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ABSTRACT

Continual Learning (CL) methods aim to mitigate Catastrophic Forgetting (CF),
where knowledge from previously learned tasks is often lost in favor of the new
one. Among those algorithms, some have shown the relevance of keeping a re-
hearsal buffer with previously seen examples, referred to as memory. Yet, despite
their popularity, limited research has been done to understand which elements are
more beneficial to store in memory. It is common for this memory to be populated
through random sampling, with little guiding principles that may aid in retain-
ing prior knowledge. In this paper, and consistent with previous work, we found
that some storage policies behave similarly given a certain memory size or com-
pute budget, but when these constraints are relevant, results differ considerably.
Based on these insights, we propose CAWS (Consistency AWare Sampling), an
original storage policy that leverages a learning consistency score (C-Score) to
populate the memory with elements that are easy to learn and representative of
previous tasks. Because of the impracticality of directly using the C-Score in CL,
we propose more feasible and efficient proxies to calculate the score that yield
state-of-the-art results on CIFAR-100 and Tiny Imagenet.

1 INTRODUCTION

Deep Learning models have repeatedly shown state of the art performance in numerous tasks, in-
cluding image recognitionHe et al. (2016); Dosovitskiy et al. (2020), Natural Language Processing
(NLP) Devlin et al. (2018); Brown et al. (2020) or games previously thought to be intractable to
solve, such as Go Silver et al. (2016) and Starcraft II Vinyals et al. (2019). However, as a common
limitation, all these models lack versatility: when trained to perform novel tasks, they rapidly for-
get how to solve previous ones. This condition is known as catastrophic forgetting and is the main
problem tackled by Continual Learning methods Parisi et al. (2019); Delange et al. (2021).

A variety of methods have been proposed to approach this problem. Some have focused on allocating
parameters sub-spaces for each new task Rusu et al. (2016); Mallya et al. (2018), others define
restrictions on gradients learned Kirkpatrick et al. (2017); Lopez-Paz & Ranzato (2017), while others
use meta-learning to learn reusable weights for all tasks Rajasegaran et al. (2020); Hurtado et al.
(2021). Among these, memory-based methods like Experience Replay Chaudhry et al. (2019); Kim
et al. (2020) have consistently exhibited greater performance while being easy to understand. In
these methods, a memory of samples from previous tasks is kept during training of the current task
to avoid forgetting how to solve previous tasks. Notwithstanding the popularity and effectiveness of
memory-based methods, few studies have been conducted on how populating the memory affects the
performance of CL methods. In particular, Chaudhry et al. (2018a); Wu et al. (2019); Hayes et al.
(2020); Araujo et al. (2022) show that when populating the memory by focusing solely on sample
diversity or class balance, random selection of elements ends up performing nearly or just as well
without adding extra computation.

It is clear that having a representative set of examples of the underlying distribution is critical for
preserving previous knowledge. Ideally, one would like to save a large number of samples. Unfor-
tunately, since saving large amounts of data results in computational overhead, we have to limit the
memory size and choose which elements to keep. In this paper, we argue that this memory must
satisfy two fundamental requirements in order to perform reliably. The first is to have elements that
are easy to remember, or that the model can learn quickly. The second is to have elements that are a
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suitable representation of the distributions of past experiences, having diversity but being careful to
avoid outliers. We refer to these two ideas as Fast Learning and Diversity.

For the first requirement, we leverage a concept called learning consistency (Jiang et al., 2021)
to measure how consistently a sample is learned by a given class of a models. Specifically, we
populate the memory with elements with higher consistency values, which have also been shown
to be the fastest to learn. Thus, sample efficiency is improved for memory samples. However, by
selecting only those samples with the highest consistency values, the model learns only a limited set
of patterns, reducing the diversity of samples stored in the memory and limiting how much of the
decision boundary the model is capable of representing. To overcome this, we propose Consistency
AWare Sampling (CAWS) as a new populating strategy that incorporates sampling from a broader
group of high consistency elements. This new proposal adds diversity to the memory while allowing
the model to learn a far more detailed decision boundary.

One of the limitations of the consistency score (C-Score) is that it requires training multiple models
with the entire training distribution in order to find out how easy or difficult it is to train an example,
which, in addition to being expensive, is impractical for CL. To mitigate this problem, we propose
proxies to calculate the consistency of an example, achieving similar performance without the need
of training multiple models on the entire training set beforehand. These proxies are not limited to
CL scenarios, they can also be used in environments where these types of scores are commonly
used, such as in Curriculum Learning (Bengio et al., 2009).

Thus, our contributions can be summarized as follows:

• Taking a step towards understanding how the memory should be populated based on the
effectiveness-efficiency trade-off of the scenario.

• In Section 3, we propose a novel method - Consistency AWare Sampling (CAWS)- for
populating the memory for Continual Learning based on the idea of learning consistency.
This method equals or outperforms state-of-the-art memory selection methods.

• Since learning consistency requires trained models on the same training data to be esti-
mated, in Section 4 we propose practical proxies that require no extra training and achieve
similar results. Moreover, these proxies could be used for other scenarios where C-Scores
are required, such as Curriculum Learning.

2 FAST LEARNING

Multiple ways to populate memory in CL have been proposed. However, few studies have explored
when different approaches work better than others. Some studies have shown that, under certain
conditions, there is no significant difference between the proposed methods, showing how limited
our understanding of how replay strategies is. In this work, we will consider the following methods
as baselines:

(a) Reservoir. A reservoir (Vitter, 1985) strategy allows sampling elements from a stream without
knowing how many instances to expect. The method selects each sample with a probability M

N
where N is the number of elements observed so far, and M is the memory size. This way, it acts
randomly to maintain a uniform sample from the already seen stream.

(b) Class Balance. As the name states, each class has an equal proportion of the buffer size
(Chrysakis & Moens, 2020). We use a dynamic assignment, meaning that the memory is always
complete. Samples of new classes replace instances of old classes to maintain equal distribution in
the memory.

(c) Task Balance. Similar to Class Balance, but instead of an equal proportion of classes, the
memory is divided by the number of tasks the sequence has (Lopez-Paz & Ranzato, 2017).

(d) Mean of Features (MF). Proposed by Rebuffi et al. (2017), it calculates an average class fea-
ture vector, based on the representations of the elements in memory for a given class. If the distance
of the new vector to the corresponding class vector is smaller than the farthest in the memory, we
replace the new example with the farthest one.
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These methods perform rather similar to one another. Table 1 shows the mean accuracy over the
sequence of tasks obtained by these baseline methods. MF behaves similarly to Reservoir, Class
Balance, and Task Balance when we train each task for a limited amount of epochs (1). However,
when increasing the number of epochs, we see that MF outperforms the other methods considerably,
showing the importance of correctly populating the memory in some settings. The behavior is not
limited to a simple environment, as it can be replicated when changing the memory size and the
model used.

The similarity between methods when we have limited computation suggests that elements selected
are unsuitable when training for a small number of epochs. Given the selected memory, the model
cannot correctly identify relevant patterns from previous tasks. We hypothesize that: when we face
restrictions on the number of epochs that a model can train or in the memory size, we need to focus
only on those elements that are faster to learn.

Given this implication, and taking a page from the Curriculum Learning literature, we propose
prioritizing samples that are faster to learn based on learning consistency. In particular, we propose
to use a metric developed for Curriculum Learning called Consistency Score (Jiang et al., 2021).
This metric has shown benefits for faster learning under compute restrictions while also providing
more robust learning to noise (Wu et al., 2020) in Curriculum Learning.

Learning Consistency or C-Score measures how learnable a specific sample can be concerning a
set of models. It has been proposed as a task agnostic measure of the difficulty used in Curriculum
Learning. We can define the C-Score as follows: let D be a dataset of size n sampled from an
underlying distribution P . Let f(·, D) be a model trained on D. Then, for an instance (x, y) of D,
Learning Consistency is defined as:

CP,n(x, y) = E
D

n∼P
[P(f(x;D \ {(x, y)}) = y] (1)

In practice, estimating this score for each sample is computationally intractable, thus, approxima-
tions need to be made. Current approximations, however, still require training thousands of models
over a training set to acquire the score of each sample. Thankfully, the authors of the original pa-
per provide precomputed C-Scores for MNIST, CIFAR-10, and CIFAR-100. For other datasets,
in contrast, we need more efficient proxies. In particular, in the same work, the authors propose
to approximate the C-Score based on the learning speed of samples. However, this still requires
registering the percentage of iterations where a sample has been correctly classified.

To test the importance of our hypothesis, we devise two different methods where we populate mem-
ory based on learning consistency. The first one is High C-Score (High-C), which samples only the
top N most consistent elements of each class. The second one is Low C-Score (Low-C), which,
contrary to High-C, selects only elements with the lowest C-Score. This division helps us verify that
selecting easier (High-C) or difficult-to-learn (Low-C) elements can strongly impact the sequence’s
final accuracy.

2.1 EXPERIMENTAL SETUP

To provide an empirical validation to our hypothesis, we focus on a Class-Incremental setting, as has
been the main focus of recent Continual Learning scientific endeavors. Such scenario is much more
challenging and more realistic than the traditional Task Incremental setting (Van de Ven & Tolias,
2019). In Class Incremental scenarios, each task t consists of a new data distribution Dt = (Xt, Y t),
where Xt denotes the input instances and Y t denotes the instance labels. The goal is to train a
classification model f : X −→ Y using data from a sequence of T tasks: D = {D1, ..., DT }.
Each task is presented sequentially to the model and trained for E epochs. Crucially, unlike the Task
Incremental setting, a task descriptor is only available during training.

2.1.1 DATASETS

We train our models on different sequence of CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton,
2009) splits in 5 tasks, and TinyImageNet (Le & Yang, 2015) split in 10 and 20 tasks. CIFAR10
and CIFAR-100 data-sets are traditionally used in Continual Learning and have the advantage of
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Table 1: Accuracy for models trained with different memory population methods for 1, 5 and 10
training epochs. Selecting only from the most consistent samples improves accuracy when we have
a limited budget (1 epoch). However, as we increase the number of epochs, we can see that Mean
Features achieves better results. This behavior holds for different memory sizes and architectures.

CIFAR100-500 CIFAR100-1000 CIFAR100-500-RS
# E 1 5 10 1 5 10 1 5 10
Reservoir 11.0% 14.9% 15.6% 11.1% 18.3% 19.3% 15.4% 22.8% 25.5%
Class Bal 11.5% 14.9% 15.9% 11.5% 18.2% 18.7% 15.7% 23.1% 26.0%
Task Bal 11.0% 14.9% 15.6% 11.5% 18.4% 19.3% 15.0% 22.9% 25.5%
MF 12.2% 16.4% 17.7% 11.7% 20.9% 20.6% 16.28% 25.5% 28.0%
Low-C 6.9% 9.9% 11.3% 7.0% 9.7% 11.4% 9.0% 14.0% 16.2%
High-C 14.5% 17.7% 18.6% 15.2% 19.9% 20.8% 18.2% 25.3% 27.3%

having available precomputed C-Scores. On the other hand, for TinyImageNet, we compute the C-
Score using the approximation proposed in (Jiang et al., 2021). These datasets also provide different
distributions of C-Scores, with CIFAR-10 and TinyImageNet having highly skewed distributions,
while CIFAR-100 shows a much more uniform distribution of C-Scores, as shown in Figure 8 in the
Appendix.

2.1.2 IMPLEMENTATION DETAILS

All experiments are run with 3 different seeds, each inducing a different ordering of sequences.
In the case of CIFAR-10 and CIFAR-100, we use a simple convolutional architecture proposed in
Mirzadeh et al. (2022). To better understand the behavior of our proposal, we also use a reduced
Resnet-18 (RS) (Rebuffi et al., 2017) for CIFAR-100. This last model is also used for Tiny-Imagenet
experiments. The optimizer is SGD with a learning rate of 0.001, momentum 0.9, and batch size
32, unless otherwise mentioned. All methods are trained using Avalanche (Lomonaco et al., 2021),
and the proposed methods’ plugin will be released and integrated in the library upon acceptance. As
proposed by Lopez-Paz & Ranzato (2017), we use the average performance over the T tasks after
the sequential learning (Acc), and the forgetting (For) measured by how much performance is lost
on previous tasks after sequential learning. Equation 2 shows the formulas for the metrics, where
Ai,j is the accuracy of task i after training task j.

Acc =
1

T

T∑
i=1

AccT,i For =
1

T − 1

T−1∑
i=1

AccT,i −Acci,i (2)

2.2 RESULTS

Since we are populating the memory with only the most consistent elements, we expect accuracy
to increase when the number of epochs is limited. Looking at the results in Table 1, we can indeed
confirm this overall trend. These results occur not only with different memory sizes and models in
CIFAR-100, as indicated in the columns of Table 1, but also in CIFAR-10, as shown in Figure 1.
Despite highly increasing the memory size in CIFAR-10, the effect on accuracy is still considerable
when we train for a single epoch. Focusing on Figure 1b, the primary reason for the increase in
accuracy is the mitigation of forgetting when populating with the High-C strategy. On the other
hand, we see that the opposite effect happens when we populating the memory with only the least
consistent samples. These results are expected, as these are the most difficult elements to learn.

We hypothesize that highly consistent samples are easily classified because they represent common
patterns in the dataset. Thus, training with those samples rapidly reinforces learning patterns that
can be applied to a broader set of samples from the same dataset, increasing the learning speed.
On the other hand, highly inconsistent samples would depend on patterns that are specific to fewer
samples or outliers. While High-C samples common patterns, it still represents a limited spectrum
of total dataset patterns, which limits its ability to remember past experiences. We find supporting
evidence for this hypothesis in Figure 1c. In it, we see that increasing the number of epochs used
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Figure 1: Different metrics for Mean of Features, Low-C, and High-C methods when trained on
CIFAR-10. Figure (a) shows that when increasing sample diversity by increasing the memory size,
one can observe that populating with High-C values can improve performance when training for
1 epoch. These results are explained because High-C can better mitigate forgetting. On the other
hand, by keeping the memory size at 2000 but changing the number of epochs, the performance of
High-C almost does not change, showing the limitation of the method.

C - Score Distribution

0.0 0.4 0.7

Low-c

High-c

Selecting Memory size 3

CAWS - 0.7

Figure 2: Difference in how the evaluated methods select samples from different sections of the
C-Score distribution for a memory of size = 3. Low-c only selects elements with the lowest C-Score.
High-c selects only those with the highest C-Score. On the other hand, CAWS samples from a sub-
group of elements with C-Scores higher than a given threshold, selecting randomly from this group.

in each task does not result in better performance when training on highly consistent samples as in
other methods. The low diversity from selecting only the highest consistency elements negatively
affects the performance since the memory cannot fully represent previous distributions.

3 DIVERSITY

As noted in the previous section, by only selecting the most consistent elements, the model can learn
effectively when given a few epochs per task. However, it can suffer from a lack of diversity when
training for more epochs. To avoid this problem, and as part of our current hypothesis, we want to
increase the diversity of the samples in memory.

With previous results, we had shown that selecting samples that are easy to learn can help during
training. At the same time, we learn to avoid less consistent elements since these tend to represent
outliers of each task. Given these insights, we propose Consistency Aware Sampling (CAWS), which
populates the memory by randomly selecting from the top X% of C-Score samples. We call this
percentage the Sampling Ratio of CAWS.

Both the High-C and Low-C scenarios emphasize learning consistency without diversity as they only
have access to a smaller range of input values. On the other hand, CAWS gets to choose from a pool
of high learning consistency samples over a wider spread of the training distribution. In Figure 2,
there is a visual explanation of how CAWS populate the memory. In the Appendix (Algorithm 1),
an algorithm explaining the procedure.

3.1 RESULTS

One of the problems we had with selecting only the most consistent elements was that the model
quickly forgot when we increased the number of epochs. Unlike High-C, CAWS can better repre-
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Figure 3: Model accuracy for different values of training epochs per task. Models trained on CIFAR-
10 and CIFAR-100 with a memory size of 100 and 500, respectively. Only selecting samples with
high C-Score does not work as well as other methods. However, when mixed with random selection,
as with CAWS, it equals or outperforms the baselines.
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Figure 4: Accuracy for models trained using CAWS for different sampling ratios. Accuracy behaves
as an inverted U-shape between two extremes. When the sampling ratio is 0.0, behavior is the same
as randomly selecting elements with maximal diversity. When close to 1.0 we are choosing a small
selection of the training data that is easy to learn but with little diversity. In between, there is an
optimal point where diversity and rapid learning balance each other.

sent previous tasks in memory, achieving better accuracy and less forgetting in different scenarios.
Figures 3b and 3c indicate that CAWS can add a better representation of previous experiences to
memory, achieve even better accuracy than MF when training for multiple epochs.

The compactness of some datasets’ C-Score distribution makes it difficult for High-C to represent
them with only the most consistent elements. This effect does not occur as drastically in datasets
where the distribution of the C-score is more uniform. For scenarios where High-C is inefficient,
CAWS performs similarly to the previous methods when adding diversity, as shown in Figure 3a.

3.2 UNDERSTANDING THE IMPORTANCE OF SAMPLING RATIO

Figure 4 shows how altering the sampling ratio affects the performance of CAWS. The performance
moves in an inverted U-Shape. When close to 0.0 it is the same as randomly selecting memory
elements. Ideally, this is where our memory may have access to samples with the greatest diversity.
However, this diversity comes with the price of being costly to learn in both compute and sample
efficiency. When we move closer to 1.0, we get efficient samples but lack enough diversity to model
the decision boundaries of the classifier accurately. We observe that a sampling ratio between 0.6 and
0.8 produces the best results in different datasets, where a balance of sample diversity and learning
speed is attained.

One can observe the relationship between memory size and the behavior of Sampling Ratio to study
further the diversity obtained using CAWS. Figures 4 shows that when the memory capacity in-
creases, the optimal value tends to decrease, which agrees with our CAWS diversity hypothesis.
When the memory capacity is low, it is preferable to have easy-to-learn examples that can correctly
represent a small group of data from the previous tasks. On the other hand, when memory grows, a
lower Sampling Ratio helps increase diversity, improving the representativeness of multiple patterns.
These results imply that if memory is limited, it is better to have less variety but well-represented
patterns than to have poorly represented patterns with high diversity.
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Figure 5: To get the proposed proxies for the consistency score, first (1) we must obtain a feature
vector for each sample of the dataset. These vectors come from a pre-trained model or the current
model depending on the proxy used. Then, for each sample, the N nearest neighbors (2) are retrieved
to count how many of those belong to the same sample class (3).

3.3 LIMITATIONS OF USING C-SCORES

Though CAWS outperforms other memory population methods, we understand that it requires hav-
ing access to C-Scores, which are highly costly to compute. Moreover, they require training models
on the same training distribution one hopes to learn. This assumption does not hold in the Contin-
ual Learning scenario. Thus, we propose a few proxies for the C-Score, which perform similarly
without any of its current limitations. The following section describes how they work.

4 C-SCORE PROXIES

To develop proxies for the C-Score, we base ourselves on the Critical Sample Ratio (CSR) from
Arplt et al. (2017) and the relative local-density scores proposed in Jiang et al. (2021). These metrics
relate fast learning with the relation of a given sample with neighboring samples in feature space.
The idea is that harder-to-learn decision surfaces have a greater mixture of samples with different
labels than easier ones. They find that pairwise distance proxies work in feature space after having
a model trained on the training distribution. These findings, of course, are impractical. However,
when using a pre-trained model, one might get a reasonable estimate of the C-Score without training
on the training data. Thus, our proxy consists of counting the ratio of neighbors of a given sample
that are from the same class:

ĈL(x, y) =
1

N

N∑
i=1

1[y = yi]

Where {(x1, y1), (x2, y2), ..., (xn, yN )} are the closest N neighbours of sample (x, y) in the pre-
trained model’s feature space. We use cosine distance as our distance metric and test using different
values of N . Empirically we found that between 5 and 200 it shows similar results, so we decided
to use a value of N equal to 100.

We test 3 progressively easier to calculate versions of the proxy in our experiments:

• Proxy 1: using data of the complete sequence, we use a pre-trained model to calculate the
embedding of each sample. Then we calculate neighbors. This proxy is still impractical
for the Continual Learning Scenario but can be used as a strong baseline.

• Proxy 2: using data only from the current task and using a pre-trained model, we calculate
the neighbors of the samples of the current task.

• Proxy 3: we use data only from the current task to calculate neighbours but use the current
model’s embeddings.

For simplicity, the pre-trained model used is a ResNet-18 with the weights obtained from PyTorch,
but even models pre-trained in a self-supervised way can be used.
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Figure 6: Accuracy for models trained with CAWS using increasingly more relaxed versions of
proxy C-Scores compared against the baseline Mean Features method for different number of train-
ing epochs. As can be seen, CAWS using any proxy outperforms the baseline significantly. Perfor-
mance differences between proxies are far less significant suggesting they can indeed be practically
used for Continual Learning Scenarios. NP: No Proxy.
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Figure 7: Similar to Figure 6 but with Forgetting. In most cases, forgetting decreases when we
approximate the C-Score. The results agree with section 1, where forgetting is much lower in our
proposal than MF, when training for fewer epochs. Although the gap narrowed as we increased the
epochs, Forgetting is still lower in CAWS than in MF.

4.1 RESULTS

We compare the Mean Features baseline with the different proxies of CAWS in Figure 6. The first
thing that stands out is that proxies continue outperforming MF. By utilizing our approximations, we
achieved a value that can be compared to the consistency of each task’s samples. However, a direct
comparison between the consistency values is not possible since they represent different ways of
calculating consistency. These results also suggest that CAWS can be used in practical scenarios for
Continual Learning, as both Proxies 2 and 3’s requirements are easy to meet in most applications.

Sometimes, proxy-based CAWS achieves better results than using the ground truth C-Scores. Two
complementary reasons can explain this. The first is that these approaches can help improve mem-
ory diversity without weakening the previous tasks representativeness. Second, these approaches
achieve a better consistency score than the C-Score. It is beyond the scope of this paper to verify
this hypothesis, as more studies are needed, focusing on different scenarios, not only CL. Nonethe-
less, we consider it an interesting topic for future research.

Based on Figure 6c, we observe that CAWS with the ground truth C-Score is less effective than other
simpler proxy methods in the case of Tiny ImageNet. In fact, its performance is even lower than MF.
As previously noted, Tiny Imagenet’s C-Score is approximated using an approximation proposed in
the original paper (Jiang et al., 2021), which we suspect may not be as strong as its ground truth
C-Score.

5 RELATED WORK

Memory-based methods mitigate CF by inserting data from previous tasks into the training process
of the current one (Ebrahimi et al., 2021; Buzzega et al., 2021). These approaches can either use raw
samples(Rebuffi et al., 2017; Chaudhry et al., 2019), minimize gradient interference (Lopez-Paz &
Ranzato, 2017; Chaudhry et al., 2018b) or train generative models such as GANs or autoencoders
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(Lesort et al., 2019; Shin et al., 2017; Kemker & Kanan, 2018) to generate elements from previously-
seen distributions.

Multiples approaches has been propose to populate the memory. One simple but efficient method is
the Reservoir strategy (Vitter, 1985), which randomly select the elements that go into the memory
buffer. Other strategies have been proposed by adding different metrics to populate the memory
with more representative elements (Chaudhry et al., 2019; Hayes et al., 2020; Hayes & Kanan,
2021; Aljundi et al., 2019b). Other works have focused in measuring the impact of hyperparameters
on certain methods (Merlin et al., 2022), or studied the effect that rehearsal methods have on the loss
functions (Verwimp et al., 2021). A different line of work has focused on how to select elements
from the memory, either by how much the loss of an element is affected (Aljundi et al., 2019a) or
by a ranking based on the importance of preserving prior knowledge (Isele & Cosgun, 2018).

Yet, in spite of the popularity of memory-based methods, little has been studied about the impact of
memory composition on Continual Learning (Tiwari et al., 2022). Some proposals along this line are
based on applying reservoir strategies (Chrysakis & Moens, 2020), while others have proposed to
use entropy-based functions to increase memory diversity(Wiewel & Yang, 2021; Sun et al., 2021).
Others have increased diversity by minimizing the angles of the gradients between different elements
(Aljundi et al., 2019b). Despite improving performance in certain scenarios, few studies have been
done targeting how to improve memory representativeness.

Other definitions of consistency have also been used in Continual Learning: Bhat et al. (2022a) and
Bhat et al. (2022b). In the first one, the author proposes to add a regularization term that minimizes
the Lp norm between representations of a pair of samples. In the second, the authors proposes a
self-supervised learning strategy to consolidate the knowledge of different tasks. However, both
definitions of learning consistency differ strongly from the one used in this work.

5.1 LEARNING CONSISTENCY

Learning Consistency and the C-Score (Jiang et al., 2021) come from a line of work analyzing deep
neural network training dynamics. One landmark study (Zhang et al., 2019) showed that deep neural
networks had the capacity to learn even random noise. Later studies (Arplt et al., 2017), showed that
natural images were learned faster than noise. Others analyzed how examples are forgotten during
training (Toneva et al., 2019). Other metrics have been proposed for measuring learning dynamics
such as model confidence, learning speed, holdout retraining and ensemble agreement (Carlini et al.,
2019) which correlate well with each other. Learning speed in particular has been shown to correlate
well with C-Score. Finally, a recent alternative for understanding per sample difficulty from the
model’s perspective is to measure the prediction depth in which a sample is correctly predicted at
(Baldock et al., 2021).

6 CONCLUSIONS AND FUTURE WORK

In this work, we have analyzed how a memory population criterion based on learning consistency
affects Experience Replay. We find that using only the most consistent samples in the memory
is useful solely when having a limited compute budget. Otherwise, using Means of Features to
populate the memory remains a strong baseline. However, selecting elements randomly from a set of
the most consistent elements - a procedure we named Consistency AWare Sampling (CAWS) - does
help and outperforms all baselines. This method relies on an accurate estimation of a measure called
C-Score that is non trivial to calculate and would usually be impractical for Continual Learning
scenarios. We propose proxies based on previous works that are easy to calculate and show little
deviation from using ground truth C-Scores and still outperform our presented baselines. These
proxies are not only useful for Continual Learning but can also be used for creating C-Score proxies
for Curriculum Learning. In future work, we would like to find ways to determine a priori what
is the right sampling ratio for a given task and how it relates to the C-Score distribution of a given
dataset.
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7 REPRODUCIBILITY STATEMENT

We will make our code public upon acceptance, along with examples of how to run the different
experiments.
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Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat.
Generative models from the perspective of continual learning. In International Joint Conference
on Neural Networks. IEEE, 2019.

11

https://openreview.net/forum?id=tHgJoMfy6nI


Under review as a conference paper at ICLR 2023

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L.
Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin Mundt, Qi She,
Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German I. Parisi, Fabio
Cuzzolin, Andreas Tolias, Simone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu,
Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, and Davide Maltoni.
Avalanche: an end-to-end library for continual learning. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2nd Continual Learning in Computer Vision Work-
shop, 2021.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in neural information processing systems, 2017.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multi-
ple tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision, 2018.

Gabriele Merlin, Vincenzo Lomonaco, Andrea Cossu, Antonio Carta, and Davide Bacciu. Practical
recommendations for replay-based continual learning methods. arXiv preprint arXiv:2203.10317,
2022.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu, Dilan
Gorur, and Mehrdad Farajtabar. Architecture matters in continual learning. arXiv preprint
arXiv:2202.00275, 2022.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak Shah.
itaml: An incremental task-agnostic meta-learning approach. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in neural information processing systems, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-
theoretic online memory selection for continual learning. In International Conference on Learn-
ing Representations, 2021.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 99–108, 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. In ICLR, 2019.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and mer-
its of revisiting samples in continual learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9385–9394, 2021.

12



Under review as a conference paper at ICLR 2023

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
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A APPENDIX

A.1 C-SCORE DISTRIBUTIONS

The distribution that follows the C-Score for the dataset used in the experiments can be found in
Figure 8. As mentioned in the main text, each dataset follows a different distribution, CIFAR-10
and Tiny Imagenet are more skewed than CIFAR-100. This distribution affects the results obtained
by the methods proposed in the paper.

(a) CIFAR-10 (b) CIFAR-100 (c) Tiny Imagenet

Figure 8: C-Score distribution for MNIST, CIFAR-10 and CIFAR-100. We can see a clear difference
between the different datasets, where the sets with the most data per class tend to cluster the C-Scores
in the upper part, indicating that more examples are easy to train. On the other hand, CIFAR-100
shows a more uniform distribution.

A.2 ALGORITHMS

The Algorithm 1 shows the details of CAWS. The only difference when applying the proxies, is that
the Original C-Score is changed with the consistency approximation.

Algorithm 1: CAWS
Components:

• Dt: Dataset for task t.

• M : Memory.

• Nc: # of elements in memory of class c.

• N t: # of elements to add per class.

• δ: C-Score threshold.

• C: C-Score

for classes in M do
M ← remove Nc −N t elements

end
for classes in Dt do

x← Sample N t from Dt
c where C(x) ≥ δ

M.add(x)
end
Output: Populated memory M .

A.3 TABLE WITH RESULTS

Below you can see the details of all the results obtained. These are the same ones used to generate
the figures in the main text.
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Table 2: CIFAR10 - Split 5 - Memory size 50 - Model simple cnn

# Epochs 1 2 3 4 5 10
Reservoir 26.3% 25.6% 22.6% 23.7% 22.1% 22.9%
Class Balance 26.7% 24.8% 24.1% 23.9% 22.4% 23.1%
Task Balance 25.8% 24.5% 23.0% 23.2% 22.2% 23.1%
Mean Features 29.4% 27.0% 25.1% 23.9% 25.2% 24.7%

Proxy 1 C-score Lower 20.5% 19.3% 19.7% 18.8% 19.4% 19.4%
Proxy 1 C-score upper 28.4% 28.8% 27.9% 27.0% 26.3% 25.9%
Proxy 1 CAWS 30.0% 29.2% 28.5% 29.1% 28.3% 27.2%
Proxy 2 C-score Lower 19.9% 19.7% 19.8% 19.6% 19.6% 20.0%
Proxy 2 C-score upper 28.3% 27.9% 27.2% 26.1% 26.3% 25.4%
Proxy 2 CAWS 28.6% 28.1% 27.8% 25.9% 26.0% 25.2%
Proxy 3 C-score Lower 18.6% 19.1% 19.0% 18.6% 18.8% 18.4%
Proxy 3 C-score upper 28.3% 26.8% 27.0% 25.8% 25.0% 25.3%
Proxy 3 CAWS 29.6% 28.6% 26.4% 25.8% 25.4% 24.7%
No Proxy CAWS 29.5% 27.9% 26.0% 25.7% 25.1% 24.9%

Table 3: CIFAR10 - Split 5 - Memory size 100 - Model simple cnn

1 2 3 4 5 10
Reservoir 30.44% 32.23% 28.26% 28.38% 27.88% 26.85%
Class Balance 31.80% 31.40% 29.61% 28.11% 27.60% 28.95%
Task Balance 30.45% 32.62% 29.41% 28.18% 28.22% 26.89%
Mean Features 34.09% 34.92% 32.70% 31.31% 31.06% 29.42%

Proxy 1 C-score Lower 22.99% 23.12% 22.89% 21.78% 21.98% 20.64%
Proxy 1 C-score upper 31.23% 32.98% 31.69% 30.96% 30.28% 29.14%
Proxy 1 CAWS 33.62% 34.73% 34.09% 33.68% 33.43% 31.80%
No Proxy CAWS 32.45% 34.22% 31.46% 31.52% 31.75% 30.01%

Table 4: CIFAR10 - Split 5 - Memory size 250 - Model simple cnn

1 2 3 4 5 10
Reservoir 34.80% 39.99% 40.32% 39.30% 38.82% 35.00%
Class Balance 33.39% 40.30% 40.00% 38.61% 38.51% 36.91%
Task Balance 34.56% 38.48% 39.66% 38.73% 38.79% 35.47%
Mean Features 35.35% 42.43% 43.34% 41.92% 41.97% 37.95%

Proxy 1 C-score Lower 24.87% 30.34% 31.04% 29.26% 29.09% 27.48%
Proxy 1 C-score upper 36.25% 38.93% 40.22% 40.00% 40.17% 38.31%
Proxy 1 CAWS 37.51% 41.61% 42.16% 42.89% 43.54% 40.46%
No Proxy CAWS 37.60% 41.31% 42.11% 41.77% 40.94% 39.71%

Table 5: CIFAR10 - Split 5 - Memory size 500 - Model simple cnn

# Epochs 1 2 3 4 5 10
Reservoir 35.0% 42.2% 44.7% 46.5% 46.6% 46.2%
Class Balance 35.5% 41.7% 45.2% 46.1% 47.7% 46.1%
Task Balance 35.2% 42.6% 44.8% 46.4% 47.3% 46.2%
Mean Features 35.8% 43.0% 46.8% 48.5% 48.9% 50.2%

Proxy 1 C-score Lower 25.0% 31.2% 34.5% 35.0% 34.0% 32.7%
Proxy 1 C-score upper 39.0% 42.3% 45.1% 46.7% 47.4% 46.5%
Proxy 1 CAWS 39.6% 44.3% 47.1% 48.6% 49.0% 49.6%
Proxy 2 C-score Lower 21.7% 25.1% 27.3% 28.8% 29.1% 29.3%
Proxy 2 C-score upper 37.8% 42.5% 45.0% 46.2% 47.9% 47.3%
Proxy 2 CAWS 37.9% 42.7% 46.2% 48.0% 50.0% 49.5%
Proxy 3 C-score Lower 19.7% 21.5% 21.8% 22.5% 23.0% 23.3%
Proxy 3 C-score upper 37.7% 41.4% 44.7% 45.0% 45.9% 47.3%
Proxy 3 CAWS 38.4% 43.2% 46.2% 47.4% 48.4% 48.9%
No Proxy CAWS 39.0% 44.1% 46.9% 48.7% 49.7% 49.8%
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Table 6: CIFAR100 - Split 5 - Memory size 500 - Model simple cnn

# Epochs 1 2 3 4 5 10
Reservoir 11.0% 13.3% 14.7% 14.8% 14.9% 15.6%
Class Balance 11.5% 13.2% 14.8% 14.5% 14.9% 15.9%
Task Balance 11.0% 13.3% 14.4% 14.8% 14.9% 15.6%
Mean Features 12.2% 15.3% 15.5% 16.5% 16.4% 17.7%

Proxy 1 C-score Lower 8.7% 10.5% 11.1% 12.0% 11.9% 13.0%
Proxy 1 C-score upper 14.2% 15.9% 17.1% 17.6% 17.8% 18.7%
Proxy 1 CAWS 14.5% 16.3% 17.5% 17.8% 18.2% 19.0%
Proxy 2 C-score Lower 8.1% 10.1% 10.6% 11.2% 11.6% 12.6%
Proxy 2 C-score upper 13.7% 16.1% 17.1% 17.4% 18.2% 18.7%
Proxy 2 CAWS 13.9% 16.5% 17.4% 17.9% 18.2% 18.9%
Proxy 3 C-score Lower 9.1% 10.5% 11.2% 11.6% 11.9% 13.0%
Proxy 3 C-score upper 13.5% 15.6% 16.6% 17.3% 18.0% 19.0%
Proxy 3 CAWS 13.7% 16.0% 17.4% 17.7% 18.2% 19.1%
No Proxy CAWS 14.7% 17.3% 18.1% 18.2% 19.0% 19.8%

Table 7: CIFAR100 - Split 5 - Memory size 1000 - Model simple cnn

# Epochs 1 2 3 4 5 10
Reservoir 11.1% 15.5% 17.8% 18.3% 18.7% 19.3%
Class Balance 11.5% 15.3% 17.9% 18.2% 18.3% 18.7%
Task Balance 11.5% 15.2% 17.5% 18.4% 18.5% 19.3%
Mean Features 11.7% 16.9% 19.6% 20.9% 21.1% 20.6%

Proxy 1 C-score Lower 8.7% 11.6% 13.1% 13.5% 14.4% 14.5%
Proxy 1 C-score upper 15.4% 18.2% 19.8% 21.2% 21.5% 21.8%
Proxy 1 CAWS 15.5% 18.6% 20.6% 21.8% 21.9% 22.4%
Proxy 2 C-score Lower 7.6% 10.7% 11.8% 12.6% 13.0% 13.3%
Proxy 2 C-score upper 14.2% 17.8% 19.7% 21.0% 21.1% 22.1%
Proxy 2 CAWS 14.5% 18.4% 20.2% 21.2% 21.7% 22.7%
Proxy 3 C-score Lower 8.8% 11.5% 12.9% 13.3% 13.8% 14.3%
Proxy 3 C-score upper 14.4% 17.2% 18.6% 19.8% 20.7% 22.1%
Proxy 3 CAWS 14.3% 17.5% 19.8% 21.1% 21.0% 22.4%
No Proxy CAWS 15.4% 19.5% 20.8% 22.4% 22.4% 22.8%

Table 8: CIFAR100 - Split 5 - Memory size 500 - Model Resnet

# Epochs 1 2 3 4 5 10
Reservoir 15.4% 19.1% 21.3% 21.8% 22.8% 25.5%
Class Balance 15.7% 19.3% 21.1% 22.1% 23.1% 26.0%
Task Balance 15.0% 19.2% 21.6% 22.0% 22.9% 25.5%
Mean Features 16.3% 21.0% 22.8% 24.2% 25.5% 28.0%

No Proxy CAWS 19.8% 23.7% 25.8% 26.9% 27.8% 30.1%

Table 9: CIFAR100 - Split 5 - Memory size 1000 - Model Resnet

# Epochs 1 2 3 4 5 10
Reservoir 15.3% 24.3% 26.2% 28.4% 29.1% 31.7%
Class Balance 17.5% 24.1% 26.5% 27.7% 29.6% 30.8%
Task Balance 15.3% 22.3% 25.6% 27.7% 29.1% 31.3%
Mean Features 17.9% 25.4% 29.3% 30.9% 31.0% 34.3%

No Proxy CAWS 21.3% 27.8% 31.1% 31.6% 32.6% 35.9%
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Table 10: Tiny Imagenet - Split 10 - Memory size 1000 - Model Resnet

# Epochs 1 5 10
Reservoir 9.2% 12.3% 12.7%
Mean Features 10.3% 14.7% 14.5%

Proxy 1 C-score Lower 9.1% 12.7% 13.3%
Proxy 1 C-score upper 9.5% 13.2% 13.3%
Proxy 1 CAWS 9.8% 13.4% 13.5%
Proxy 2 C-score Lower 8.8% 12.5% 11.7%
Proxy 2 C-score upper 10.8% 14.9% 15.8%
Proxy 2 CAWS 11.0% 15.5% 15.7%
Proxy 3 C-score Lower 9.0% 12.3% 12.0%
Proxy 3 C-score upper 9.6% 14.5% 15.0%
Proxy 3 CAWS 9.9% 14.9% 15.2%
No Proxy CAWS 9.8% 13.0% 13.3%

Table 11: Tiny Imagenet - Split 20 - Memory size 1000 - Model Resnet

# Epochs 1 5 10
Reservoir 7.7% 9.7% 8.9%
Mean Features 8.3% 11.9% 11.2%

Proxy 1 C-score Lower 7.9% 10.3% 9.7%
Proxy 1 C-score upper 7.4% 9.8% 10.0%
Proxy 1 CAWS 7.8% 10.3% 9.9%
Proxy 2 C-score Lower 6.4% 8.2% 8.1%
Proxy 2 C-score upper 8.6% 11.7% 12.0%
Proxy 2 CAWS 9.0% 12.5% 12.6%
Proxy 3 C-score Lower 6.6% 8.6% 9.0%
Proxy 3 C-score upper 7.7% 11.7% 11.5%
Proxy 3 CAWS 8.0% 11.8% 12.2%
No Proxy CAWS 7.6% 10.3% 10.0%

Table 12: Tiny Imagenet - Split 10 - Memory size 2000 - Model Resnet

1 5 10
Reservoir 9.39% 17.23% 17.51%
Class Balance 8.84% 17.82% 17.24%
Task Balance 9.28% 17.89% 17.31%
Mean Features 10.50% 20.25% 19.91%

No Proxy C-score Lower 9.11% 17.69% 17.58%
No Proxy C-score upper 8.96% 17.68% 16.24%
No Proxy CAWS 10.12% 18.29% 17.95%

Table 13: Tiny Imagenet - Split 20 - Memory size 2000 - Model Resnet

1 5 10
Reservoir 7.12% 14.49% 14.64%
Class Balance 6.19% 15.70% 15.02%
Task Balance 7.01% 14.79% 13.79%
Mean Features 7.79% 17.79% 16.45%

No Proxy C-score Lower 7.04% 15.77% 14.92%
No Proxy C-score upper 7.22% 15.33% 15.15%
No Proxy CAWS 8.15% 15.43% 15.08%
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