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Abstract

Large language models (LLMs) often generate natural language
rationales—free-form explanations that help improve performance on com-
plex reasoning tasks and enhance interpretability for human users. How-
ever, evaluating these rationales remains challenging. While recent work
has relied on binary preference judgments from humans or LLM judges,
such evaluations are often opaque and coarse-grained, offering limited
insight into what makes one rationale better than another. In this work,
we rethink preference evaluation for LLM-generated rationales by asking:
(1) What attributes define good rationales? (2) Can human preferences be
explained by these attributes? (3) Can attribute-based evaluation overcome
the limitations of binary comparisons? We identify a set of key rationale
attributes from prior literature and assess them using automatic metrics,
LLM judgments, and human annotations. We then analyze two standard
human preference datasets MT Bench and Chatbot Arena using SHAP to
identify which attributes best explain human preference outcomes. Finally,
we re-evaluate model-generated rationales using attribute-specific ELO
scores, revealing more nuanced model comparisons and insights. Our find-
ings suggest that fine-grained attribute evaluations can better characterize
rationale quality and guide future research toward more interpretable and
reliable evaluation practices.

1 Introduction

Recent advances in large language models (LLMs) have enabled them to solve complex
tasks, including logical and mathematical questions that require multi-step reasoning (Ope-
nAI, 2024; Guo et al., 2025). Prior work has shown that LLM-generated free-form textual
rationales can improve model performance on such reasoning-intensive tasks (Wei et al.,
2022; Yao et al., 2023). For instance, chain-of-thought prompting has demonstrated en-
hanced LLM accuracy across various benchmarks (Wei et al., 2022; OpenAI, 2024). Beyond
performance, rationales offer an interpretable window into the model’s reasoning process,
helping human users better understand how conclusions are reached.

Despite their utility, free-form rationales remain challenging to evaluate. Several studies
have attempted to characterize the desirable qualities of rationales, identifying attributes
such as consistency, faithfulness, clarity, and length (Golovneva et al., 2023; Chen et al.,
2023; Joshi et al., 2023; Prasad et al., 2023; Ramnath et al., 2024). Recently, preference
evaluations—in which human annotators or models compare two free-form responses
and select the preferred one—have become the predominant approach for evaluating free-
form responses, including rationales (Zheng et al., 2023). While preference evaluation
is straightforward and intuitive, it has key limitations: (1) Human preferences can be
ambiguous and difficult to interpret, raising the question of whether they truly reflect
rationale quality; (2) The commonly used binary (win/loss) preference format obscures
finer-grained insights into what makes one rationale better than another.

In this paper, we rethink the practice of human preference evaluation for LLM-generated
rationales. Specifically, we explore the following research questions: Q1: What are the key
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attributes of a good rationale? Q2: Can human preferences over rationales be explained
by these attributes, and if so, which attributes are most predictive? Q3: Can we use these
attributes to offer more informative evaluations than existing binary preference evaluations?

To address Q1, we conduct a survey of recent literature on rationale evaluation and synthe-
size a set of core attributes that define high-quality rationales. These include diversity, faith-
fulness, hallucination, repetition, informativeness, perplexity, plausibility, self-consistency,
and source consistency. We then operationalize these attributes using three evaluation
methods: (1) existing automated metrics (Golovneva et al., 2023), (2) LLM judges with both
open- and closed-source LLMs, and (3) human annotations.

For Q2, we analyze whether these attributes explain human preferences by applying SHAP
(SHapley Additive exPlanations) analysis (Lundberg & Lee, 2017; Lundberg et al., 2020) to a
LightGBM (Meng et al., 2016; Ke et al., 2017) model trained to predict human preference
using the rationale attributes as input features. While a previous paper conducts a similar
analysis, it relies on one single model GPT4 for its analysis (Hu et al., 2023). We use two
widely-used human preference datasets MT-Bench and Chatbot Arena (Zheng et al., 2023),
and treat their human annotations as the gold standard for this analysis.

To investigate Q3, we use these fine-grained attribute scores to re-evaluate LLM-generated
rationales in the same two datasets. We compute ELO ratings per attribute and compare
them against conventional ELO scores based on binary preference judgments, uncovering
how fine-grained evaluations shift model rankings and offer more detailed insights.

While prior work has identified many of these attributes individually, our primary contri-
bution lies in the holistic methodology we propose to bridge the gap between them and
the coarse-grained human preferences that currently dominate LLM evaluation. We move
beyond simply listing attributes by (1) empirically quantifying which attributes are most
predictive of human judgment using SHAP analysis, thereby deconstructing the ambiguous
signal of ’preference,’ and (2) introducing attribute-specific ELO scores as a novel, fine-
grained evaluation framework. This new framework allows for a more nuanced comparison
of model capabilities, revealing specific trade-offs that are obscured by a single preference
score.

Our study yields several key findings: first, there are a few common attributes that are most
predictive of human preference across datasets and LLM judges: Correctness, Plausibility,
and Completeness. Second, our re-evaluations with finegrained attributes reveal that while
per-attribute ratings generally align with the generic ELO ratings based on binary human
preference, they also uncover novel findings about models’ strengths and weaknesses.
We find that although GPT-4, GPT-3.5-turbo, and Claude-v1 emerge as victors, Claude-v1
struggles to avoid repetition and GPT-4 has lower arithmetic accuracy and self-consistency
than GPT-3.5-turbo.

Based on our results, we offer practical recommendations for future work on rationale
evaluation: First, researchers should move beyond binary preference evaluations and adopt
fine-grained, attribute-level assessments to gain a more nuanced understanding of LLM-
generated rationales. Second, fine-grained evaluations can focus more on attributes that are
more predictive of human preference, including Correctness, Plausibility, Completeness,
followed by Informativeness and Conciseness. Third, while LLM judges can be a scalable
solution for fine-grained rationale evaluation, they should be used with caution: different
models can produce diverging results, and we recommend using multiple LLM judges and
reporting their outputs transparently to mitigate biases.

2 Related Work

Human preference evaluation Human preference data have proven valuable for aligning
LLMs with human values (Christiano et al., 2023; 2017; Ouyang et al., 2022; Rafailov et al.,
2023). Beyond fine-tuning LLMs using this data, human preferences are also used to evaluate
model performance. For instance, Chatbot Arena—a platform for evaluating LLMs based
on human preferences—publishes human preference annotations on benchmark questions
as well as real user queries (Bai et al., 2024; Zheng et al., 2023).
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Rationale evaluation Multiple works have explored the evaluation of natural language
free-text rationales. Works such as Joshi et al. (2023) have investigated the utility of such
rationales to humans, emphasizing the gap between preference and utility and necessitating
measures for rationale quality outside of human preference. We derive our overall attribute
definitions from Golovneva et al. (2023); Ramnath et al. (2024); Chen et al. (2023); Wiegreffe
et al. (2022); Rajani et al. (2019); Atanasova et al. (2023); Prasad et al. (2023); Hase et al. (2020);
Wang et al. (2023). Wiegreffe et al. (2022) evaluates free-text explanations from GPT-3 on
attributes such as ”providing new information”, factuality, and grammaticality. Chen et al.
(2023) proposes a metric to grade rationales on novelty of information as well. Ramnath
et al. (2024) evaluates rationales on the properties of plausibility, diversity, and consistency,
highlighting their usefulness to humans. Fewer works have explored evaluation of step-by-
step reasoning, or chain-of-thought explanations. ROSCOE (Golovneva et al., 2023) provides
a set of metrics specifically for evaluating step-by-step rationales, i.e., chain-of-thought
explanations; hence we use ROSCOE for our automated metrics.

3 Methods

To define a ”good” model-generated rationale and move beyond binary ”chosen” and
”rejected” preference labels, we identify a set of 12 key attributes from prior work on
rationale evaluation. In this section, we first define each of these attributes. Then, we
describe three approaches to measure these attributes.

3.1 Attributes
We evaluate LLM-generated rationales using a set of 12 fine-grained attributes (Table 1)
which capture key aspects of rationale quality as identified in recent literature (Section 2).

Attribute Definition

Faithfulness Is the rationale supported by the model’s actual computation or
the provided evidence?

Hallucination Does the rationale introduce information not present in the
source/context?

Repetition Does the rationale unnecessarily repeat points or phrases?
Informativeness Does the rationale add meaningful, relevant details?
Plausibility Does the rationale “sound right” or seem believable, regardless of

truth?
Self-Consistency Does the rationale avoid contradictions within itself, with all

reasoning steps logically aligned?
Source Consistency Does the rationale avoid contradicting the given context or infor-

mation in the problem statement?
Grammar Is the rationale well-written, clear, and free of grammatical mis-

takes?
Arithmetic Accuracy Are any calculations in the rationale correct?
Conciseness Is the rationale as short as possible, without losing information?

Especially if length is a concern.
Completeness Does the rationale explain all necessary steps/evidence?
Correctness Are all steps and answers in the rationale objectively correct?

Table 1: Definitions of rationale quality attributes used in our analysis.

3.2 Attribute measurements
We measure these attributes of rationales using three approaches: (1) automated heuristics;
(2) LLM judges; and (3) human annotations.

For automated scoring, we use ROSCOE metrics, which quantify aspects of rationale quality
using interpretable heuristics and alignment scores. Table 2 in Appendix A.1 summarizes
the specific ROSCOE metrics and their descriptions. While ROSCOE metrics provide a
baseline for automated rationale scoring, we observe several limitations: their scores can
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Figure 1: Most influential attributes as identified by SHAP value analysis on Chatbot
Arena and MT Bench across LLM judges and human annotators. “Neg” indicates negative
influence on predicted preference.

be noisy, as they require step-by-step formats and are highly sensitive to rationale style. A
detailed analysis of ROSCOE metric performance is in Appendix A.2.

To address these issues, we instead focus on attribute scoring with LLM judges, which allow
for greater flexibility. Unlike formulaic ROSCOE metrics, LLM judges can interpret a variety
of response formats much like human annotators. We prompt multiple LLMs to evaluate
each attribute, including the closed-source GPT-4o and Gemini 2.5-Flash models (scoring
on a 0–1 scale), as well as the open-source OLMo 32B model (OLMo et al. (2025)) (scored
on a 0–10 scale, as OLMo produces more reliable and calibrated scores with integer-valued
prompts). Using both closed- and open-source models helps mitigate concerns that closed
models may have been trained on our evaluation data. Exact prompt templates for each
model can be found in Appendix A.3.

Lastly, for human annotations, the three co-first-authors annotate a randomly sampled set
of rationales from the two human preference datasets on all the attributes. Human scores
also range from 0 to 1. Human annotations results can be found in Appendix A.5.

(a) SHAP beeswarm plot (b) Mean absolute SHAP value plot

Figure 2: SHAP analysis of Gemini-2.5-Flash on Chatbot Arena. (a) Beeswarm plot shows
SHAP value distribution and direction per attribute. (b) Bar plot shows overall attribute
impact via mean absolute SHAP values.

4 Experiments

To answer Q2 and Q3, we conduct two sets of experiments with the 12 fine-grained attributes
on two human preference datasets: MT-Bench and Chatbot Arena (Zheng et al., 2023).
Datasets. Chatbot Arena is a dataset of model responses and human preference anno-
tations collected in a tournament-style setup (Chiang et al., 2024), where pairwise model
responses are judged by humans. It also includes human preference annotations on MT-
Bench, a benchmark for fine-LLM evaluation in multi-turn dialogues (Bai et al., 2024).
Because Chatbot Arena consists of user queries in the wild where model responses might
not be rationales, we use GPT-4o to filter for mathematical and logical questions, resulting
in 1,367 questions with step-by-step or adjacent responses. For MT Bench, we retain general
and mathematical reasoning questions, yielding a total 80 unique questions.
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(a) Chatbot Arena (b) MT Bench

Figure 3: Radar charts of model ELO rankings by attribute on Chatbot Arena (a) and MT
Bench (b). Lower rank (outer ring) indicates better performance.

Analysis of human preference. To address Q2 and assess the relative importance of
fine-grained attributes in shaping human preferences, we employ SHAP analysis on predic-
tions from a LightGBM model. We prefer SHAP over simple correlation analysis because
it captures complex, nonlinear interactions among attributes and provides instance-level
interpretability. For the predictive model, we choose LightGBM, a gradient-boosted decision
tree, due to its efficiency, scalability to large datasets, and interpretable feature interactions.
In this analysis, the attributes serve as input features (X), and human preference scores con-
stitute the target variable (y). SHAP values offer insights into which attributes significantly
enhance or diminish the likelihood of a rationale being preferred by human annotators.

Re-evaluations of LLM rationales. Chatbot Arena along with other previous works (Bai
et al., 2022) have used ELO rankings to rank models based on binary preference outcomes.
We propose a more fine-grained metric: we compute attribute-specific ELO ratings. For
each attribute (e.g., faithfulness, informativeness, etc.), we use its LLM judge score instead
of the binary human preference label to determine the winning model. We then re-compute
ELO rankings per attribute for each model, averaging the score of all three LLM judges.
This enables us to evaluate models on each dimension of rationale quality.

4.1 Results

Q2: Which attributes are most predictive of human preferences over rationales? From
our feature importance analysis using SHAP values, we find that attributes Correctness,
Plausibility, and Completeness are among the top predictors of human preference across
models and datasets (Figure 1), suggesting that human annotators place particular emphasis
on the factual accuracy, plausibility, and thoroughness of rationales when making their
judgments. Detailed SHAP values for each setting are presented in Appendix A.5.

Q3: Can fine-grained attributes offer more informative evaluations? We re-evaluate
LLMs on the two preference datasets using fine-grained rationale attributes. We find
that while attribute-specific ELO rankings generally align with overall human preference
rankings, they reveal unique insights about models’ strengths and weaknesses. Across both
Chatbot Arena and MT-Bench datasets, GPT-4, GPT-3.5-Turbo, and Claude-v1 consistently
occupy the top three positions, although the order varies with dataset and attribute (Figure 3).
Interestingly, Claude-v1 scores poorly on Repetition in both datasets and on MT-Bench, GPT-
3.5-Turbo unexpectedly outperforms GPT-4 on certain attributes such as Self-Consistency
and Arithmetic Accuracy.

These examples suggest that while rankings based on generic human preferences coarsely
identify overall strongest models, fine-grained attribute-based evaluations can facilitate com-
parison of models’ strengths and weaknesses across multiple rationale quality dimensions,
revealing subtle but meaningful differences between top-performing models. A detailed
analysis of the ELO rankings for each attribute is presented in Appendix A.6.
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5 Limitations and Future work

5.1 Limitations of the Current Study

• Reliability and Bias of LLM Judges: A primary limitation is the reliance on LLMs
for both dataset filtering and attribute scoring. While we took steps to mitigate this
by using multiple judges, including both open- and closed-source models, the ”LLM-
as-a-judge” paradigm has known challenges. These include non-deterministic out-
puts even at zero temperature, potential factual errors (as shown in Appendix A.7),
and the inherent bias of the judge models, which may have been trained on similar
data or possess their own stylistic preferences. A more systematic evaluation of
inter-judge consistency would be needed to fully quantify this variability.

• Scope of Evaluation Tasks: Our analysis focused on mathematical and logical
reasoning tasks. While these domains are critical for evaluating reasoning, it remains
an open question how the importance of specific attributes might shift in other
contexts, such as creative writing, commonsense inference, or multi-step planning
tasks. Future work should apply this attribute-based framework to a wider variety
of tasks to test the generalizability of our findings.

• Scope of Human Annotation: Our human annotation study provided a crucial
foundation for our analysis. However, these annotations were performed by the
three co-first authors. Although this ensures expert-level evaluation, a future study
involving a larger and more diverse pool of human annotators would strengthen the
conclusions about which attributes are most predictive of general human preference.
Such a study should also include formal measurements of inter-annotator agreement
(IAA) to further validate the attribute definitions.

5.2 Directions for Future Work

• Improving Rationale Quality via Attribute-Based Fine-Tuning: A key implication
of our work is the potential to improve models by optimizing for specific, desirable
attributes. Our fine-grained attribute labels offer a much richer training signal than
binary preference data. Future work could leverage these attribute-level annotations
to fine-tune models using techniques like Direct Preference Optimization (DPO), but
with a multi-objective reward function. This could allow for targeted improvements,
such as increasing a model’s Correctness and Self-Consistency while simultaneously
penalizing Repetition.

• Connecting to Interpretability and Human-AI Collaboration: Finally, our frame-
work can be more deeply connected to existing work on the human utility of
explanations. Future studies could investigate how different rationale profiles (e.g.,
high Completeness but low Conciseness) affect human performance on downstream
tasks, trust in the model, and the ability to detect model errors. This would bridge
the gap between the quality of abstract rationale and the practical utility of human
nature.

6 Conclusion

The evaluation of LLM-generated rationales has largely relied on coarse-grained, binary
preferences, which obscure the specific qualities that make a rationale effective. We propose
a fine-grained, attribute-based evaluation framework and show that human choices are
strongly driven by attributes such as Correctness, Plausibility, and Completeness.

Our attribute-specific ELO rankings reveal nuanced model trade-offs—for example, GPT-
3.5-Turbo surpasses GPT-4 on Arithmetic Accuracy and Self-Consistency. Such diagnostic
insights, absent in holistic preference scores, are crucial for targeted model improvement. We
argue that future evaluation should move beyond monolithic metrics toward fine-grained,
interpretable frameworks that foster more transparent and trustworthy LLMs.
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A Appendix

A.1 ROSCOE Metrics

ROSCOE Metric At-
tributes

Description

faithfulness Mean alignment from the hypothesis chain to the context
sentences; higher scores indicate better grounding by the
context.

faithfulness ww Mean alignment of the sentence and token embeddings
from the hypothesis chain to the context sentences and
tokens.

repetition word For each step, gets the maximum alignment score between
tokens in the current step and tokens in previous steps
(token-level repetition).

repetition step Maximum cosine similarity of each step to all previous
steps (sentence-level repetition).

informativeness step Mean alignment from the sentences in the context to all
steps in the chain and vice versa, averaged.

informativeness chain Cosine similarity between the overall hypothesis embed-
ding and the context embedding.

discourse representation Maximum predicted probability of contradiction (from NLI
model) between each step in the hypothesis and each sen-
tence in the context.

coherence step vs step Maximum probability of contradiction (from NLI model)
between each step and all previous steps in the chain.

perplexity step Perplexity of each step, averaged over the chain.
perplexity step max Maximum perplexity among all steps, where each step is

scored individually.
perplexity chain Perplexity of the entire chain taken as a continuous string.
grammar step Grammatical correctness of each step, as predicted by a

grammaticality classifier and averaged over the chain.
grammar step max Grammatical correctness of each step; minimum score

given to a step (most incorrect step’s score is used).

Table 2: Descriptions of automated ROSCOE metrics used for rationale attribute evaluation.
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A.2 ROSCOE Metrics Results

A.2.1 Chatbot Arena

Figure 4: Distribution of the difference between chosen and rejected scores by attribute.
Boxplots summarize the (chosen – rejected) difference for each attribute.
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Figure 5: Distribution of attribute values for chosen vs. rejected rationales. Each subplot
shows the density of scores for each attribute.

Figure 6: Mean absolute SHAP value plot for Chatbot Arena (ROSCOE). Shows the mean
importance of each attribute in the model.
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Figure 7: SHAP beeswarm plot for Chatbot Arena (ROSCOE). Visualizes the distribution
and direction of SHAP values for each attribute.

13



Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

A.2.2 Mt Bench

Figure 8: Distribution of the difference between chosen and rejected scores by attribute in
MT Bench. Boxplots summarize the (chosen – rejected) difference for each attribute.
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Figure 9: Distribution of attribute values for chosen vs. rejected rationales in MT Bench.
Each subplot shows the density of scores for each attribute.

Figure 10: SHAP beeswarm plot for MT Bench (ROSCOE). Visualizes the distribution and
direction of SHAP values for each attribute.
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Figure 11: Mean absolute SHAP value plot for MT Bench (ROSCOE). Shows the mean
importance of each attribute in the model.
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A.3 Prompt Templates for Automated LLM Scoring

A.3.1 Main Prompt Template (0–1 Scale; for GPT-4o and Gemini 2.5-Flash)

You are an expert evaluator for mathematical and logical explanations.
Given the following question and rationale, please assign a score between 0 (worst) and 1
(best) for each attribute listed below. For each attribute, also provide a brief justification.

IMPORTANT: A score of **1.0 always means BEST** and **0.0 always means WORST**, even for
attributes like Hallucination and Repetition. Interpret all attributes as \more of a good thing."

Please return your response in two Python dictionaries:

- One called `scores` where each key is the name of the attribute and the value is the score
(a float between 0 and 1).

- One called `explanations` where each key is the name of the attribute and the value is your
explanation (1-2 sentences) for that score.

Please output the Python dictionaries as plain text only|do not include code blocks,
markdown, or any extra formatting.

Here are the attributes and their definitions:

Faithfulness:
Is the rationale supported by the model’s actual computation or the provided evidence?

Hallucination:
Does the rationale introduce information not present in the source/context?

Repetition:
Does the rationale unnecessarily repeat points or phrases?

Informativeness:
Does the rationale add meaningful, relevant details?

Plausibility:
Does the rationale \sound right" or seem believable, regardless of truth?

Self-Consistency:
The rationale does not contain steps that contradict each other; all reasoning is logically
aligned internally.

Source Consistency:
The rationale does not contradict the given context or information in the problem statement.

Grammar:
Is the rationale well-written, clear, and free of grammatical mistakes?

Arithmetic Accuracy:
Are any calculations in the rationale correct?

Conciseness:
Is it as short as possible, without losing information? Especially if length is a concern.

Coverage/Completeness:
Does it explain all necessary steps/evidence?

Correctness:
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Are all steps and answers objectively correct?

Example output format:

scores = {
"Faithfulness": 0.95,
"Hallucination": 0.67,
"Repetition": 0.89,
...

}

explanations = {
"Faithfulness": "The rationale closely follows logical steps derived from the question.",
"Hallucination": "Some external information or assumptions were introduced. For example, ...",
"Repetition": "The rationale is does not repeat it self with similar points at different steps.",
...

}

Math/Logic Question:
{question}

Rationale:
{rationale}
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A.3.2 OLMO Prompt Template (0–10 Scale)

You are an expert evaluator for mathematical and logical explanations.

Given the following question and rationale, please assign a score between 0 (worst)
and 10 (best) for each attribute listed below. For each attribute, also provide a
brief justification.

IMPORTANT: A score of **10 always means BEST** and **0 always means WORST**,
even for attributes like Hallucination and Repetition.
Interpret all attributes as \more of a good thing."

Please return your response in two Python dictionaries:

- One called `scores` where each key is the name of the attribute and the value is the
score (a float between 0 and 10).

- One called `explanations` where each key is the name of the attribute and the value
is your explanation (1-2 sentences) for that score.

Please output the Python dictionaries as plain text only, do not include code blocks,
markdown, or any extra formatting.

Here are the attributes and their definitions:

Faithfulness:
Is the rationale supported by the model’s actual computation or the provided evidence?

Hallucination:
Does the rationale introduce information not present in the source/context?

Repetition:
Does the rationale unnecessarily repeat points or phrases?

Informativeness:
Does the rationale add meaningful, relevant details?

Plausibility:
Does the rationale \sound right" or seem believable, regardless of truth?

Self-Consistency:
The rationale does not contain steps that contradict each other;
all reasoning is logically aligned internally.

Source Consistency:
The rationale does not contradict the given context or information in the problem statement.

Grammar:
Is the rationale well-written, clear, and free of grammatical mistakes?

Arithmetic Accuracy:
Are any calculations in the rationale correct?

Conciseness:
Is it as short as possible, without losing information? Especially if length is a concern.

Coverage/Completeness:
Does it explain all necessary steps/evidence?
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Correctness:
Are all steps and answers objectively correct?

Example output format:

scores = {
"Faithfulness": 9.5,
"Hallucination": 6.8,
"Repetition": 8.9,
...

}

explanations = {
"Faithfulness": "The rationale closely follows logical steps derived from the question.",
"Hallucination": "Some external information or assumptions were introduced. For example, ...",
"Repetition": "The rationale is does not repeat it self with similar points at different steps.",
...

}

Math/Logic Question:
{question}

Rationale:
{rationale}
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A.4 LLM Judges Results

A.4.1 OpenAI GPT-4o

1. Chatbot Arena

Figure 12: Distribution of the difference between chosen and rejected scores by attribute in
Chatbot Arena (GPT-4o). Boxplots summarize the (chosen – rejected) difference for each
attribute.

Figure 13: SHAP beeswarm plot for Chatbot Arena (GPT-4o). Visualizes the distribution
and direction of SHAP values for each attribute.
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Figure 14: Mean absolute SHAP value plot for Chatbot Arena (GPT-4o). Shows the mean
importance of each attribute in the model.
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Figure 15: Distribution of attribute values for chosen vs. rejected rationales in Chatbot Arena
(GPT-4o). Each subplot shows the density of scores for each attribute.
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2. Mt Bench

Figure 16: Distribution of the difference between chosen and rejected scores by attribute
in MT Bench (GPT-4o). Boxplots summarize the (chosen – rejected) difference for each
attribute.

Figure 17: SHAP beeswarm plot for MT Bench (GPT-4o). Visualizes the distribution and
direction of SHAP values for each attribute.
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Figure 18: Mean absolute SHAP value plot for MT Bench (GPT-4o). Shows the mean
importance of each attribute in the model.
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Figure 19: Distribution of attribute values for chosen vs. rejected rationales in MT Bench
(GPT-4o). Each subplot shows the density of scores for each attribute.
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A.4.2 Google Gemini-2.5-Flash

1. Chatbot Arena

Figure 20: Distribution of the difference between chosen and rejected scores by attribute in
Chatbot Arena (Gemini 2.5-Flash). Boxplots summarize the (chosen – rejected) difference
for each attribute.

Figure 21: SHAP beeswarm plot for Chatbot Arena (Gemini 2.5-Flash). Visualizes the
distribution and direction of SHAP values for each attribute.
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Figure 22: Mean absolute SHAP value plot for Chatbot Arena (Gemini 2.5-Flash). Shows
the mean importance of each attribute in the model.
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Figure 23: Distribution of attribute values for chosen vs. rejected rationales in Chatbot Arena
(Gemini 2.5-Flash). Each subplot shows the density of scores for each attribute.
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2. Mt Bench

Figure 24: Distribution of the difference between chosen and rejected scores by attribute in
MT Bench (Gemini 2.5-Flash). Boxplots summarize the (chosen – rejected) difference for
each attribute.

Figure 25: SHAP beeswarm plot for MT Bench (Gemini 2.5-Flash). Visualizes the distribution
and direction of SHAP values for each attribute.
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Figure 26: Mean absolute SHAP value plot for MT Bench (Gemini 2.5-Flash). Shows the
mean importance of each attribute in the model.
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Figure 27: Distribution of attribute values for chosen vs. rejected rationales in MT Bench
(Gemini 2.5-Flash). Each subplot shows the density of scores for each attribute.
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A.4.3 OLMo 2-32b

1. Chatbot Arena

Figure 28: Distribution of the difference between chosen and rejected scores by attribute in
Chatbot Arena (OLMo 2-32b). Boxplots summarize the (chosen – rejected) difference for
each attribute.

Figure 29: SHAP beeswarm plot for Chatbot Arena (OLMo 2-32b). Visualizes the distribution
and direction of SHAP values for each attribute.
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Figure 30: Mean absolute SHAP value plot for Chatbot Arena (OLMo 2-32b). Shows the
mean importance of each attribute in the model.
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Figure 31: Distribution of attribute values for chosen vs. rejected rationales in Chatbot Arena
(OLMo 2-32b). Each subplot shows the density of scores for each attribute.
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2. Mt Bench

Figure 32: Distribution of the difference between chosen and rejected scores by attribute in
MT Bench (OLMo 2-32b). Boxplots summarize the (chosen – rejected) difference for each
attribute.

Figure 33: SHAP beeswarm plot for MT Bench (OLMo 2-32b). Visualizes the distribution
and direction of SHAP values for each attribute.
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Figure 34: Mean absolute SHAP value plot for MT Bench (OLMo 2-32b). Shows the mean
importance of each attribute in the model.
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Figure 35: Distribution of attribute values for chosen vs. rejected rationales in MT Bench
(OLMo 2-32b). Each subplot shows the density of scores for each attribute.
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A.5 Human Annotators Results

The human evaluation results reported in this section are based on the average scores
assigned by three independent annotators for each question. For every rationale, we take
the mean of the three annotators’ scores to obtain a single human score per attribute. This
approach helps mitigate individual annotator bias and provides a more robust measure of
human preference.

A.5.1 Chatbot Arena

Figure 36: Distribution of the difference between chosen and rejected scores by attribute in
Chatbot Arena (Human Annotators). Boxplots summarize the (chosen – rejected) difference
for each attribute.

Figure 37: SHAP beeswarm plot for Chatbot Arena (Human Annotators). Visualizes the
distribution and direction of SHAP values for each attribute.
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Figure 38: Mean absolute SHAP value plot for Chatbot Arena (Human Annotators). Shows
the mean importance of each attribute in the model.
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Figure 39: Distribution of attribute values for chosen vs. rejected rationales in Chatbot Arena
(Human Annotators). Each subplot shows the density of scores for each attribute.

41



Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

A.5.2 Mt Bench

Figure 40: Distribution of the difference between chosen and rejected scores by attribute in
MT Bench (Human Annotators). Boxplots summarize the (chosen – rejected) difference for
each attribute.

Figure 41: SHAP beeswarm plot for MT Bench (Human Annotators). Visualizes the distri-
bution and direction of SHAP values for each attribute.
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Figure 42: Mean absolute SHAP value plot for MT Bench (Human Annotators). Shows the
mean importance of each attribute in the model.
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Figure 43: Distribution of attribute values for chosen vs. rejected rationales in MT Bench
(Human Annotators). Each subplot shows the density of scores for each attribute.
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A.6 ELO ranking results

A.6.1 LLM Judges

1. Chatbot Arena

Figure 44: ELO Scores for Faithfulness across all models in Chatbot Arena, scored by the
mean score of three LLMs.

Figure 45: ELO Scores for Hallucination across all models in Chatbot Arena, scored by the
mean score of three LLMs.

Figure 46: ELO Scores for Repetition across all models in Chatbot Arena, scored by the mean
score of three LLMs.
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Figure 47: ELO Scores for Informativeness across all models in Chatbot Arena, scored by
the mean score of three LLMs.

Figure 48: ELO Scores for Plausibility across all models in Chatbot Arena, scored by the
mean score of three LLMs.

Figure 49: ELO Scores for Self-Consistency across all models in Chatbot Arena, scored by
the mean score of three LLMs.
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Figure 50: ELO Scores for Source Consistency across all models in Chatbot Arena, scored by
the mean score of three LLMs.

Figure 51: ELO Scores for Grammar across all models in Chatbot Arena, scored by the mean
score of three LLMs.

Figure 52: ELO Scores for Completeness across all models in Chatbot Arena, scored by the
mean score of three LLMs.
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Figure 53: ELO Scores for Correctness across all models in Chatbot Arena, scored by the
mean score of three LLMs.

Figure 54: ELO Scores for Arithmetic Accuracy across all models in Chatbot Arena, scored
by the mean score of three LLMs.

Figure 55: ELO Scores for Conciseness across all models in Chatbot Arena, scored by the
mean score of three LLMs.
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Figure 56: Radar chart of model ELO scores by attribute in Chatbot Arena, computed as the
mean of the three LLM judges.

Figure 57: Bar plot of model ELO scores by model and attribute in Chatbot Arena, averaged
across all LLM judges.

Figure 58: ELO scores for all models based on human preference labels in Chatbot Arena.
Here, the score is computed directly from the human-chosen vs. rejected outcomes. Error
bars indicate the confidence interval.
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2. Mt Bench

Figure 59: ELO Scores for Faithfulness across all models in Mt Bench, scored by the mean
score of three LLMs.

Figure 60: ELO Scores for Hallucination across all models in Mt Bench, scored by the mean
score of three LLMs.

Figure 61: ELO Scores for Repetition across all models in Mt Bench, scored by the mean
score of three LLMs.
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Figure 62: ELO Scores for Informativeness across all models in Mt Bench, scored by the
mean score of three LLMs.

Figure 63: ELO Scores for Plausibility across all models in Mt Bench, scored by the mean
score of three LLMs.

Figure 64: ELO Scores for Self-Consistency across all models in Mt Bench, scored by the
mean score of three LLMs.
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Figure 65: ELO Scores for Source Consistency across all models in Mt Bench, scored by the
mean score of three LLMs.

Figure 66: ELO Scores for Grammar across all models in Mt Bench, scored by the mean score
of three LLMs.

Figure 67: ELO Scores for Completeness across all models in Mt Bench, scored by the mean
score of three LLMs.
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Figure 68: ELO Scores for Correctness across all models in Mt Bench, scored by the mean
score of three LLMs.

Figure 69: ELO Scores for Arithmetic Accuracy across all models in Mt Bench, scored by the
mean score of three LLMs.

Figure 70: ELO Scores for Conciseness across all models in Mt Bench, scored by the mean
score of three LLMs.
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Figure 71: Radar chart comparing model ELO scores by attribute on MT Bench (LLM scores).
Each axis represents one evaluation attribute, and each polygon represents a different model.

Figure 72: Bar chart showing ELO scores for each model and attribute on MT Bench (LLM
scores). Each color indicates a different evaluation attribute.

Figure 73: Bar plot of ELO estimates based on human preferences for each model on MT
Bench. Error bars indicate uncertainty in ELO estimation.
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A.6.2 Human Annotator

1. Chatbot Arena

Figure 74: Radar chart comparing model ELO scores by attribute on MT Bench (LLM Judges).
Each axis corresponds to a specific evaluation attribute, and each line represents a different
model.

Figure 75: Radar chart comparing model ELO rankings by attribute for the top 7 models
in Chatbot Arena (LLM Judges). Each axis is an evaluation attribute, and each polygon
represents a model.
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2. Mt Bench

Figure 76: Radar chart showing model ELO rankings by attribute on MT Bench. Each axis
represents an evaluation attribute, and each polygon represents a model. (Lower is better)

Figure 77: Radar chart showing model ELO scores by attribute on MT Bench. Each axis
represents an evaluation attribute, and each polygon represents a model. (Higher is better)
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A.7 Examples

An example illustrating a mistake made by the GPT-4o model on the Correctness attribute: In
this case, both the chosen and rejected rationales provide incorrect final answers. However,
GPT-4o assigns a correctness score of 1.0 to the chosen rationale, failing to recognize the
error in the solution.

Figure 78: An example of a scoring error made by GPT-4o on the Correctness attribute. The
’Chosen’ rationale contains an algebraic error but is incorrectly assigned a perfect score of
1.0, while the ’Rejected’ rationale, which only restates the prompt, is correctly scored as 0.0.
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