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Figure 1. Left: Visualization of disentangled intrinsic symmetry-informative (abbreviated as sym-info) and intrinsic symmetry-agnostic
(abbreviated as sym-agno) descriptors. Right: Results of various shape analysis tasks (intrinsic symmetry detection, left/right classification
and shape matching) using our disentangled intrinsic symmetry-aware descriptor pairs.

Abstract

Shape descriptors, i.e., per-vertex features of 3D meshes
or point clouds, are fundamental to shape analysis. Histori-
cally, various handcrafted geometry-aware descriptors and
feature refinement techniques have been proposed. Recently,
several studies have initiated a new research direction by
leveraging features from image foundation models to cre-
ate semantics-aware descriptors, demonstrating advantages
across tasks like shape matching, editing, and segmentation.
Symmetry, another key concept in shape analysis, has also
attracted increasing attention. Consequently, constructing
symmetry-aware shape descriptors is a natural progression.
Although the recent method ω [53] successfully extracted
symmetry-informative features from semantic-aware descrip-
tors, its features are only one-dimensional, neglecting other
valuable semantic information. Furthermore, the extracted
symmetry-informative feature is usually noisy and yields
small misclassified patches. To address these gaps, we pro-
pose a feature disentanglement approach which is simultane-
ously symmetry informative and symmetry agnostic. Further,
we propose a feature refinement technique to improve the
robustness of predicted symmetry informative features. Ex-
tensive experiments, including intrinsic symmetry detection,
left/right classification, and shape matching, demonstrate the

effectiveness of our proposed framework compared to vari-
ous state-of-the-art methods, both qualitatively and quanti-
tatively. Project page: https://tweissberg.github.io/chirality/

1. Introduction

Unlike image analysis, where features from foundational
models (e.g. DINO-V2 [33], CLIP [36], StableDiffu-
sion [43]) have already surpassed handcrafted features across
a broad range of tasks [10, 20, 50, 60, 61], per-vertex fea-
tures in shape analysis have still mostly been dominated by
handcrafted descriptors such as WKS [3], HKS [48], SHOT
[45], with different feature refinement methods [8, 46].

To address this gap, a recent work, Diff3F [15], has in-
troduced a new semantic-aware shape descriptor construc-
tion pipeline, which aggregated pixel-level 2D foundation
model features from surrounding multi-view images ren-
dered from a shape. Works that directly use Diff3F fea-
tures [2, 19, 42, 54, 59] or implement similar ideas together
with other modules [11, 51, 65], have demonstrated advan-
tages over handcrafted features across various shape analy-
sis tasks, including matching [11, 42, 47, 51, 54, 65], edit-
ing [19, 59] and shape-image correspondence [2, 47].

However, as demonstrated in [60, 61], features from 2D
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foundation models can be ambiguous between intrinsic sym-
metry structures, such as left and right eyes of a cat. Since
Diff3F [15] aggregates features from these 2D foundation
models, it inherits left/right ambiguity which can lead to
incorrect predictions in downstream tasks as shown in [53].

In order to address this intrinsic symmetry ambiguity in
Diff3F [15] features, the recent work [53] has proposed an
intrinsic symmetry feature extraction pipeline to distill a
one-dimensional symmetry-informative feature out of in-
put semantic-aware shape descriptors. However, despite its
impressive accuracy on left/right classification and the abil-
ity to boost matching performance, certain drawbacks exist.
First, [53] only extracts a single one-dimensional symmetry-
informative feature, rather than disentangling input feature
into symmetry informative and agnostic parts. Secondly, it
has limited ability to perform tasks such as intrinsic sym-
metry detection due to lack of sophisticated losses guiding
the training process. In addition, as noted in [53], resulting
symmetry-informative features are noisy, i.e. contain small
mispredicted patches, see Fig. 2 for an illustration.

In order to improve upon these drawbacks, we propose a
feature disentanglement approach which simultaneously ex-
tracts symmetry informative and symmetry agnostic features.
The former encodes only the left/right information, while
the latter contains the remaining information of the input
features. Ideally, the symmetry-informative descriptor tells
whether a vertex belongs to the left or right part of the shape,
and the symmetry-agnostic descriptor should be similar for
intrinsically symmetric pairs of points, e.g. points on the
left/right thumb of a human shape. We adopt a combination
of various unsupervised losses to guide the training of our
intrinsic symmetry disentanglement network. In addition,
to obtain a robust symmetry-informative descriptor, we also
propose a symmetry-informative feature refinement tech-
nique based on a Markov Random Field (MRF) energy mini-
mization formalism. Various experiments including intrinsic
symmetry detection, left/right classification and matching
have been conducted to show the effectiveness of our dis-
entanglement framework compared to other state-of-the-art
methods. We summarize our main contributions as follows:
• We propose an intrinsic symmetry-aware shape feature

disentanglement framework, capable of decomposing
per-vertex shape features into symmetry-informative and
symmetry-agnostic pairs.

• We propose a generally applicable symmetry-aware fea-
ture refinement technique to obtain a robust symmetry-
informative descriptor.

• We show the broad applicability of our method by apply-
ing it to various shape analysis tasks including symmetry
detection, left/right classification, and shape matching.

• Through extensive empiric evaluation we demonstrate the
superiority of our disentangled symmetry-aware descrip-
tors over state-of-the-art methods.

Figure 2. ω [53] in some cases produces small patches of incorrectly
assigned vertices. Red circles highlight these areas.

2. Related work

In the following we discuss works that are most relevant to
our framework. We discuss symmetry in shape analysis and
2D foundation models used in 3D shape descriptors.

2.1. Symmetry in shape analysis

As a fundamental pattern observable in our world, symme-
try attracts significant interest in shape analysis, because
of its potential to enhance a wide range of tasks includ-
ing matching [12, 58, 63], segmentation [39, 40], comple-
tion [27, 44, 49] and editing [30, 64]. Given the vast liter-
ature on symmetry detection, we introduce only the most
relevant works and refer readers to surveys [26, 31].

Following a common convention [21, 31, 37, 38], sym-
metry can be categorized into extrinsic and intrinsic ones.
Extrinsic symmetry can be characterized via rigid transfor-
mations, while intrinsic symmetry is shape-inherent and is
invariant to isometric transformations (e.g., symmetry inde-
pendently of poses of a human body). We focus on intrinsic
symmetry in this work, since it is more general in the sense
that it contains extrinsic symmetry as a subset.

Ovsjanikov et al. [34] show that the intrinsic symmetries
of a shape could be transformed into the extrinsic symme-
tries in the signature space defined by the eigenfunctions
of the Laplace-Beltrami operator, and devise an algorithm
to detect and compute them. Its follow-up work Nagar and
Raman [32] improves efficiency based on the hypothesis that
if a shape is intrinsically symmetric, then so is the geodesic
distance between two intrinsic symmetric vertices. Xu et al.
[55] use a generalized voting scheme to find the partial in-
trinsic symmetry curve without explicitly finding the intrin-
sic symmetric counterpart for each vertex. Liu et al. [25]
propose a method for detecting intrinsic symmetry on genus-
zero mesh surfaces by extracting closed curves through the
construction of a weighted blend of conformal maps derived
from triplets of extremal points identified via the average
geodesic distance (AGD) function. Similarly, Kim et al.
[21] also detect symmetry invariant point sets using critical
points of the AGD function, but get intrinsic symmetry from
Möbius transformations computed by those selected points.
Xu et al. [56] efficiently find pairs of intrinsically symmet-
ric points using a voting based approach to detect intrinsic
symmetries of shapes in different scales. Wang and Huang



[52] describe symmetries as linear transformations of the
eigenfunctions of the Laplace-Beltrami operator on shapes,
and they propose an efficient global intrinsic symmetry de-
tection method based on this new representation. Qiao et al.
[35] parametrize intrinsic symmetry using a functional map
matrix, which could be easily computed given the signs of
Laplacian eigenfunctions under the symmetric mapping.

2.2. 2D foundation models assisted 3D shape de-

scriptors

Recently, with the emergence of various 2D foundation mod-
els [9, 33, 36, 43] and their demonstrated superiority over
traditional features in various image-related tasks [10, 20, 50,
60, 61], an increasing number of works in 3D areas are con-
sidering using 2D foundation models to obtain 3D shape de-
scriptors. 3D Highlighter [13] uses a pre-trained CLIP [36]
encoder to localize semantic regions on a mesh using text as
input. As a popular 3D scene representation, NeRF [29] has
various following works that leverage 2D foundation mod-
els for 3D representations. Kobayashi et al. [23] distill the
knowledge of 2D foundation models [9, 36] to a 3D feature
field optimized in parallel to the radiance field for semantic
scene decomposition task. FeatureNeRF [57] leverages 2D
foundation models [9, 43] to 3D space via neural rendering,
and then extract deep features for querying 3D points from
NeRF layers. NeRF Analogies [18] performs transfer along
semantic affinity driven by semantic features from some
2D foundation model [9] to achieve multi-view appearance
consistency. Different from implicit NeRF representations,
there is also a line of research aiming at building explicit
per-vertex 3D shape descriptors from 2D foundation mod-
els. With a shape as input, Diff3F [15] constructs per-vertex
shape descriptor by averaging correspondent pixel features
of 2D foundation models [33, 43] from surrounding rendered
multi-view images. Uzolas et al. [51] refines Diff3F [15] fea-
tures on the shape matching task by introducing a constraint
that the geodesic distance between refined features of each
vertex pair should be consistent with geodesic distance of
this vertex pair. DenseMatcher [65] uses a similar pipeline
as Diff3F [15] to first extract per-vertex features, and further
refine shape descriptors using a trainable DiffusionNet [46].

A recent work, ω [53], is most relevant to this work. It
extracts intrinsic symmetry-informative features from in-
put semantic-aware shape descriptors aggregated from 2D
foundation models similarly to Diff3F [15]. In this work,
our proposed framework disentangles input semantic-aware
shape descriptors into symmetry-informative and symmetry-
agnostic pairs, rather than only extracting one-dimensional
feature as ω [53] does. Better performances on intrinsic sym-
metry detection and shape matching show the effectiveness
and validate the necessity of this newly introduced symmetry-
agnostic descriptor, thus our proposed framework.

3. Symmetry informative and agnostic feature

disentanglement

In this section, we introduce our intrinsic symmetry-aware
feature disentanglement framework (Fig. 3) in detail. We dis-
entangle input shape descriptors into symmetry-informative
and symmetry-agnostic pairs. We first explain the process
of obtaining per-vertex semantic-aware feature (Sec. 3.1),
which our lightweight disentanglement network (Sec. 3.2)
uses as input. Next, the losses guiding the training of our
network are elaborated in detail (Sec. 3.3). And finally, we
propose a general symmetry-informative descriptor refine-
ment technique to improve the robustness of descriptors
(Sec. 3.4).

3.1. Shape descriptors extraction

We follow Diff3F [15] and ω [53] to extract per-vertex
semantic-aware shape descriptors. We consider an untex-
tured 3D surface shape in form of a mesh X = (V, E) as
input. Here, V are the vertices of the shape and E the edges.
For that shape X , we first generate N surrounding textured
views {In → RH→H→3}N

n=1 from N fixed camera poses
using ControlNet [62]. Then features from 2D foundation
models are extracted, concatenated and upsampled to form
the feature map Fn → RH→W→d of each view In with fea-
ture dimension d.

Using the known camera poses, we can recover corre-
spondences between each vertex v and pixels in each view.
Then we can compute the per-vertex feature Fv → Rd as the
average of all correspondent pixel features over all N views.
We flip each view from {In}Nn=1 horizontally (i.e. along x-
axis) to obtain {Īn}Nn=1. Then we compute the feature map
F̂n → RH→W→d of Īn similarly to Fn. Finally we flip F̂n

horizontally to obtain F̄n. The per-vertex semantic flipped
feature F̄v is computed from {F̄n}Nn=1 similarly to Fv .

Finally, we apply vertex-wise normalization to each fea-
ture in the feature set {Fv}|V |

v=1, i.e. Fv = Fv/↑Fv↑2. We
denote the stack of all features along the vertex dimension
as F → R|V |→d. F̄ can be obtained analogously.

3.2. Symmetry-aware feature disentanglement

We use a lightweight auto-encoder as our disentanglement
network. Specifically, we use an encoder E to obtain an inter-
mediate feature Fmid → R|V |→d from the input F . Further,
we feed Fmid into a decoder D to reconstruct the input.

With intermediate features Fmid as input, we use the
disentanglement steps depicted below:
• First, we perform per-vertex normalization on Fmid,

i.e. Fmid
v

= Fmid
v

/↑Fmid
v

↑2, where v → V .
• To facilitate feature disentanglement, we project each nor-

malized vertex descriptor Fmid
v

→ Rd using a global train-
able orthonormal square matrix A as: Fproj

v = Fmid
v

A.
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Figure 3. Overview of our method. As in Diff3F [15] and ω [53], we render different views from a mesh. For each view, 2D foundation
models are used to extract features from it and its horizontally flipped counterpart. Shape descriptors are obtained by back-projecting those
image features. The disentanglement network then learns to disentangle symmetry from symmetry-agnostic information using a combination
of disentanglement losses. A refinement technique is applied on FC to increase robustness.

• After that, we separate the projected descriptor Fproj
v into

two: Fproj
v := [FC

v
,FS

v
], where FC

v
→ R represents

the symmetry-informative (chirality [53]) descriptor, and
FS

v
→ Rd↑1 represents the symmetry-agnostic descriptor.

• Additionally, we apply normalization on the symmetry-
agnostic descriptor FS

v
as: FS

v
= FS

v
/↑FS

v
↑2.

Similarly, we follow the same steps to arrive at respec-
tive flipped symmetry informative and agnostic descriptors
F̄C

v
, F̄S

v
using flipped F̄ as input.

In order to make the disentanglement framework intrinsic
symmetry aware, we use a combination of semantic and
geometric losses to guide the training of the network (the
trainable components are encoder E, decoder D, and the
orthonormal matrix A), which we discuss next.

3.3. Unsupervised losses

With stacked per-vertex feature F , we collect the disentan-
gled symmetry-informative and symmetry-agnostic features
from the network, and stack them along the vertex dimen-
sion to obtain FC → [↓1, 1]|V | and FS → [↓1, 1]|V |→(d↑1),
respectively. Similarly, we compute F̄C and F̄S using F̄ as
input.

Dissimilarity loss Ldis [53]. We apply a dissimilarity loss
Ldis to push symmetry-informative descriptors of each vertex
and its intrinsic symmetric counterpart away from each other:

Ldis = ↓ 1√
|V |

↑FC ↓ F̄C↑2. (1)

Similarity loss Lsim. Further, we apply a similarity loss
Lsim to make sure the symmetry-agnostic descriptors of each

vertex and its intrinsic symmetric counterpart are close:

Lsim =
1√
|V |

↑FS ↓ F̄S↑F . (2)

Reconstruction loss Lrec [53]. We want to avoid infor-
mation loss of the intermediate feature Fmid given by the
encoder E. Thus, we apply a reconstruction loss

Lrec =
1√
|V |

↑[F , F̄ ]↓ D(E([F , F̄ ]))↑F . (3)

Here, [F , F̄ ] corresponds to the column stack of F and F̄ .

Boundary loss Lbou. To regularize the boundary to follow
an approximately straight path along the surface manifold,
we introduce a boundary loss Lbou. This loss is built upon
two components. First, we define the tangential cosine simi-
larity Cv(u,w) between the incoming edge (u, v) and out-
going edge (v, w) for given vertices u, v, w → V . Second,
we define L(u, v, w) as the sum of squared differences of
symmetry-informative features across these edges:

L(u, v, w) = ↑FC
u
↓ FC

v
↑22 + ↑FC

v
↓ FC

w
↑22, (4)

where L̄(u, v, w) is defined analogously using F̄ . To encour-
age colinear neighboring pairs u,w → V around each vertex
v → V with similar symmetry-informative features FC

v
, we

formulate the loss as

Lbou =
1

|V |
∑

v↓V

(
min

(u,v,w)↓Sv

{L(u, v, w)↓ Cv(u,w)}

+ min
(u,v,w)↓Sv

{L̄(u, v, w)↓ Cv(u,w)}
)
.

(5)



Here, Sv denotes the set of vertex tuples (u, v, w) such that
(u, v), (v, w) → Ē , where Ē is the set of directed edges which
is obtained from E by interpreting every undirected edge as
two opposing directed edges. A more thorough explanation
and visualization can be found in Sec. 9 in the supplementary
material.

Consistency loss Lcon. To regularize the features, we en-
force self-consistency by matching a shape to itself through
its mirrored version. Let W → (R+)|V |→|V | with Wi,j =(
FC

vi
↓ FC

vj

)2
be the squared difference between FC for

different vertices vi, vj → V , and let Cc = FS(FS)↔ →
[↓1, 1]|V |→|V | be the similarity matrix between the FS fea-
tures. We then compute ! → [0, 1]|V |→|V | as the element-
wise product after the min-max normalization to the [0, 1]
interval , i.e.

! = norm(W )↔ norm(Cc). (6)

Intuitively, ! represents a soft assignment of each vertex to
its intrinsically symmetric counterpart. Consequently, !2

should ideally approximate the identity matrix, representing
a mapping of the shape to itself via the symmetric reflection.
!̄ is defined analogously with F̄ .

This allows us to introduce the loss Lcon as

Lcon =
1

|V |↑[I|V |, I|V |]↓ [!2, !̄2]↑F , (7)

where I|V | is an identity matrix of size |V |↗ |V |.

Overall loss. The overall loss is a weighted combination
of those unsupervised losses:

L = Ldis + ε1Lsim + ε2Lrec + ε3Lbou + ε4Lcon. (8)

For choices of ε1,ε2,ε3 and ε4, we refer to the implemen-
tation details in Sec. 8 in the supplementary materials.

3.4. Symmetry aware feature refinement

As shown in Fig. 2, ω [53] produces incorrect small patches
in symmetry-informative descriptors. To circumvent such
undesirable solutions, we propose a simple yet effective re-
finement technique based upon a Markov Random Field
(MRF) energy minimization formalism. In particular, we
compute refined symmetry-informative features F̃C by solv-
ing the following MRF problem

min
F̃C↓{0,1}|V|

∑

v↓V
ϑv(F̃C

v
) +

∑

(v,v̄)↓E

ϑvv̄(F̃C

v
, F̃C

v̄
). (9)

We first do min-max normalization of FC to transform
it into FC → [0, 1]|V|. Then we choose for the unary
potentials ϑv(0) = FC

v
and ϑv(1) = 1 ↓ FC

v
for all

v → V . Furthermore, for the pairwise potentials, we use
ϑvv̄(0, 0) = ϑvv̄(1, 1) = 0 and ϑvv̄(0, 1) = ϑvv̄(1, 0) = 1
for all edges (v, v̄) → E . As an intuition, using these po-
tentials essentially favors a refined symmetry-informative
feature F̃C which is as close as possible to the predicted fea-
ture FC while having as little boundary as possible (which
effectively reduces the patches). We efficiently solve (9)
using graph cuts [5, 6, 14, 24].

Since this post processing technique does not rely on
the design of our disentanglement framework, it could be
applied on any coarse symmetry-informative features. We
validate the general usage of this technique also on ω [53].

4. Experiments

We conduct different shape analysis experiments on our
disentangled symmetry-informative and symmetry-agnostic
descriptors pair to show the effectiveness of our proposed
framework. In Sec. 4.1, we first introduce all datasets we use.
In Sec. 4.2, intrinsic symmetry detection shows the superior-
ity of our disentangled descriptors pair compared to several
other shape descriptors. Then, in Sec. 4.3, the left/right clas-
sification experiment validates our symmetry-informative
descriptor alone. We also introduce a new metric to quantify
the robustness of symmetry-informative descriptors and the
results prove the effectiveness of our refinement technique.
The application of our features in shape matching is explored
in Sec. 4.4. Lastly, to verify the necessity of our losses, an
ablation study is done in Sec. 4.5.

4.1. Datasets

We use a recently proposed benchmark BeCoS [17] to gener-
ate a large scale dataset with rich annotations including inter-
shape correspondences, per-shape self-correspondences
(i.e. intrinsic symmetric pairs annotations), and left/right
annotations. Additionally, we also experiment on several
popular datasets: FAUST [4], SCAPE [1], SMAL [66] and
TOSCA [7]. More details can be found below.
• The BeCoS [17] dataset consists of humanoid and four-

legged animals with 20370/284/274 train/test/validation
split, generated from 7 remeshed shape datasets, namely
TOSCA [7], FAUST [4], SCAPE [1], KIDS [41],
DT4D [28], SMAL [66] and SHREC’20 [16].

• BeCoS-h [17] consists of only humanoid shapes of Be-
CoS [17] with 9697/64/58 train/test/validation split.

• BeCoS-a [17] consists of only four-legged animals of Be-
CoS [17] with 10263/220/216 train/test/validation split.

• FAUST [4], SCAPE [1], SMAL [66] and TOSCA [7]
datasets. We follow the original train/validation/test splits
where available, and otherwise use the BECOS [17] splits.
Since these datasets lack left/right and self-correspondence
annotations, we obtain them via BECOS.



Train BeCoS BeCoS-h BeCoS-a FAUST SMAL

Test BeCoS BeCoS-h BeCoS-a BeCoS-h BeCoS-a FAUST SCAPE SMAL TOSCA

DINO+SD + GT 0.098 0.091 0.100 0.091 0.100 0.037 0.061 0.125 0.059
Ours + GT 0.059 0.058 0.093 0.073 0.061 0.025 0.032 0.070 0.050

DINO+SD + ω 0.145 0.164 0.182 0.257 0.132 0.054 0.128 0.129 0.154
Ours 0.101 0.114 0.162 0.197 0.087 0.042 0.073 0.075 0.115
DINO+SD + (ω + refine) 0.120 0.122 0.161 0.144 0.120 0.049 0.103 0.135 0.124
Ours + refine 0.078 0.077 0.146 0.108 0.078 0.042 0.049 0.076 0.084

Table 1. Geodesic error of intrinsic symmetry detection using different features across datasets. The best and second-best results for each
case are written in bold and underlined, respectively. Both our sym-agno feature and the refinement step lead to consistently lower errors.
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Figure 4. Results of intrinsic symmetry detection visualized as a
mirrored matching of a shape to itself. Our method produces notice-
ably better quality than ω [53] both with and without refinement.
Examples are chosen to reflect ω’s failure modes.

4.2. Intrinsic symmetry detection

Metrics. For a given shape X represented with a vertex
set V → R|V |→3, intrinsic symmetry detection aims to match
each vertex v → V to its intrinsic symmetric correspondent
vertex v̄ → V . Thus we use the average matching error as
our evaluation metrics:

errint =
1

|V |
∑

v↓V

dist(f(v), vsym
gt ), (10)

where f(v) is the predicted intrinsic symmetric vertex of v,
vsym

gt is the ground truth intrinsic symmetry vertex of v, and
dist(·, ·) is the geodesic distance normalized by the square
root of the area of a shape following [22].

Baselines. We compare performance of our disentangled
descriptors with other shape descriptors. For a detailed evalu-
ation of our framework, we include three different baselines.
All methods first cluster the vertices into two sets; the clus-
tering strategy differs across methods as follows:

• DINO+SD+GT: We cluster vertices using ground-truth
left/right annotations.

• DINO+SD+ω: We use ω [53] features for clustering.
• DINO+SD+(ω+refine): We use ω [53] features refined

with Eq. 9 for clustering.
Then we use descriptors constructed following Diff3F [15]
pipeline with concatenated DINO-V2 [33] and StableDif-
fusion [43] features to match between these two sets using
cosine similarity.

Results. From Tab. 1, superiority of our disentangled de-
scriptors is three-fold. First, comparison of DINO+SD+GT
with Ours+GT (We use ground-truth for clustering and then
FS for matching) shows that our disentangled symmetry-
agnostic descriptor FS filters out intrinsic symmetry infor-
mation and leads to better detection results, which validates
the necessity of FS. Secondly, comparison of DINO+SD+ω
with Ours (We use FC for clustering and then FS for match-
ing) shows that without ground truth left/right annotations,
our disentangled descriptors surpasses previous work ω [53],
validating the usefulness of our framework in an unsuper-
vised setting. Finally, the comparison of DINO+SD+ω with
DINO+SD+(ω+refine) or the comparison of Ours with Ours
+ refine validates the effectiveness of our refinement tech-
nique onto symmetry-informative descriptors. Fig. 4 shows
qualitative results consistent with our conclusions.

4.3. Left/right classification

Metrics. Given a set of shapes X = {X1, ...,XN}, where
each shape Xn has a vertex set VXn , we use the same metrics
defined in ω [53] to compute the left/right classification
accuracy:

accL/R = max{hit, 1↓ hit}, (11)

where

hit =
1

N

N∑

n=1

1

|VXn |
∑

v↓VXn

(sign(FC
v
) = Fgt

v
). (12)



Train BeCoS BeCoS-h BeCoS-a FAUST SMAL

Test BeCoS BeCoS-h BeCoS-a BeCoS-h BeCoS-a FAUST SCAPE SMAL TOSCA

Liu et al. [25] 79.98 79.83 80.46 79.83 80.46 90.45 80.84 75.71 72.88

ω [53] 92.51 94.25 84.97 92.16 91.63 95.56 96.14 96.49 88.14
Ours 91.65 94.13 85.09 92.18 90.96 96.28 96.90 96.72 91.12

ω [53] + refine 93.04 94.69 86.24 93.27 92.05 95.73 96.53 96.58 89.91
Ours + refine 92.03 94.49 87.27 93.64 91.17 96.26 97.29 96.83 91.74

Table 2. Left/right classification accuracy (accL/R) results. The best and second-best results for each case are written in bold and underlined,
respectively. The refinement step consistently leads to higher accuracies, while our features result in similar accuracies to ω [53].

Train Test ω [53] Ours
ω [53]

+ refine
Ours

+ refine
BeCoS BeCoS 10.96 11.07 2.58 2.22

BeCoS-h

BeCoS-h 9.19 9.80 2.53 2.34
BeCoS-a 21.51 21.94 3.86 2.90

BeCoS-a

BeCoS-h 15.25 15.33 3.06 2.73
BeCoS-a 10.04 9.42 2.48 2.23

FAUST
FAUST 4.30 3.60 2.60 2.20
SCAPE 6.88 6.88 2.63 2.38

SMAL
SMAL 4.63 4.50 2.00 2.00
TOSCA 51.02 42.28 3.91 2.40

Table 3. Average number of connected components for different
datasets and methods. The refinement step is able to effectively
reduce the number of connected components of our solutions.

FC
v

is symmetry-informative descriptor for vertex v → VXn

of each shape Xn, is the indicator function, and Fgt

v
is the

ground truth left/right annotation of vertex v → VXn .

Baselines. We use disentangled descriptor FC to perform
left/right classification, and compare with descriptors given
by ω [53], and refined descriptors from ω [53] using our
proposed refinement technique. An axiomatic method Liu
et al. [25] that extracts closed symmetric curves based on
self-correspondence map prediction is also included.

Results. Tab. 2 summarizes left/right classification results
on different datasets. Although our disentangled symmetry-
informative feature FC achieves comparable results with
ω [53], we can conclude that our proposed refinement tech-
nique indeed improves symmetry-informative descriptors.
In addition, for each shape in every dataset, we first do a
2-center clustering using symmetry-informative descriptor,
and then compute the number of connected components of
the shape, and finally average this number over the whole
dataset. Results shown in Tab. 3 indeed validate the effec-
tiveness of our proposed refinement technique again. Fig. 5
also indicates consistent conclusions qualitatively.

Ground truth Liu et al. [25] ω [53]

ω [53] + Refine Ours Ours + Refine

Figure 5. Qualitative results of left/right classification. Both ω [53]
and our method achieve high accuracy. The refining step is able to
reduce the number of incorrectly classified patches significantly.

4.4. Shape matching

Metrics. Following Diff3F [15] and ω [53], we use average
matching error as metrics. For a source shape X and a target
shape Y , represented with vertex sets VX → R|VX |→3 and
VY → R|VY |→3, respectively, the matching error is

errmat =
1

|VX |
∑

v↓VX

dist(f(v)↓ ygt), (13)

where f(v) is the predicted matching point of v → VX in Y ,
ygt → VY is the ground truth corresponding point of v, and
dist(·, ·) is the geodesic distance normalized by the square
root of the area of Y , following [22].

Baselines. As a matching baseline, we use pairwise cosine
similarity of DINO+SD, DINO+SD concatenated to ω [53]
and a refined version of ω, respectively.



Train BeCoS BeCoS-h BeCoS-a FAUST SMAL

Test BeCoS BeCoS-h BeCoS-a BeCoS-h BeCoS-a FAUST SCAPE SMAL TOSCA

DINO+SD 0.163 0.146 0.222 0.146 0.222 0.163 0.167 0.131 0.146

DINO+SD + ω [53] 0.104 0.096 0.123 0.117 0.106 0.050 0.063 0.060 0.102
Ours 0.079 0.091 0.159 0.134 0.074 0.056 0.054 0.046 0.095

DINO+SD + ω [53] + refine 0.100 0.087 0.122 0.094 0.104 0.048 0.048 0.062 0.108
Ours + refine 0.075 0.082 0.157 0.110 0.072 0.058 0.049 0.045 0.094

Table 4. Geodesic error of shape matching using different features across datasets. Refinement generally enhances matching performance,
with our complete framework achieving state-of-the-art results on several major datasets.

Source Target ω [53] Ours + refine

Figure 6. Shape matching results of two shape pairs from different
categories, using ω [53] and our descriptors. Our method is able to
create a smoother and more accurate matching.

Results. Tab. 4 summarizes shape matching results across
multiple datasets and Fig. 6 visualizes qualitative results
across multiple example shape pairs. We observe that refin-
ing the features improves matching quality for both ω [53]
and our method across most datasets. When combining our
new method with our proposed refinement, we are able to
achieve significantly better matching performance than the
baseline ω method on most datasets, as visible in Fig. 6.

4.5. Ablation study

We run ablation studies on FAUST [4] using left/right ac-
curacy, intrinsic symmetry error, and shape matching error.
We also compare with a modified ω [53], denoted ω̄, by
adding orthogonality constraints to its MLP as in our method,
trained with ω’s losses. Tab. 5 shows that our loss combina-
tion yields a good balance of quality, informativeness, and
symmetry invariance.

w/o Ldis Lsim Lrec Lbou Lcon ω̄ Full

accL/R 60.87 95.83 95.15 75.42 97.14 90.48 96.28
errsym 0.292 0.420 0.052 0.116 0.071 0.132 0.042

errmat 0.224 0.118 0.056 0.096 0.143 0.080 0.056

Table 5. The ablation study on FAUST validates our overall loss
combination across all metrics.

5. Limitations

Although our proposed disentanglement framework shows
remarkable performance in various shape analysis tasks on
different datasets, it nevertheless has certain drawbacks. Sim-
ilar to [53], our method requires mesh connectivity informa-
tion to regularize the training, restricting its application to
certain representations of 3D shapes. In addition, we observe
inaccuracies in both symmetry-informative and symmetry-
agnostic descriptors for vertices for which two different parts
of a shape are in close proximity. Furthermore, our proposed
refinement method depends on the predicted, continuous
symmetry-informative features and essentially discretizes
these into binary values. Consequently, slight deviations
of the continuous features could lead to large deviations of
the discretized features. Moreover, although our method is
theoretically independent of a shape’s genus, our current
experimental evaluation is restricted to genus-zero surfaces.

6. Conclusion

In this work, we propose an intrinsic symmetry aware feature
disentanglement network, which takes per vertex semantic
shape descriptors as input and outputs robust disentangled
symmetry-informative and symmetry-agnostic descriptors.
To this end, we propose a selection of unsupervised losses,
combined with a symmetry-informative feature refinement
technique based on Markov Random Field energy minimiza-
tion, to guide our framework to successfully disentangle
symmetry-informative and symmetry-agnostic information.
Various experiments, including intrinsic symmetry detection,
left/right classification and shape matching, validate the ef-
fectiveness of the 3D shape descriptors obtained with our
approach.
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