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Abstract—Adversarial Training (AT) has been shown to
significantly enhance adversarial robustness via a min-max opti-
mization approach. However, its effectiveness in video recognition
tasks is hampered by two main challenges. First, fast adversarial
training for video models remains largely unexplored, which
severely impedes its practical applications. Specifically, most
video adversarial training methods are computationally costly,
with long training times and high expenses. Second, existing
methods struggle with the trade-off between clean accuracy
and adversarial robustness. To address these challenges, we
introduce Video Fast Adversarial Training with Weak-to-Strong
consistency (VFAT-WS), the first fast adversarial training method
for video data. Specifically, VFAT-WS incorporates the following
key designs: First, it integrates a straightforward yet effective
temporal frequency augmentation (TF-AUG), and its spatial-
temporal enhanced form STF-AUG, along with Fast Gradient
Sign Method (FGSM) to boost training efficiency and robustness.
Second, it devises a weak-to-strong spatial-temporal consistency
regularization, which seamlessly integrates the simple TF-AUG
and the more complex STF-AUG. Leveraging the consistency
regularization, it steers the learning process from simple to
complex augmentations. Both of them work together to achieve a
better trade-off between clean accuracy and robustness. Extensive
experiments on UCF-101 and HMDB-51 with both CNN and
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Transformer-based models demonstrate that VFAT-WS achieves
great improvements in adversarial robustness and corruption
robustness, while accelerating training by nearly 490%.

Index Terms—Adversarial training, video recognition models,
single-step adversarial attack, training efficiency.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have achieved significant
success in various tasks [1], [2], [3], [4]. However, recent

research indicates that DNNs are susceptible to carefully
designed input samples with minor perturbations, which cause
incorrect predictions [5], [6], [7], [8]. These input samples
are collectively known as adversarial examples, which present
significant challenges to security-critical applications [9], [10],
[11], [12]. Video recognition represents an important computer
vision subfield. However, existing video recognition models
are typically built on deep neural networks, which have
inherent vulnerabilities that can undermine the robustness
of these models [13], [14], [15], [16]. Therefore, enhancing
the adversarial robustness of video recognition models is
particularly necessary for certain safety-critical tasks to ensure
their secure operation.

To counter the threat of adversarial examples, a vast
amount of research has been dedicated to developing various
adversarial defense strategies [17], [18], [19]. Among these,
adversarial training has been identified as one of the most
effective methods for enhancing model robustness against
adversarial threats. Recent scholarly work has been vigorously
pursuing the development of an enhanced form of adversarial
training [20], [21], [22]. Unfortunately, the field of video fast
adversarial training is unexplored. Current methods suffer from
high computational costs and long training time, which are
major pain points in the industry and severely limit their
application. What’s worse, compared to images, videos have
higher dimensions, which further exacerbate the challenge of
reducing the time cost in adversarial training. In addition,
these methods cannot effectively balance clean accuracy and
adversarial robustness. These issues greatly hamper reliable
application in safety-critical video recognition tasks.

When exploring the aforementioned issues, we have the
following key observations: 1) Currently, existing adversarial
training methods for videos involve multi-step iterative attacks,
which lead to extensive training time. While replacing these
iterative attacks with single-step attacks can improve training
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efficiency, it severely compromises adversarial robustness. 2)
An interesting study has demonstrated that deep learning
models often leverage high-frequency details, which are imper-
ceptible to the human eye, to achieve better performance
[23]. However, we observe that adversarial noise frequently
concentrates in these high-frequency details, while semantic
information is primarily associated with low-frequency infor-
mation [24]. This sensitivity to high-frequency details poses
a significant threat to the model’s adversarial robustness. 3)
Human visual systems typically maintain a consistent percep-
tion of the same object despite minor variations. In contrast,
DNNs often exhibit inconsistent perception of samples with
weak augmentations compared to those with strong augmen-
tations [25], with adversarial examples also being considered
a special form of augmentation.

Based on the above insights, we have the following three
key designs for video data: 1) We carefully design an effi-
cient and straightforward TF-AUG to reduce the model’s
reliance on high-frequency details and encourage focus on
low-frequency information. Integrating TF-AUG with FGSM,
we propose VFAT-W (Video Fast Adversarial Training with
Weak temporal frequency augmentation), which accelerates
adversarial training and enhances the model’s adversarial
robustness for video data. 2) Building on TF-AUG, we intro-
duce STF-AUG that adds spatial augmentations to explore
a more extensive perturbation space. Integrating STF-AUG
with FGSM, VFAT-S (Video Fast Adversarial Training with
Strong spatiotemporal frequency augmentation) is proposed,
which achieves better performance than VFAT-W by exploring
videos’ spatial-temporal characteristics more deeply. 3) We
propose a weak-to-strong spatial-temporal consistency regu-
lation to encourage consistent predictions for the same video
with different perturbations, enhancing the model’s adversarial
robustness and corruption robustness.

Building on these designs, we integrate weak TF-AUG with
strong STF-AUG via consistency regularization, enabling the
model to focus on data’s low-frequency information instead
of overfitting to specific input perturbations. Based on this,
we propose the enhanced VFAT-WS. VFAT-WS empowers the
model with stronger consistency perception, thus enhancing
overall performance and generalization capability. As shown in
Figure 1, VFAT-S and VFAT-WS accelerate video adversarial
training: VFAT-S has the fastest training speed, while VFAT-
WS balances training speed and robust accuracy better. Our
major contributions can be summarized as follows:
• We introduce VFAT-W and VFAT-S, the first fast adver-

sarial training frameworks for videos, which achieve a
better balance among the triple objectives of robustness,
accuracy, and efficiency.

• Simple yet effective video augmentation techniques
(TF-AUG and STF-AUG) are proposed to facilitate
robust learning by suppressing the model’s focus on
high-frequency noise and emphasizing low-frequency
spatiotemporal patterns.

• We design a novel weak-to-strong spatial-temporal con-
sistency regularization that aligns predictions across
augmentation and perturbation strengths, guiding the
model toward stable representations.

Fig. 1. AutoAttack accuracy and training time for various video adversarial
training methods that utilize a 3D Pre-activation ResNet-18 architecture on
the UCF-101 dataset are presented. The x-axis represents training time (where
lower values signify higher efficiency), while the y-axis represents robust
accuracy (where higher values signify greater robustness).

• Experiments show VFAT-WS achieves better robustness
(+ 9.77% over prior art) and nearly 490% speedup, with
consistent gains across various architectures.

The remainder of this paper is organized as follows.
Section II reviews the related work in video attack and
defense. Section III presents the proposed VFAT-WS frame-
work, including the TF-AUG and STF-AUG augmentation
strategies and the weak-to-strong consistency regularization.
Experimental results and analysis are presented in Section IV.
Finally, Section V concludes the whole paper.

II. RELATED WORK

A. Adversarial Attack on Videos

Recent research indicates that video recognition models are
vulnerable to adversarial attacks. Wei et al. [26] introduce 3D
sparse perturbations into videos to generate adversarial exam-
ples under a white-box setting. Jiang et al. [27] expand the
natural evolution strategy from images to videos to efficiently
estimate adversarial gradients. Wei et al. [28] use a heuristic
search on a subset of frames, employing an optimization-based
approach to find suitable and minimal noise for selective key
frames. However, this attack requires a high number of queries.
To further streamline the process and enhance attack efficiency,
Yan and Wei [29] propose an efficient reinforcement learning-
based approach for key frame selection. Inspired by distillation
techniques, they carefully design rewards to guide the agent
in learning to select better key frames while maintaining a
high attack success rate. To further eliminate temporal and
spatial redundancy in videos, Wei et al. [13] design a novel
video adversarial spatial-temporal focus (AstFocus) attack,
which attacks key frames and key regions simultaneously
from both inter-frames and intra-frames in the video. Deng
et al. [30] propose a dual-branch neural network model to
generate sparse adversarial video examples, achieving faster
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and more effective attacks with minimal pixel perturbation,
promoting robustness in industrial applications. Gao et al.
[31] propose the ReToMe-VA framework, which generates
imperceptible and highly transferable adversarial videos by
optimizing perturbations in diffusion models’ latent space and
merging tokens across frames.

In addition, there have been relevant studies in the field
of skeletal action recognition. BASAR [32] reveals that
adversarial examples in skeletal action recognition under
black-box scenarios widely exist both on and off the mani-
fold. It verifies the effectiveness of these examples through
perceptual research, thereby promoting the development of
more robust classifiers. The BEAT [33] transforms vulnerable
black-box classifiers into robust models via full Bayesian
processing and adversarial example sampling based on the
natural motion manifold. It is applicable to various classifiers,
datasets, and attack scenarios. By introducing data mani-
folds, Diao et al. [34] uncover the widespread existence of
adversarial examples in skeletal action recognition. It lever-
ages MMAT to achieve efficient defense while identifying
model vulnerabilities. TASAR [35] enhances the smoothness
of pre-trained models and disrupts motion dynamics through
dual Bayesian optimization, addressing the issue of weak
adversarial transferability in S-HAR (Skeleton-based Human
Activity Recognition) and establishing the first large-scale
robust benchmark. However, these methods focus on skele-
tal action recognition, whereas this paper focuses on action
recognition and is committed to improving its robustness for
safety-critical applications.

B. Adversarial Defense on Videos

Research into video defense mechanisms is notably lacking,
thereby exacerbating the grave security threats associated with
various video attacks on security-critical video tasks. AdvIT
[36] detects adversarial frames through temporal consistency
but does not provide defense against adversaries. Spatial and
temporal defenses [37] introduce a similar detector along
with different defense strategies. However, these defenses are
only tested in a black-box setting, leaving their resistance
to stronger white-box attacks unclear. OUDefend [38] pro-
poses an over-and-under complete restoration network for
defending against adversarial videos. AAT [39] combines
curriculum-style and adaptive adversarial training to enhance
the robustness of video recognition models against variable
attack budgets and types. However, these approaches also
incur significant extended training durations and elevated
training expenses. This is primarily attributed to the fact
that the complexity of multi-step iterative video attacks, with
their substantial computational demands, hinders the practi-
cal deployment of standard adversarial training approaches.
Adversarial training with FGSM attack can alleviate the prob-
lem of slow training speed, but it may lead to catastrophic
overfitting [40]. Moreover, since video data is more complex
and does not take into account the spatial-temporal character-
istics of video, it limits the robustness of the trained model.
In order to solve the problems, We propose the first Video
Fast Adversarial Training, which achieves better accuracy and

robustness than traditional video adversarial training [38] with
a shorter training time.

III. THE PROPOSED METHOD

In this section, we first review the concept of adversarial
training on videos. Then, we introduce a simple yet effective
temporal frequency augmentation, TF-AUG and its enhanced
vision, STF-AUG. Finally, we systematically describe VFAT-
WS with weak-to-strong spatial-temporal consistency and give
more details. The whole flowchart of VFAT-WS is shown in
Figure 2.

A. Preliminaries: Adversarial Training on Videos

Compared to images, videos have an additional temporal
dimension. A video input can be represented as X ∈

RT×W×H×C . The symbols T, W, H, C denote the number of
video frames, frame width, frame height, and the number of
video channels, respectively. Let Y denote the ground-truth and
Fθ represent the video recognition model parameterized by θ.
Adversarial training is described as a min-max optimization
process, in which the inner part is to maximize the loss to
generate adversarial examples, and the outer part is to input
adversarial examples to minimize the loss. Adversarial training
for video data is defined as follows:

δ = Pro j
�
α · sign

�
∇xJ(Fθ(X),Y)

��
, (1)

min
θ

max
δ∈∆

J(Fθ(X + δ),Y), (2)

where δ is the adversarial noise generated through inner-
loop loss maximization, Pro j(·) ensures that the updated
adversarial noise remains within the effective range, α is the
learning rate, sign(·) is the sign function, and J(·) is the cross-
entropy loss function. Let θt be the parameters of the model
at the t-th iteration. Our method generates adversarial noise
through internal loss maximization of FGSM. The external
minimization loss is consistent with standard AT:

δ = Pro j
�
δ0 + α · sign

�
∇δJ(Fθ(X + δ0),Y)

��
, (3)

θt+1 = θt − β · ∇θt J
��

Fθt (X + δ),Y
��
, (4)

where δ0 is a random uniform initialization noise, β is an
appropriate learning rate.

B. Preliminaries: Frequency Components in Videos

To clarify the concepts of low-frequency information and
high-frequency details, we follow previous work [41] and
provide an operational definition based on Gaussian filtering.
Low-frequency information refers to slowly varying, seman-
tically rich structures in videos, such as target shapes, global
motion, and smooth regions. This type of information can be
preserved through Gaussian filtering:

XLF = GaussianBlur(X, k), (5)

where XLF is low-frequency information of video frames,
GaussianBlur(·) is a Gaussian filtering operation performed
on the video frames, k represents the intensity of the filter-
ing. High-frequency details corresponds to rapid changes in
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Fig. 2. The pipeline of the proposed VFAT-WS. VFAT-WS first employs Gaussian filtering (G1 and G2) to decompose a video into low-frequency and
high-frequency components. A two-branch strategy is then adopted to generate perturbed videos: In the weak perturbation branch, TF-AUG performs temporal
shifting on high-frequency frames, which are subsequently fused with low-frequency information; In the strong perturbation branch, STF-AUG builds on TF-
AUG by further integrating spatio-temporal mixing operations, expanding the perturbation space. Adversarial examples in both branches are generated using
FGSM with non-zero initialization. Finally, the model takes inputs from both branches and conducts joint optimization via weak-to-strong spatio-temporal
consistency regularization, thereby enhancing the robustness-accuracy-efficiency triad.

videos, including edges, textures, and fine details, captured as
residuals:

XHF = X − XLF , (6)

where XHF is high-frequency details of video frames. This
decomposition separates semantic content (dominated by low-
frequency components) from perceptual details (dominated by
high-frequency components), forming the foundation of our
spatiotemporal frequency augmentation design.

C. TF-AUG: Temporal Frequency Augmentation

Research has revealed a notable distinction in how
humans and DNNs process information. Humans predomi-
nantly concentrate on low-frequency components, while DNNs
exhibit heightened sensitivity to high-frequency details [41].
Since adversarial noise predominantly resides in these high-
frequency details, diminishing the model’s responsiveness
to such noise emerges as a crucial strategy for bolstering
adversarial robustness.

Inspired by these observations, we propose a simple and
effective Temporal Frequency Augmentation (TF-AUG) in
Figure 2. Here we use Gaussian filters to filter out the high-
frequency details and low-frequency information of the video
respectively. Then, in order to further enhance the diversity of
high-frequency noise, we sequentially shift the corresponding
high-frequency video frames by n frames, and merge them
with the low-frequency information of the original video. The
formulas are as follows:

Perturb(X,N, k) = S hi f t(XHF ,N) + XLF , (7)

where S hi f t(X,N) denotes the N frame sequential shift oper-
ation on video frames, Perturb(·) represents the operation of
temporal enhancement of high-frequency noise. After obtain-
ing the frames with temporal enhancement of high-frequency

details, we first obtain the initialization noise through uniform
sampling. In order to improve the efficiency of adversarial
training, we use FGSM to attack the video with temporal
enhancement of high-frequency details. The formulas are as
follows:

δ0 = Uni f orm(−ε, ε), XP = Perturb(X,N, k), (8)

δ? = Pro j
�
α · sign

�
∇xJ(Fθ(XP + δ0),Y)

��
, (9)

where Uni f orm(·) represents uniform sampling, ε = 8/255
denotes the perturbation amplitude range for sampling. δ0
represents initialization noise, and δ? represents the adversarial
noise updated through FGSM attack.

To enhance the model’s consistency under different pertur-
bations, we introduce a consistency loss LTC . Specifically,
we leverage the cross-entropy loss LCE and the temporal
consistency loss LTC to jointly update the model weights θ,
which can be defined as follows:

LCE = J
�

Fθ(Cat(Xp + δ?, Xp),Cat(Y ,Y))
�
, (10)

LTC = JS D
�

Fθ(Xp), Fθ(Xp + δ?)
�
, (11)

where Cat(·) represents concat along the 0-th dimension,
JS D(·) represents Jenson-Shannon divergence. Therefore, the
weight updated in each iteration of the model can be expressed
as:

θt+1 = θt − β · ∇θt (θt, λ ∗ LTC + (1 − λ) ∗ LCE), (12)

where λ is a parameter to balance two losses.
TF-AUG enhances the model’s robustness by manipulating

the high-frequency details in video frames. Specifically, it
performs displacement operations on high-frequency details
to continuously expand the high-frequency perturbation space
between different frames. By diversifying the high-frequency
information across frames, TF-AUG suppresses the model’s
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Fig. 3. The robustness of models trained with different strategies under
additive noise and varying frequency distributions. We sample Gaussian noise,
apply low-pass/high-pass filters and add it to videos. Results show that TF-
AUG, VFAT-W, and PGD-AT improve tolerance to high-frequency noise,
with TF-AUG showing the best performance. For low-frequency noise, TF-
AUG and VFAT-W initially drop faster but demonstrate stronger robustness
as bandwidth increases compared to standard training.

learning of associations between high-frequency details and
video labels. This reduces the model’s reliance on high-
frequency information and forces it to focus more on stable
low-frequency information, which is more critical for video
semantics. As a result, the model is less disturbed by adversar-
ial perturbations embedded in high-frequency details, thereby
improving its overall robustness.

To further elucidate the mechanism of the proposed method,
we conduct related experiments by adding low-pass or high-
pass noise to models trained with different strategies. This
is done to verify their robustness against high-frequency and
low-frequency disturbances, as well as their focus on high-
frequency details and low-frequency information. As shown
in the left part of Figure 3, compared with standard training
and PGD-AT, TF-AUG and VFAT-W effectively reduce the
sensitivity to high-frequency details and enhance the model’s
robustness to high-frequency noise. In the right part of the
figure, compared with standard training, TF-AUG and VFAT-
W experience a sharper drop in accuracy in the initial stage
with a smaller bandwidth. This indicates that they force the
model to focus more on low-frequency information, thereby
increasing its sensitivity to such information. Additionally,
as the bandwidth of the low-pass filter increases, TF-AUG
and VFAT-W exhibit greater robustness than standard training,
highlighting their advantages in enhancing robustness. VFAT-
W achieves a better balance of training speed and robustness
against both high-frequency and low-frequency noise through
the collaborative efforts of the TF-AUG and FGSM adversarial
training strategies.

Moreover, Figure 4 shows that our strategies assist the
model in enhancing its tolerance to strong adversarial noise
existing in high-frequency details while maintaining its focus
on semantically relevant low-frequency information.

D. Weak-to-Strong Spatial-Temporal Consistency

We introduce a weak-to-strong perturbation pipeline (Fig-
ure 2) to fully broaden the perturbation space. The weak-
to-Strong Spatial-Temporal Consistency is designed to ensure
consistency between predictions of videos with weak temporal
perturbations and those with strong spatial-temporal adver-
sarial perturbations. This consistency regularization leverages
the model’s higher accuracy on weakly perturbed data to

Fig. 4. From top to bottom: Grad-CAM visualizations [42] of PGD-1, VFAT-
S, and VFAT-WS are presented, demonstrating their responses to corrupted
inputs under the scrutiny of AutoAttack. Among them, PGD-1 represents
the use of FGSM as the adversarial training strategy. The 3D Pre-activation
ResNet-18 serves as the underlying architecture for these evaluations.

TABLE I
SPATIAL-TEMPORAL MIX OPERATIONS

guide predictions on strongly perturbed videos. By incor-
porating additional information and mitigating confirmation
bias, our method progressively guides the model from simple
to complex perturbation learning while enhancing perceptual
consistency and robustness.

The effectiveness stems from its alignment with video’s
spatiotemporal structure and frequency dynamics: weak aug-
mentation (TF-AUG) applies only temporal perturbations
for slight semantic enhancement, and strong augmentation
(STF-AUG) to add spatial perturbations for expanding the
spatiotemporal perturbation space. These progressive designs
help form consistent representations and suppress the model’s
focus on unstable high-frequency details.

Specifically, we combine the weak TF-AUG pipeline and
the strong STF-AUG pipeline to form a new framework. The
TF-AUG is introduced in the previous section, while the strong
STF-AUG is an enhanced version of the weak TF-AUG.
It further explores the spatial information of high-frequency
details and increases the degree of temporal enhancement,
including the size of the convolution kernels and the offset of
high-frequency frame details. Specifically, STF-AUG utilizes
Spatial-Temporal Mix operations we use in Table I to process
high-frequency frame details, thereby further expanding the
perturbation source. The formulas are as follows:

Perturb W(X) = Perturb(X,N1, k1), (13)
Perturb S (X) = S T Mix(Perturb(X,N2, k2), γ), (14)

where Perturb W(·) represents the weak perturbation oper-
ation, Perturb S (·) represents the strong perturbation oper-
ation, N2>N1 ≥ 0, k2>k1 > 0, S T Mix(·) represents
Spatial-Temporal Mix operation, γ is the mixing coefficient.
Then the two generated video frames enhanced by strong and
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weak perturbations operation are introduced into uniformly
sampled initialization noise δ0, and the sampling range of
the disturbance size is (−ε, ε). In order to save time of
maximizing loss within adversarial training, we still only use
FGSM to attack video frames with enhanced strong and weak
perturbations operation, which can be expressed as:

δW = Pro j
�
α · sign

�
∇δ0 J(Fθ(Perturb W(X) + δ0),Y)

��
,

(15)

δS = Pro j
�
α · sign

�
∇δ′0 J(Fθ(Perturb S (X) + δ′0),Y)

��
,

(16)

where δS and δW respectively correspond to the adversarial
noise obtained by performing FGSM attack after strong and
weak perturbation operation. Then the final loss LTotal that we
externally minimize consists of cross entropy loss LCE , weak
consistency loss LTCW and strong consistency loss LTCS . The
formulas are as follows:

LCE =
1
N

NX
i=1

J
�

Fθ(Cat(XWPi + δWi , XWPi )
�
,Cat(Yi,Yi)

�
,

(17)

LTCW =
1
N

NX
i=1

JS D
�

Fθ(XWPi + δWi ), Fθ(XWPi )
�
, (18)

LTCS =
1
N

NX
i=1

JS D
�

Fθ(XS Pi + δS i ), Fθ(XWPi )
�
, (19)

where N represents the batch size of multiple input videos,
XWPi represents the i-th weak perturbation video by weak
perturbation operation and XS Pi represents the i-th strong
perturbation video by strong perturbation operation. Then
we set two hyperparameters to control the weight between
different losses and get the final loss, which can be expressed
as:

LTotal = λ ∗ (LTCW + µ ∗ LTCS ) + (1 − λ) ∗ LCE , (20)

where µ is a hyperparameter that adjusts LTCW and LTCS , λ
is a hyperparameter that adjusts LCE and LTC loss. Eq. (20)
defines the overall objective of VFAT-WS. The cross-entropy
loss LCE (Eq. (17)) ensures basic classification accuracy under
perturbations. The weak consistency loss LTCW (Eq. (18))
enforces prediction consistency between a weakly augmented
video and its adversarial version, providing a stable reference
for learning. The strong consistency loss LTCS (Eq. (19))
aligns the prediction of the strongly perturbed adversarial
sample with the weakly augmented one, anchoring the model
to semantic content under heavy perturbations. By balancing
these terms with weights λ and µ, VFAT-WS enables a progres-
sive, robust learning process. This weak-to-strong consistency
design effectively enhances the robustness-accuracy-efficiency
triad, as validated by extensive experiments.

Through weak-to-strong consistency regularization, the
model becomes more adaptable to varying noise levels. Our
proposed method effectively enhances the model’s adversarial
robustness and consistency. Specifically, our method ensures
that the model’s output for a sample enhanced by a weak
adversarial perturbation remains consistent with the output for
the same sample enhanced by a strong adversarial perturbation.

Algorithm 1 VFAT-WS Algorithm
Input: Input video (X,Y), model parameters θ, perturbation

budget ε, weak temporal augmentation TTF-AUG, strong
spatiotemporal augmentation TSTF-AUG, learning rate β,
total training epochs T.

Output: Robust model parameters θ?

1: while t < T do
2: Apply weak TF-AUG Xwt ← TTF-AUG(X). Eq. (13)
3: Apply strong STF-AUG Xst ← TSTF-AUG(X) . Eq. (14)
4: Initialize perturbation δwt, δst ← Uniform(−ε, ε)
5: Generate weak adversarial video X̂wt ← Xwt+δwt . Eq.

(15)
6: Generate strong adversarial video X̂st ← Xst +δst . Eq.

(16)
7: Compute cross entropy loss LCE. Eq. (17)
8: Compute weak consistency loss LTCW. Eq. (18)
9: Compute strong consistency loss LTCS . Eq. (19)

10: Compute total loss LTotal. Eq. (20)
11: Update parameters θt+1 ← θt − β · ∇θt Ltotal

12: end while
13: return θ?

The VFAT-WS framework we introduced continues to achieve
favorable effects of adversarial defense even in the presence
of previously unseen strong attacks, while maintaining high
accuracy on clean data and high training efficiency. The whole
algorithm is summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, we conduct a comprehensive evaluation
of our proposed methods. First, we detail the experimental
setup. Next, we compare our methods with state-of-the-art
adversarial training techniques under two prominent adaptive
attacks AutoAttack [43] and PGD [44], using varying attack
budgets. We also assess performance against nine distinct
types of video adversarial attacks. Furthermore, we perform
in-depth experiments on the hyperparameters of our method
and conduct ablation studies on different modules to highlight
their contributions. Finally, we present additional results to
validate the effectiveness of our approach.

A. Experimental Setup

1) Datasets and Recognition Models: We conduct our
experiments using the widely used UCF-101 dataset [45],
which consists of 13,320 videos spanning 101 action classes
and HMDB-51 [46], which consists of 7,000 videos across
51 action categories for evaluation. Following [26], we resize
dimensions of video frames to 112×112 and uniformly sample
each video. Following [47], we adopt classic 3D ResNet-18
[48] and 3D Pre-activation ResNet-18 [48] as target models. To
further validate the generality of our method, we also conduct
experiments on the Video Swin Transformer [49].

2) Baselines: We compare our method with standard train-
ing and other advanced adversarial video training methods,
including PGD-AT [44], OUD [38], and AAT [39]. To further
expand the evaluation scope, we extended several mainstream
methods from the image domain to video data for compre-
hensive evaluation, including FAST-AT [47], ATAS [50] and
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FGSM-PKG [51]. For a fair comparison, we use the PGD
or FGSM attack as the inner attack in all methods. For
our approach, we use two variants: (1) VFAT-S: represents
our proposed STF-AUG in collaboration with the FGSM
adversarial training method (2) VFAT-WS: indicates our final
method.

3) Implementation Details: Following the experimental set-
tings of the classic fast adversarial training method [47], we
use an SGD optimizer with a weight decay of 5e-4, a batch size
of 60, and a momentum of 0.9. The maximum learning rates
are set to 0.2 for 3D ResNet, and 0.09 for 3D Pre-activation
ResNet and Video Swin Transformer (to balance training
speed and stability). Cyclic learning rates are employed to
aid convergence and reduce training time. Models are trained
for 40 epochs. Following common range for video adversarial
training [39], we set the perturbation strength to ε = 8/255
to ensure the appropriateness of the perturbation magnitude.
For data preprocessing, we follow the general conventions
of experimental settings in the video recognition field: we
use the HMDB51 and UCF101 data processing pipelines; for
frame sampling, we adopt a uniform sampling method; for
data augmentation, we use lightweight video augmentation
methods such as Group Random Horizontal Flip and Group
Scale, which are consistent with the conventions in the video
recognition. All hyperparameters are kept as consistent as
possible across all models and datasets to ensure fair and
unbiased comparisons. Experiments are conducted on NVIDIA
RTX A6000 GPUs with 48 GB memory. The experimental
results in all tables are run five times with different random
seeds to calculate the standard deviation and ensure stability.

B. Main Experiment

1) Quantitative Results With Variable Attack Budget: To
demonstrate the effectiveness of our proposed method, we
conduct a comprehensive evaluation comparing our approach
with several baselines on the UCF-101 and HMDB-51
datasets using multiple models, including 3D ResNet-18, 3D
Pre-Activation ResNet-18, and Video Swin Transformer.We
employ AutoAttack and PGD as attack methods with budgets
of ε = {10/255, 12/255, 14/255, 16/255}. Moreover, RA-
PGD represents the robust accuracy (RA) under PGD attacks.
As shown in Table II and Table III, our methods, VFAT-
S and VFAT-WS, achieve significant improvements in both
clean accuracy and adversarial robustness. In terms of clean
accuracy, VFAT-S and VFAT-WS consistently outperform
other methods. For example, on UCF-101 with 3D ResNet-
18, VFAT-S achieves 45.27% accuracy, surpassing PGD-AT
(42.53%) and OUD (42.42%). With Video Swin Transformer,
VFAT-S reaches 63.66%, higher than PGD-AT (40.22%) and
OUD (39.12%). On HMDB-51 with 3D ResNet-18, VFAT-WS
attains 36.90% accuracy, outperforming PGD-AT (15.72%)
and OUD (20.81%).

Regarding robustness, VFAT-S and VFAT-WS achieve the
highest accuracy under all attack strengths. For instance, on
HMDB-51 with 3D ResNet-18, VFAT-WS achieves 25.39%
accuracy under RA-AutoAttack at ε = 16/255, higher than
PGD-AT (10.63%) and OUD (11.73%). Under RA-PGD,
VFAT-WS achieves 28.49% accuracy, surpassing PGD-AT

(24.43%) and OUD (23.39%). Additionally, VFAT-S and
VFAT-WS have effectively shorter training times. For example,
on UCF-101 with 3D ResNet-18, VFAT-S trains in 24 minutes,
325% faster than PGD-AT (102 minutes) and 854% faster than
OUD (229 minutes). VFAT-WS trains in 40 minutes, 472%
faster than OUD. Our methods thus enhance robustness and
reduce training time while maintaining high clean accuracy,
demonstrating their efficiency and effectiveness.

2) Quantitative Results Against Multiple Adversarial Video
Attacks: To thoroughly evaluate our method, we conduct com-
prehensive tests using a diverse set of video attack methods,
as shown in Table IV and Table V. Specifically, we test
against nine unseen types of video attacks, including ROA
[52], SPA [53], AF [54], Frame Border, Frame saliency (one-
shot), Frame saliency (iterative) [55], SparseAdv [26], Masked
PGD [39], and TT attack [56]. As shown in Table IV, VFAT-
WS achieves the best average performance of 41.46% against
various strong video attacks on Video Swin Transformer, out-
performing OUD by 9.85% and AAT by 14.64%. Additionally,
in Table V, VFAT-WS achieves the best average performance
of 32.2% against various attacks on 3D Pre-Activation ResNet-
18, surpassing OUD by 12.88% and AAT by 7.13%. To further
evaluate robustness, we conduct comparative tests using cor-
ruption benchmarks [57]. The results on UCF-101 with 3D
Pre-activation ResNet-18, shown in Figure 5, demonstrate that
VFAT-WS exhibits higher corruption robustness compared to
adversarial training with FGSM (PGD-1) and OUD, further
confirming the effectiveness of our proposed method.

3) Comparison of Positioning Between VFAT-S and VFAT-
WS: While both VFAT-S and VFAT-WS are fast adversarial
training methods, they serve different priorities. VFAT-S
focuses on speed: it uses STF-AUG with FGSM, without
consistency regularization. On UCF-101 (3D ResNet-18),
it trains in just 24 minutes—over 4× faster than PGD-
AT (102 min)—making it ideal for edge deployment and
real-time applications. Though its robustness (34.29% under
RA-AutoAttack) is slightly lower than VFAT-WS, it still
outperforms traditional methods. In contrast, VFAT-WS
prioritizes robustness by introducing weak-to-strong spatio-
temporal consistency (LTCW , LTCS ) between TF-AUG and
STF-AUG. It achieves 35.71% robust accuracy under RA-
AutoAttack and 41.05% against unseen attacks (e.g., TT), with
training in 40 minutes—still 5.7× faster than OUD (229 min).
This makes it suitable for safety-critical tasks like surveillance.
Thus, VFAT-S and VFAT-WS are complementary: one opti-
mizes for speed, the other for robustness, together covering
diverse real-world needs. Experimental results validate this
design rationale.

C. Hyperparameter Studies

In this subsection, we investigate the impact of hyperparam-
eters on the validation set of UCF-101 using 3D ResNet-18.
We focus on how these hyperparameters affect clean accuracy
and adversarial robustness under PGD and AutoAttack with
an attack budget of ε = 16/255.

Figure 6 .(A) shows the parameter tuning results for VFAT-
WS with different values of λ, defined in Eq. (12). The
y-axis represents accuracy in percentage, while the x-axis
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TABLE II
ACCURACY(%) OF DIFFERENT ADVERSARIAL TRAINING METHODS UNDER DIFFERENT PERTURBATION STRENGTH ε AGAINST RA-AUTOATTACK AND

RA-PGD WITH DIFFERENT MODELS AS THE BACKBONE ON UCF-101

indicates varying values of λ. A well-calibrated λ helps
the model capture patterns from both weakly and strongly
perturbed instances. We find that λ impacts clean accuracy and
adversarial robustness. Increasing λ generally improves overall
performance, highlighting the positive effect of the weak-to-
strong consistency loss. The optimal trade-off between clean
accuracy and adversarial robustness is achieved when λ = 0.8,
which we use for subsequent experiments.

Similarly, Figure 6.(B) explores the impact of µ, which
balances LTCW and LTCS in Eq. (12). We set µ = 0.8 for
the best performance. Figures 6.(C) and 6.(D) examine the
effects of the offset frame count N and Gaussian blur kernel
size k. Figure 6.(C) shows that increasing N improves both
clean accuracy and robustness against PGD and AutoAttack,

with optimal performance at N = 6. Figure 6.(D) indicates that
when k = 3, Gaussian filtering not only effectively suppresses
high-frequency adversarial noise but also retains the low-
frequency semantic features of videos to the greatest extent,
achieving the optimal balance between robustness and accu-
racy. However, when the kernel size is too large, performance
degradation occurs due to over-smoothing. Thus, We set N = 6
and k = 3 to balance clean accuracy and robustness.

D. Ablation Study

1) Ablation Study On Different Modules Of VFAT-WS:
All ablation experiments are conducted using 3D ResNet-
18 on the UCF-101 dataset, employing AutoAttack with
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TABLE III
ACCURACY(%) OF DIFFERENT ADVERSARIAL TRAINING METHODS UNDER DIFFERENT PERTURBATION STRENGTH ε AGAINST RA-AUTOATTACK AND

RA-PGD WITH DIFFERENT MODELS AS THE BACKBONE ON HMDB-51

ε = 16/255 as the attack method to evaluate robust accu-
racy. As shown in Figure 7.(A), the baseline Clean method
achieves a robust accuracy of about 1%, while TF-AUG
improves this to around 4.7%, indicating its positive contribu-
tion to model robustness. PGD-1 adversarial training further
increases robust accuracy to approximately 20%. Combining
TF-AUG and PGD-1 in VFAT-W boosts robust accuracy
to around 27%. Building on this, VFAT-WS achieves the
highest robust accuracy of about 32%, demonstrating that
STF-AUG and consistency regularization enhance the model’s
ability to handle adversarial attacks. However, VFAT-WSC
shows a slight decrease to around 30%, suggesting that
weakly perturbed samples are more effective for consis-
tency constraints than clean samples, as they better guide

the learning of complex augmentation patterns and enhance
robustness.

2) Ablation Study on Different Consistency Constraint
Losses: The experimental results in Figure 7.(B) provide an
ablation analysis of robust accuracy using different types of
losses (Cosine similarity, KL divergence, and JS divergence) as
the consistency constraint loss. The results show that the JSD
method achieves the highest robust accuracy of approximately
32%, indicating its advantage in capturing distributional dif-
ferences. KL achieves a robust accuracy of around 30%,
which, although lower than JSD, is still superior to the Cosine
similarity. In contrast, the Cosine similarity has the lowest
robust accuracy of about 28%, likely because Cosine focuses
only on the directional similarity of distributions and fails to
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Fig. 5. Accuracy (%) on each corruption type of UCF-101 dataset where the x-axis labels denote different corruption types. Experiments are evaluated on
3D Pre-activation ResNet-18 trained under PGD-1, OUD, VFAT-WS, respectively.

TABLE IV

ACCURACY(%) OF DIFFERENT ADVERSARIAL TRAINING METHODS UNDER DIFFERENT VIDEO ATTACK METHODS
WITH DIFFERENT MODELS AS THE BACKBONE ON UCF-101

fully capture the overall differences between distributions. JSD
is symmetric, which enables bidirectional consistency between

weak perturbations and strong perturbations, and is more
conducive to maintaining semantic alignment under complex
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TABLE V

ACCURACY(%) OF DIFFERENT ADVERSARIAL TRAINING METHODS UNDER DIFFERENT VIDEO ATTACK METHODS
WITH DIFFERENT MODELS AS THE BACKBONE ON HMDB-51

augmentations. Therefore, we use JSD as the consistency
constraint loss.

3) Ablation Study On Different Spatial-Temporal Mix
Operations: Figure 7.(C) illustrates the impact of different
spatial-temporal augmentation operations (SMU, TCM, TMU,
CM, and CMU) on robust accuracy. The experimental results
show that CMU achieves the highest robust accuracy of
approximately 32%, indicating its advantage in enhancing
model robustness. CM achieves a robust accuracy of around
31%, slightly lower than CMU. In contrast, SMU, TCM,
and TMU, which employ only temporal augmentations, have
relatively close robust accuracies, all around 29%, suggesting
that these augmentations alone have limited effectiveness in
improving robustness. This indicates that CM and CMU, by
further exploiting both temporal and spatial information, are
more effective in enhancing the model’s adversarial robust-
ness. Therefore, we use CMU as the Spatial-Temporal Mix
operation.

4) Ablation Study on Different VFAT Versions: We inves-
tigate the effectiveness of various training frameworks that
incorporate different spatial-temporal perturbation mecha-
nisms. The results are presented in Figure 8. Specifically,
VFAT-W and VFAT-WR represent sequential and random
high-frequency frame shifts, respectively, as distinct weak per-
turbation strategies. VFAT-S employs STF-AUG paired with
FGSM attack as its training approach. VFAT-WSS builds on
our VFAT-WS method by adding Jensen-Shannon divergence
during the FGSM operation to increase the gap between
weakly and strongly perturbed videos.

As shown in the results, VFAT-WR’s random frame shifts
lead to excessive offsets, causing a decline in both clean and
adversarial accuracy under AutoAttack. In contrast, VFAT-WS
achieves similar clean accuracy to VFAT-W and VFAT-S while
significantly enhancing adversarial robustness across various
attacks. Additionally, VFAT-WSS underperforms compared
to VFAT-WS, indicating that incorporating Jensen-Shannon
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Fig. 6. (A) The parameter tuning results with different λ. (B) The parameter
tuning results with different µ. (C) The parameter tuning results with different
N. (D) The parameter tuning results with different k.

TABLE VI

EFFECTS OF SPATIAL AND TEMPORAL AUGMENTATION UNDER AUTOAT-
TACK ON UCF-101 USING A 3D RESNET-18

divergence (JSD) into FGSM does not improve adversarial
robustness. This is because the long-term regularization objec-
tive of JSD conflicts with the objective of FGSM, which aims
to minimize the probability of the correct class. Overall, VFAT-
WS effectively balances clean accuracy and robustness. It
outperforms VFAT-W by 7.47% and VFAT-S by 1.87% under
PGD attack, and by 3.85% and 2.75% under AutoAttack,
respectively.

5) Ablation Study on STF-AUG: To analyze the con-
tribution degrees of spatial augmentation and temporal
augmentation in STF-AUG, we conduct further fine-grained
experiments. As shown in Table VI, VFAT-W represents the
baseline by introducing TF-AUG. VFAT-WT replaces the STF-
AUG in VFAT-WS with only temporal augmentation, and
VFAT-WV replaces it with only spatial augmentation. The
experiments are conducted on the UCF-101 dataset (based on
the 3D ResNet-18 model), and the robust accuracy of different
methods is evaluated using AutoAttack. The results show
that VFAT-WT (30.42%) outperforms VFAT-WV (29.21%)
by 1.21%, indicating that using only temporal augmentation
achieves higher performance than using only spatial augmen-
tation. This gap clearly demonstrates that, within STF-AUG,
the temporal dimension contributes more to improving model
robustness than the spatial dimension. Finally, VFAT-WS,
which fully explores the potential of both temporal augmen-
tation and spatial augmentation, achieves the highest robust
accuracy of 31.32%, outperforming the baseline (+ 10.44%)
and all other single or dual-component variants, demonstrating
the overall effectiveness of our proposed TF-AUG and STF-
AUG.

TABLE VII

RUNNING-TIME PROPORTION OF VFAT-S AND VFAT-WS MODULES ON
UCF-101 USING A 3D RESNET-18

TABLE VIII

PERFORMANCE COMPARISON BETWEEN TRADES AND VFAT-WS ON
UCF-101 USING A 3D RESNET-18

E. Analysis of Running-Time Proportion

To verify the efficiency of TF-AUG and STF-AUG, we
analyze their running-time proportions in VFAT-S and VFAT-
WS. As shown in Table VII, the overhead of the augmentation
operations is extremely low: the time consumption of TF-AUG
accounts for only 0.06% (in VFAT-S) and 0.19% (in VFAT-
WS), while that of STF-AUG is merely 0.54% and 0.45%
respectively. In contrast, the combined computing time of
adversarial sample generation (Inner-Attack) and model update
(Outer-Train) accounts for 70% (in VFAT-S) and over 77% (in
VFAT-WS).

The results indicate that the training bottleneck lies mainly
in adversarial sample construction rather than frequency-
domain augmentation. This fully verifies the efficiency of the
proposed spatiotemporal augmentation methods.

F. Robustness-Accuracy-Efficiency Trade-off Analysis

Different from the traditional “robustness-accuracy trade-
off”, VFAT-WS focuses more on balancing the triple of
robustness, accuracy, and efficiency. To verify this, we com-
pare it with the classic TRADES [58] (which focuses on
the “robustness-accuracy trade-off”) on the UCF-101 dataset.
As shown in Table VIII, VFAT-WS outperforms TRADES in
several key metrics. In terms of adversarial robustness, its
AutoAttack accuracy reaches 31.32%, which is significantly
higher than TRADES’ 25.18%; it also performs better in clean
accuracy (44.51% vs. 42.78%), indicating that the method
effectively preserves the understanding of original semantics
while improving robustness.

This advantage stems from the core design of VFAT-
WS. Unlike TRADES, which explicitly balances natural and
adversarial losses through regularization terms, VFAT-WS
expands the perturbation space in the spatiotemporal frequency
domain via TF-AUG and STF-AUG, and introduces “weak-
strong” consistency regularization to force the model to output
consistent predictions for different augmented versions of
the same video. This mechanism urges the model to focus
on stable low-frequency semantics between frames (such as
motion trajectories and action structures) and avoid relying on
high-frequency details that are vulnerable to attacks.

Similar to contrastive learning, this process guides the
model to gradually adapt from weakly augmented samples to
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Fig. 7. Ablation study of different modules. Figure (A) shows the effect of different training strategies: “Clean” refers to training with clean samples, “PGD-1”
represents adversarial training using FGSM, and “VFAT-WSC” denotes adversarial training with consistency constraints where noisy samples in VFAT-WS are
replaced with clean samples. Figure (B) presents an ablation study using different types of consistency losses. “Cosine” represents cosine loss, “KL” stands
for KL divergence, and “JSD” indicates JS divergence. Figure (C) displays the ablation study of various augmentations mentioned in Table 1. “SMU” stands
for Subtle MixUp, “TCM” for Temporal CutMix, “TMU” for Temporal CutMixUp, “CM” for 3D CutMix, and “CMU” for 3D CutMixUp.

Fig. 8. The accuracy rates (%) of different VFAT versions. All experiments
were conducted on the UCF-101 dataset using a 3D ResNet-18 as the
backbone, with results averaged over three runs to obtain the final outcomes.

stronger perturbations, achieving the coordinated improvement
of robustness and clean accuracy. In addition, VFAT-WS only
takes 40 minutes for training, which is much shorter than
TRADES’ 110 minutes—this is due to the high efficiency of
frequency-domain augmentation and the avoidance of multi-
step optimization (e.g., PGD). VFAT-WS achieves a better
“robustness-accuracy-efficiency” triple balance and demon-
strates greater potential for practical applications.

G. More Results

1) Qualitative Results: We provide GradCam visualizations
of different methods against AutoAttack with ε = 16/255 in
Figure 9. The model trained with the FGSM (PGD-1) method
fails to withstand the strong perturbations of AutoAttack,
resulting in misclassifications. In contrast, VFAT-S mitigates
the model’s reliance on unstable high-frequency details to
some extent. VFAT-WS further improves performance by
focusing the model on semantically relevant low-frequency
information, enabling accurate predictions under strong attack
disturbances. By optimizing the model’s attention to low-
frequency information, VFAT-WS promotes the learning of
more stable feature representations and enhances adversarial
robustness.

2) Visualization Of Proposed Perturbations: The visualiza-
tion of our proposed spatial-temporal frequency perturbations

Fig. 9. From top to bottom: Grad-CAM visualizations of PGD-1, VFAT-
S, and VFAT-WS are presented, demonstrating their responses to corrupted
inputs under the scrutiny of AutoAttack. The 3D Pre-activation ResNet-18
serves as the underlying architecture for these evaluations.

is shown in Figure 10. It can be observed that the texture of
the Spatial-Temporal Mix enhanced frequency perturbation is
more complex and variable compared to the temporal shifted
frequency perturbation. TF-AUG broadens the perturbation
space by swapping high-frequency details and low-frequency
information between frames of the same video, reducing
the model’s reliance on high-frequency details. In contrast,
the STF-AUG proposed in our research adopts a far more
adaptable and versatile strategy. It facilitates the exchange
of high-frequency details and low-frequency information not
merely among frames but also with external videos. Through
this approach, it penetrates deeper and explores the per-
turbation space in a more comprehensive manner. These
perturbations, which play a crucial role in guiding the model
to boost its robustness, scarcely modify the semantic content
of the original video (in this instance, centered around skiing).
Additionally, STF-AUG impels the model to place greater
emphasis on low-frequency information. This type of infor-
mation is typically more closely associated with the video’s
label data, thus enhancing the model’s robustness.

3) Reducing Robust Overfitting With STF-AUG And Our
Consistency Regulation: In this section, we elucidate the
pivotal role of STF-AUG and our consistency regulation in
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Fig. 10. Visualization of spatial-temporal frequency perturbations. The first row depicts clean video frames, the second row shows high-frequency of video
frames, the third row represents video frames enhanced by TF-AUG, and the last row depicts video frames enhanced by STF-AUG.

Fig. 11. Difference between the training processes of PGD-1, VFAT-S and
VFAT-WS under FGSM attack with ε = 16/255.

mitigating robust overfitting. The experiment assesses robust
accuracy (%) under FGSM attack across various adver-
sarial training methods. We evaluate the performance on
PreAct-ResNet-18, which is trained on the UCF-101 dataset,
employing an l∞ with ε = 16/255 for FGSM attack.

The experimental results in Figure 11 show that although
PGD-1 alleviates catastrophic overfitting through random ini-
tialization, appropriate step size, and cyclic learning, it still
exhibits severe robust accuracy fluctuations in the early stages
of training. This indicates its over-reliance on high-frequency
details and overfitting to a single perturbation path, which
severely limits the improvement of its adversarial robustness.
Compared with PGD-1, VFAT-S mitigates the robust accuracy
fluctuations in the initial stage and shows a more signifi-
cant upward trend. This demonstrates that with the help of
STF-AUG, VFAT-S shifts the model’s focus to more stable
low-frequency information and expands the perturbation path.

In contrast, VFAT-WS effectively avoids catastrophic over-
fitting and further improves robustness through the following
three mechanisms: 1) Diversified spatiotemporal frequency-
domain perturbations: On the basis of PGD-1’s random
initialization, TF-AUG and STF-AUG introduce inter-frame
temporal shifts and 3D spatial mixing. This effectively expands
the perturbation space, covers high-frequency details and spa-
tiotemporal dynamics, and breaks through the limitation of
PGD-1’s single path. 2) Weak-strong consistency regulariza-
tion: Through the LTCW and LTCS losses, the model is forced
to maintain consistent predictions for weakly perturbed and
strongly perturbed samples of the same video. This enhances
perturbation invariance and alleviates overfitting to specific
patterns. 3) Efficient convergence mechanism: By combining
cyclic learning rate and spatiotemporal consistency constraints,
VFAT-WS approaches convergence in only 20 epochs (fewer
than PGD-1), which shortens the training cycle and reduces
the risk of overfitting. The synergistic effect of the above
mechanisms enables VFAT-WS to maintain efficient training
while effectively avoiding catastrophic overfitting and improv-
ing robust performance

V. CONCLUSION

In this paper, we propose VFAT-WS, the first fast adversarial
training framework specifically designed for video data. VFAT-
WS introduces two key components: (1) TF-AUG and its
spatial-temporal extension (STF-AUG), combined with FGSM
attack to enhance both training efficiency and adversarial
robustness; (2) a weak-to-strong spatial-temporal consistency
regularization that progressively guides the model from sim-
pler (TF-AUG) to more complex (STF-AUG) augmentations,
thereby improving generalization. Collectively, these mecha-
nisms establish an improved balance among clean accuracy,
adversarial robustness and efficiency. Extensive experiments
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across different models on UCF-101 and HMDB-51, involving
diverse seen and unseen attacks, demonstrate the effectiveness
of our proposed VFAT-WS. It achieves great improvements in
adversarial robustness and corruption robustness, along with
a remarkable 490% speed enhancement, effectively defending
against a wide range of strong attacks.
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