X0:T )) =
∑
X0:T

qθ(X0:T )

[
log qθ(X0:T )− log p(X0:T )

]

=
∑
X0:T

qθ(X0:T )

[ T∑
t=1

[
log qθ(Xt−1|Xt)− log p(Xt|Xt−1)

]
+ log q(XT )− log pB(X0)

]

we can first simplify the first term with∑
XT :0

qθ(XT :0) log qθ(Xt−1|Xt) =
∑

XT :t−1

qθ(XT :t−1) log qθ(Xt−1|Xt)

where we have used that the sum over all Xτ where τ < t− 1 sums up to one because log qθ(Xt−1|Xt) is independent of
samples coming from these time steps. Remember that in the reverse process the sample process starts at XT and ends at
X0. So samples, where T < t− 1 are future events and therefore log qθ(Xt−1|Xt) does not depend on these future events.
In the second step we pull out the sum over Xt−1, so that we arrive at

∑
XT :t−1

qθ(XT :t−1) log qθ(Xt−1|Xt) =
∑
XT :t

qθ(XT :t)
∑
Xt−1

qθ(Xt−1|Xt) log qθ(Xt−1|Xt)

= −
∑
XT :t

qθ(XT :t)S(qθ(Xt−1|Xt)),

where S(qθ(Xt−1|Xt)) is the entropy over qθ(Xt−1|Xt). Analogously, this simplification can be done with
H̃(Xt, Xt−1) := − log p(Xt|Xt−1), so that we arrive at:

∑
XT :0

qθ(XT :0)H̃(Xt, Xt−1) =
∑

XT :t−1

qθ(XT :t−1)H̃(Xt, Xt−1)

Furthermore, we use that log pB(X0) = −βH(X0)− logZ and absorb log(Z) and log q(XT ) into the constant C as these
terms neither depend on θ nor on X0:T−1. Finally, we arrive at:

DKL(qθ(X0:T ) || p(X0:T )) =

T∑
t=1

∑
XT :t

qθ(XT :t)

[[
S(qθ(Xt−1|Xt))− log p(Xt|Xt−1)

]
+ log q(Xt)− log pB(X0)

]

= −
T∑

t=1

EXT :t∼qθ(XT :t) [S(qθ(Xt−1|Xt))]

+

T∑
t=1

EXT :t−1∼qθ(XT :t−1)

[
H̃(Xt−1, Xt)

]
+ β EXT :0∼qθ(XT :0) [H(X0)] + C,

where we have exchanged the sums over XT :t with the expectation over XT :t ∼ qθ(XT :t). Finally, we can arrive at Eq. 6
by multiplying the whole objective with the temperature T .
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A.3. Gradient of the Joint Variational Upper Bound

When X0:T is discrete, the gradient of the Joint Variational Upper Bound has to be decomposed into two parts via the appli-
cation of the chain rule. The gradient through exact expectations (see Sec. 4) can be computed by backpropagating through
qθ(Xt−1|Xt) directly. To backpropagate through the expectations over XT :t−1 ∼ qθ(XT :t−1) we use the REINFORCE
gradient estimator with a baseline for variance reduction.

As an example, we show the gradient through the entropy term which is given by:

∇θEXT :t∼qθ(XT :t) [S(qθ(Xt−1|Xt))] = EXT :t∼qθ(XT :t)

[
[S(qθ(Xt−1|Xt))− bS ]∇θ log qθ(XT :t)

]
+ EXT :t∼qθ(XT :t) [∇θS(qθ(Xt−1|Xt))] ,

where the baseline bS = EXT :t∼qθ(XT :t) [S(qθ(Xt−1|Xt))] is used for variance reduction. Here, the first term is the
REINFORCE gradient through the expectation and the second term is the gradient which flows through the exact expectation
of the entropy.

A.4. Exact expectations of mean-field distributions

Exact Expectation of Energy Functions. In the following, we will derive the exact expectations from Sec. 4. Suppose we
have a mean-field distribution p(X) =

∏N
i=1 p(Xi) and want to calculate EX∼p(X) [QijXiXj ], where Xi ∈ {0, 1}, then

when i ̸= j

EX∼p(X) [QijXiXj ] =
∑
X

p(X)Cij Xi Xj =
∑
X

N∏
i=1

p(Xi)Qij Xi Xj

=
∑
Xi

∑
Xj

p(Xi) p(Xj)Qij Xi Xj = Qij p(Xi = 1) p(Xj = 1) := Cij pi pj .

In the third equality, we have integrated out the probabilities that do not depend on Xi and Xj and in the fourth equality we
have used that only terms where Xi = Xj = 1 will remain. For i = j it can be similarly shown that EX∼p(X) [QiiXiXi] =
Qii pi, by using that X2

i = Xi.

Exact Expectation of Bernoulli Noise Distribution. As explained in Sec. 4 for the binary case Xi ∈ {0, 1} the Categorical
Noise Distribution can be reduced to a Bernoulli Noise Distribution.

The logarithm of this noise distribution can be written as:

H̃(Xt, Xt−1) :=
∑
i

(1−Xt,i)

[
(1−Xt−1,i) log (1− βt) +Xt−1,i log βt

]
+Xt,i

[
(1−Xt−1,i) log (1− βt) +Xt−1,i log βt

] (8)

Similarly, as done before we can calculate the expectation with respect to a mean-field distribution p(Xt) exactly, where we
arrive at

p(Xt|Xt+1) p(Xt−1|Xt) H̃(Xt, Xt−1) = p(Xt|Xt+1)
∑
i

(1−Xt,i)

[
pt−1,i log (1− βt) + (1− pt−1,i) log βt

]
+Xt,i

[
(1− pt−1,i) log (1− βt) + pt−1,i log βt

]
,

where we define pt−1,i := p(Xt−1,i = 1|Xt). The expectation over p(Xt|Xt+1) cannot be computed in closed form
because pt−1,i depends nontrivially on Xt.
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Exact Expectation of the Entropy. For the exact expectation of the entropy we can similarly show that:

S(p(X)) = −
∑
X

p(X) log p(X) =
∑
X

∏
i

p(Xi)
∑
j

log p(Xj)

= −
∑
X

∑
j

∏
i

p(Xi) log p(Xj)

= −
∑
j

∑
Xj

p(Xj) log p(Xj) =
∑
j

[
pj log pj − (1− pj) log(1− pj)

]

A.5. Equivalence of one step DiffUCO and EGN

In diffusion models, the last step of the forward diffusion process typically corresponds to sampling independent random
noise. For a one-step diffusion model as considered in Sec. 4.2 this implies that p(Z|X) does not depend on X . With this
insight it follows that:

C =
∑
X,Z

qθ(X|Z) q(Z) log p(Z|X) =
∑
Z

q(Z) log p(Z).

This shows that C is independent of θ.

B. Additional Experiments
B.1. Experiments on the Gset Dataset

We furthermore evaluate our method on the Gset Maxcut dataset, where models are trained and validated on Erdős–Rényi
graphs and then evaluated out-of-distribution on Gset graphs (Ye, 2003). We train our method on Erdős–Rényi (ER) graphs
between 200 to 500 nodes that are generated with a uniformly sampled edge probability p ∈ {0.05, 0.3}. The neural
baseline methods ECORD (Barrett et al., 2022), ECO-DQN (Barrett et al., 2020), RUNCSO (Tönshoff et al., 2020), and
ANYCSP (Tönshoff et al., 2023) use graphs with the same edge probability but train on graphs with vertex sizes of 500,
200, 100, and 100 respectively. All methods are validated on ER graphs with 500 vertices. Results are also compared to a
greedy construction algorithm (Greedy) and semidefinite programming (SDP) (Goemans and Williamson, 1995) which is
a well-known approximation algorithm on MaxCut. Results are shown in Tab. 5, where the difference to the best-known
cut value is shown. We compare to results reported as in ANYSCP (Tönshoff et al., 2023). Here, Gset graphs are grouped
according to their vertex size |V | and then on each graph models run with 20 parallel processes for a time limit of 180
seconds. Results show that our model achieves the second-best results and ANYCSP achieves the best results in all groups.
However, a comparison between DiffUCO and ANYCSP cannot be considered to be fair since DiffUCO is a solution
generation method whereas ANYCSP is a search method. The former category of methods is trained to generate solutions
without iteratively improving a solution, which differentiates them from search methods. Therefore, search-based methods
such as ANYCSP have an advantage in the setting of sampling 20 solutions in parallel within the time limit of 180 seconds
per graph. Furthermore, the comparison between neural methods in this setting may not be fair because the test dataset is
out-of-distribution (OOD) and the training datasets of the neural methods also differ in some cases. For a more detailed
discussion on OOD generalization experiments, we refer to App. B.2.

B.2. Out of distribution generalization

We present in Tab. 6 OOD results on Barabási-Albert (BA) graphs for both the MaxCut and the Minimum Dominating
Set (MDS) problems. Our approach is trained on BA-small graphs and then evaluated on datasets comprising larger
graphs, including BA-large, BA-huge, and BA-giant with 800-1200, 1200-1800, and 2000-3000 nodes, respectively. In
this assessment, we benchmark our method against Gurobi with a generous time constraint of 300 seconds per graph. We
observe remarkably good generalization capabilities on these datasets and even outperform Gurobi on BA-large, BA-huge,
and BA-giant MaxCut at the given time limit. However, OOD results have to be treated with great caution as it is well
known (Le and Jegelka, 2023; Zhang et al., 2021) that OOD generalization on graph problems does not only depend on the
method but also the GNN architecture and the node-to-degree distribution of the graphs. Our method was by no means
designed for robust OOD generalization, which would be an attractive avenue for future work.
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B.3. Effect of different token sizes in CE-ST

In Fig. 3 (Left) we show how the solution quality and the inference speed of our model changes on the RB-100 MIS dataset
when we vary the token size k within CE-ST. Here, the relative error ϵrel is plotted on the left axis and the evaluation time in
seconds on the right axis. We see that k does not influence the solution quality of the model and the inference time has an
optimum at k = 8. Because some operations within our implementation of CE-ST scale exponentially with k the evaluation
time increases at k > 8. By further optimizing the CE-ST code in this respect, the negative time effects of these operations
might be reduced.

B.4. DiffUCO learns to generate samples that are more likely under the forward diffusion process

In Fig. 3 (Right) we show that our model indeed learns a diffusion process. To show that samples are related to the diffusion
process we plot the evolution of the unnormalized forward process likelihood EX0:T∼qθ(X0:T )[log p(X0:T )] averaged over
model samples throughout training. As this measure increases during training, this indicates that the model indeed learns
to generate samples that are related to the diffusion process, i.e. it shows that the generative process is increasingly
reconstructing the forward diffusion process.

B.5. Factoring in training time

In Tab. 4 we quantify the number of nQuery, where ttrain + nQuery · teval < tGurobi. Under the assumption that the solution
quality of Gurobi and the model are the same, this quantity is supposed to show at which amount of samples it is more
useful to use our model instead of Gurobi. Our results show that the number of nQuery on some problems is quite large,
while on others it is comparably low. On MaxCut, for example, Gurobi takes a lot of time to obtain a good solution quality,
and due to the low connectivity of the BA graphs our method does not take a lot of time for training. In contrast to that
nQuery is very large on MaxCl because, as we have mentioned in App B.6, the MaxCl experiments are the most expensive
due to the high connectivity of the complementary RB graphs.

CO problem type MaxCut MIS MDS MaxCl

Dataset BA-small BA-large RB-small RB-large BA-small BA-large RB-small

nQuery 482 197 8.596 48.216 348.830 31.525 1.752.059

Table 4. The number of nQuery, where ttrain + nQuery · teval < tGurobi. Here, ttrain is the training time of DiffUCO, teval is DiffUCO‘s
evaluation time per graph and tGurobi is the evaluation time per graph of Gurobi.

Method |V | = 800 |V | = 1K |V | = 2K |V | ≥ 3K
Greedy (r) 411.44 359.11 737.00 774.25

SDP (r) 245.44 229.22 N/A N/A
RUNCSP (r) 185.89 156.56 357.33 401.00

ECO-DQN (r) 65.11 54.67 157.00 428.25
ECORD (r) 8.67 8.78 39.22 187.75

ANYCSP (r) 1.22 2.44 13.11 51.63
DiffUCO: CE-ST8 4.11 6.33 31.67 116.75

Table 5. Comparison to MaxCut results form Tönshoff et al. (2023). Models are evaluated according to the average deviation from the
best-known cut size on the Gset dataset. The graphs are grouped according to their node size |V |. (r) indicates that the results are taken
from Tönshoff et al. (2023).
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MDS Size ↓
Method BA-small BA-large BA-huge BA-giant

Gurobi - tlim = 300s 27.91 105.05 153.89 253.53
DiffUCO: CE-ST8 28.31 106.08 157.46 259.02

MaxCut Size ↑
Gurobi - tlim = 300s 735.67 2945.43 4414.29 7319.47

DiffUCO: CE-ST8 731.72 2949.02 4444.47 7390.99

Table 6. Out-of-distribution (OOD) results on MDS and MaxCut. DiffUCO is trained on BA-small and then the average set size is
evaluated on three larger OOD datasets BA-large, BA-huge with an average of 2000 nodes, and BA-giant with an average of 3000 nodes.
Gurobi is evaluated at a time limit of 300s per graph. The best method is marked as bold.

Figure 3. Left: Evaluation of the solution quality of CE-ST over k on the RB-small MIS dataset. The plot shows that the relative error does
not change when k is increased, whereas the evaluation time decreases up to k = 8. As some operations scale exponentially with k we
observe that the evaluation time increases at k > 8. Right: The unnormalized forward process likelihood EX0:T∼qθ(X0:T )[log p(X0:T )]
over the number of training steps on the RB-100 MIS dataset. The model is trained at a constant temperature. The plot shows that the
model learns to generate samples that become more likely under the forward diffusion process.

C. Experimental Details
C.1. Metrics

Relative Error The relative error is defined as

ϵ̂rel =
|Eopt − Êmodel|

|Eopt|
,

where Eopt is the optimal energy and Êmodel is the average energy of the model.

Similarly, ϵ∗rel is the best relative error, where the best out of eight samples E∗
model instead of the average model energy

Êmodel is used.

Approximation Rate The best approximation rate is defined as

AR∗ =
E∗

model

Eopt
,

where Eopt is the optimal energy and E∗
model is the energy of the best out of eight samples from the model.

For approximation rate and relative error, lower values are better. Our experiments are always averaged over three
independent seeds.
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C.2. Evaluation diffusion steps

In some experiments (see Sec. 6.1 and see Sec. 6.2) we evaluate DiffUCO on the test dataset by applying more diffusion
steps than we have used during training.

We do this in the following way:
When the diffusion model is trained with T diffusion steps, at diffusion step t the diffusion model is additionally conditioned
on a one-hot encoding of this time step. Therefore, if we instead want to run DiffUCO with n× T diffusion steps, we repeat
each time step n times. So during evaluation, at each time step t ∈ {1, ..., n× T} a Xt is sampled from the diffusion model
and reprocessed at the next time step. At each time step the model is time conditioned on the value

⌊
t+1
n

⌋
. Here, ⌊·⌋ is an

integer operation.

C.3. Datasets

RB-100 MIS dataset The RB-100 MIS dataset is generated by specifying generation parameters n, k′, and p. With n the
number of cliques, i.e. a set of fully connected nodes, and with k′ the number of nodes within the clique are specified. p
serves as a parameter that regulates the interconnectedness between cliques. The lower the value of p the more connections
are randomly drawn between cliques. If p = 1 there are no connections between the cliques at all. To generate the RB-100
dataset with graphs of an average node size of 100, we generate graphs with n ∈ {9, 15}, k

′ ∈ {8, 11}, and p ∈ {0.25, 1}.

RB-200 MVC dataset On the RB-200 dataset k ∈ {9, 10} and n ∈ {20, 25} , and p ∈ {0.25, 1}. We use 2000 graphs for
training, 500 for validation, and for each p we use 100 graphs for testing.

RB-small and RB-large On the RB-small dataset k ∈ {5, 12} and n ∈ {20, 25} and graphs that are smaller than 200
nodes or larger than 300 nodes are resampled. On BA-large k ∈ {20, 25} and n ∈ {40, 55} and graphs that are smaller than
800 nodes or larger than 1200 nodes are resampled. For both of these datasets p ∈ {0.3, 1}.

C.4. Architecture

We use a simple GNN Architecture, where in the first step input each node feature is transformed by a linear layer with nh

neurons. These node embeddings are then multiplied with a weight matrix with nh neurons followed by a sum aggregation
over the neighborhood. Additionally, a skip connection on each node is added. Afterward, a NodeMLP processes the
aggregated nodes together with the skip connection. After n message passing steps each node embedding is fed into a final
three-layer MLP which computes the probabilities of each solution variable Xi. Layernorm (Ba et al., 2016) is applied after
every MLP layer, except for the last layer within the final MLP. We always use nh = 64 in all of our experiments.

C.5. Hyperparameters

A table with all hyperparameters on each dataset is given in Tab. 7. Mω is the batch size of different CO problem instances
and MKL is the batch size with which the Joint Variational Upper Bound is estimated. RAdam (Liu et al., 2020) is used as
an optimizer. We clip the gradients to a norm of 1.0.

In experiments on the RB dataset, except for MaxCl, we additionally use 5 random node features to increase the expressivity
of the GNN in critical cases. This is necessary to improve the performance on the RB dataset at low p values.

C.6. Computational Requirements

Experiments on RB graphs are quite memory expensive, because of the high connectivity of these graphs. Especially
experiments on MaxCl are expensive because the energy aggregation on the complementary graph leads to even higher
connectivity and therefore to a large computational graph. On RB-large MIS experiments are for example conducted
on one A100 GPU with 80 GB. Experiments on BA graphs have much fewer computational requirements because the
connectivity of these graphs is quite low. Comparing the training time of our method to baselines taken from Zhang et al.
(2023) is difficult as the authors do not report the training time nor the computational resources of their method or the
other methods used in their paper. They also do not provide a list of hyperparameters such as the number of epochs for any
method, which makes the reproducibility of their results difficult. We hypothesize that LTFT might need shorter training
and fewer computational resources on problems like MIS and MaxCl because, for these CO problems, the authors design
problem-specific Markov Decision Processes that are very efficient for these kinds of problems. However, this makes their
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Dataset lr Tstart GNN layers diffusion steps Nanneal noise distr. Mω MKL

RB-large MIS 0.002 0.3 7 4 3000 annealed noise distr. 18 5

RB-small MIS 0.002 0.4 8 6 4000 annealed noise distr. 30 10

RB-small MaxCl 0.002 0.5 8 5 3000 cat. noise distr. 20 8

BA-large MaxCut 0.002 0.2 4 6 1000 annealed noise distr. 20 10

BA-small MaxCut 0.002 0.2 8 4 2000 annealed noise distr. 20 10

BA-large MDS 0.003 0.3 8 3 2000 annealed noise distr. 20 10

BA-small MDS 0.003 0.3 8 5 2000 annealed noise distr. 20 10

RB-200 MVC 0.001 0.4 8 4 4500 annealed noise distr. 30 10

Table 7. Table with all hyperparameters on each dataset.

approach in contrast to our approach less general because these tricks for example cannot be applied to MDS and MaxCut.
Therefore, we expect LTFT to have long training times on MaxCut and MDS. This assumption is supported by the long
evaluation times of LTFT on these CO problems as reported in Tab. 1 and Tab. 3. On MaxCut their evaluation time is more
than 21 times longer and on MDS the evaluation time is more than 32 times longer compared to our method. If we compare
the training time of our method to VAG-CO on the RB-200 dataset, we can state that our method takes 2d 2h for training
and VAG-CO takes 3d 7h for training. Other baselines like EGN and EGN-Anneal converge quite fast but do not achieve a
competitive solution quality due to a lack of expressivity (Sanokowski et al., 2023). In EGN-Anneal the training duration
highly depends as in all annealing-based methods on the annealing schedule. The more annealing steps are used the longer
the training time. However, here the solution quality with longer annealing also saturates due to a lack of expressivity.

C.7. Time Measurement

All time measurements were conducted on an A100 NVIDIA GPU. We only include the time of the forward pass and the
time needed to perform CE in the time measurement. Therefore, we do not include the time that is necessary to load the
graphs from the dataloader. For the forward pass, we measure the time on jitted functions. Different states from the diffusion
model can in principle be computed in a parallelized manner. Therefore, we measure the time sequentially on each state and
then compute the average of this measured time. Self conducted Gurobi evaluations on MaxCut are run on a Intel Xeon
Platinum 8168 @ 2.70GHz CPU with 24 cores.

C.8. Code

The code for this research project is based on jax (Bradbury et al., 2018).
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