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Abstract

Recent work has shown that standard training via empirical risk minimization (ERM) can
produce models that achieve high accuracy on average but low accuracy on underrepresented
groups due to the prevalence of spurious features. A predominant approach to tackle this
group robustness problem minimizes the worst group error (akin to a minimax strategy)
on the training data with the expectation that it will generalize well to unseen test data.
However, this is often suboptimal, especially when the out-of-distribution (OOD) test data
contains previously unseen groups. Inspired by ideas from the information retrieval and
learning-to-rank literature, this paper first proposes to use Discounted Cumulative Gain
(DCG) as a metric of model quality for facilitating better hyperparameter tuning and
model selection. Being a ranking-based metric, DCG weights multiple poorly-performing
groups (instead of considering just the group with the worst performance). As a natu-
ral next step, we build on our results to propose a ranking-based training method called
Discounted Rank Upweighting (DRU) which differentially reweights a ranked list of
poorly-performing groups in the training data to learn models that exhibit strong OOD per-
formance on the test data. Results on several synthetic and real-world datasets highlight the
superior generalization ability of our group-ranking-based (akin to soft-minimax) approach
in selecting and learning models that are robust to group distributional shifts.

1 Introduction

Text data are naturally split into groups in many machine learning contexts, e.g., sentiment classification with
reviews from different users or a personalized dialogue system. In both these examples, a group corresponds
to a user. In other contexts, such as online toxicity detection, the groups might be implicit, e.g., user
demographics, and may require annotation. More broadly, consider the scenario where training examples
are stratified non-uniformly into groups. Our goal is to build a model for this scenario that generalizes to
all groups by providing comparable classification accuracies—a key objective of deploying robust and fair
machine learning models (Dwork et al., 2012; Hardt et al., 2016; Kleinberg et al., 2016).

Recent work on robust and equitable machine learning has shown that the traditional approach of minimizing
the average training error, also known as empirical risk minimization (ERM), can be suboptimal for this
grouped data setting. ERM produces models that achieve low test error on average but incur high errors
on underrepresented groups in the data, which raises serious ethical and fairness concerns. One of the main
reasons ERM conceals poor performance on minority groups behind a vastly superior average accuracy is its
reliance on spurious relationships between labels and some features in the majority groups to achieve high
average accuracy (Hovy & Søgaard, 2015; Blodgett et al., 2016; Tatman, 2017; Hashimoto et al., 2018; Duchi
et al., 2021). Such correlations between labels and features are nonexistent or present with an opposite
sign in the minority (or new) groups. This leads to ERM severely underperforming on these groups while
overfitting to the majority groups (Buolamwini & Gebru, 2018; Koh et al., 2021).

Prior research tackles spurious correlation by building models with low worst-group error on the training
dataset. One such prominent model, Group Distributional Robust Optimization (Group DRO), seeks to
minimize the worst group’s training loss (Sagawa et al., 2019). While Group DRO has shown promising
performance compared to ERM on some benchmark datasets, it is known to perform poorly when the
different groups contain varying amounts of predictive signal (Koh et al., 2021). Group DRO assumes the
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test groups are all seen during training and each group has a distribution that is invariant between training
and test. Following this assumption, the worst group in test is also likely the worst in training. Thus, Group
DRO extends the minimax distributional robust optimization (DRO) framework (Namkoong & Duchi, 2016)
to groups. However, this assumption does not always hold in reality, and it is especially problematic in
domain-generalization scenarios where the test data contains previously unseen out-of-distribution (OOD)
groups that do not overlap with the training or validation data.1 Moreover, unlike datasets with few groups
and clear identification of spurious features by construction (analogous to a controlled experiment), e.g.,
WaterBirds (Wah et al., 2011), spurious features can be hard to locate in naturally grouped datasets, as
they usually are not present exclusively in a subset of groups. For instance, in tasks such as sentiment
classification of user reviews, potential spurious features such as the writing style can be present in all the
groups to varying degrees. We conjecture that differentially reweighting the various groups will help mitigate
the impact of spurious features and help us identify robust predictive patterns in the data.

In this paper we draw on ideas from the learning-to-rank literature to provide a more effective solution to the
group distributional robustness problem. Specifically, we rank and reweight different groups based on their
training errors (as opposed to considering just the worst-performing group as done by Group DRO or DRO).
To summarize, we make two key contributions in this paper: We develop methods that reweight groups
based on the (reverse) ranking of their classification accuracy to 1) choose hyperparameters
and perform model selection, and 2) train the model.

First, we use the Discounted Cumulative Gain (DCG) (Järvelin & Kekäläinen, 2002) metric from the infor-
mation retrieval and learning-to-rank literature to rank and then reweight several poorly performing groups
to inform model selection. DCG allows us to consider the validation performance across more than one group
while choosing hyperparameters, thus lowering the risk of overfitting. Further, the DCG metric is less prone
to having ties in hyperparameter choices, leading to statistically identified models. Next, we turn to the task
of developing a novel training method for group distributional robustness. Borrowing intuition from our use
of DCG for model selection, we propose a new robust training method called Discounted Rank Upweighting
(DRU). DRU iteratively upweights groups during each training epoch based on that group’s classification
accuracy ranking.

At a high level, our proposed approach can be seen as a soft-minimax strategy, which smooths the predictive
signal from multiple poorly-performing groups by weighting them based on their accuracy-based ranked
order. As we show later, both DCG-based model selection and DRU-based model training outperform
multiple state-of-the-art methods for group distributional robustness on several synthetic and real-world
benchmark datasets.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3 describes the
preliminaries, including problem setup and baseline methods. Section 4 introduces our approach for achieving
group distributional robustness, incorporating DCG-based ranking and reweighting for model selection and
presenting a novel training method, DRU. Then, in sections 5 and 6, we present the experiment results for
DCG-based model selection and DRU for model training, respectively. We conclude in Section 7.

2 Related Work

This paper focuses on group distributional robustness, i.e., training models to generalize well across groups.
There are other notions of robustness in machine learning, e.g., adversarial robustness or the study of long-
tailed distributions, but they are beyond the scope of this paper.

2.1 Group Distributional Shifts

There are a couple of ways to split data into groups based on prior work. First, groups can occur in
data organically based on the data collection procedure. For example, all reviews by a given user can be
assembled into a group, or all the images taken from a particular camera can constitute a group. All the

1It turns out that the online algorithm that implements Group DRO in the paper Sagawa et al. (2019) does consider multiple
groups, unlike the theory proposed in the paper, but it makes strong parametric assumptions and weights the different groups
exponentially, which often leads to suboptimal performance on the test dataset.
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items in one group share similar characteristics and are assumed to follow the same data-generating process.
These organic groups can be further divided into sub-populations based on meta-information about each
group. For instance, the user groups can be divided into sub-groups based on the demographic constitution
of those groups. Similarly, images taken from the same camera can be divided into sub-groups based on
the photographer’s identity. The data can also be split into groups based on the interaction between the
output label and a spurious feature, e.g., Waterbirds (Wah et al., 2011), CelebA (Liu et al., 2015), and
MultiNLI (Williams et al., 2017) datasets.

Given the importance and prevalence of the grouped data setting, several algorithms have been developed
for removing disparity in performance across the different groups. Some popular algorithms include Group
Distributionally Robust Optimization (Group DRO), which directly minimizes the worst group’s regularized
error during model training (Hu et al., 2018; Sagawa et al., 2019). Invariant Risk Minimization (IRM)
penalizes the distributions of learned representations with different optimal linear classifiers (Arjovsky et al.,
2019). Both Group DRO and IRM require group annotation at training time. Recently, an approach called
Just Train Twice (JTT) has been proposed that does not require group information at training time (Liu
et al., 2021). JTT instead just upweights misclassified examples and retrains the model. It has been
demonstrated to provide superior performance to Group DRO or IRM.

2.2 Learning to Rank

It is a subfield of the information retrieval literature which aims to build systems that can accurately
retrieve top k documents from a document database. Essentially, it involves ranking the documents in a
database based on their content. The common evaluation measures used in this literature include Mean
Average Precision (MAP), Discounted Cumulative Gain (DCG), and (Normalized) Discounted Cumulative
Gain ((N)DCG), and (N)DCG at k (Järvelin & Kekäläinen, 2000; Järvelin & Kekäläinen, 2002).

DCG at k simply adds up the scores earned at each position with inverse logarithm weights up to the kth

document, i.e.,

DCG@k =
k∑

i=1

Score(i)

log2(i + 1) (1)

While our approach is inspired by learning-to-rank, the major difference is that in information retrieval
literature, higher weights are assigned to the higher-ranked items (e.g., most relevant documents), while
in our setting, higher importance weights are given to lower-ranked groups (i.e., worst performing groups).
To the best of our knowledge, this is the first work that uses a ranking-based approach to facilitate a
soft-minimax strategy of training machine learning models with group distributional robustness.

3 Preliminaries

We consider the standard supervised learning setup of classifying an input x ∈ X as a label y ∈ Y. We
assume that the training data comprises of mtrain groups from a set G where each group g ∈ G con-
sists of ng data points from a probability distribution Pg(X ,Y). In addition to the feature xj and la-
bel yj , each training example j is also annotated with the subpopulation/group gj ∈ G that it belongs
to. To summarize, the training dataset contains ntrain samples with group annotations in the format
{(x1, y1, g1), . . . , (xntrain

, yntrain
, gntrain

)}. Our goal is to learn a model fθ : X × G → Y parameterized
by θ ∈ Θ. The group loss for group g is the average loss over all examples in g, and we denote it as
lg(θ) = E(x,y)∼Pg(X ,Y) L(x, y; fθ), for a loss function L and a machine learning model fθ.

This paper assumes no group overlap between OOD test and training/validation sets. This is a more chal-
lenging setting than the alternative scenario commonly considered in the prior literature, where the test set
only contains new proportions of groups but no previously unseen groups. The performance evaluation met-
ric for a robust model under group distribution shift is the OOD test set accuracy. More concretely, it is
preferable to have a model with high worst-group accuracy on the OOD test data, but that does not sacrifice
the average accuracy significantly.

3



Under review as submission to TMLR

3.1 Baseline Methods

We compare our approach against several competitive baselines as described below. All the methods (in-
cluding our approach) use the same base learner fθ—a finetuned DistilBERT model (Sanh et al., 2019). We
describe the hyperparameter choices and other technical details of the various methods later in the paper.

Empirical Risk Minimization (ERM): This is the standard training method that trains models to
minimize the average training loss. The method doesn’t take any group information into consideration while
training the model.

Group Distributionally Robust Optimization (Group DRO): Group DRO uses distributionally
robust optimization to explicitly minimize the loss on the worst-case domain (or group) during training. We
operationalize Group DRO by using the online algorithm provided by Sagawa et al. (2019).

Just Train Twice (JTT): As briefly described earlier, JTT is a recently proposed approach that requires
no group annotations and has shown superior performance over Group DRO and its variations on several
challenging benchmark applications (Liu et al., 2021). JTT involves a two-stage training approach which
first trains a standard ERM model for several epochs and then trains a second model that upweights the
training examples that the first model has misclassified.

4 Methods

As just described, the goal of group distributional robustness is to learn models with superior worst-group
accuracy on the OOD test dataset without sacrificing average accuracy. To achieve this goal, a common
surrogate optimization objective function that past literature has employed is to learn models to maximize
worst-group accuracy on the OOD validation dataset (See Equation 2; Gval denotes groups in the validation
dataset).

min
θ∈Θ

max
g∈Gval

lg(θ). (2)

This minimax approach to robust model selection is suboptimal since it ignores the predictive signal from
other groups, i.e., in the optimization process it only upweights (or directly optimizes, as done by DRO or
GroupDRO) the worst group. It also simplistically assumes that the worst-performing group on the validation
dataset is distributionally similar to the worst group on the OOD test set.2 So, instead of this hard minimax
approach, we propose a soft-minimax approach that weights the errors from several poorly performing groups
on the validation dataset to inform the hyperparameter choices for model selection. Intuitively, our approach
can be seen as performing smoothing by borrowing statistical strength from several groups instead of just the
worst group. We leverage the information retrieval and learning to rank literature to help us operationalize
this soft group-weighting. This literature contains several ranking-based metrics that provide discounted
importance to various items, e.g., the Discounted Cumulative Gain (DCG) metric.

4.1 Discounted Cumulative Gain (DCG) for Model selection:

First, use any base learner model, e.g., ERM to get the classification losses incurred by the different groups
on the validation set. Next, sort all the mval groups according to their loss g(1), g(2), . . . , g(mval) from the
largest (worst) to the smallest (best group). Then the composite DCG metric with a cutoff k becomes,

DCG@k(θ) =
k∑

i=1

lg(i)(θ)
log2(i + 1) . (3)

2The objective function that is optimized is based on the worst-group error which implicitly assumes that a similar error
distribution would be present in the OOD test data. However, both validation and test datasets are OOD w.r.t training data,
so this assumption could potentially be incorrect.
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Equation ( 3) considers the k groups with the highest OOD validation errors and provides them increasing
weights (higher weight for worse performing group).

Since the 1/log(x) function flattens fast as the number of groups increases, one can use DCG3 at the
quantile-level as opposed to group-level. The quantile-level DCG takes in a list of quantiles q = [q1, . . . , qk]
that corresponds to groups g(q1), . . . , g(qk) at these quantiles, for example, q = [0, 1, . . . , k] are the groups at
quantile 0 (worst-group), quantile 1, up to quantile k. This leads to a slightly modified expression for DCG
as shown below:

DCGq@k(θ) =
k∑

i=1

lg(qi)(θ)
log2(i + 1) . (4)

4.1.1 Evaluation of the Model Selection metric

We just described a soft minimax-based model selection strategy, which generalizes the hard minimax used
previously in the literature. Recall that the ultimate goal of effective model selection is to choose a model
with superior performance on the OOD test set. So, how do we evaluate the effectiveness of our proposed
metric over alternative model selection metrics?

An excellent way to think about this is how much concordance or agreement exists between the models
selected by a given metric on the validation and the OOD test sets. A superior model selection metric
should yield similar rankings of candidate models on either validation or test datasets. Thus, the best model
on the validation set will also be the best model on the test data leading to effective model selection. For
instance, consider our soft minimax metric; let’s assume it ranks three candidate models as S2> S1> S3
based on validation set accuracy. Then, if the test set accuracies4 of these three models are also S2> S1>
S3, we consider the metric a good model selection strategy, and we can pick model S2 from this class of
models. We use this intuition to guide our evaluation strategy for the model selection metric.

Let rval(M) denote the ranked accuracy list of models based on metric M , e.g., hard minimax, soft minimax,
or average, on the validation set. Next, let rtest(worst-group-accuracy) represent a similar model accuracy
list but based on worst group performance on the test set. Then, the metric M ’s concordance C(M) can
be defined as the similarity between rval(M) and rtest(worst-group-accuracy). Hence, a superior evaluation
metric should have a high degree of similarity between the two rankings.

C(M) = similarity(rval(M), rtest(worst-group-accuracy)). (5)

The similarity operator in Equation ( 5) can be operationalized by a function such as euclidean distance or
cosine similarity.

4.2 Learning-To-Rank inspired novel method for Model Training

We just saw the use of DCG to select the best model from candidate models efficiently. Next, we propose a
new method for training a model. Inspired by the recent success of the Just Train Twice (JTT) method (Liu
et al., 2021) for group distributional robustness, we propose a method that performs iterative upweighting
of training examples. However, unlike JTT, it leverages group annotations at training time. Our novel
approach, called Discounted Rank Upweighting (DRU), iteratively ranks the groups by their accuracy and
then upweights poorly performing groups. The key idea is to upweight training samples from the groups
with the highest training errors and assign them differential importance commensurate with their ranking.

3It is important to note that the connection to DCG was inspired by learning-to-rank literature and was chosen to provide
a familiar conceptual anchor for our readers. However, while our approach does draw certain conceptual parallels with DCG,
it more accurately aligns with the principles of the Ordered Weighted Averaging (OWA) operator (Busa-Fekete et al., 2017; Do
& Usunier, 2022; Yager & Kacprzyk, 2012), especially in terms of weighted aggregation. This alignment becomes particularly
clear in the context of aggregating group losses, where the OWA’s flexible framework for nuanced weighting schemes better
represents our approach.

4Recall that on test data we only care about worst group accuracy.
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At each epoch t (excluding the first one) during the training process, a sample x with label y in the group
g ∈ Gtrain is upweighted as

wt
g =

{ log2(C+2)
log2(rt−1

g +2) rt−1
g ≤ C

1 rt−1
g > C

(6)

where rt−1
g is either the ranking index or the ranking quantile of the group g in the training set (ascending

order of training accuracy) evaluated from the previous (t-1) epoch. C is a hyperparameter that controls the
cutoff for upweighting (akin to k in DCG@k). If the group ranking is greater than the cutoff, then the weight
is one, that is, no upweighting. Otherwise, if the group has lower accuracy, then, it will be weighted by the
discounted log function shown above. Note that the constant ‘2’ in this function is used to have discounted
factors for training groups that are consistent with those proposed by the standard DCG metric (Järvelin &
Kekäläinen, 2002). If the upweighting is applied to all samples of each group regardless of their classification
accuracy in the previous epoch, then the training objective of each epoch for a model with parameters θ is

J t
DRU (θ) =

∑
g∈Gtrain

∑
(x,y)∈g

wt
g ∗ L(x, y; fθ) (7)

for t ̸= 0. As one can infer, the first epoch is always the standard ERM training.

The upweighting scheme shown in Equation ( 7) upweights all the samples from a given group. One can
also choose to upweight only the misclassified samples from the previous epoch. Assuming the misclassified
samples to constitute an error set E, the modified training objective function becomes:

J t
DRU (θ, E) =

∑
g∈Gtrain

 ∑
(x,y)∈g∩E

wt
g ∗ L(x, y; fθ) +

∑
(x,y)∈g\E

L(x, y; fθ)

 (8)

We compare both these objective functions in our empirical results.

4.2.1 DRU Convergence

We can show the convergence of our method by drawing upon the methodology used by Xiao et al. (2023),
who establish convergence for rank-based loss minimization. Our DRU objective is compatible with their
framework, considering that we determine group ranks based on group loss values, thereby creating a sequence
of ordered groups. The objective function is then defined as a weighted sum of these group losses, where the
weights are calculated as the product of group size and reweighting factors assigned based on group rank.

When group sizes are uniform, our algorithm perfectly aligns with the rank-based loss minimization model
described in Equation (2) of Xiao et al. (2023), indicating that convergence is achievable in such scenarios.
Even for varying group sizes we can use the rank-based minimization framework by modifying our algorithm
slightly—altering how we determine quantiles. Instead of grouping by quantiles, we use a cumulative counting
method. For example, let’s say we have three groups ranked 1, 2, and 3, with sizes of 10, 10, and 20,
respectively. Here, the first group would cover the 1st to 25th quantile, the second the 25th to 50th, and
the third the 50th to 100th. Our objective function then becomes the sum of average losses across these
quantiles, where each is multiplied by specific weights (determined by DCG weighting). Groups that cover
multiple quantiles have their weights calculated as a combined total of the weights for each quantile they
span, proportionally adjusted based on the number of instances they include. This approach results in a
consistent increase in average losses as we move to higher quantiles, making our objective consistent with
Xiao et al. (2023)’s model. Hence, our procedure converges. This slightly modified DRU method based on
counting cumulative examples up to a quantile gives slightly worse performance than the qDRU approach
but performs better than ERM. We provide more detailed explanations in the Appendix.
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5 Experimental Setup

5.1 Datasets

We use three real-world text classification datasets that have been commonly used in prior group robustness
literature: AMAZON-WILDS (Koh et al., 2021), IMDB Movie Review Dataset (Pal et al., 2020), and a
variation of Yelp Open Dataset5. The prediction task for all three datasets is to classify the review text
into its corresponding 1-to-5 star rating. Each review is associated with a group, which corresponds to all
reviews written by the same user. Each dataset has an in-distribution (ID) training set and out-of-distribution
(OOD) validation and test sets. The OOD validation and test sets comprise reviews from disjoint sets of
users (groups). The users in the training dataset are randomly split 50/50 to be in the ID validation and
ID test datasets. Table 1 provides the summary statistics of each dataset. For more preprocessing and
descriptive dataset details, please refer to the Appendix A. Intuitively, the performance of a ERM model
should significantly downgrade on OOD validation and test sets compared to ID validation and test sets
(Koenecke et al., 2020; Caldas et al., 2018). Table 1 confirms the significant accuracy drops from ID to OOD
on all three datasets.

Table 1: Dataset Details. Note: 1) Number of groups is provided in the format (training, OOD validation,
OOD test). 2) The ERM model accuracies are given in the format (average, 10-th percentile, worst group).
All three performance metrics are lower on OOD val/test sets than on their ID counterparts. 3) 10-th
percentile group is one that has a lower accuracy than 90% of all groups.

Dataset # Groups Group size ID val OOD val ID test OOD test
AMAZON (1252, 1334, 1334) 75 (75.7, 58.7, 24.0) (72.3, 54.7, 6.3) (74.7, 57.3, 24.0) (71.9, 53.3, 12.0)

IMDB (666, 561, 560) 25 (64.7, 46.7, 26.7) (62.6, 43.1, 15.6) (65.4, 48.0, 20.0) (63.2, 42.9, 15.0)
Yelp (500, 523, 522) 100 (65.2, 54.9, 41.0) (64.5, 54.0, 34.0) (64.0, 55.9, 26.9) (63.0, 52.0, 18.0)

We also generate several synthetic datasets in which each observation of a group is sampled from a ‘shared’
signal across all groups plus an ‘idiosyncratic’ signal which is group-dependent. The distribution and strength
of the two signals are different across different datasets. Please refer to Section 7 for more details.

5.2 Experiment Setup for Model Selection

We consider the following metrics that one can use to select models/hyperparameters from a validation set:
(1) worst-group: accuracy of the worst group; (2) average: average across all groups; (3) 10th percentile:
the accuracy of the group at the 10th percentile (lower accuracy than 90% groups); (4) gDCG@k: DCG
at group level for the k percent worst-performing groups (k=10, 50); (5) qDCG@k: DCG at quantile level
for percentiles [0,1,...,k] (k=10, 50).

To compare the effectiveness of these metrics for model selection, we trained DistilBERT base-learner models
using JTT. We varied the two hyperparameters (first stage step T and upweighting factor λ) of JTT to
generate 16 candidate models. In particular, we considered T ∈ {1, 2, 3, 5} and λ ∈ {2, 3, 5, 10}. Next, we
rank these 16 models using the various metrics on their OOD validation set accuracy and then rank all the
16 models on worst group accuracy on the test OOD dataset. This process provides us with a ranked list of
16 models for each model selection metric on the validation set and another list ranking all the 16 models on
their worst group accuracy on the OOD test set. Finally, we can assess the model selection performance of all
the metrics by computing the similarity between their rankings of models on validation set with the “ground-
truth” ranking of models on the test set (cf. Equation 5). In particular, we calculate the similarity of two
ranked lists using euclidean distance, cosine similarity, and the NDCG of the model ranking on validation
using the ranking on test as gold standard scores. The metric(s) which ranks the models on validation into
the most similar positions with the true performance of the models on test set is(are) the most effective for
selection.

5https://www.yelp.com/dataset/
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5.3 Experiment Setup for Model Training

Similar to the DCG-based model selection, the DRU-based upweighting can also be performed by ranking
the quantiles of the groups, i.e., qDRU, or simply ranking the indices of the groups, i.e., gDRU. qDRU
is preferable when the number of groups is large since the logarithm function flattens out quickly in such a
case. These upweighting methods also have one hyperparameter C, which controls the cutoff or the amount
of smoothing.

Since we want to contrast with the hard minimax approach throughout this paper, we train models by only
upweighting samples of the worst-performing group from the previous training epoch by a constant weight λ.
It is easy to see that this hard minimax approach is a special case of our soft minimax approach in which the
cutoff for DRU is the rank of the worst group (0). We denote this boundary case as Worst in our results.

In their basic form, our upweighting methods qDRU, gDRU upweight all the samples from certain groups
(cf. Equation 7). A related upweighting strategy can be to further zoom in to each group and only upweight
the misclassified examples from that group (cf. Equation 8). We experiment with this seemingly more precise
weighting strategy and denote it using the suffix “+M" in our results. For clarity, the default strategy of
upweighting all examples from a group is suffixed “+G”. This leads to four different variants of our DRU
models, qDRU + M, qDRU + G, gDRU + M, and gDRU + G.

We further compare against another variant of the upweighting strategy that upweights only the misclassified
examples from the previous training epoch by a constant factor λ. We call this approach Const in our results.
This variant will help us isolate the impact of the ranking-based logarithmic weighting since it is plausible
that the improved accuracy might not be sensitive to the differential upweighting. Note that the Const
method can not be applied to all the samples from each group (+G) since upweighting all the examples by
the same amount makes the weights useless.

In addition to these methods, we compare against baseline methods ERM, Group DRO, and JTT de-
scribed in Section §3.1. All methods except ERM and JTT have one hyperparameter (C for DRU-based
methods, Const, and Worst, and stepsize for Group GRO). We also considered IRM (Arjovsky et al., 2019)
as a potential baseline but could not obtain comparable performance to other baselines (ERM, Group DRO,
JTT). We hypothesize that IRM does not fit our scenario where there are a large number of groups. We
therefore do not include IRM in the following experiments.

We follow the lead of the authors of the WILDS Distribution Shift Benchmark Suite (Koh et al., 2021) and
use a finetuned base uncased DistilBERT model as our base learner in all our experiments. We used the
following hyperparameters for DistilBERT as also suggested by (Koh et al., 2021): batch size 16; learning rate
1× 10−5 for AdamW optimizer (Loshchilov & Hutter, 2017); L2-regularization strength 0.01; 5 epochs with
early stopping; and a maximum number of 512 tokens. Next, for both qDRU and gDRU, we performed
a grid search to tune the cutoff hyperparameter C ∈ [10, 20, 50, 100]. λ is selected from the list [2, 3, 5] for
all methods that performed constant upweighting. For JTT, T ∈ {0, 1, 2} and λ ∈ {2, 3, 5}. Finally, for
Group DRO we fixed the step size as 0.01 following the best practice reported in (Koh et al., 2021). For
the DistilBERT, we use the implementation of HuggingFace6. All the experiments are run on the NVIDIA
GEFORCE RTX 2080 Ti using the PyTorch Framework. It is worth noting that DRU-based methods
involve a single training pass with multiple epochs, similar to GroupDRO and ERM. This is in contrast to
the JTT approach, which requires training the model with ERM twice, each involving multiple epochs. The
biggest cost of DRU method is attributed to the computation of rank and subsequent reweighting. Since
this ranking is determined based on the groups, the runtime complexity for the rank and reweight process
can be estimated as O(∥g∥log∥g∥), where ∥g∥ represents the number of groups. In practice, the training
time ranged from 1.25 to 1.35 times that of ERM for the datasets used in this paper. Hence, our approach
is highly computationally efficient.

6https://huggingface.co/docs/transformers/model_doc/distilbert
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6 Results and Discussion

6.1 Model Selection Results

Table 2 shows the model selection results for Amazon, IMDB, and Yelp datasets. We report the similarity
between the ranked list of the 16 candidate models on OOD validation set corresponding to each model
selection metric and the ranked list of the models by their true accuracy on the worst group in OOD test.

As can be seen from the results, the “worst-group,” that is, the hard minimax approach, usually performs
worse compared to other metrics. This is surprising since it has identical semantics to the ground-truth
metric we used on the test data (worst-group accuracy), confirming that the hard minimax metric has poor
generalizability when distribution shift is present. The quantile-level DCG metrics (qDCGs) perform the
best on all three datasets. Specifically, qDCG@10 performs the best on Amazon and IMDB, and qDCG@50
performs the best on the Yelp dataset.

Table 2: Concordance between the ranked lists of the models on OOD validation by different metrics and
the ranked list by worst-group accuracies on OOD test. Note: ED = Euclidean Distance (lower is better),
CS = Cosine Similarity (higher is better), NDCG = Normalized Discounted Cumulative Gain using test-
worst-group ranking list as the gold standard (higher is better).

Amazon IMDB Yelp
Metric ED CS NDCG ED CS NDCG ED CS NDCG
worst-group 27.0 .72 .77 14.5 .93 .92 15.3 .92 .91
average 27.0 .74 .78 15.9 .92 .88 12.9 .94 .97
10th percentile 23.5 .80 .88 15.3 .92 .93 13.6 .93 .96
gDCG@10 21.4 .84 .86 12.6 .95 .95 14.0 .94 .94
gDCG@50 24.0 .80 .82 15.6 .92 .93 12.5 .95 .97
qDCG@10 20.4 .85 .86 12.6 .95 .95 13.2 .94 .94
qDCG@50 24.0 .80 .82 15.0 .92 .93 12.2 .95 .97

The “10th percentile” metric works better than worst-group or average accuracy, although not as good as
the DCG-based metrics. This is understandable as the “10th percentile” worst-group is a special case of
rank-based metric and it also smooths the hard minimax to a certain extent.

A hidden but practically important strength of the DCG-based metric that is not visible in the result tables
is its ability to break ties between candidate models. In our experiments, 43.75% and 37.5% of models
have identical 10th percentile and worst-group accuracies on all three datasets, respectively. This lack of
model identification makes it hard to assess which model is the best, and one has to resort to suboptimal
heuristics such as random tiebreaks to choose the best model. Ties are rare in the case of DCG-based metrics
since they evaluate models using discounted (logarithm weighted) ranks of several poorly performing groups
instead of just a single accuracy number as done by the “worst-group” or “10th percentile” metrics. Thus,
the smoothing produced by our soft minimax metrics leads us to select better models. However, our results
are still a bit inconclusive regarding how much smoothing is optimal (with regard to the cutoff threshold of
DCG) since that threshold hyperparameter varies over the datasets in our experiments.

6.2 Model Training Results

The results of the test OOD datasets for the various methods are shown in Table 3. The tables report
average and 10th percentile group accuracy for completeness, but the worst-group accuracy on the test OOD
dataset is the target. Broadly, we see a trend that the DRU-based methods, which smoothly upweight mul-
tiple poorly-performing groups, outperform ERM and other methods with hard upweighting rules. Among
DRU-based methods, qDRU+M provides the highest worst group accuracy (target metric) on the OOD
test dataset on average, with a comfortable margin of improvement over JTT, Group DRO, Worst, Const
which are statistically significant under a bootstrapped t-test. The 10th percentile and average group perfor-
mance of qDRU+M and other DRU-based methods are also competitive or even better than the baselines,
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suggesting that our soft-minimax-based methods improve OOD worst-group performance without a percepti-
ble sacrifice of accuracy on better-performing groups or average accuracy. We also showcase similar improved
performances of our methods on several synthetic scenarios (Section 7). In all these scenarios, DRU-based
methods still significantly outperform the baseline methods, and qDRU+M is nearly consistently the best
method on average, 10th and worst group accuracy metrics. We observe a slightly different pattern on real-
world datasets where, interestingly, qDRU+G model consistently outperforms others on 10th percentile
accuracy. Finally, we would like to note that real-world scenarios are often considerably more complex than
the controlled synthetic setting since individual groups and misclassified examples may be more affected by
random noises or even adversarial signals (e.g., spam or fake reviews). And in these scenarios, the 10th
percentile group accuracy may be a more reasonable target for group robustness, and upweighting all exam-
ples in a group may be more resilient to noise than only upweighting misclassified examples. To summarize
the three metrics into one for easier comparison, we also report the t-statistics of group accuracy of each
method in Appendix C, which shows our methods did better in reducing the variance among groups without
sacrificing the average group performance.

Table 3: Results on OOD Test. G: upweighting all samples of a group (Equation 7). M: upweighting
misclassified samples of a group (Equation 8). qDRU: upweighting according to ranking percentile. gDRU:
upweighting according to ranking index. The results are in the format of (average accuracy/10th percentile
accuracy/worst group accuracy). Bold: best OOD test performance (bootstrapped t-test)

Dataset ERM Group DRO JTT Worst + G Worst + M
Amazon-WILDs 71.9/53.3/12.0 70.0/53.3/8.0 71.6/53.3/9.3 72.2/53.3/12.0 70.2/53.3/17.3
Yelp 63.0/52.0/18.0 59.2/49.0/27.0 61.7/51.0/19.0 62.8/52.0/20.0 62.7/53.0/25.0
IMDB 63.2/42.9/15.0 61.0/42.0/10.8 62.5/42.3/10.0 62.5/42.9/22.5 63.3/43.8/17.5
Dataset qDRU + G qDRU + M gDRU + G gDRU + M Const + M
Amazon-WILDs 70.2/54.7/17.3 70.1/53.3/18.7 70.2/53.3/17.3 71.5/54.7/14.7 71.0/53.3/14.7
Yelp 62.6/53.0/23.0 62.5/52.0/21.0 62.8/53.0/24.0 62.1/52.0/27.0 63.0/53.0/21.0
IMDB 64.1/45.8/20.0 62.0/43.3/25.0 61.0/42.9/18.9 62.4/43.8/15.0 62.6/44.1/15.0

7 Synthetic Data Experiments

We also showcase our method’s improved performance in a controlled environment where we generate the
data using a fixed data-generating process. Past work has also used synthetic data to validate new methods
for distribution shift (Arora et al., 2021; Arjovsky et al., 2019).

7.1 Synthetic Data Generation

The procedure for synthetic data generation is summarized in Algorithm 1 (in Appendix). The main goal
of this algorithm is to create different distribution shifts across groups by differently mixing two predictive
signals for each observation of a group. The first signal is a “shared signal” present across all the groups
and easily captured by any model and the second signal is an “idiosyncratic signal” that varies significantly
across groups. As part of our controlled simulation setup, we vary the percentage of groups U containing
idiosyncratic signals in a dataset. Specifically, we model the shared signal M via a Gaussian distribution
N (µs, σs) and the idiosyncratic signal is operationalized by a set of W Gaussian distributions whose each
element represents a unique idiosyncratic signal. For each sample i of a given group g, we sample a shared
signal Si

g from the distribution M . Next, if the group g contains idiosyncratic signals (sampled using
Bernoulli(U)), one idiosyncratic signal distribution wg is sampled from W based on a prior distribution
p. Then for each sample i of the group, an idiosyncratic signal Di

g is sampled from wg. Then, another
simulation parameter a ∈ [0, 1] that controls the strength of the idiosyncratic signal is sampled from a
truncated Gaussian distribution. Note that for a group without idiosyncratic signals, each sample of the
group will only have the shared signal. Finally, we get the feature representation for a given sample i of the
group g as xi

g = Si
g +Bernoulli(U)×a×Di

g. The label of the sample is obtained as y = 1R+(f(xi
g)+N (0, σ2)),
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where 1R+ is the indicator function, f is a function that transforms features into labels (e.g., sin function)
and σ2 is the variance of a random Gaussian noise added to every instance.

7.2 Experiment setup for Synthetic Data

As shown in Algorithm 1 (in Appendix), in our experiments, the dimension of all signals is 2. The shared pre-
dictive signal M is N ([0, 0], 4I) where I is the two-dimensional identity matrix. There are four idiosyncratic
signals in W and their mean and variance values were chosen as [([0.25, 0.25], I), ([0.25, -0.25], I), ([-0.25,
0.25], I), and ([-0.25, -0.25], I)] respectively. f is a sine function that takes the sum of all feature dimensions
as input. The strength factor a is sampled from a truncated Gaussian distribution N (0.75, 0.25, 0, 1) and
σ = 0.5 for the random noise. We also evaluate a setting with larger noise levels, using variances (σ2) of 1
and 4. The results are shown in the Appendix F.

Using these parameters, we generate synthetic datasets under four different settings as shown in Table 7 (in
Appendix). Setting 1 is the one that exhibits the slightest distribution shift since 80% of the groups in the
training, validation, and test sets contain the same set of idiosyncratic signals. Setting 2 shows a realistic
real-world scenario where the training data uniformly (ptrain(wi) = 1) contains each of the idiosyncratic
signals, but only 20% of the training groups have an idiosyncratic signal. The test data, on the other
hand, contains the idiosyncratic signal in 80% of the groups. The third and fourth settings show substantial
distribution shifts since they represent the case where some of the idiosyncratic signals are altogether hidden
from the training dataset. This happens routinely in real-world scenarios when the training dataset is not
large enough to include all the unique signals introduced by unseen groups in the OOD test data.

We generate 1000 training groups, 500 test OOD groups, and 500 validation OOD groups for each of these
settings. Each group contains 75 samples. The base learner for training all these datasets is a three-layer
feed-forward neural network with a hidden state size of 128. Each layer is connected by LeakyReLU (Xu
et al., 2015), and a 0.5 dropout rate is applied. We performed a grid search C ∈ [5, 10, 20, 50, 100] to select
the best cutoff for qDRU. For all the upweighting methods with constant factors, i.e., Worst, Const, and
JTT, λ is selected from the list [2, 3, 4, 5]. The step size for Group DRO is chosen as 0.01, and the
first and second training steps of JTT were 5. Finally, we performed the model selection using qDCG@10
metric, which was the best performing metric as we saw in Section 6.1.

7.3 Synthetic Data Results

The results are shown in Table 4, and as can be seen, the DRU-based methods significantly outperform
the baseline methods in all simulation settings. DRU variants significantly boost the worst group accuracy
(the last number in the accuracy lists (90,70,50) in Table 4) by up to 10% in some cases compared to the
baselines. Overall, qDRU+M is consistently the best DRU-variant except for Setting 1, in which there
is only a mild distribution shift. Group DRO and JTT also perform as well as DRU-based methods in
Setting 1, but their relative performance drops in settings with significant distribution shifts. Interestingly,
the constant upweighting method Const+M performs even worse than ERM which doesn’t perform any
weighting at all. When significant distribution shifts are present (especially in setting 3 and 4 where unseen
idiosyncratic signals are present in the test dataset), qDRU+M not only improves the OOD worst group
accuracy but also the 10th percentile of worst groups, and it even shows a significant improvement (over 6%)
in average test accuracy compared to ERM, GroupDRO, and JTT baselines. The performance of qDRU+G
is notable in Setting 4 where most significant distribution shift is present, and its performance is only inferior
to qDRU+M.

8 Conclusion and Future Work

In conclusion, this paper highlights the weakness of the canonical approach in group distributional robustness
literature of focusing only on the worst group accuracy for model selection and model training. We introduced
a suite of methods inspired by the information retrieval and learning-to-rank literature for group robust
model selection and model training. Essentially, our ranking-based soft minimax approaches smooth the
predictive signal learned at training time by performing a discounted weighting which leads to improved
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Table 4: Results on Synthetic Dataset in the format of (average accuracy/10th percentile accuracy/worst
group accuracy). BOLD: best OOD test performance under the same setting. Underline: second best
performance.

Dataset ERM Group DRO JTT Worst + G Worst + M
Setting 1 (70.2/62.7/54.7) (78.7/72.0/62.7) (76.5/69.3/62.7) (76.6/69.3/58.7) (77.8/72.0/62.7)
Setting 2 (68.1/61.3/52.0) (76.0/69.3/57.3) (73.1/66.7/58.7) (78.1/72.0/62.7) (76.9/70.7/58.7)
Setting 3 (68.9/61.3/50.7) (75.7/69.3/60.0) (76.3/70.7/61.3) (77.4/70.7/64.0) (76.3/69.3/61.3)
Setting 4 (66.9/60.0/50.7) (75.3/68.0/60.0) (75.2/69.3/60.0) (76.5/69.3/61.3) (76.7/70.7/62.7)
Dataset qDRU + G qDRU + M gDRU + G gDRU + M Const + M
Setting 1 (77.2/70.7/61.3) (77.6/70.7/64.0) (75.9/69.3/60.0) (78.5/72.0/65.3) (67.0/60.0/45.3)
Setting 2 (77.7/72.0/61.3) (79.0/73.3/65.3) (77.3/70.7/58.7) (79.5/73.3/65.3) (67.6/61.3/52.0)
Setting 3 (77.1/70.7/62.7) (81.0/74.7/69.3) (76.8/69.3/60.0) (76.4/69.3/62.7) (70.3/64.0/56.0)
Setting 4 (79.4/73.3/65.3) (80.4/74.7/68.0) (77.3/70.7/60.0) (76.9/70.7/62.7) (66.9/60.0/49.3)

generalization performance on the OOD test dataset in the challenging domain generalization (Koh et al.,
2021) setting. Our theoretical intuition regarding the fit of ranking-based methods for group robustness is
backed by our methods’ equally strong empirical performance on synthetic and several real-world benchmark
datasets. Group identities carry a strong predictive signal (even if they do not overlap in training/test) since
we observe that group-based approaches perform better than those that ignore the group structure. Though,
more research needs to be done to investigate this deeply. The learning to rank literature implicitly assumes
orthogonality between the search results (or group features in our case). So, as part of future work, it will
be interesting to study how the number of groups and their correlation structure impacts the performance
of the ranking-based methods.

Broader Impact Statement

We did not notice any immediate ethical issues in our work. Our proposed methods improve the tail-group
accuracy, so our approach ensures that we do not adversely impact marginalized and disadvantaged groups.
For the licenses, the Amazon-WILDS dataset (Koh et al., 2021) is licensed under the MIT license. The
IMDB dataset (Pal et al., 2020) is licensed under CC-BY 4.0. The Yelp Open Dataset provides a YELP
DATASET TERMS OF USE with permission to use for academic purposes. Our use of the three existing
datasets for academic purposes is consistent with their intended use. All usernames in these datasets are
anonymized into hashing values.
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A Dataset Descriptions

1) AMAZON-WILDS: Collected as part of the WILDS dataset suite (Koh et al., 2021), the Amazon-
WILDS dataset involves predicting star ratings from users’ reviews of Amazon products. The training set
has 245, 502 reviews from 1252 users (at least 75 reviews per user). The ID validation set consists of 46,950
reviews from 626 of the 1252 users in the training set. The ID test set is the same size as the ID validation set
and contains reviews from the remaining 626 users from the training dataset. Finally, the OOD validation
and the OOD test sets each have 100, 050 reviews (75 reviews per user) from 1, 334 new users.

2) IMDB Movie Reviews: We downloaded the IMDB dataset from (Pal et al., 2020) and modified it
to exhibit considerable OOD performance drops on the validation and test sets. To construct our dataset,
we aggregate the data at the user level and split it into training, validation, and test sets using K-means
clustering to ensure a significant distributional shift from ID to OOD sets. Specifically, we calculate the
average of pre-trained DistilBERT embeddings of each user’s reviews and then cluster their embeddings
(k=2). One cluster is randomly selected as the ID set, and the other is the OOD set. Next, users in the
OOD set are randomly split into OOD validation and OOD test sets, and the users in the ID set with at
least 50 reviews are randomly divided into ID validation and ID test sets. The final training set has 41, 146
reviews from 666 users. The ID validation set consists of 20,070 reviews from 333 of the 666 users in the
training set. Similarly, the ID test set contains 21,083 reviews from the other half of the users in the training
dataset. The OOD validation and test sets include 42, 703 and 43, 451 reviews from 561 and 560 unseen
users, respectively, with each user containing at least 25 reviews.

3) Yelp Business Reviews: WILDS dataset suite (Koh et al., 2021) contains a modified version of the
Yelp Open Dataset; however, there’s no accuracy drop from their ID set to OOD set. Thus, we modify it by
clustering at the user level in a similar fashion as we did for the IMDB dataset. We set k=6 and select the
two farthest clusters as the OOD and ID sets to have a significant out-of-distribution performance drop. The
training set comprises 64, 931 reviews from 500 users. The ID validation and test sets consist of 20, 070 and
21, 083 reviews from 333 out of the 666 users in the training set, respectively. Finally, the OOD validation
and test sets include 52, 200 and 52, 300 reviews from 522 and 523 unseen users, respectively.
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Figure 1: The worst group performance of the test data over the relative size of the validation data to the
size of the training data in the Yelp dataset.
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B Size of Validation Data

We evaluated the impact of validation data size on the model selection performance using the qDRU+M
method. This was achieved by subsampling the original Yelp validation data in varying proportions, specif-
ically [10%, 20%, 30%, . . . , 100%]. For each proportion, we performed the subsampling process three times
using different random seeds and then chose the best model based on each subsampled validation dataset.
The performance of these selected models on the test data, particularly the worst group performance rel-
ative to the size of the training data, is depicted in Figure 1. Our results show that when the size of the
validation data is more than 10% of the training data, the model performance demonstrates minimal degra-
dation. However, with smaller validation datasets, we observed greater fluctuations in model performance,
even though occasionally these models achieved superior results. This finding indicates that for effective and
robust model selection using our methods, a validation set constituting at least 15% of the training data size
(containing group annotations), is advisable.

C T-statistic of Real World Datasets

The t-statistics of each method on OOD datasets are shown in Table 5. For each method, the t-statistic is
computed by dividing the average group performance by the standard error of all groups’ performances. A
robust model aims to have a higher worst group performance while not sacrificing the average performance
which results in a smaller standard error of the groups’ performances, thus a higher t-stat corresponds to a
better model. The results show that our proposed methods are usually consistently better than ERM, JTT
and GroupDRO.

Table 5: T-stats of group performance on OOD Test (T-stats here calculated as p̄
SE(p) where p̄ is the average

group performance, SE(p) is the standard error of all groups’ performance). A higher t-stat is achieved by
reducing the variance among group performance (e.g., improving worst-group performance) while maintaining
a high average accuracy. G: upweighting all samples of a group. M: upweighting misclassified samples of a
group. qDRU: upweighting according to ranking percentile. gDRU: upweighting according to ranking index.
Bold: best OOD test performance under the same setting.

Dataset ERM Group DRO JTT Worst + G Worst + M
Amazon-WILDs 183.0 164.0 171.3 179.7 186.3
Yelp 164.0 169.2 165.1 169.2 176.1
IMDB 93.6 94.7 92.4 94.0 96.6

Dataset qDRU + G qDRU + M gDRU + G gDRU + M Const + M
Amazon-WILDs 190.7 194.3 188.8 188.5 187.0
Yelp 173.3 169.2 177.7 165.6 172.0
IMDB 102.1 101.4 94.7 99.5 95.9

D Validation Performances of Real World Datasets

Results of validation sets of each method are shown in Table 6.

E Synthetic Data Generation Algorithm

The algorithm is shown in Algorithm 1.

F Synthetic Data With Different Noise Levels

We reported the performance of the qDRU + M model at noise variances σ = 1 and σ = 2 in Setting 2. The
cutoff is fixed at 10 without additional fine-tuning. Table 8 illustrates that overall performance deteriorates
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Table 6: Results on OOD Validation. G: upweighting all samples of a group. M: upweighting misclassified
samples of a group. qDRU: upweighting according to ranking percentile. gDRU: upweighting according to
ranking index. The results are in the format of (average accuracy/10th percentile accuracy/worst group
accuracy). Bold: best OOD validation performance under the same setting.

Dataset ERM Group DRO JTT Worst + G Worst + M
Amazon-WILDs (72.3/54.7/5.3) (70.7/54.7/5.8) (72.5/53.3/5.3) (72.9/54.7/6.7) (71.0/53.3/8.0)
Yelp (64.5/54.0/34.0) (60.5/51.0/31.0) (63.2/52.0/32.0) (64.0/54.0/35.0) (64.2/54.0/35.0)
IMDB (62.6/43.1/15.6) (61.1/40.5/15.5) (62.0/43.0/15.4) (61.5/41.9/17.6) (63.0/44.4/20.0)
Dataset qDRU + G qDRU + M gDRU + G gDRU + M Const + M
Amazon-WILDs (70.9/54.7/6.7) (71.1/54.7/6.7) (70.9/54.7/6.7) (72.1/56.0/8.0) (71.8/54.7/8.0)
Yelp (64.0/53.1/40.0) (64.3/54.3/40.0) (63.9/54.0/34.0) (63.6/54.0/38.0) (64.4/53.0/37.0)
IMDB (63.3/44.4/19.3) (61.9/46.0/15.7) (61.0/44.0/15.4) (61.9/43.2/20.2) (62.5/44.4/17.6)

Algorithm 1 Synthetic Data Generation
Require: Q: number of reviews per group; U : % of groups with idiosyncratic predictive signal, W : a

set of predefined Gaussian idiosyncratic predictive signals; p: probability of each idiosyncratic signal;
M ∼ N(µs, σ2

s), the shared predictive signal.
S ← {}
for g ∈ G do

ag ← TruncatedN (0.75, 0.25, 0, 1);
wg ∼ N(µg, σ2

g)← random.choices(W, p);
has_idiosyncratic← U(0, 1) ≤ U
for i = 1,2,. . . ,Q do

sharedi
g ← N (µs, σ2

s)
xi

g ← sharedi
g

if has_idiosyncratic then
idiosyncratici

g ← N(µg, σ2
g)

xi
g ← xi

g + ag ∗ idiosyncratici
g

end if
yi

g = 1R+(f(xi
g) +N (0, 0.25))

S ← S ∪ {(xi
g, yi

g)}
end for

end for
return S

Table 7: Four different synthetic dataset settings. p is the prior distribution of the four idiosyncratic signals
(before normalizing). U is the portion of groups that have idiosyncratic signals in format of (training,
validation, test)

ptrain pval ptest U
1 (1, 1, 1, 1) (1, 1, 1, 1) (1, 5, 1, 5) (0.8, 0.8, 0.8)
2 (1, 1, 1, 1) (1, 1, 1, 1) (1, 5, 1, 5) (0.2, 0.2, 0.8)
3 (0, 1, 1, 1) (1, 1, 1, 1) (1, 5, 1, 5) (0.2, 0.2, 0.8)
4 (1, 1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 1) (0.2, 0.2, 0.8)
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with increasing noise variance. However, our method demonstrates robust improvements in average, 10th
percentile, and worst group metrics.

Table 8: Average, 10th and worst group performance of ERM and qDRU in different values of σ in Setting
2.

σ 0.5 1 2
ERM 68.9/61.3/50.7 66.3/58.7/49.3 57.8/50.7/38.7

qDRU + M 81.0/74.7/69.3 68.4/61.3/54.7 59.3/52.0/45.3

G DRU Convergence details

For our proposed algorithm DRU, the objective is

min
θ
L(θ) =

N∑
i=1

win[i]Y[i],

where the θ denotes the model’s parameters, and N is the total number of groups in the training set. Yi

represents the average training loss of the ith group for i ∈ {1, ..., n}. Let Y[1] ≤ ... ≤ Y[n] be the order
statistics. wi is the weight corresponding to the ith smallest group and n[i] is the number of instances within
group g[i].

When group sizes are the same n[1] = n[2] = . . . = n[N ] = c, we have

L(θ) = c

(
N∑

i=1
wiY[i]

)
(9)

whose convergence has been proved by Xiao et al. (2023) under the alternating direction multiplier method
(ADMM) optimization.

However, when the group sizes differ, the proof of convergence is not guaranteed. The main challenge comes
from the fact that wi ∗ n[i] varies with group size since n[i] (the number of instances in a group) depends
on g[i]. To address this, we employ a simple modification of our approach: Rather than assigning weights
to each group, we split the dataset into the same-size quantiles and then assign the weights to each quantile
accordingly. This can be better understood through Figure 2, where the groups are arranged in order of their
group loss. In this arrangement, g[N ] represents the group with the poorest performance, followed by g[N−1]
as the second poorest, and so forth. Each triangle represents all instances of the corresponding groups. As
the number of instances in each quantile (Qi) is the same and groups may have different sizes, instances of
some groups will be split into different quantiles (e.g. black and yellow part for g[N ]). The instances that
fall in the same quantile (with the same color shown in Figure 2) will be upweighted by the same factor wq

according to Equation 6. Then the new objective should be:

L(θ) = n

( 100∑
q=1

wqỸq

)
(10)

where n =
∑N

i=1
ni

100 is the number of instances in each quantile which is a constant. Ỹq is the average loss of
quantile q. Then as long as the Ỹq is sorted, the convergence can be reached again according to Xiao et al.
(2023) under ADMM optimization. This is feasible when we keep the losses of each part of the group across
boundaries the same (e.g. if the black and yellow parts for group g[N ] shown in Figure 2 have the same loss
and so on for each group then Ỹq is sorted.) Given a set of instance losses of a group, deciding whether it
can be partitioned into two (or multiple) subsets such that the sum of the numbers in each set is the same
is naturally a partition problem (which is NP-Hard).
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Figure 2: Figure showing division of instances into quantiles in the scenario in which groups differ in size.
Suppose groups are ranked based on their loss, with g[N ] representing the group with the worst performance
and g[N−1] as the second worst, continuing in this order. Further, each triangle represents all instances
belonging to its respective group. Given that each quantile (Qi) contains an equal number of instances and
the groups vary in size, instances from the same group may be distributed across different quantiles. This is
illustrated by the division of g[N ] into both black and yellow segments. Instances within the same quantile,
even if they originate from different groups, are assigned the same upweighting factor which is determined
by the DCG function (as visually represented by the consistent color coding in the figure.)

We side-step solving this intractable problem by assigning weights at the group level by taking a weighted
average over the reweighting factors of parts of the group across boundaries.

For example, assume there are x instances in g[N ] that fall into Q100(black) and y instances that fall into
Q99(yellow), then the reweighting factor for the group is x∗w100+y∗w99

x+y . Generally, if a group g[i] spans across
quantiles Qk, Qk−1, . . . , Qk−j , and the number of instances in each quantile is nQk

, . . . , nQk−j
, then the

weight for g[i] will be:

w′
i =

∑j
m=0 wk−mnQk−m

n[i]
(11)

where
∑j

m=0 nQk−m
= n[i] the total number of instances of the group. And for any m ̸= 0 and m ̸= j,

nQk−m
= n should be the number of instances in each quantile. Even though knowing the real split of the

group across quantiles is NP-hard, nQk
, . . . , nQk−j

is known since the size of the group and the number of
instances in a quantile is known. (e.g., In Figure 2, if we know the number of instances in a quantile n = 1000
and further assume the group size of g[N ] is n[N ] = 1050, then there should be 1000 instances in the black
part of g[N ] and 50 instances in the yellow part of g[N ] and so on for all the groups.) Then, the new objective
function can be written as:

L̃(θ) =
(

N∑
i=1

w′
in[i]Y[i]

)
(12)

We can prove that the reweighted loss of a group under objective 10 is the same as the reweighted loss of a
group under objective 12. Without loss of generality, we can assume that a group g[i] should be split into
two quantiles under the ideal objective 10 as g[N ] in Figure 2. Assume the sets of instances in two quantiles
are X and T correspondingly. The losses of instances in X are {X1, ..., Xα} and the losses of instances in
T are {T1, ..., Tβ} where α and β are the sizes of two parts and α + β = n[i]. Then under the ideal split

so that each part has the same average loss, we have
∑α

i=1
Xi

α =
∑β

j=1
Tj

β . The average loss of the group
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Y[i] =
(
∑α

i=1
Xi+

∑β

j=1
Tj)

n[i]
. Under the objective 10, the reweighted loss of this group is then

wα

α∑
i=1

Xi + wβ

β∑
j=1

Tj

= 1
α

(αwα

α∑
i=1

Xi + αwβ

β∑
j=1

Tj)

= 1
α

(αwα

α∑
i=1

Xi + βwβ

α∑
i=1

Xi)

=
∑α

i=1 Xi

α
(αwα + βwβ)

=
(α + β)

∑α
i=1 Xi

(α + β)α (αwα + βwβ)

=(αwα + βwβ)
α + β

(1 + β

α
)

α∑
i=1

Xi

=w′
g(1 + β

α
)

α∑
i=1

Xi according to Equation 11

=w′
g(

α∑
i=1

Xi +
β∑

j=1
Tj) according to the even loss split

=w′
gn[i]Y[i]

(13)

We have shown that the reweighted loss of a group in objective 10 is the same as the reweighted loss of
this group in objective 12 using the weighted reweighting factors in Equation 11. When a group is split
into more than two quantiles, the proof can be applied recursively to adjacent quantiles as illustrated above.
Hence, one can implement Objective 12 in practice without solving the NP-hard partition problem. Again,
as mentioned earlier, the convergence of objective 10 has been proven by Xiao et al. (2023) under ADMM
optimization.
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