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Abstract— Accurate localization is a critical requirement for
most robotic tasks. The main body of existing work is focused
on passive localization in which the motions of the robot are
assumed given, abstracting from their influence on sampling
informative observations. While recent work has shown the
benefits of learning motions to disambiguate the robot’s poses,
these methods are restricted to granular discrete actions and
directly depend on the size of the global map. We propose Active
Particle Filter Networks (APFN), an approach that only relies
on local information for both the likelihood evaluation as well as
the decision making. To do so, we couple differentiable particle
filters with a reinforcement learning agent that attends to the
most relevant parts of the map. The resulting approach inherits
the computational benefits of particle filters and can directly act
in continuous action spaces while remaining fully differentiable
and thereby end-to-end optimizable as well as agnostic to the
input modality. We demonstrate the benefits of our approach
with extensive experiments in photorealistic indoor environ-
ments built from real-world 3D scanned apartments. Videos and
code are available at http://apfn.cs.uni-freiburg.de.

I. INTRODUCTION

The ability of a robot to accurately localize itself is
a core requirement across almost all robotic tasks from
navigation [1], [2] to mobile manipulation [3], [4], [5].
Accordingly, a broad body of research has been devoted to
this topic. The by far most common approach is to first define
an initial guess of the robot’s pose, then manually move the
robot until the localization algorithm has roughly converged
and continue to constantly localize the robot while it executes
its tasks. This is known as passive, local localization.

Most localization algorithms rely on a form of feature
matching between the current observations and a given (2D)
map of the environment. As such their performance strongly
depends on the current observations, which in turn are
decided by the robot’s motions which decide what parts
of the map will be observed. But the ability to sample
informative observations has remained largely unexplored. In
this work, we investigate the benefits of active localization,
in which the robot can actively seek observations that are
most informative of its current pose in the environment.
Furthermore, the agent can counteract the strengths and
weaknesses of particular localization modules by actively
avoiding ambiguous situations and failure modes of the
localization module.

Previous work has extended Adaptive Markov Localiza-
tion to active control by greedily maximizing information
theoretic quantities [6], [7], but for the most part, remained
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restricted to analytical observation models and structured
observations. More recently, learning-based methods have
shown the benefits of active decision making for localiza-
tion [8], [9], though have remained constrained to simple
environments [8] or discrete actions and small maps [9],
having to process the global map at every possible orientation
of the agent at each step.

We couple probabilistic and learning-based methods
through learned particle filters [10] and deep reinforcement
learning (RL) to generalize to continuous action spaces and
arbitrary sensor modalities independent of map size. Particle
filters [11] enable efficient representation of multi-modal
beliefs over large maps. These mechanisms can be made fully
differentiable [10], [12], enabling us to learn the components
of a particle filter end-to-end, thereby extending it to abstract
observations such as pixels or depth maps. Importantly, these
networks only need to process local information for each par-
ticle. We then train a reinforcement learning agent that selects
actions to minimize the overall localization error, following
the same principle of processing only local information
over the most likely hypotheses through a hard attention
mechanism. In contrast to previous work, this enables us
to process hypotheses over continuous poses [8], [9] while
at the same time breaking the dependency on processing the
full map with a neural network.

We evaluate our approach in extensive photorealistic
scenes of real-world 3D scanned apartments from the gibson
dataset [13] in the iGibson simulator [14] and find substan-
tial improvements in localization error over the baselines,
demonstrating the benefits of the learned policy.

II. RELATED WORK

Passive Localization: Established localization heavily rely
on Bayesian filtering-based techniques such as Kalman fil-
ters [15] which are restricted to modeling unimodal (Gaus-
sian) beliefs, Multi-Hypothesis Kalman filters that use mix-
tures of Gaussians [16] or non-parametric particle filters
which can model arbitrary distributions. Particle filters are
widely used in methods such as Monte Carlo Localiza-
tion and Adaptive Monte Carlo Localization (AMCL) [11].
Though these methods usually rely on structured observa-
tions and analytic observation models and therefore are most
commonly used with LiDAR observations. While there are
approaches that incorporate depth or camera images [17],
[18], constructing observation models for them is challeng-
ing. Recently, fully differentiable versions of particle filters
have been introduced [10], [12]. These fully differentiable



Fig. 1: Illustration of our proposed Active Particle Filter Networks.

versions enable the use of arbitrary modalities through end-
to-end optimization. Learning-based methods have also been
proposed to learn circular features [19], extract explicit
features such as room layout edges [20] or to estimate
odometry directly from visual inputs [21], [22].

Active Localization: Active localization has received com-
parably little attention in the past. Active versions of both
Markov Localization [6], [7] and Kalman filters [23] have
been proposed. These methods inherit the need for structured
observations or expert-specified observation models and aim
to maximize information theoretic quantities such as the
reduction in entropy of the belief. Chaplot et al. [8] introduce
a learnable Bayesian filtering approach in combination with
reinforcement learning. The model relies on access to ob-
servations from across the environment to compute features
ahead of time and at each step has to process the full map
for every possible discrete orientation. As a consequence, the
approach does not easily generalize to different map sizes at
test time and does not scale well to large maps or continuous
actions. Gottipati et al. [9] introduce a hierarchical likelihood
model in which the full map is processed at a coarse resolu-
tion and only likely areas are processed at higher resolutions.
But the dependency on the map size remains and only
discrete actions can be evaluated. For both approaches, the
dimensionality of the reinforcement learning agent’s inputs
scales linearly with the discretization of the rotation actions.
In contrast, our approach never has to process the full map
with a neural network and can directly evaluate continuous
poses and actions.

III. ACTIVE PARTICLE FILTER NETWORKS

A. Problem Statement

We assume a mobile robot that receives exteroceptive
sensor readings senst and proprioceptive odometry measure-
ments mt, placed randomly in an environment. Given a map
M of the environment, we seek the sequence of actions a1:T
that minimizes the pose error of the robot over a fixed time
horizon T . We may be given an initial guess of the initial
pose of the robot (local localization) or have to start from
a uniform belief over the full map (global localization). An
overview of our approach is depicted in Figure 1.

B. Localization Module

The robot starts with an initial belief b0, either uniformly
distributed over the map or based on an initial guess. Given
the current observation ot = [senst,mt], we then use a
differentiable particle filter network (PF-net) [10] to update
the current belief over the robot’s pose. PF-net uses neural
networks to present the observation and transition model of a
particle filter. By using a soft-resampling, where new particle
weights w

′k
t of K particles are sampled from a distribution

q(k) = αwk
t + (1− α)/K (1)

the gradients are non-zero for values of α ̸= 1, enabling
us to optimize through the whole network. The observation
model calculates the likelihood fk

t of a particle based on an
encoding of the current sensor readings and particle-centric
local map which is extracted from the global map through
a differentiable spatial transformer module [24]. As a result,
the likelihood of each particle can be evaluated based on
local information without the need to process the full global
map. This provides a number of advantages for active lo-
calization: (i) the network is fully differentiable and thereby
can be jointly optimized with deep reinforcement learning
algorithms, (ii) it is flexible to arbitrary robot sensors, making
it applicable to a wide range of robotic platforms and (iii)
it can handle continuous actions and arbitrary map sizes.
The model is trained end-to-end to minimize the mean
squared pose error. We follow the architecture of the original
work [10].

C. Active Localization

We aim to learn a policy to move the agent such that, given
the current belief about the robot’s pose and the localization
module, it can best disambiguate the true pose. The agent
is operating in a Partially Observable Markov Decision Pro-
cess (POMDP) M = (S,A,O, T (s′|s, a), P (o|s), r(s, a))
where S,O and A are the state, observation and action
spaces, T and P describe the transition and observation
probabilities, and r and γ are the reward and discount
factor. The agent’s objective is to learn a policy π(a|·) that
maximises the expected return Eπ[

∑T
t=1 γ

tr(st, at)].

Belief Representation: The PF-net provides us with a multi-
modal belief bt over the global map, represented by the
particle state. We transform this into a spatial, permutation
invariant representation by projecting the particles into a
belief map of dimension H ×W × 4 where the first channel
is the occupancy map, the second channel is the aggregated
weights for all particles in a given cell and the third and
fourth channel are the weighted sine and cosine of all
particles in a given cell. The sine and cosine are used to
circumvent the non-linearity in the angles.

Agent: We propose a reinforcement learning agent that ob-
serves both its current belief together with the low-level robot
observations and learns a policy π(at|bt, ot; l) where l is the
localization module. This allows it to improve the localiza-
tion in two ways: (i) actively sample the most informative



Parameter PF-net RL

train steps 400,000 1,000,000
batch size 8 256
lr 2.5e−3 3e−4
resample false true
β 0.36 0.36
T 25 50
particles 30 500
initial distribution tracking semi-global
initial std (translation, angular) 0.3, π/6 0.3, π/6
transition noise (translation, angular) 0.0, 0.0 0.01, π/36

RL only

control frequency, replay buffer size 1.7Hz 50,000
τ , γ 0.005 0.99
α, λcollision 0.5 0.1

TABLE I: Training hyperparameters for the PF-net and RL agent.

sensor readings and (ii) take into account the localization
module’s strengths and weaknesses, e.g. avoid observations
where the localization module does not perform well.

While the belief stretches the full map, within very few
steps the particles concentrate on a small number of most
likely regions. We apply the principle of local information
to break the dependency on the full map. We extract local
maps around the modes of the particle distribution from the
belief map. The agent then observes a stack of k local belief
maps, each centered and oriented according to a mode of
the distribution. This is akin to a hard attention mechanism,
which can be made fully differentiable if desired [25]. In
practice, just using the mean position and orientation of the
particles works well, but extending this to cover the top k
modes is straightforward. In contrast to previous work, this
allows to process and generalize to arbitrary map sizes and
arbitrary continuous poses and actions.

Training: The agent is trained to directly minimize the
prediction error of the localization network. At each step,
it receives a reward r = −Lpfnet − λcollision ∗ 1collision

where Lpfnet is the prediction loss of the PF-net, 1collision

is a binary collision indicator and λcollision is a weighting
constant. The agent has a fixed number of environment steps
to localize itself, after which the episode terminates. While
the approach is fully differentiable and can be optimized
end-to-end, we find it beneficial to pretrain the localization
network for better stability. Though joint finetuning may
be able to further improve results. For pretraining we
use a goal-reaching agent (see Section IV-A) to collect a
dataset of 4,000 episodes of length 25 and then perform
supervised training following Karkus et al. [10], using a
tracking task with only 30 particles. We train the RL agent
with soft-actor critic (SAC) [26], which has been shown to
produce strong policies in continuous control and robotics
tasks. Hyperparameters are reported in Table I.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

To evaluate our approach, we train a LoCoBot robot in the
photorealistic iGibson simulator [14]. The LoCoBot robot
has a differential drive and is equipped with an RGB-D

Fig. 2: Tracking (top), semi-global (mid) and global (bottom) localization
tasks. From left: a) initial particle distribution b) global map and trajectory
with estimated (green) and ground truth (red) poses at each step. Circles
denote the final poses. c) local belief map observed by the RL agent d)
occupancy grid e) RGB and f) depth.

camera with a field-of-view of 90◦ and a maximum depth
of 10m as well as a LiDAR with a range of 240◦. The
action space consists of the linear and angular velocities for
the base. We use a subset of 45 apartment scenes from the
gibson dataset [13], split into 38 training and 7 unseen test
apartments. The test apartments are completely unseen by
both the PF-net and the RL agent.

Baselines: We compare against the following baselines:

• Avoid: A simple heuristic policy that drives forward
until its depth camera recognizes a close object, then
drives backwards or turns away from the obstacle.

• Goalnav: A policy that navigates towards a random
target using a path-planner with access to the ground
truth traversability map and robot pose.

• Turn: An agent that always turns in place at maximum
angular velocity.

Tasks: We focus on three localization tasks, ranging from
local to global localization. These are

• Tracking: the initial particles are sampled from a multi-
variate Gaussian distribution with a standard deviation
of 0.3m and 30◦ and centered at a random pose sampled
with the same standard deviations around the ground
truth robot pose. The PF-net uses 300 particles.

• Semi-global localization: We uniformly sample 500
particles in a box of 3.3×3.3m around the initial guess.

• Global localization: We sample 3,000 particles uni-
formly across the traversable area of the whole map.

Metrics: We report the root mean squared positional error in
centimeters and root mean squared angular error in radians,
referred to as position and orient in the tables. All metrics
are averaged over 50 episodes.

B. Passive Localization

The original PF-net model has focused on evaluation in the
simpler House3D dataset [27]. We implement a version of
this model for scenes from the photorealistic gibson dataset,
which are based on real-world 3D scans of apartments.
We report the results for passive localization for different
modalities based on the goalnav agent that collected the



Task seen unseen

Tracking Semi-Global Global Tracking Semi-Global Global

Modality position orient position orient position orient position orient position orient position orient

LiDAR 20.8 0.13 27.2 0.21 111.4 0.33 18.9 0.12 23.7 0.16 141.2 0.38
RGB-D 24.8 0.15 30.2 0.20 126.6 0.30 24.5 0.16 29.2 0.18 144.1 0.34

TABLE II: Passive localization results on the iGibson dataset for different localization tasks. We report the average root mean squared positional error in
centimeter (position) and the root mean squared orientation error of the robot’s yaw in radians (orient). Evaluated with the pretraining settings for T = 25.

Task seen unseen

Tracking Semi-Global Global Tracking Semi-Global Global

Agent position orient position orient position orient position orient position orient position orient

Goalnav 16.8 0.12 18.2 0.12 99.3 0.24 14.9 0.11 21.4 0.15 113.3 0.21
Avoid 15.8 0.13 22.4 0.15 152.0 0.32 15.8 0.12 33.5 0.19 162.9 0.29
Turn 11.8 0.80 14.6 0.09 103.1 0.30 13.9 0.10 19.8 0.12 115.9 0.31
APFN (ours) 13.4 0.10 11.7 0.08 74.8 0.16 11.1 0.08 16.3 0.11 63.3 0.17

TABLE III: Active localization results in the iGibson simulator in seen and unseen apartments. The PF-net uses the LiDAR modality. We report the average
root mean squared positional error in centimeter (position) and the root mean squared orientation error of the robot’s yaw in radians (orient).

training data in Table II. LiDAR scans are converted to
occupancy maps in which 0 is free space, 1 unexplored, and
2 occupied. The PF-net performs well in these more complex
scenes, achieving a positional error of around 20-25 cm
for tracking, which, for both modalities, is actually lower
than the 40−49 cm error reported on the House3D dataset
[10]. Moreover, the network generalizes well to unseen
apartments, showing no significant generalization gap. Even
though the field-of-view of the RGB-D camera is much
smaller than what the LiDAR can sense, both modalities
achieve relatively similar performance, highlighting that the
network is able to extract rich information in the complex
pixel observations.

C. Active Localization

We focus on the best performing LiDAR modality. The RL
agent observes the robot state consisting of current forward
and angular velocities, a collision flag, and the remaining
steps in the episode together with the LiDAR and the local
belief map. For obstacle avoidance, it also receives the RGB-
D observations. The policy consists of a shared feature
encoder, made up of three convolutional networks for RGB,
depth and LiDAR. Each network consists of layers with
(channels, kernel size, stride) of [(32, (3, 3), 2), (64, (3, 3),
2), (64, (3, 3), 1), (64, (2, 2), 1)]. These features are then
concatenated with the robot state and passed to the actor and
critic, consisting of a two-layer MLP with 512 neurons. All
intermediate layers are followed by ReLU activations. All
pixel-based observations are of size 56× 56. While we train
the PF-net on ground truth odometry data, during the policy
training we add zero-centered Gaussian noise with standard
deviation of 1 cm and 5◦ to the transitions. We train the
policy with 500 particles and at test time evaluate it with
varying numbers of particles according to the task definitions.

Table III reports the results for the active localization tasks
for both seen and unseen apartments. We find large differ-

ences in localization performance across the different motion
models. This highlights the strong dependence on the robot’s
movements and confirms the importance of active decision
making. APFN consistently achieves the best localization
across all tasks. The only exception is the positional error
in the tracking task, in which the turn policy achieves a
very low positional error, but suffers from a large angular
error. Moreover, the agent successfully generalizes to unseen
apartments. Note that these apartments have not been seen by
both the RL agent and the localization module. To succeed
in these apartments, the agent has to learn general movement
patterns and the ability to seek out informative regions.
Lastly, we find that differences in localization performance
are particularly large in the global localization task with
our approach reducing the positional error by over 60% in
comparison to other motions. This is expected as in global
localization we have the least amount of prior information
about the robot’s pose. Qualitatively, the agent performs
targeted movements with frequent rotations that reveal a large
area of the apartments. Examples are shown in Figure 2.

V. CONCLUSION

We introduce APFN which combine probabilistic filtering
methods with learned decision making to accurately localize
a robot in realistic indoor environments. In contrast to previ-
ous methods, our approach scales to continuous action spaces
and arbitrary map sizes by selectively attending to only local
information. We evaluate this ability in photorealistic indoor
environments and find that it is able to accurately localize
itself in both seen and completely unseen apartments and
considerably outperforms the baselines. In future work, we
aim to incorporate simultaneous control of sensors such as
actuated cameras. Another promising avenue is the extension
of learning-based localization and attention mechanisms to
dynamic environments and noisy, partial or incorrect maps in
which it becomes important to selectively filter out uncertain
or incorrect observations.
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