
Polar Codes for Channel Simulation

Sharang M. Sriramu
School of ECE

Cornell University
Ithaca, NY 14853

sms579@cornell.edu

Rochelle Barsz
School of ECE

Cornell University
Ithaca, NY 14853

rsb359@cornell.edu

Elizabeth Polito
School of ECE

Cornell University
Ithaca, NY 14853

emp234@cornell.edu

Aaron B. Wagner
School of ECE

Cornell University
Ithaca, NY 14853

wagner@cornell.edu

Abstract

We consider the design of practically-implementable schemes for the task of
channel simulation. Existing methods do not scale with the number of simultaneous
uses of the channel and are therefore unable to harness the amortization gains
associated with simulating many uses of the channel at once. We propose a new
scheme that uses polar codes to efficiently simulate i.i.d. copies of a class of
binary-output channels.

1 Introduction

Channel simulation refers to the task in which Alice observes a realization x of a random variable X
and sends a bit string to Bob. Bob, who shares common randomness with Alice, outputs a random
variable Y using both the message and the common randomness. The goal is to minimize the length
of the bit string subject to the constraint that Y should have a specified distribution PY |X(·|x).
This problem can be viewed as a “soft” or “stochastic” generalization of quantization. As with
quantization, Y has a digital representation (through Alice’s message), and it can be viewed as a
degraded version of X . The difference is that here the degrading process is stochastic in general. In
fact, the quantization problem is subsumed by taking the channel PY |X to be deterministic.

This stochastic generalization of quantization arises in lossy compression of various types of sources
including images [Flamich et al., 2020, Ballé et al., 2020], models [Havasi et al., 2018], and gra-
dients [Shah et al., 2022]. In these applications, X often represents a vector of latent variables,
model weights, or even an image consisting of millions of pixels [Theis et al., 2022]. The channel
of interest is therefore high dimensional, and it is usually independent across the dimensions. For
conventional quantization, it has long been recognized that the optimum rate-distortion tradeoff
is more favorable in higher dimensions [Cover and Thomas, 2006], a trend that one expects to
generalize to channel simulation. Indeed, let n · Rn be the minimum number of bits required to
generate Y n = (Y1, . . . , Yn), when Xn is i.i.d. and Y n is conditionally i.i.d. given Xn. Thus Rn is
the minimum number of bits per dimension when simulating the channel n times. The sequence nRn

can be shown to be subadditive and therefore satisfies (e.g., Liggett [1999, Thm. B22])

lim
n→∞

Rn = inf
n

Rn. (1)

It is known that R1 satisfies [Li and El Gamal, 2018]

I(X;Y ) ≤ R1 ≤ I(X;Y ) + log(I(X;Y ) + 1) + 5, (2)
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where I(X;Y ) refers to conventional Shannon mutual information. Applying this to i.i.d. (Xn, Y n)
and using the fact that I(Xn;Y n) = nI(X;Y ), we have

nI(X;Y ) ≤ n ·Rn ≤ nI(X;Y ) + log(nI(X;Y ) + 1) + 5, (3)

which shows that as n → ∞, Rn approaches the lower bound I(X;Y ). The challenge, for both
quantization and channel simulation, is that the complexity of schemes tends to grow exponentially in
n. In fact, although many channel simulation schemes have been proposed [Harsha et al., 2007], [Li
and El Gamal, 2018], [Flamich et al., 2022], [Flamich and Theis, 2023], [Flamich et al., 2024], none
have complexity that scales subexponentially in n, ignoring isolated examples for which R1 happens
to equal I(X;Y ) [Zamir and Feder, 1992], [Agustsson and Theis, 2020].

Vector quantization has long been recognized to be the dual, in a precise sense, of channel cod-
ing [Pradhan et al., 2003]. In channel coding, the decoder maps an arbitrary point to an element
of a finite set that is “close” in some channel-dependent sense. This is analogous to the role of the
encoder in quantization. Likewise the encoder in channel coding is analogous to the decoder in
quantization: both map bit strings to elements of said discrete set. Thus new techniques for channel
coding can often be applied to vector quantization [Goblick, 1963], [Viterbi and Omura, 1974] and
vice versa [Laroia et al., 1994].

The goal of this paper is to demonstrate how ideas from coding theory can likewise be applied to
the channel simulation problem. We shall see that by adopting these techniques, we can develop
schemes that significantly outperform state-of-the art methods, both in terms of their scalability and
their rate performance. Specifically, we show how polar codes [Arikan, 2009] can be applied to
the simulation problem using a method called PolarSim. Polar codes make for a good exemplar
of this general proposal for five reasons. First, they have excellent channel coding performance,
both theoretically [Mondelli et al., 2016] and practically [Egilmez et al., 2019]. Second, their
complexity scales as n log n. Third, they require no manual tuning. Fourth, they are simple to
describe, requiring minimal background in coding theory. Finally, there exist highly optimized
implementations of the encoding and decoding algorithms (e.g., [Pfister, 2023]). Their limitation is
that, in their basic form, they can only be applied to symmetric binary-input channels. As we shall see,
this means that PolarSim can only simulate symmetric binary-output channels. This class includes,
for example, the binary symmetric channel, the (reverse) binary erasure channel, and channels of
the form X → signum(X + Z), where X and Z are real-valued, independent random variables
with symmetric distributions. Note that the input to the channel need not be binary and may even be
continuous.

For these channels, we show both theoretically and experimentally that, by scaling up the dimension,
the rate of PolarSim can be made to approach the mutual information lower bound I(X;Y ) ≤ Rn

from (3). The superior scalability of PolarSim thus translates to a significant rate improvement
over the state-of-the-art, since those schemes are not able to harness the amortization gain associated
with letting n grow. Although PolarSim is restricted to binary-output channels, it is worth noting
that there are currently no known schemes that simulate any nontrivial class of channels with even
subexponential complexity in n. Also, for compression applications, a binary output alphabet is not
unreasonable. It should be emphasized that the binary-output restriction is particular to the basic
form of polar codes, not error-correction methods in general. In the supplementary materials we
discuss how a different coding technique, trellis coded modulation, can be applied to closely simulate
a Gaussian channel. See also the discussion in the Concluding Remarks section on non-binary polar
codes.

One lesson from the coding theory literature, especially with the advent of modern coding theory in
the 1990s [Richardson and Urbanke, 2008], is that it is advantageous to prioritize scalability with the
dimension n over achieving optimal performance for particular n. The reason is that performance
naturally improves with increasing n (as in (1)-(3) above), and this improvement can overcome
suboptimality at any given value of n. For state-of-the-art channel codes, the decoder typically
does not implement the optimal (maximum likelihood) decision rule. Instead, it implements a
scalable approximation to it. This design strategy of favoring scalability over optimality is now well
established in coding theory and vector quantization, and our goal here is to show how it can be
profitably applied to channel simulation.
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1.1 Terminology and Notation

We follow the standard convention of denoting the dimensionality of vectors by their superscript. We
will also denote compound i.i.d. channels by superscripts: p×n denotes n i.i.d. copies of a distribution
p. The number of copies here is referred to as the block length or dimension of the channel. All
logarithms mentioned in this paper are base 2. The binary entropy function hB : [0, 1

2 ] 7→ [0, 1] is
defined as hB(p) = −p log p−(1−p) log(1−p). We will also refer to its inverse h−1

B : [0, 1] 7→ [0, 1
2 ]

defined such that h−1
B (hB(p)) = p.

1.2 The Channel Simulation Problem

Consider a joint probability measure pXY on the set X × Y . Alice receives a sequence of n symbols
from the input alphabet X drawn according to p×n

X and encodes it into a binary string that she
transmits to Bob. Upon receiving the message from Alice, Bob then decodes it to generate a sample
from the channel p×n

Y |X . The objective is to find coding schemes that minimize the average rate— i.e.,
the average amortized length of the bit string transmitted by Alice. We refer to n as the block length
or the dimension. We require that the set of strings that Alice can transmit to Bob to form a prefix-free
set, meaning that no string in the set is a prefix of any other. Alice’s message is thus self-terminating,
and schemes for block length m and n can be combined to obtain a scheme for block length m+ n
by concatenation. If Rn denotes the minimum average rate, i.e., the minimum average length of
Alice’s string over all schemes, normalized by n, then nRn is subadditive in n, as noted earlier.

Both Alice and Bob are permitted to use randomized strategies and are assumed to share a source of
common randomness. Under this assumption, Li and El Gamal [2018] prove the performance bounds
(2) and (3) above (see also Harsha et al. [2007]). For large n, Sriramu and Wagner [2024] improve
upon this result for i.i.d. discrete memoryless channels, showing that the logarithmic redundancy
term can be halved for some channels and eliminated for all others. While these schemes are nearly
rate-optimal, their complexity scales exponentially in n. Other practical schemes have been proposed,
although none have even subexponential scaling in n outside the small class of channels for which
the lower bound in (3) is tight for all n.

1.3 Related Work

The achievability proof in Li and El Gamal [2018] inspired several practical schemes that exploit
properties of the Poisson process and perform well at short block lengths [Flamich et al., 2022,
Flamich, 2024]. Similarly, the rejection sampler proposed by Harsha et al. [2007] has been generalized
by Flamich et al. [2024] to work for arbitrary probability spaces. None of these schemes exhibit
subexpoential complexity with n when applied to product channels, however. If one restricts attention
to n = 1 and unimodal distributions, then improved schemes are possible [Flamich et al., 2024,
Hegazy and Li, 2022], although by their nature such schemes cannot harness the amortization gain
associated with increasing n.

Chou et al. [2018] addresses the problem of total variation approximate channel simulation and
proposes a fixed rate scheme based on a soft covering argument that uses polar codes.

As noted in the introduction, the primary application of the channel simulation task is learned
compression. Lei et al. [2024] and Li et al. [2020] consider how vector quantization methods can
be directly applied to the compression task without explicitly simulating a channel. Although their
methods do not simulate an i.i.d. channel, their use of ideas from error-correcting codes and vector
quantization makes them the closest prior works to the present paper along with Chou et al. [2018].

2 Proposed Scheme

We begin by describing a "toy scheme" for simulating binary output channels. This is not a rate-
efficient scheme in its own right, but it serves as a foundation for one.

2.1 Toy Scheme for Binary Output Channel Simulation

Consider a joint distribution pXY where pY is Bernoulli
(
1
2

)
. Then, the following algorithm simulates

pY |X exactly:

3



1. Use the common randomness to generate Z ∼ Unif(0, 1) and V = 1
(
Z > 1

2

)
at both the

encoder and decoder.

2. At the encoder, having observed an input realization x, compute the output bit Y =
1
(
Z > pY |X(0|x)

)
and the correction bit ∆ = Y ⊕ V .

3. Transmit ∆ to the decoder after lossless compression.

4. Recover Y = ∆⊕ V at the decoder.

In Appendix A, we show that the rate associated with repeated application of this scheme is upper
bounded by hB

(
1
2 − h−1

B (1− I(X;Y ))
)
. As we can see in Figure 3, this is highly suboptimal in

general. However, we note that for the special case in which the mutual information is polarized, i.e.,
where I(X;Y ) ≈ 0 or I(X;Y ) ≈ 1, the toy scheme is close to optimal.

This observation is crucial as it suggests a path forward: If we can transform a given channel
simulation problem to the problem of simulating polarized channels, it can be solved rate-efficiently
using the toy scheme. Polar codes provide us with the means to achieve such a transformation.

2.2 Channel Simulation Using Polar Codes

Let us examine the problem of simulating two independent realizations of a symmetric1 binary output
channel pY |X . Consider the following bijection applied to the output Y 2 = (Y1, Y2):

U1 = Y1 ⊕ Y2 (4)
U2 = Y2. (5)

It is clear that simulating the original pair of i.i.d. channels pY1|X1
and pY2|X2

is equivalent to
simulating the transformed pair of channels pU1|X1,X2

and pU2|X1,X2,U1
sequentially. The mutual

information of each of the original i.i.d. channels are equal to I(X;Y ). However, the two trans-
formed channels differ in terms of mutual information: I(X1, X2, U1;U2) > I(X;Y ) because U2 is
observed through two different channels. This necessitates that the other channel has lower mutual
information: I(X1, X2;U1) < I(X;Y ).

Therefore, the linear transformation we applied to the output had the effect of polarizing the target
channel. For larger blocklengths, we can apply this transform recursively: for larger block lengths ,
divide the channels into pairs and apply the two-dimensional polar transform we saw above. Then,
collect pairs of transformed channels that have the same mutual information and repeat the procedure.
This can be succinctly summarized by the following equation [Arikan, 2009]:

Un = Y nG−1
n ,where (6)

Gn = Bn

[
1 1
0 1

]⊗n

, with Bn being the bit-reversal permutation. (7)

As we saw in the two-dimensional problem, applying this transform leaves us with the problem of
simulating the subchannels pU1|Xn , pU2|Xn,U1

, . . . , pUn|Xn,Un−1 . Arikan [2009] shows that these
subchannels are highly polarized for large n. For each i, I(Ui;X

n, U i−1) ≈ 0 or I(Ui;X
n, U i−1) ≈

1. This allows us to simulate them using the toy algorithm described in the previous section.

Algorithms 1 and 2 describe the complete scheme. The encoder input p̄i refers to the subchannel
parameter

p̄i = h−1
B (H(Ui|U i−1, Xn)). (8)

These can be calculated offline using the techniques used to compute subchannel quality for commu-
nication (See Tal and Vardy [2013], Zhang et al. [2014]) The SoftPolarDec(ui−1, xn) subroutine
outputs

Pr(Ui = 0|U i−1 = ui−1, Xn = xn), (9)

which can be calculated with O(n log n) complexity using a recursion given by Arikan [2009]. The
PolarEnc(un) subroutine simply multiplies by the generator matrix in: yn = unGn. This can

1Specifically, we focus on joint distributions pXY such that pY is Bernoulli
(
1
2

)
, and that there exists a

self-inverting bijection A : X 7→ X with pY |X(0|x) = pY |X(1|A(x)) for all x.
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be implemented in O(n log n) by exploiting the recursive structure. The Compress(∆n, p̄n) and
Decompress(b, p̄n) routines can be any lossless compressor/decompressor pair that uses at most

c+

n∑
i=1

[
1(∆i = 1) log

1

1/2− p̄i
+ 1(∆i = 0) log

1

1/2 + p̄i

]
(10)

bits to send ∆n, where c is some constant independent of n and ∆n. Arithmetic coding (Rissanen
[1976]) is a widely-used scheme that achieves this guarantee with c = 2.

Algorithm 1: Encoder for simulating a channel using polar codes.

Input :Block length n = 2k, k > 0
Random bit string zn ∼ Unif ([0, 1]n)
Probability table pn ∈ [0, 1]n

Source string xn ∈ Xn

Output :string b ∈ {0, 1}∗
for i = 1, . . . , n do

if zi > SoftPolarDec(xn, ui−1) then ui ← 1 else ui ← 0
if zi > 1/2 then vi ← 1 else vi ← 0
∆i ← ui + vi

b← Compress(∆n, pn)
return b

Algorithm 2: Decoder for simulating a channel using polar codes.

Input :Block length n = 2k, k > 0
Random bit string zn ∼ Unif ([0, 1]n)
Probability table pn ∈ [0, 1]n

Compressed offset string b
Output :Simulated channel output yn ∈ {0, 1}n
∆n ← Decompress(b, pn)
for i = 1, . . . , n do

if zi > 1/2 then vi ← 1 else vi ← 0
ui ← ∆i + vi

yn ← PolarEnc(un)
return yn

If one uses a linear complexity algorithm for Compress and Decompress, then the overall complexity
of PolarSim is O(n log n) for both encoding an decoding. Using the fact that polar codes achieve
capacity for symmetric channels, we can show that PolarSim is rate optimal in the large-n limit,
making it currently the only scheme with subexponential complexity in n with a comparable guarantee.
Theorem 1 in the appendix formalizes these guarantees.

2.3 Experimental Results

We run PolarSim on the following three channels: (1) the binary symmetric channel, (BSC ), defined
by X = Y ⊕ Z, where Z ∼ Bernoulli(p) for p ∈ [0, 1] BSC with a uniform input (2) the binary
erasure channel, X = Z · Y , where Y is uniform over {−1, 1} and Z is Bernoulli(ϵ), and (3) the
binary Gaussian channel X = Y + Z, where Y is again uniform over {−1, 1} and Z is N (0, σ2).
Note that the reverse of the BSC with a uniform input is the BSC itself.

Fig. 1 shows the rate performance of these simulations. Even at a block length of 212, the performance
is already close to the mutual information lower bound across all channels and rates. Performance
improves with n as expected, with both the average rate and the variance in the rate decreasing.

We also compare our scheme to the state-of-the-art scheme for channel simulation, Greedy Poisson
Rejection Sampling (GPRS) [Flamich, 2024] (see Appendix C for the implementation details). Fig. 2
shows that PolarSim significantly outperforms GPRS in terms of the communication rate, even when
the latter is optimized for the channel at hand. Table 1 in Appendix D shows that its computational
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Figure 1: Rates achieved by PolarSim at different block lengths — n = 212 (left), n = 217 (top-right and
middle-right), n = 214 (bottom-right) for different noise levels across different channels, compared against the
theoretical lower bound I(X;Y ) . Top: BSCp for p ∈ (0, 1

2
), Middle: Gaussian for σ2 ∈ (0, 3), Bottom:

Erasure for ϵ ∈ (0, 1). The lines represent the median values, and the boundaries of shaded regions represent the
5th to 95th percentile rates over 200 simulation runs.
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Figure 2: Comparison of schemes for BSC simulation: Average rates for PolarSimwith n = 212 and
n = 217 compared against GPRS with n = 8 and the theoretical lower bound I(X;Y ) over 1000 simulation
runs.

efficiency is also significantly better, by several orders of magnitude. This is due to the exponential
computational complexity of GPRS in n compared to the pseudolinear complexity of PolarSim.
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Figure 3: The upper bound on the rate of the toy scheme described in section 2.1 is plotted against the mutual
information lower bound.

A Rate of the Toy Scheme

The rate of this scheme is governed by the cost of compressing the correction bit ∆. We have
Pr(∆ = 1) = E [Pr(∆ = 1|X)] (11)

= E

[
1

2
− min

j∈{0,1}
pY |X(j|X)

]
(12)

=
1

2
− E

[
min

j∈{0,1}
pY |X(j|X)

]
(13)

=⇒ H(∆) = hB

(
1

2
− E

[
min

j∈{0,1}
pY |X(j|X)

])
. (14)

Rearranging this, we can obtain

E

[
min

j∈{0,1}
pY |X(j|X)

]
=

1

2
− h−1

B (H(∆)). (15)

Next, consider
I(X;Y ) = 1−H(Y |X) (16)

= 1− E

[
hB

(
min

j∈{0,1}
pY |X(j|X)

)]
(17)

≥ 1− hB

(
E

[
min

j∈{0,1}
pY |X(j|X)

])
(18)

= 1− hB

(
1

2
− h−1

B (H(∆))

)
. (19)

Rearranging this, we finally obtain the required upper bound:

H(∆) ≤ hB

(
1

2
− h−1

B (1− I(X;Y ))

)
. (20)

B Theoretical Guarantees

Theorem 1. Consider a symmetric binary output joint distribution PXY . Suppose Compress and
Decompress achieve the guarantee in (10).

1. (Correctness:) Algorithms 1 and 2 simulate the channel P×n(Y |X) exactly: If Zn is
i.i.d. Unif[0, 1], and p̄i = h−1

B (H(Ui|U i−1, Xn)), then the conditional probability that
Algorithm 2 outputs yn given that xn is the input to Algorithm 1 is

n∏
i=1

PY |X(yi|xi). (21)
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2. (Optimality:) Algorithms 1 and 2 are asymptotically rate optimal:

lim
n→∞

1

n
E[ℓ(b)]→ I(X;Y ), (22)

where b is the output of the encoder.

Proof. Suppose n is a power of two, and consider the following joint distribution between
(Un, Xn, Y n):

Pr(Un = un, Y n = yn, Xn = xn) =

n∏
i=1

PX(xi)

n∏
i=1

PY |X(yi|xi)1(u
n = ynG−1

n ) (23)

=
1

2n
1(yn = unGn)

n∏
i=1

PX|Y (xi|yi). (24)

Given the input Xn, the Un string generated by the encoder has distribution P×n
U |X by construction,

since SoftPolarDec(xn, ui−1, PX|Y ) computes Pr(Ui = 0|Xn = xn, U i−1 = ui−1) under the
distribution in (23)-(24). Due to the lossless nature of the compression, ∆n is recovered exactly at
the decoder. Since V n is common to the two terminals, Un is thus recovered exactly by the decoder.
Then setting Y n = Un ·Gn results in (Xn, Y n) having the joint distribution P×n

XY as desired. This
establishes the correctness of the algorithm for n that is a power of two. Correctness of the algorithm
for any n immediately follows.

Turning to optimality, again suppose n is a power of two. For the sequence ∆n we have

Pr(∆i = 1) =
1

2
−

∑
ui−1,xn

PUi−1,Xn(ui−1, xn)min
(
Pr(Ui = 1|U i−1 = ui−1, Xn = xn), (25)

Pr(Ui = 0|U i−1 = ui−1, Xn = xn)
)

(26)

=
1

2
−

∑
ui−1,xn

PUi−1,Xn(ui−1, xn)h−1
B (H(Ui|U i−1 = ui−1, Xn = xn)) (27)

≤ 1

2
− h−1

B (H(Ui|U i−1, Xn)) (28)

=
1

2
− p̄i, (29)

where the inequality follows by the convexity of h−1
B (·). Thus the average rate may be bounded as

1

n
E[ℓ(b)] ≤ 1

n

n∑
i=1

[
Pr(∆i = 1) log

1

1/2− p̄i
+ Pr(∆i = 0) log

1

1/2 + p̄i

]
+

c

n
(30)

≤ 1

n

n∑
i=1

hB

(
1

2
− p̄i

)
+

c

n
. (31)

We bound this quantity using the polarization property. Fix δ > 0. By Arikan [2009], for all
sufficiently large n there is a set Nn of “noisy” indices such that

|Nn|
n
≥ 1− I(X;Y )− δ (32)

hB(1/2− p̄i) ≤ δ for all i ∈ Nn. (33)
The rate is thus upper bounded by

E[ℓ(b)]

n
≤ n− |Nn|

n
+

1

n

∑
i∈Nn

hB(1/2− p̄i) +
c

n
(34)

≤ n− |Nn|
n

+
δ · |Nn|

n
+

c

n
(35)

≤ I(X;Y ) + 2δ +
c

n
. (36)
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If we let R̄n = E[ℓ(b)]/n denote the minimum rate of PolarSim at block length n (minimized over
all partitions if it is not a power of two), then nR̄n is itself subadditive. As n increases through
powers of two, from (36) we have

R̄n → I(X;Y ). (37)
and thus

inf
n

R̄n = I(X;Y ). (38)

The result then follows by subadditivity (cf. 1).

C GPRS Implementation Details

We implement Algorithm 3 in Flamich [2024]. The proposal distribution P is chosen to be i.i.d.
Bernoulli(1/2) with n = 8. Given the input Xn = xn, the target distribution Q(yn) is chosen to
be

∏n
i=1 BSCp(yi|xi), where p ranges over (0, 1/2). The stretch function σ was derived using the

definitions provided in [Flamich 2023]:

wP (h) = F

(
log h− n(log(1− p) + 1)

log p− log(1− p)
, n,

1

2

)
,

wQ(h) = F

(
log h− n(log(1− p) + 1)

log p− log(1− p)
, n, p

)
, and

σ(h) =

h∫
0

1

wQ(η)− ηwP (η)
dη,

where F (·, n, p) is the CDF of a Binomial(n, p) random variable. This stretch function was evaluated
numerically for each input. The algorithm outputs a positive integer n, which is entropy coded using
the Zeta distribution in [Flamich 2023, (151)]. The number of bits is divided by n = 8 to obtain the
rate.

We also make use of the fact that the selection rule employed by the algorithm needs to be evaluated
for each point in the output sample space only once — if the first occurrence of an output sequence in
the randomly generated codebook is rejected, all its subsequent occurrences are also rejected. This
improvement helps speed up the execution significantly and also reduces the rate as repetitions need
not be indexed.

D Execution Time Comparison Table

p PolarSim GPRS λ
Median p5 p95 Median p5 p95

0.00 0.009 0.008 0.01 192.0 161.4 205.8 21333
0.25 0.009 0.008 0.01 246.1 180.7 415.7 27347
0.49 0.009 0.008 0.01 227.7 176.1 318.7 25305

Table 1: Execution time comparison between PolarSim and GPRS, for simulating BSC’s with block length
n = 212. The reported statistics are computed over 1000 trials for each value of the crossover probability p.
GPRS cannot directly simulate such large block lengths. Therefore, the GPRS runtimes are obtained by scaling
up the runtime for n = 8 blocks. This is justified by subadditivity (see (1)). The column λ computes the ratio
between the medians of the two schemes. For our chosen block length, PolarSim performs over four orders of
magnitude faster than GPRS.
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