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Abstract

The success of machine learning models relies heavily on effectively representing
high-dimensional data. However, ensuring data representations capture human-
understandable concepts remains difficult, often requiring the incorporation of
prior knowledge and decomposition of data into multiple subspaces. Traditional
linear methods fall short in modeling more than one space, while more expressive
deep learning approaches lack interpretability. Here, we introduce Supervised
Independent Subspace Principal Component Analysis (sisPCA), a PCA extension
designed for multi-subspace learning. Leveraging the Hilbert-Schmidt Indepen-
dence Criterion (HSIC), sisPCA incorporates supervision and simultaneously
ensures subspace disentanglement. We demonstrate sisPCA’s connections with
autoencoders and regularized linear regression and showcase its ability to identify
and separate hidden data structures through extensive applications, including breast
cancer diagnosis from image features, learning aging-associated DNA methyla-
tion changes, and single-cell analysis of malaria infection. Our results reveal
distinct functional pathways associated with malaria colonization, underscoring
the essentiality of explainable representation in high-dimensional data analysis.

1 Introduction

High-dimensional data generated by complex biological mechanisms encapsulate an ensemble of
patterns. A prime example is single-cell RNA sequencing (scRNA-seq) data (Fig. 1). These datasets
measure the expression of tens of thousands of genes across potentially millions of cells, creating
rich tapestries woven from interacting cellular pathways, gene dynamics, cell states, and inherent
measurement noise. To unravel these patterns and reveal hidden relationships, it is necessary to
decompose the data into meaningful, lower-dimensional subspaces.

Linear representation learning methods, such as Principal Component Analysis (PCA) [Hotelling,
1933] and Independent Component Analysis (ICA) [Comon, 1994], extract latent spaces from data
using explainable linear transformations. These widely employed unsupervised tools learn a single
latent space or a union of one-dimensional subspaces. Independent Subspace Analysis (ISA) extends
ICA by extracting multidimensional components as independent subspaces [Cardoso, 1998]. Yet,
the unsupervised nature of these methods precludes knowledge integration, restricting their utility
and sometimes even identifiability [Theis, 2006]. In the context of Fig. 1, the representation learned
without supervision fails to separate temporal variability from technical batch effects.

Conversely, recent advancements in deep generative models, especially semi-supervised approaches
[Kingma et al., 2014], have shown promise in disentangling diverse latent spaces and retaining relevant
information under supervision. However, challenges remain in ensuring subspace independence
within a variational autoencoder (VAE). While models like β-VAE [Higgins et al., 2016], HCV
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Figure 1: Example scRNA-seq dataset from Afriat et al. [2022]. Each dot represents the gene
expression vector x⃗ ∈ R8,203 of a cell, visualized in 2D and colored by cell properties {Ym}.
Variability in the dataset X arises from multiple sources: (left to right) temporal dynamics of
infection, technical batch effects, and cell quality. Incorporating supervisory information Y , such
as time points, allows for the extraction of patterns in distinct subspaces {Zm} that correspond to
different sources of variability. Moreover, the linear mapping {Um : X → Zm} directly quantifies
the relationship between gene expression and the property of interest, enabling discoveries such as
the identification of genes underlying the persistent defense against infection. The disentanglement is
particularly important to ensure minimal confounding effects. See Section 4.4 for details.

[Lopez et al., 2018] and biolord [Piran et al., 2024] attempt to address this, inference for deep
generative models remains challenging and the learned representations are not interpretable.

To bridge the gap, we propose Supervised Independent Subspace Principal Component Analysis
(sisPCA)1, an innovative method extending PCA to multiple subspaces. By incorporating the Hilbert-
Schmidt Independence Criterion (HSIC), sisPCA effectively decomposes data into explainable
independent subspaces that align with target supervision. It thus reconciles the simplicity and clarity
of linear methods with the nuanced multi-space modeling capabilities of advanced generative models.
In summary, our contributions include:

• A multi-subspace extension of PCA for disentangling linear latent subspaces in high-
dimensional data. We additionally show that supervising subspaces with a linear target
kernel can be conceptualized as linear regression regularized akin to Zellner’s g-prior.

• An efficient eigendecomposition-based alternating optimization algorithm to compute
sisPCA subspaces. The learning process with linear kernels resembles matrix factorization,
which may potentially benefit from desirable local geometric properties (Conjecture 3.1).

• Demonstrated effectiveness and interpretability of sisPCA in various applications. This
includes identifying diagnostic image features for breast cancer, dissecting aging signatures
in human DNA methylation data, and unraveling time-independent transcriptomic changes
in mouse liver cells upon malaria infection.

2 Background

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt Independence Criterion (HSIC) serves as a methodology for testing the indepen-
dence of two random variables X and Y [Gretton et al., 2005a]. It operates by embedding probability
distributions into reproducing kernel Hilbert spaces (RKHS) and quantifying independence by dis-
tance between the joint distribution and the product of its marginals. Specifically, HSIC builds on the
cross-covariance operator CXY : G → F , which is a generalization of the cross-covariance matrix to
infinite-dimensional RKHS (i.e., the feature spaces of X and Y after transformation),

CXY := EXY [ϕ(X)⊗ ψ(Y )]− EX [ϕ(X)]⊗ EY [ψ(Y )].

Here F := span({ϕ(X)}) and G := span({ψ(Y )}) are the RKHSs with feature maps ϕ and ψ for
X and Y respectively. The tensor product operator f ⊗ g maps G to F , such that (f ⊗ g)h :=
f⟨g, h⟩G for all h ∈ G. The HSIC is then defined as,

HSIC(X,Y ;F ,G) := ||CXY ||2HS :=
∑
i,j

⟨Cxyvi, uj⟩F

1A Python implementation of sisPCA is available on GitHub at https://github.com/JiayuSuPKU/sispca (DOI
10.5281/zenodo.13932660). The repository also includes notebooks to reproduce results in this paper.
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Figure 2: Overview of sisPCA and its relationship with other PCA models.

where vi and uj are the orthogonal bases of G and F . X and Y are independent if and only if
HSIC(X,Y ;F ,G) = 0. In practice, given a finite sample {(xi, yi)}ni=1 from the joint distribution
PX,Y , the empirical HSIC can be computed as,

HSICn(X,Y ) =
1

(n− 1)2
tr(KXHLYH)

where KX and LY are matrices of kernel evaluations over the samples {xi}ni=1 in F and {yi}ni=1 in
G, and H is the centering matrix defined as H = In − 1

n1n1
⊤
n , with In being the identity matrix.

2.2 Related work

The HSIC, as a non-parametric criterion for independence, has been effectively integrated into
numerous representation learning models, especially for disentangling complex data structures. One
of the earliest applications of HSIC is ICA [Comon, 1994], where the goal is to recover unmixed and
statistically independent sources. Gretton et al. [2005a] showed that minimizing HSIC via gradient
descent outperforms specialized linear ICA algorithms. Alternatively, HSIC can also be maximized to
encode specific information in learning tasks. In supervised PCA (sPCA), HSIC is deployed to guide
the identification of principal subspaces with maximum dependence on target variables [Barshan
et al., 2011]. More recently, Ma et al. [2020] used HSIC as a supervised learning objective for deep
neural networks to bypass back-propagation, and Li et al. [2021] subsequently extend it to the context
of self-supervised learning.

Our primary interest lies in extending these models to identify multiple subspaces, each representing
independent, meaningful signatures. In this direction, Cao et al. [2015] suggested the inclusion
of HSIC as a diversity term in multi-view subspace clustering, encouraging representations from
different views to capture complementary information. Building on a similar idea, Lopez et al. [2018]
incorporated HSIC-based regularization into VAE architectures to promote subspace separation.
However, there has yet to be a linear multi-space model for more interpretable data decomposition.

The presented work is also related to contrastive representation learning, as introduced in Abid et al.
[2018] and Abid and Zou [2019]. Along this line of research, recent studies have also applied HSIC
to regularize contrastive VAE subspaces [Tu et al., 2024, Qiu et al., 2023]. See Appendix A for more
discussions on connections and differences.

3 The sisPCA model

We introduce Supervised Independent Subspace Principal Component Analysis (sisPCA), a linear
model for disentangling independent data variation (Fig. 2). The model’s linearity ensures explicit
interpretability and enables regression-based extensions such as sparse feature selection. We formally
discuss the connection between sisPCA and regularized linear regression in Section 3.2.

3.1 Problem formulation

As motivated in Fig. 1, given a dataset {Xi ∈ X p}ni=1 with n observations and p features and m
associated target variables {Yi ∈ Ym}ni=1, we aim to find m separate subspace representations of
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the data {{Zj
i ⊂ Rdj}mj=1}ni=1 with latent dimensions {dj}mj=1. Each subspace should maximize

dependence with one target variable while minimizing dependence with other subspaces. For
simplicity, we assume Euclidean space, {Xi} := X ∈ Rn×p and {Yi} := Y ∈ Rn×m. Other types
of data can be easily handled using appropriate kernels, which will be discussed later. The linear
projection to the j-th subspace Uj : Rp → Rdj is represented by the matrix Uj ∈ Rp×dj , with
Zj := XUj ∈ Rn×dj being the data representation in this j-th subspace. Similar to the concept of
PCA loading, the projection Uj depicts linear combinations of original features in X and thus can be
directly interpreted as feature importance scores.

Our overall objective is to find the set of subspace projections {U1, ..., Um} that solves

argmax
U1,...,Um

m∑
j=1

I(XUj , Yj)− λ
m∑
j=1

m∑
i>j

I(XUi, XUj),

under some constraints. Here I is a measure of dependence and λ penalizes overlapping subspaces.
Using HSIC as the dependence measure, sisPCA solves the constrained optimization

argmax
U1,...,Um

m∑
j=1

tr(KZjHKYjH)− λ
m∑
j=1

m∑
i>j

tr(KZiHKZjH) (1)

subject to UT
j Uj = I, ∀j ∈ {1, ...,m},

where KZj and KYj are kernels defined on the j-th subspace Zj and the j-th target variable Yj ,
respect. This formulation differs from kernel PCA, where in the first term of (1) the kernel is defined
over Z rather than X (the kernel extension of sisPCA will be discussed later).

In the special case where KZj := ZjZ
T
j is linear for all subspaces, the optimization becomes

argmax
U1,...,Um

m∑
j=1

tr(XUjU
T
j X

THKYj
H)− λ

m∑
j=1

m∑
i>j

tr(XUiU
T
i X

THXUjU
T
j X

TH) (2)

subject to UT
j Uj = I, ∀j ∈ {1, ...,m}.

The first term is the supervised PCA objective [Barshan et al., 2011]. We can thus view the above
formulation, termed sisPCA-linear, as an extension of supervised PCA to multiple subspaces with
additional regularization for subspace independence (Fig. 2). It comes with an appealing property:

Remark 3.1. Maximizing the sisPCA-linear objective (2) is equivalent to minimizing the recon-
struction error of a linear autoencoder plus regularization. See Appendix B.

We now examine the second HSIC term in (2). Consider two subspaces Zu := XU ∈ Rn×du and
Zv := XV ∈ Rn×dv with centered X . The HSIC regularization is

tr(XUUTXTXV V TXT ) = tr(ZuZ
T
u ZvZ

T
v ) = ||ZT

u Zv||2F ≥ 0.

This term equals zero if and only if Zu and Zv are orthogonal. While not convex in U and V jointly,
the coupling of U and V solely through the matrix product ZT

u Zv indicates a well-behaved local
geometry, as explored by Sun and Luo [2016]. Indeed, it allows sisPCA-linear to benefit from
theoretical insights on matrix factorization. For example, Ge et al. [2017] showed that for a quadratic
function f over the matrix UTV — in our context f = ||ZT

u Zv||2F — all local minima are also
globally optimal under mild conditions achievable through proper regularization.

Returning to (2), we see that spurious local optima may only emerge from subspace imbalance in the
first symmetry-breaking supervision term, where some subspaces may contribute more to the overall
objective. This leads to the following conjecture on the optimization landscape of (2):

Conjecture 3.1 (informal): The sisPCA-linear objective (2) has no spurious local optima
under balanced supervision, which is achievable through proper regularization; With unbalanced
supervision, the global optima can still be recovered using local search algorithms following simple
initialization based on the relative supervision strength of each subspace.

Intuitively, the balanced supervision condition is to ensure that the local optima induced by subspace
symmetry and interchangeability are also global optima. For more discussions on the optimization
landscape, the balance condition, and Conjecture 3.1, see Appendix C.

We now consider an iterative optimization approach to solve (2).
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Remark 3.2. The optimization problem in (2) can be solved via alternating optimization, where each
iteration has an analytical update for each subspace.

Using basic matrix algebra, the objective of (2) simplifies to,
m∑
j=1

tr(UT
j X

THKYjHXUj)−
λ

2

m∑
j=1

m∑
i ̸=j

tr(KZiHKZjH) =

m∑
j=1

tr(UT
j X

T K̃jXUj)

where K̃j := H(KYj
− λ

2

∑m
i=1,i̸=j KZi

)H and KZi
:= ZiZ

T
i = XUiU

T
i X

T . Given the set

{Ui̸=j}i, Uj can be updated by maximizing tr(UT
j X

T K̃jXUj), leading to the updateU (t+1)
j ← Qdj ,

where Qdj are the columns of Q corresponding to the dj largest eigenvalues from the eigendecompo-
sition XT K̃jX := QΛQT .

The full optimization process is outlined in Algorithm 1, Appendix B. This procedure guarantees
convergence to an optimum as the objective is bounded and non-decreasing in every iteration. We
further implement an initialization step to find the path (subspace update order) towards the global
optimum as proposed in Conjecture 3.1. Briefly, we compare subspace contributions to the supervision
loss and prioritize updates for subspaces under stronger supervision.

While convenient, a zero HSIC regularization loss with a linear kernel in (2) does not guarantee
independent subspaces. For strict independence, the subspace kernel KZ in (1) needs to be universal
(e.g., Gaussian). We refer to this as sisPCA-general and solve it using gradient descent (Algorithm
2, Appendix D). The naive implementation with a Gaussian kernel has complexity O(n3) in contrast
to O(n2) with a linear kernel. See Appendix D for performance difference discussions.

Both sisPCA-linear and sisPCA-general are linear methods where {Um} measures direct con-
tribution of original features to each subspace. Nevertheless, the sisPCA framework can be easily
extended to incorporate nonlinear feature interactions, analogous to kernel PCA. See Appendix E.

3.2 Kernel selection for different target variables

The use of kernel independence measure in (1) allows sisPCA to accommodate various data types
through flexible kernel choices for KX (data), KZ (latent subspace), and KY (target).

For categorical variables Y = Yj
n
i=1 (e.g., cancer types), we use the Dirac delta kernel,

KY (i, j) = 1Yi=Yj
.

It is also possible to use other general graph kernels for categorical variables with an intrinsic
hierarchical structure, e.g., subtypes and stages [Smola and Kondor, 2003].

For continuous variables Y ∈ Rn, we use the linear kernel
KY = Y Y T .

When Y ∈ Rn×d is multivariate, the kernel is the sum of per-dimension kernels KY =
∑d

i=1 Y:iY:i
T .

Remark 3.3. Maximizing the sisPCA-linear objective (2) with linear kernels on the target space is
equivalent to performing regularized regression against the target. See Appendix B.

In a nutshell, we show that sisPCA-linear can be viewed as approximating the target Y with
Z = Xu. The particular regularization on u corresponds to a zero-mean multivariate Gaussian prior,
which is related to Zellner’s g-prior in Bayesian regression.

3.3 Learning an unknown subspace without supervision

In practical applications, a common goal would be to recover both subspaces linked to known
attributes (supervised) and to unknown attributes (unsupervised) simultaneously. In sisPCA, this
is achieved by setting the target kernel for the unknown subspace to the identity matrix (KY = I),
corresponding to unsupervised PCA (Fig. 2). Section 4.1 provides an example of this process.

However, the absence of external supervision introduces a potential identifiability issue. As indicated
in Appendix B eq. 4 each supervised subspace is driven by two forces to (1) align with the target and
(2) capture major variations in the data. This dual objective can lead to scenarios where unknown
attributes, ideally retained in the residual unsupervised subspace, being inadvertently presented in
supervised subspaces. Fig. 8 in Appendix D gives an example where sisPCA-general fails.
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Figure 3: Example application of recovering a latent space with three subspaces (rows in panel a)
embedded in a high-dimensional space. The first two subspaces (rows) of sPCA (panel b) and sisPCA
(panel c) are supervised by the corresponding target variables.

4 Applications

Unless otherwise specified, in the following sections sisPCA refers to sisPCA-linear, where the
objective (2) is solved using Algorithm 1. For baseline comparisons, we consider linear models
including PCA and sPCA. While non-linear VAE counterparts such as HCV [Lopez et al., 2018]
are included for quantitative performance benchmarking in Section 4.4, they are not considered
for interpretability analyses due to their inherent complexity. The rationale and details for baseline
selection are provided in Appendix F.

4.1 Recovering supervised and unsupervised subspaces in simulated data

We first consider learning latent subspaces associated with known and unknown attributes using
simulated data. The dataset reflects a ground truth 6-dimensional latent space, comprising three
distinct 2D subspaces (Fig. 3a): S1 with two Gaussian distributions, S2 with a noisy 2D grid and S3
with a ring structure. The defining manifold characteristics ϕ of S3 remain unknown to the model,
representing the unsupervised component. These subspaces were concatenated and linearly projected
to 20-dimensions using a 6× 20 matrix with entries uniformly distributed on [0, 1].

Both unsupervised PCA (targeting S3) and supervised PCA (S1 and S2) subspaces capture structures
heavily influenced by S2 (Fig. 3b and Fig. 11 in Appendix H), due to S2’s pronounced variations. In
contrast, sisPCA markedly improves the disentanglement of these subspaces, especially the unsuper-
vised S3 (Fig. 3c). Despite S2’s dominant influence, sisPCA isolates the effects of each subspace,
resulting in clearer separation of the three independent signals. The two supervised subspaces S1
and S2 are distinctly characterized by patterns exclusively associated with the supervision attributes.
In the unsupervised subspace S3, although Principal Component 2 (PC2) picks up some categorical
information from S1, sisPCA successfully uncovers the underlying circular structure.

4.2 Learning diagnostic subspaces from breast cancer image features

We apply sisPCA to the Kaggle Breast Cancer Wisconsin Data2 to demonstrate its utility in data
compression and feature extraction. The dataset contains 569 samples with 30 summary features from
breast mass imaging. Our goals are to (1) learn compressed subspaces for predicting disease status
(‘Malignant’ or ‘Benign’, agnostic during training), and (2) understand the relationship between
original features and how they contribute to the learned representation and diagnosis potential.

2uciml/breast-cancer-wisconsin-data, CC BY-NC-SA 4.0 license.
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Figure 4: Feature extraction on the breast cancer dataset. The two top PC1 contributors in PCA (panel
a) are used as supervisions to construct the ’radius’ and ’symmetry’ subspaces (panel b and c).

The diagnosis label, invisible to all models, is used to measure subspace quality via the mean
silhouette score 1

n

∑
i s(i) = 1

n

∑
i(b(i) − a(i))/max{a(i), b(i)}, where a(i) and b(i) are mean

intra-cluster and nearest-cluster distances for sample i. Higher scores indicate larger diagnostic

potential. In addition, we use the Geodesic Grassmann distance d(Zi, Zj) =
(∑k

n=1 θ
2
n

)1/2

to
measure subspace separateness, where k = min{dimZi,dimZj} and {θn} the principal angles
[Miao and Ben-Israel, 1992]. Higher scores indicate better disentanglement. Inputs for all model are
zero-centered and variance-standardized.

In the PCA space, samples are well-separated based on diagnosis along PC1 (Fig. 4a). ‘symme-
try_mean’ and ‘radius_mean’ are the top two features negatively contributing to PC1, motivating us
to construct separate subspaces to reflect nuclei size (using ‘radius_mean’ and ‘radius_sd’ as targets)
and shape (using ‘symmetry_mean’ and ‘symmetry_sd’ as targets). The remaining 26 features are
projected onto these subspaces using sPCA (Fig. 4b) and sisPCA (Fig. 4c). In sPCA, both subspaces
better explain diagnosis status than PCA but remain highly entangled (Grassmann distance: 1.493,
Pearson correlation of PC2 loading: 0.850). However, with sisPCA’s explicit disentanglement, the
symmetry subspace loses its predictive power as the two spaces separate further (Grassmann dis-
tance: 2.710). sisPCA subspaces are constructed from distinct feature sets (PC2 loading correlation
−0.203), with ‘area’ and ‘perimeter’ contributing more to the radius subspace and ‘compactness’ and
‘smoothness’ to the symmetry one. The radius subspace also gains additional predictive power by
repulsing further from the symmetry space (Silhouette scores: 0.516 in sisPCA, 0.470 in sPCA).

Our sisPCA results suggest that cell nuclear size is more informative for breast cancer diagnosis
than nuclear shape. We confirm this by measuring directly the predictive potential of target variables
(Silhouette scores: 0.457 for ’radius_mean’ and ’radius_sd’, 0.092 for ’symmetry_mean’ and ’sym-
metry_sd’). Our conclusion also aligns with previous clinical observations [Kashyap et al., 2018]. In
contrast, PCA and sPCA, while capable to extract new diagnostic features (PC1), cannot faithfully
capture feature relationships without disentanglement and potentially overestimate symmetry-related
features’ relevance in malignancy.

4.3 Separating aging-dependent DNA methylation changes from tumorigenic signatures

Tumorigenesis and aging are two intricately linked biological processes, resulting in cancer omics
data that often display patterns of both. DNA methylation (DNAm) exemplifies this complexity,
undergoing genome-wide alterations during aging while also exhibiting cancer-specific changes in
particular regions, presumably silencing tumor suppressor genes or activating oncogenes.

4.3.1 Problem and dataset description

The Cancer Genome Atlas (TCGA)3 offers a comprehensive collection of DNAm datasets from
patients with various cancer types. In TCGA DNAm data, methylation status is probed across
genomic locations using the Illumina Infinium 450K array and quantified as beta values ranging from
0 (unmethylated) to 1 (methylated). The resulting data matrix X presents challenges due to the use
of three different probe types and highly correlated features, typically requiring careful preprocessing.
For illustration purpose, we use a downsampled dataset comprising the first 5,000 non-constant and
non-NA CpG sites from 9,725 TCGA tumor samples across 33 cancer types.

3Data access is controlled through the NCI Genomic Data Commons (https://portal.gdc.cancer.gov/).
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Our goal is to disentangle tumorigenic signatures from age-dependent methylation dynamics in this
pan-cancer DNAm data. Traditional methylation analyses often employ regression-based methods
to learn site-specific statistics, later aggregated by gene or high-level genomic annotations [Bock,
2012]. However, these approaches may suffer from high dimensionality and multi-collinearity due
to potential redundancy in CpG methylation activity. We propose using sisPCA to address these
limitations, which allows us to (1) learn compressed, low-dimensional representations that retain
biological information, and (2) minimize confounding factors not controlled in simple regression
models by enforcing disentanglement.

Specifically, we aim to learn two subspaces: one aligning with chronological age (CA, aging
subspace, supervised with a linear kernel) and another with TCGA cancer categories (cancer subspace,
supervised with a delta kernel). We evaluate the quality of learned representations using information
density measured by the Silhouette score and subspace separateness by the Grassmann distance. For
the rank-one aging subspace (rank(KY ) = rank(Y Y T ) = 1), we also measure information density
using the maximum absolute Spearman correlation, maxd∈[1,dj ]{|ρ(Z

(d)
j ,CA)|}, between CA and

each axis of the subspace Zj ∈ Rn×dj .

4.3.2 Quantitative performance of subspace quality

We first validate the disentanglement effect of formulation (2). Unlike models such as Lopez et al.
[2018] that use a Gaussian kernel, sisPCA minimizes the HSIC regularization with a linear kernel.
This approach trades strict statistical guarantees for improved computational efficiency (detailed in
Appendix D). Our experiments demonstrate that as λ increases, the two subspaces show increasing
divergence (Table 1). Notably, while HSIC-Gaussian is not explicitly optimized, it decreases in
tandem with HSIC-Linear. The generally larger values of HSIC-linear potentially offer advantages in
optimization and help mitigate numerical rounding errors.

Table 1: Separateness of the aging and cancer subspaces inferred by sisPCA.
sisPCA

PCA λ = 0 (sPCA) λ = 1 λ = 10

HSIC-Linear (in the objective of sisPCA) 481.6 189.7 2.0e-4 2.4e-05
HSIC-Gaussian 1.1e-2 6.5e-3 7.0e-4 7.0e-4
Grassmann distance 0 3.09 4.97 4.97

Furthermore, the separation of aging and cancer subspaces leads to a moderate increase in target
information density and a decrease in confounding information (Table 2). However, stronger regular-
ization does not always equate to better representations. This is partly due to the inherent coupling
between aging and tumorigenesis. Efforts to remove aging signals inevitably result in information
loss on cancer type. We discuss the tuning of λ more generally in Appendix G.

Table 2: Information density in each sisPCA subspace.
sisPCA

Subspace PCA λ = 0 λ = 1 λ = 10

Maximum Spearman correlation with age age 0.213 0.278 0.286 0.294
cancer 0.213 0.233 0.103 0.115

Silhouette score with cancer type age 0.074 -0.183 -0.221 -0.230
cancer 0.074 0.106 0.107 0.097

4.4 Disentangling infection-induced changes in the mouse single-cell atlas of the Plasmodium
liver stage

Malaria, transmitted by mosquitoes carrying the Plasmodium parasite, involves a critical liver stage
where the parasite colonizes and replicates within host hepatocytes. This section examines the
intricate host-parasite interactions at single-cell resolution during this stage.

8



Harboring parasite

FALSE
TRUE

PCA
(Silhouette = −0.014)

Post−infection
time point

Control
2 hpi
12 hpi
24 hpi
30 hpi
36 hpi

PCA
(Silhouette = 0.311)

(a) PCA

Infection
(Silhouette = 0.235)

Time
(Silhouette = −0.028)

Infection
(Silhouette = −0.097)

Time
(Silhouette = 0.355)

(b) sisPCA (λ = 10)

Infection
(Silhouette = −0.015)

Time
(Silhouette = −0.069)

Infection
(Silhouette = 0.015)

Time
(Silhouette = 0.582)

(c) hsVAE (λ = 100)

Figure 5: UMAP visualizations of scRNA-seq data. Each column shows a different learned subspace:
(a) PCA, (b) sisPCA-infection and sisPCA-time, and (c) hsVAE-infection and hsVAE-time. See
Fig. 12 for other models. Cells are colored by either infection status (top row) or post-infection time
(bottom row). In an optimal pair of subspaces, each property (infection status or time) should be
more distinguishable in its corresponding subspace while showing less separation in the other.

4.4.1 Problem and dataset description

We analyze scRNA-seq data of mouse hepatocytes from Afriat et al. [2022]4. Our goal is to distinguish
genes directly involved in parasite harboring from those associated with broader temporal changes
post-infection. The processed dataset comprises gene expression profiles of 19,053 cells collected
at five post-infection time points (2, 12, 24, 30, and 36h) and from control mice. Infection status
was determined based on GFP expression linked to malaria. We keep the top 2,000 highly variable
genes and use normalized expression as model inputs. Time points are treated as discrete categories
to account for potential nonlinear dynamics. See Appendix F for full experiment details.

4.4.2 Learning the infection subspace associated with parasite encapsulation

UMAP visualizations of PCA, sPCA, and sisPCA subspaces show that while PCA primarily captures
temporal variations (Fig. 5a), both sPCA and sisPCA successfully differentiate between infected and
uninfected hepatocytes in their infection subspaces. However, sPCA’s infection space still exhibits
significant temporal effects, suggesting uncontrolled confounding effects (Fig. 12b in Appendix H).
sisPCA effectively eliminates this intermingling, yielding cleaner representations where relevant
biological information is further enriched in the corresponding spaces (Fig. 5b).

Comparisons with non-linear VAE counterparts (Fig. 5c and Fig. 12, full model description in
Appendix F) and quantitative evaluations (Table 3) demonstrate that our HSIC-based supervision
formulation (1) achieves performance comparable to neural network predictors. Notably, sisPCA
outperforms HSIC-constrained supervised VAE (hsVAE)[Lopez et al., 2018] in separating infected
and uninfected cells. Indeed, hsVAE’s performance in the infection subspace is so poor that even
under supervision, the representation contains near-random information (Fig. 5c). To address this gap,
we developed hsVAE-sc by incorporating additional domain-specific knowledge (See Appendix F,
and Fig. 12d in Appendix H). This model learns a much improved infection space (Silhouette score:
0.233) while maintaining high distinguishability in the temporal space (Silhouette score: 0.634). The
improvement is likely due to the fact that parasite encapsulation can induce a slight increase in total
RNA counts; by using unnormalized count-level data and explicitly modeling the library size, the
model captures this additional information and thus produces enhanced results.

While visualizations and quantitative metrics provide useful estimates, they may not fully capture
the biological relevance of the representations. For instance, a subspace with two point masses
perfectly separating cells by infection status would have the highest information density, yet offer
little new biological insight. Advantageously, linear models like sisPCA are inherently interpretable.
Using the learned sisPCA projection U as feature importance scores, we rank genes based on
their PC contributions. Chemokine genes, including Cxcl10, emerge as top positive contributors to
infection-PC1, which is elevated in infected cells. This aligns with their established role as acute-

4Preprocessed data available at https://doi.org/10.6084/m9.figshare.22148900.v1 (CC BY 4.0).
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Table 3: Quantitative evaluation of subspace representation quality.
Linear Non-linear

Subspace PCA sPCA sisPCA VAE supVAE hsVAE

Grassmann distance 0 3.771 4.824 0 3.571 3.598
Silhouette - infection infection -0.014 0.207 0.235 -0.036 0.041 -0.015

time -0.014 -0.075 -0.097 -0.036 -0.087 -0.069
Silhouette - time point infection 0.311 -0.029 -0.028 0.296 0.052 0.015

time 0.311 0.348 0.355 0.296 0.479 0.582

phase response markers. Gene Ontology (GO) enrichment analysis of genes with significant PC1
loading scores reveals that infection leads to reduced fatty acid metabolism and enhanced stress and
defense responses, consistent with known Plasmodium harboring effects. These results remain highly
consistent across a wide range of hyperparameters, demonstrating the robustness of our approach.
See Appendix G for full examination on the effect of λ.
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Cellular response to lipopolysaccharide
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Cellular response to molecule of bacterial origin
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Figure 6: GO biological process enrichment results of top genes contributing to the sisPCA-infection
subspace. Genes are ranked by their PC1 loading and are grouped by effect direction.

5 Discussion

This study presents sisPCA, a novel extension of PCA for disentangling multiple subspaces. We
showcase its capability in interpretable analyses for learning complex biological patterns, such as
aging dynamics in methylation and transcriptomic changes during Plasmodium infection. To enhance
usability, we have implemented an automatic hyperparameter tuning pipeline for λ using grid search
and spectral clustering, similar to contrastive PCA [Abid et al., 2018] (Appendix G).

Still, sisPCA has several limitations: Linearity constraints: The linear nature of sisPCA may miss
non-linear feature interactions, potentially underperforming on more complicated datasets. While
nonlinear extensions are possible (Appendix E), they come at the cost of reduced computational
efficiency and interpretability. Linear kernel HSIC: The HSIC-linear regularization, while compu-
tationally convenient, does not guarantee complete subspace independence. However, minimizing
HSIC-linear tends to reduce HSIC with a Gaussian kernel (Table 1), which suggests that the issue
is less of a concern in practice. Subspace identifiability: Our formulation (1) relies on external
supervision to differentiate subspaces, which could lead to identifiability issues if the supervisions
are too similar, or when one subspace is unsupervised.

Despite these limitations, sisPCA’s ability to provide interpretable, disentangled representations of
complex biological data makes it a valuable addition to the toolkit of biologists working with high-
dimensional datasets. We envision future applications on larger-scale omics datasets and potential
new biomedical discoveries.
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A Connections with contrastive representation learning

Contrastive representation learning, as introduced in Abid et al. [2018], aims to find representations
that capture the difference between explicit positive and negative samples. For example, contrastive
PCA (cPCA) takes the pair of a target dataset of interest and a background dataset as inputs and
finds the principal components that account for large variances in the target but small variances in the
background [Abid et al., 2018]. cVAE [Abid and Zou, 2019] and contrastiveVI [Weinberger et al.,
2023] apply the idea to VAE architectures, where the target and background data are assumed to
have different generative processes and the corresponding representations lie in separate subspaces.
The learning of the target and background subspaces are achieved by explicitly forcing target and
background samples to use different spaces. More recently, Tu et al. [2024] and Qiu et al. [2023]
adopt an HSIC-based regularization approach to encourage the disentanglement of the two subspaces.

Despite the similarity, our proposed sisPCA model is conceptually different from these contrastive
models. sisPCA (and the non-linear HCV [Lopez et al., 2018]) focuses on the decomposition of
a single dataset, as opposed to a pair of target and background datasets. The sense of contrast in
sisPCA comes from explicit supervision, of which each subspace either aligns with or is repulsed
from. If we concatenate the pair of target-background into one dataset and consider the case-control
information as supervision, the associated sisPCA subspace can also reflect the difference similar to
cPCA (the objective is still not the same).

B Properties of the sisPCA-linear optimization problem

B.1 Proof of Remark 3.1 on the equivalence of sisPCA-linear and autoencoder

Here we show that thesisPCA-linear optimization 2 is equivalent to solving a regularized linear
autoencoder. First note the well-known fact of PCA that maximizing the variance of the projection
||XU ||2F is equivalent to minimizing the reconstruction error of a linear orthogonal autoencoder,
since

||X−XUUT ||2F = tr(XTX − 2XTXUUT +XTUUTUUTX)

= tr(XTX)− tr(UTXTXU) = ||X||2F − ||XU ||2F .

Now consider supervised PCA with a positive semidefinite kernelKy and its Cholesky decomposition
Ky := LTL. Note L := I in vanilla unsupervised PCA. That is, PCA can be viewed as aligning to a
supervision kernel where every sample forms a group of itself. Without loss of generality, we assume
X and Ky to be centered, such that the first term in eq.2 per subspace becomes

tr(XUUTXTKy) = tr(UTXTKyXU) = ||LXU ||2F .

Maximizing the above quantity is thus equivalent to minimizing the weighted reconstruction error
||L(X −XUUT )||2F where L from supervision controls the aspects to focus on.

B.2 The alternating optimization algorithm for sisPCA-linear

Below we describe the Algorithm 1 to solve (2).

B.3 Proof of Remark 3.3 on the equivalence of sisPCA-linear and regression

Here we show that the sisPCA-linear problem 2 is equivalent to a regularized linear regres-
sion. For simplicity, we assume both X and Y to be centered and Y ∈ Rn×1 to be univariate.
Since XTKYX = XTY Y TX is rank-one, we need only to consider the largest eigenvalue and
corresponding eigenvector of XTKYX . Therefore, maximizing the first cross-covariance term
tr(UTXTKYXU) = ||Y TXU ||2F in (2) is equivalent to finding a unit vector u ∈ Rp×1 by

argmax
||u||=1

||Y TXu||2 = argmin
||u||=1

(||Y −Xu||2 − ||Xu||2) (3)

=argmin
||u||=1

(||Y −Xu||2 + ||X −XuuT ||2F ). (4)
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Algorithm 1 Solving sisPCA-linear using alternating eigendecomposition

input: Data X ∈ Rn×p, kernels for m target variables{KYj
, j = 1, ...,m}, dimensions of

subspaces {dj , j = 1, ...,m}, independence regularization λ.
Randomly initialize and orthonormalizeUj and, optionally, determine the optimal order of subspace
updates through one complete update cycle. Assuming with update order {1, ...,m}.
repeat
KZi

← XUiU
T
i X

T for i ∈ {1, ...,m};
for j ∈ {1, ...,m} do
K̃j ← H(KYj

− λ
2

∑m
i=1,i̸=j KZi

)H;
Update Uj ← the first dj eigenvectors of XT K̃jX;
Update KZj ← XUjU

T
j X

T ;
end for

until converge
return: Linear projections {Uj} and subspace representations of data {Zj := XUj} for i ∈
{1, ...,m}.

That is, maximizing the linear HSIC(Xu, Y ) solves the regression problem of approximating
the target Y with u serving as the regression coefficients, while also maximizing variations of the
fitted value Ŷ := Xu (or, equivalently, minimizing an additional self-supervised reconstruction
loss). The particular regularization term in (3) corresponds to a zero-mean multivariate Gaussian
(MVN) prior on u. To see this, we first diagonalize XTX into PTSSP where P is orthogonal and
S = diag{σ1, ..., σp} contains the singular values ofX in decreasing order. Denote k := Pu ∈ Rp×1.
Now we have

−||Xu||2 = −(Pu)TS(Pu) = −
p∑

i=1

σ2
i k

2
i =

p∑
i=2

(σ2
1 − σ2

i )k
2
i − σ2

1 ||k||2
||k||=1
== ||X̃u||2 − σ2

1

where X̃ := (σ1I − S)P . Subsequently, (3) becomes

argmin
||u||=1

(||Y −Xu||2 + ||X̃u||2), (5)

and solving (5) is equivalent to finding the maximum a posteriori estimator of the regression co-
efficients u under a MVN prior with zero mean and inverse covariance X̃T X̃ . Directions corre-
sponding to smaller singular values will receive stronger shrinkage effects. The formulation of (5)
is also closely related to Zellner’s g-prior in Bayesian regression where the coefficient β follows
β ∼MVN(0, gσ2(XTX)−1) for some positive g and noise variance σ2. Finally, when fixing other
subspaces {Zv}, HSIC(Xu,Zv) := (Xu)TKZv

(Xu), now a function of u, can also be integrated
into (5). The new quadratic regularization term is Q(u) := uT (XTKZv

X + X̃T X̃)u, which again
corresponds to a zero-centered MVN prior.

C Optimization landscape of sisPCA-linear and Conjecture 3.1

We first provide a motivating example to see how the first supervision term in (2) affects the
optimization landscape. Assume no supervision Y (i.e. KYm = I) and all the latent subspaces
{Zm} share the same dimension d. In the absence of disentanglement regularization, every subspace
will simply be the same vanilla PCA space, leading to complete overlap. The introduction of the
disentanglement penalty in (2) maintains the objective’s symmetry with respect to Um. In other words,
subspaces are interchangeable in the pure unsupervised setting, and consequently the symmetry gives
rise to multiple local optima. Nevertheless, the presented challenge is trivial, in that all local optima
are also global, and the number of local optima, considered in terms of invariant groups up to column
sign-flipping, depends only on the number of subspaces m.

Under supervision, some subspaces may be selectively favored. For example, the scaling of subspace
supervision kernels {KYm} can break the symmetry of the overall objective, allowing information
to be preferentially preserved in one subspace while being removed from others. In such scenarios
(referred to as unbalanced supervision), local optima that are closer to the supervised PCA results of
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subspaces with larger KYm also yield higher objective values. The balanced supervision condition
can be evaluated by calculating the relative ratio of kernel scales, or equivalently, the ratio of objective
gradient with respect to each subspace kernel.

Another important observation is that, because the disentanglement penalty is symmetric, tuning
the hyperparameter λ will not alter the ranking of local optima. This suggests a straightforward
initialization strategy to navigate towards the global solution by evaluating the relative supervision
strength, HSIC(Z0

m, Ym), for each subspace. Here, Z0
m represents the initial, pre-disentanglement

solution for subspace m, which can be efficiently computed using supervised PCA.

We can directly visualize the optimization landscape in a simplified scenario (Fig. 7). Consider

X =

(
1 0
−1 0

)
, which consists of two 2D vectors separated along the first axis. With supervisions

Y1 = (1,−1)T and Y2 = cY1 differing only by a scalar c, our goal is to determine the projectionsU =
(u, u2)

T and V = (v, v2)
T that transform X into subspace representations Z1 = XU = (u,−u)T

and Z2 = XV = (v,−v)T . Adopting a linear kernel for KY , the sisPCA-linear objective (2) is
now equivalent to the following simplified problem

argmax
u,v∈[0,1]

f(u, v) = u+ cv − λuv.

Since X only has one effective dimension, both U and V align with that axis (i.e., u = 1 and v = 1,
the unregularized solution) when the disentanglement penalty λ is low (λ < 1), leading to a single
optimal solution (u, v) = (1, 1). Under strong regularization, two local maxima (1, 0) and (0, 1)
emerge, and their relative order depends solely on the scalar c and is unaffected by λ. Specifically,
each maximum represents a preference for capturing the significant axis in X within one subspace,
allowing for an easy decision on initialization based on a comparison between u and cv. In the
context of alternating optimization methods like Algorithm 1, it can be simply done by fixing the
subspace V (v = 1) and updating U first to minimize the disentanglement penalty (from u = 1, the
unregularized solution, to u = 0). The optimization path stays near the global optima regardless of λ.

Figure 7: A simplified example of the optimization landscape of sisPCA-linear. Under balanced
supervision (c = 1), the symmetry-induced two local maxima are both global regardless of λ. When
c ̸= 1, one solution is favored than the other, and the relative order is also independent of λ.

This phenomenon also resembles the situation described in Ge et al. [2017] on f(UV T ), where
an additional regularizer ||UTU − V TV ||2F is necessary to maintain balance when dealing with
asymmetric matrices. The first half of Conjecture 3.1 is indeed motivated by the above result. For
sisPCA, a similar regularizer in the form of ||ZiZ

T
i − ZiZ

T
i ||2F may be enough to ensure balanced

supervision. Moreover, given that the multi-solution challenge arises from subspace interchangeability,
we hypothesize that more discriminative Y could alleviate the issue. Since there are only pairwise
interactions between subspaces in (2), Ge et al. [2017]’s framework can be adapted to study the
behavior of more than two subspaces. Intuitively, the proof of Conjecture 3.1 would be to show that
the local gradient direction of (2) aligns with the global descent direction in a region near global
optima, and proper regularization or initialization can make sure the optimizer stays in that region.
Following the procedures described in section 5 of Ge et al. [2017] for asymmetric matrices, we
may concatenate all subspaces into W := [Z1, ..., Zm]T and reformulate the objective as a quadratic
function of N :=WWT plus some regularization.
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D Design and applications of sisPCA-general with Gaussian kernel

In this section, we discuss the sisPCA-general optimization problem in detail. Recall that it is
motivated by the limitation of sisPCA-linear that zero HSIC disentanglement regularization does
not ensure statistical independence. In sisPCA-general, we want to solve (1) by employing HSIC
with with universal kernels, e.g. the Gaussian kernel.
Definition D.1. Given a compact metric space X and a continuous kernel K on X , K is called
universal if for every continuous function g ∈ C(X ) and all ϵ > 0, there exists an f ∈ H such that
||f − g||X < ϵ.

A nice result on universal kernel from the Constrained Covariance (COCO) framework [Gretton
et al., 2005b] is that it can approximate any continuous function on a compact metric space. In
other words, the HSIC with a universal kernel will be zero only if, among all possible continuous
transformation, the covariance of two random variables are always zero. In sisPCA-general, the
latent representation is still encoded by a linear projection Zj = XUj . This indicates that Uj can be
interpreted in the same way as PCA and sisPCA-linear to extract feature importance.

We solve the sisPCA-general problem with Gaussian kernel,

k(x, x′) = exp(−w2||x− x′||2),
using gradient descent (Algorithm 2). Since the problem is constrained, the algorithm unfortunately is
not guaranteed to converge. The HSIC with Gaussian kernel also affects the optimization landscape.
Empirically, we observed that sisPCA-general tends to have many local optima, requiring exhaus-
tive tuning of training parameters such as the learning rate and stopping criteria. The Gaussian kernel
scale w is also important. Ma et al. [2020] reported in their experiments that the performance of
HSIC-based optimization is moderately sensitive to w and thereby proposed a multiple-scale solution
that essentially aggregates results from different w. In our experiments, we followed Gretton et al.
[2005a] by setting the kernel scale to the median distance between data points in the input space.

Another notable disadvantage of sisPCA-general is its cubic-scaling computational complexity.
Here we focus on scenarios where the number of features p is fixed and the sample size n is large
(n > p), which is common when data preprocessing and filtering is in place. Specifically, the
computational complexity for calculating HSIC(X,Y ) with a linear kernel for X ∈ Rn×p and a
given target kernelKY for Y isO(n2p). If bothKX andKY are linear, the complexity can be further
reduced to O(np). Additionally, the eigendecomposition of the (cross) covariance incurs a cost of
O(p3). This means that each update in Algorithm 1 has an overall complexity of O(n2) wrt the
sample size n, aligning with that of supervised PCA. In comparison, most dimensionality reduction
methods requiring pair-wise distance computation have a complexity of at least O(n2). On the
other hand, for sisPCA-general, computing a Gaussian-kernel HSIC(X,Y ) naively is of O(n3)
complexity. From an engineering perspective, further optimizations for both the sisPCA-linear
(Algorithm 1) and sisPCA-general (Algorithm 2) algorithms are conceivable, for instance, by
exploiting data sparsity and by mini-batch or incremental update.

Algorithm 2 Solving sisPCA-general using gradient descent

input: Data X ∈ Rn×p, kernels for m target variables {KYj , j = 1, ...,m}, dimensions of
subspaces {dj , j = 1, ...,m}, a universal kernel ΦZ(·, ·) for latent representations, independence
regularization λ.
Randomly initialize and orthonormalizeUj and, optionally, determine the optimal order of subspace
updates through one complete update cycle. Assuming with update order {1, ...,m}.
repeat
KZi

(k, r)← ΦZ(XkUi, XrUi) for i ∈ {1, ...,m};
L← −

∑m
j=1 tr(KZj

HKYj
H);

L← L+ λ
∑m

j=1

∑m
i>j tr(KZi

HKZj
H);

Jointly update {Uj} by minimizing L using gradient descent;
Project Uj to the orthonormal space;

until converge
return: Linear projections {Uj} and subspace representations of data {Zj := XUj} for i ∈
{1, ...,m}.
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Recovering supervised and unsupervised subspaces in simulated data We demonstrate the
performance and limitation of sisPCA-general using simulated data. The task and simulation
details are described in Section 4.1. As illustrated in Fig. 8, sisPCA-general partially recovers the
two supervised subspaces S1 and S2. Challenges arise, however, in fully eliminating continuous S2
signatures from S1. This difficulty may stem from the smaller scale of HSIC values with Gaussian
kernels as compared to those with linear kernels, and a more complicated optimization landscape
due to the non-linearity introduced in the regularization. Additionally, the unsupervised subspace
S3 appears to collapse to one dimension, which partially illustrate the identifiability issue raised in
Section 3.3. The issue may be more pronounced in sisPCA-general because of the diminished
HSIC scale (i.e. weaker connection between subspaces and their target variables).

Figure 8: Performance of sisPCA-general (λ = 30) on the simulated dataset. Related to Fig. 3.

E Extending sisPCA to nonlinear settings using kernel transformation

Following kernel PCA’s methodology [Schölkopf et al., 1997], we can extend sisPCA for nonlinear
scenarios where features in X interact through a feature map Φ : Rp → F . The space F may have
infinite dimension, and we can only explicitly write out the projection U in the finite case F ⊂ Rk,
for example, Φ(x) = x2. In that context, the latent representation Z := Φ(X)U can be naively
computed, and the sisPCA objective (1) will stay the same. By simply replacing X with Φ(X),
methods such as gradient descent and Algorithm 1 still hold. However, the beauty of the kernel trick
is that we can bypass the computation of Φ(X) to obtain Z. Instead of learning the projection matrix
U , which is no longer possible when F is infinite-dimensional, we can learn a set of coefficients α⃗
from

Z = Φ(X)U :=

n∑
i

α⃗ik(X,Xi),

with {Xi} representing the n data points and k(x, y) := ⟨Φ(x),Φ(y)⟩ the corresponding kernel of Φ.
Note that k(·, ·) is specified wrt to the data X , which is different from the kernel Kz for latent space
and the kernel Ky for supervision. We leave the practical implementation of this extension to future
exploration.
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Table 4: General comparison of baseline models.
Linear Non-linear

PCA sPCA sisPCA VAE supVAE hsVAE

Supervision - HSIC HSIC - Prediction Prediction
Disentanglement - - HSIC - - HSIC
Interpretability U as feature importance Black-box
Hyperparameters (1) (1,2) (1,2,3) [1,2] [1,2,3] [1,2,3,4]

(1) Subspace dimension
(2) Subspace kernel
(3) HSIC penalty strength λ

[1] Subspace dimension
[2] Autoencoder design
[3] Predictor design
[4] HSIC penalty strength λ

Optimization Closed form Simple Subject to general training limita-
tions of deep generative models∗

∗VAEs could not be run on the 6-dimensional simulated data in Figure 3 due to NaNs generated during
variational training. This is a common issue in training SCVI models likely resulting from parameter explosion.

F Baseline section and experiment details

F.1 Overall evaluation criteria

We evaluate model performance based on two key aspects:

Representation Quality: This criterion assesses the ability to learn low-dimensional representations
that reflect specific and unmixed data properties. A high-quality subspace representation should
contain minimal confounding information from other subspaces. We employ both quantitative metrics
(e.g., information density and subspace separateness) and qualitative 2D visualizations of learned
representations.

Interpretability: This criterion evaluates the ease of understanding feature contributions to different
data properties. For linear methods (PCA, sPCA, and sisPCA), we consider the learned projection
U as feature importance and extract top features from the loading (see examples in Sections 4.2
and 4.4). Non-linear models generally lack straightforward feature-to-subspace mapping, making
them inherently less interpretable. While approaches like gradient-based saliency maps are becoming
standard for interpreting black-box models such as VAEs, they are less straightforward and face
challenges in aggregating sample-level gradients into global feature importance scores. Therefore, we
only compare sisPCA to other linear models for interpretability analysis (e.g. ranking and selecting
top genes according to the loading).

F.2 Baseline model design and general comparison

Table 4 provides a comprehensive comparison of linear and non-linear models used in this study,
including the linear PCA, sPCA and sisPCA (proposed work) described in the Methods section, as
well as sevral non-linear VAE counterparts inspired by the work of HCV [Lopez et al., 2018]:

• VAE: Vanilla VAE with Gaussian likelihood.
• supVAE: Gaussian VAE with additional predictors for target variables.
• hsVAE: supVAE with additional HSIC disentanglement penalty (Gaussian kernel). It is

essentially a general-purpose HCV [Lopez et al., 2018] with Gaussian likelihood.

In the sisPCA package5, PCA and sPCA are implemented as special cases of sisPCA and solved
analytically using eigendecomposition. VAE models and variational inference are implemented using
the SCVI framework6. The VAE model is a special case of SCVI’s VAE module (latent_distribution =
"normal", dispersion = "gene") but with a Gaussian generative model. The supVAE is a multi-subspace
extension of VAE with additional predictors to predict target supervisions from the corresponding

5https://github.com/JiayuSuPKU/sispca
6scvi-tools v1.2.0 (https://scvi-tools.org/)
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latent representations. The last layer of the predictor is either a linear transformation for continuous
supervision or linear followed by softmax for categorical supervision. The hsVAE model is an
extension of supVAE where we add additional subspace disentanglement penalty (i.e., HSIC with a
Gaussian kernel) to the objective, as described in HCV [Lopez et al., 2018].

For single-cell RNA-seq data, we further implement a domain-specific hsVAE model, namely hsVAE-
sc. Specifically, hsVAE-sc uses negative binomial as the data generative distribution with an extra
autoencoder to learn the library size (the sum of total counts per cell) and is correspondingly trained
on counts-level data. It is very close to a re-implementation of the scVIGenQCModel developed in
the HCV paper under the latest SCVI framework.

F.3 Hyperparameter selection

As outlined in Table 4, sisPCA has three main hyperparameters:

1. Subspace latent dimension d.
2. Subspace supervision kernel KY .
3. Disentanglement penalty strength λ.

The tuning of (3) will be discussed in Appendix G. Here we illustrate the selection of (1) and (2),
which are largely pre-determined based on the target variable supplied for supervision.

In our analysis, we consistently use the delta kernel for categorical targets and the linear kernel for
continuous targets (Section 3.2). Given a supervision kernel KY of rank k, the effective dimension of
the corresponding sisPCA subspace, defined as the number of dimensions with non-zero variance,
is determined by the eigendecomposition step in Algorithm 1. Specifically, we have the following
upper bounds:

• For sPCA (λ = 0): The effective dimension equals rank(XTKYX) ≤ min(k, p) ≈ k,
where p is the number of features in X .

• For sisPCA: The effective dimension equals rank(XT K̃YX) ≤ min(k + d, p) ≈ k + d,
where K̃Y ← KY − λZTZ is the supervision kernel after the rank-d disentanglement
update and d is the number of latent dimensions of Z.

In practice, we observe that the effective dimensions of both sPCA and sisPCA closely approximate
the target kernel rank k. For instance:

• For a 1-D continuous variable with linear kernel (e.g., age in Section 4.3), the effective
dimension is always 1.

• For a categorical variable of k groups with delta kernel (e.g., time point in Section 4.4), the
effective dimension is approximately k.

Consequently, we find that the learned sisPCA subspaces remain consistent regardless of the specified
dimension. Any additional axes beyond the effective dimension tend to collapse to zero and are
primarily affected by numeric errors in the SVD solver. Since sisPCA orders subspace dimensions
by the variance explained (i.e., eigenvalues), it is straightforward to remove these extra dimensions
by examining the variance explained curve.

In contrast, VAE models are more sensitive to dimension changes and generally have more hyperpa-
rameters to tune (Table 4). Designing optimal architectures for autoencoders and target predictors is
a topic in itself and beyond the scope of our current work. For benchmarking purposes, we largely
follow the default VAE architecture from SCVI:

• Autoencoders for latent mean and variance: One hidden layer with 128 hidden units, ReLU
activation, batch normalization, and dropout.

• Predictor design (adapted from the scVIGenQCModel in the HCV paper): One hidden layer
with 25 neurons, ReLU activation, and dropout. Extra softmax output head for classifier.

• Training objective: Equal weighting of prediction error and reconstruction loss, minimized
using variational inference.

In Section 4.4, we set the subspace dimension to 10 for all VAE models. We use UMAP to project
the learned subspace onto 2D and subsequently calculate the Silhouette score in Table 3 on this 2D
subspace, ensuring dimensional consistency with the PCA-based spaces (which are also projected
onto 2D using UMAP).
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F.4 Additional experiment details

Recovering Supervised and Unsupervised Subspaces in Simulated Data The code used to
simulate the donut data in Section 4.1 is available in the sisPCA GitHub repository. We have verified
that altering the noise distribution (e.g., from Gaussian to uniform noise, or from uniform projection
matrix to Gaussian matrix) yields similar results.

Learning Diagnostic Subspaces from Breast Cancer Image Features We obtained the dataset
from Kaggle and scaled each real-valued feature to have zero mean and unit variance. The input for
PCA includes all 30 quantitative features. The ’radius’ subspace is supervised with ’radius_mean’
and ’radius_sd’ (effective dim = 2), while the ’symmetry’ space is supervised with ’symmetry_mean’
and ’symmetry_sd’ (effective dim = 2). For sPCA and sisPCA, we use the remaining 26 features as
input and project the data onto each subspace. Using the elbow method, we set the PCA subspace
dimension to 6, and correspondingly, the dimension for sPCA and sisPCA subspaces to 3 (although
their effective dimension is approximately 2). The Silhouette scores are computed on the first three
principal components for all subspaces.

Separating aging-dependent DNA methylation changes from tumorigenic signatures We
downloaded the TCGA methylation data from GDC (controlled access) and retained only the first
5,000 non-constant and non-NA CpG sites for analysis. The data was zero-centered. All subspaces
are specified with 10 latent dimensions. However, as noted in the previous section, the sPCA and
sisPCA aging subspaces have an effective dimension of only one.

Disentangling infection-induced changes in the mouse single-cell atlas of the Plasmodium liver
stage We used the single-cell data preprocessed by Piran et al. [2024]7. The processed data
comprises 19,053 cells and 8,203 mouse genes (all malaria genes have been filtered out), and we keep
the top 2,000 variable genes using scanpy’s ’sc.pp.highly_variable_genes’ function. For all models
except hsVAE-sc, we use the normalized and log1p-transformed expression data as inputs. For
hsVAE-sc, we supply the raw data before normalization. It’s important to note that the data underwent
a background correction step before normalization, where the mean expression in empty wells was
subtracted from the observed data. This results in the raw counts being technically non-integers.
Consequently, in hsVAE-sc, a continuous extension of the negative binomial likelihood is used to
compute the reconstruction loss. All subspaces are given 10 latent dimensions. Although based on
the kernel rank, we know that the sPCA and sisPCA infection subspaces have an effective dimension
of 2, while the time subspaces have an effective dimension of 6.

G Tuning the disentanglement strength in sisPCA

We adapt the approach from Abid et al. [2018] to develop a computational pipeline for automated
selection of the sisPCA hyperparameter λ. The process involves:

1. Fitting sisPCA models with multiple λ values.
2. Computing pairwise similarity (affinity) between learned subspaces.
3. Identifying representative subspace clusters using spectral clustering.

We compute subspace affinity based on the principal angle [Miao and Ben-Israel, 1992]:

dsubspace(Z1, Z2) := d({θ1, ..., θk}) := d(Θ)

where Z ∈ Rn×k is the orthonormal basis of a dim-k subspace with n observations, and the principal
angles Θ are computed from the SVD of ZT

1 Z2 = U cos(Θ)V T .

Through empirical testing, we found the Fubini-Study Grassmann distance provides optimal perfor-
mance. Thus, we define subspace affinity as:

Affinitysubspace(Z1, Z2) =

k∏
i=1

cos(θi) =

k∏
i=1

σi(Z
T
1 Z2).

7See the notebook https://github.com/nitzanlab/biolord_reproducibility/blob/main/notebooks/spatio-
temporal-infection/1_spatio-temporal-infection_preprocessing.ipynb
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For stability, we truncate subspace latent dimension to k′ := min(rank(KY ), k), where KY is the
corresponding supervision kernel (see discussion on subspace effective dimension in Appendix F.3).
For sisPCA models with multiple subspaces, we compute model-wise affinity as the average of
subspace affinities

Affinitymodel({A1, ..., Am}, {B1, ..., Bm}) =
1

m

m∑
i=1

Affinitysubspace(Ai, Bi).

Learning Diagnostic Subspaces from Breast Cancer Image Features We evaluated 20 λ values
ranging from 0 to 100 and analyzed the pairwise similarity between learned sisPCA subspaces (Fig.
9). The sPCA solution (λ = 0) shows clear separation from other sisPCA models. As λ increases,
the symmetry subspace becomes progressively less predictive of diagnostic status (Fig. 9b), and
subspaces stabilize and converge to a robust solution after λ = 1. This convergence pattern is also
reflected in the elbow of the reconstruction loss curve (Fig. 9c).

(a) Pairwise similarity of models with different λs (b) Evolution of the symmetry subspace

(c) Training loss as functions of λ (total loss = reconstruction loss + disentanglement regularization)

Figure 9: Effect of λ on the learned subspace structure in the breast cancer dataset. Related to Fig. 4.

Disentangling infection-induced changes in the mouse single-cell atlas of the Plasmodium
liver stage We examined 10 λ values ranging from 0 to 100 to assess their effect on subspace
characteristics (Fig. 10). Our analysis again reveals the clear separation of sPCA solution (λ = 0)
from other sisPCA models. As λ increases, infected cells form a tighter cluster in the infection
subspace (Fig. 10a), while temporal dynamics become less pronounced, with increased mixing of
cells from different time points (Fig. 10b). Moreover, sisPCA results are quite robust across λ in
preserving subspace structure (Fig. 10c). Since the disentanglement effect primarily manifests in PC2
of the infection subspace, all models, even sPCA, extract similar sets of top contributor genes in PC1
of the infection subspace, thus yielding GO enrichment results comparable to those shown in Fig. 6.
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(a) The infection subspace, colored by infection status (b) The infection subspace, colored by time

(c) Model similarity across λ (d) Percentage of shared top genes contributing to PC1
of the infection subspace learned across λ

Figure 10: Effect of λ on the learned subspace structure in the single-cell malaria infection data.
Related to Fig. 5 and Fig. 6.

H Supplementary visualizations of baseline performance in applications.

For completeness, here we provide subspace visualization for baseline models not included in the
main figures. Specifically, Fig. 11 shows the full sPCA performance on the simulated data, related to
Fig. 3. Fig. 12 visualizes the single-cell subspaces learned by sPCA, VAE, supVAE, and hsVAE-sc,
related to Fig. 5.
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Figure 11: sPCA results on the simulated dataset. Related to Fig. 3b. Rows from top to bottom:
sPCA results with S1 categorical supervision; with S2 continuous supervision; without supervision
(vanilla PCA). In this case, all sPCA subspaces are dominated by S2 since it carries the strongest
variability.
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Harboring parasite
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VAE
(Silhouette = −0.036)

Post−infection
time point

Control
2 hpi
12 hpi
24 hpi
30 hpi
36 hpi

VAE
(Silhouette = 0.296)

(a) VAE

Infection
(Silhouette = 0.207)

Time
(Silhouette = −0.029)

Infection
(Silhouette = −0.075)

Time
(Silhouette = 0.348)

(b) sPCA

Infection
(Silhouette = 0.041)

Time
(Silhouette = −0.087)
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(Silhouette = 0.052)

Time
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(c) supVAE

Infection
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(Silhouette = −0.100)

Infection
(Silhouette = 0.015)

Time
(Silhouette = 0.634)

(d) hsVAE-sc (λ = 10)

Figure 12: UMAP visualizations of the scRNA-seq data of mouse liver upon Plasmodium infection.
Subspace representations are learned using unsupervised VAE (a) and supervised sPCA (b), supVAE
(c) and hsVAE-sc (d). Note that the infection subspaces of VAE and supVAE fail to distinguish
infected versus uninfected cells. Moreover, all infection subspaces presented here still exhibit
significant temporal patterns (lower left plot in each panel) where cells collected at different time
points are not fully mixed.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the paper, we proposed a multi-subspace extension of PCA to disentangle
interpretable subspaces of variations using self-supervision. We believe our work is highly
novel and significant to practitioners using PCA as well as general audience in computational
biology.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The proof of Remark 3.2 is stated following the remark in the main text. The
proofs of Remark 3.1 and 3.3 can be found in Appendix B. Detailed discussion on 3.1 can
be found in the Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details on data preprocessing and model configurations are provided in the
corresponding sections and in Appendix F. A Python implementation of sisPCA is available
on GitHub (https://github.com/JiayuSuPKU/sispca). The repository also contains notebooks
to reproduce most results in the paper main text and in appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We do not generate new data in this study and use public datasets
for all analyses. See detailed description on data access and license in the cor-
responding sections. A Python implementation of sisPCA is available on GitHub
(https://github.com/JiayuSuPKU/sispca). The repository also contains notebooks to re-
produce most results in the paper main text and in appendices.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details on data preprocessing, model configuration and hyperparameter selec-
tion are described in the corresponding sections and in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Statistical significance tests are not included in this paper due to the nature
of our experiments, which primarily focus on qualitative performance assessments and
biological interpretations lacking quantitative null hypotheses. The quantitative performance
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evaluations presented in the tables are self-evident and serve to demonstrate design principles.
Moreover, our baseline models (PCA and sPCA) are deterministic, eliminating the need for
error bars or confidence intervals that typically account for randomness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss the computational complexity of sisPCA in Appendix D. The
proposed method is highly efficient because of the linearity. We ran all provided notebooks
(https://github.com/JiayuSuPKU/sispca/tree/main/docs/source/tutorials) using a personal
M1 Macbook Air with 16GB RAM and completed most analysis steps in minutes including
model training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm the work conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: The Kaggle Breast Cancer Wisconsin Dataset is publicly available under
CC BY-NC-SA 4.0. The TCGA methylation dataset has controlled access due to privacy
regulation. The single-cell malaria liver infection data is publicly available under CC-BY
4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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