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Abstract

This paper is an independent empirical reproduction of the claimed benefits of the µP
parametrization proposed in Yang & Hu (2020) and Yang et al. (2021). Under the so-
called Standard Parametrization (SP), the weights of neural networks are initialized from
the Gaussian distribution with variance scaling as the inverse of “fan-in”, with the learning
rate being the same for every layer. While this guarantees that (pre)activations are O(1)
at initialization with respect to width, it causes their scale to be width-dependent during
training. To address this, Yang & Hu (2020) and Yang et al. (2021) proposed the Maximal
Update Parametrization (µP), which is also claimed to make the optimal value of various
hyperparameters independent of width. However, despite its alleged benefits, µP has not
gained much traction among practitioners. Possibly, this could stem from a lack of thorough
independent evaluation of µP against SP. We address this by independently reproducing the
empirical claims of the original works. At the same time, we substantially increase the scale
of the experiments, by training more than 10000 neural networks of sizes from 500 to 0.5B
parameters, and empirically investigate µP’s effect on outputs, gradient updates, weights,
training loss and validation loss. We find that generally µP indeed delivers on its promises,
even though this does not always translate to improved generalization.

1 Introduction

1.1 Related works

Deep Learning researchers and practitioners have long understood the importance of initialization and its
relation to width. The work LeCun et al. (2002) advocated that weights be sampled from a distribution with
mean zero and standard deviation 1√

fan-in (LeCun initialization). Glorot & Bengio (2010) shed further light
on why this is helpful, and Sutskever et al. (2013) showed that initialization schemes like this can synergize
with momentum methods.

The paper Yang & Hu (2020) recognized that LeCun initialization ensures that (pre)activations are O(1)
at the beginning of training. The authors noted that this property is lost during training, which can cause
wide networks to diverge. Starting from the desideratum that (pre)activations are O(1) throughout training,
and using the theory developed in the Tensor Programs (TP) series of papers (Yang, 2019a;b; 2020a; Yang
& Littwin, 2021; Yang, 2020b; Yang & Hu, 2020; Littwin & Yang, 2022; Yang et al., 2023a; 2021; 2023b;
Yang & Hu, 2020), they arrive at the width scaling scheme µP. For many hyperparameters, µP is also
claimed to stabilize optimal values as width varies, a property that is exploited in Yang et al. (2021) for
hyperparameter optimization. In this paradigm, called µTransfer, optimal hyperparameters are discovered
cheaply for a small, proxy network, and then zero-shot transferred to a big, target network.

Since its proposal, µP has been used in a limited number of published works. For the case of Large Language
Models (LLMs), it has been used by Dey et al. (2023a) (Cerebras-GPT), Li et al. (2023) (FLM-101B),
Dey et al. (2023b) (BTLM-3B-8K), Liu et al. (2023) (CrystalCoder), Hu et al. (2024) (MiniCPM) and Li
et al. (2024) (Tele-FLM). Intriguingly Achiam et al. (2023) (GPT-4) includes Yang & Littwin (2021) in the
references without explicitly citing it, leaving it unclear if they use it or not. Outside of the LLM world, µP
was used in Cabannes et al. (2023) to ensure that a fixed learning rate was reasonable for every width they
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tested, and in Beaini et al. (2023), which included µP in their GNN library Graphium targeted at Molecular
Learning.

1.2 Objectives

The above works using µP nearly always assume its benefits, taking at face value that µP is preferable
over SP without ablating with respect to the parametrization. Besides the original papers (Yang & Hu,
2020; Yang et al., 2021), the only work that investigates the claimed advantages of µP over SP is Lingle
(2024). It studies whether µP indeed stabilizes the optimal learning rate for many architectural variations
of a Transformer, and finds that it does for most but not all of these variations.

In this paper, we will thoroughly investigate the alleged benefits of µP and compare it head-to-head with
SP. We expand the scale of the existing µP versus SP comparisons (Yang & Hu, 2020; Yang et al., 2021;
Lingle, 2024), by including additional architectures and domains, scaling to narrower and wider networks,
performing a denser hyperparameter sweep, training for more random seeds and training for longer. In total,
we train 10752 networks, ranging from 500 to 0.5B parameters. Our ultimate goal is to understand whether
and to what extent the promises of µP hold in practice, and if and when it should be preferred over SP.

Our work is fundamentally an independent reproduction of Yang & Hu (2020) and Yang et al. (2021). Hence,
we made every effort that our results are reproducible themselves. The complete repository of the training
code1 is already available online.

1.3 Findings

Our findings can be summarized as follows:

1. Inspecting the norm of coordinate-wise outputs reveals that they indeed are O(1) under µP, while
heavily depending on width under SP.

2. In µP, and unlike SP, the best (with respect to the training loss) learning rate indeed stays ap-
proximately constant as width increases. Thus, µTransfer, in contrast to “naive” hyperparameter
tuning with SP, indeed enables zero-shot hyperparameter transfer, from narrow (and thus cheaply
trainable) networks to wider ones.

3. Under µP, wider networks in general outperform (in training loss) narrower networks. Under SP
this trend is much less visible, although sometimes present.

4. Points 2 and 3 do not always translate to better generalization. That is, the optimal µP network
often has worse validation loss than the optimal SP network.

5. With SP, we observed some wide networks diverging. Specifically, the wider the network, the more
likely it was to diverge. In contrast, none of the networks diverged with µP.

6. The benefits of µP seem to be stronger for transformers.

In summary, we found that µP mostly performs as expected.

2 µP summary

We start with a high-level summary of the Tensor Programs framework (Yang, 2019a).

In this framework, the initial weights and learning rates of a neural network are scaled in terms a parameter
matrix’s “fan-in” and “fan-out”. Their precise meaning for different types of layers are as follows:

1. The parameter matrix of biases of a linear layer has fan-in = 1 and fan-out equal to the activation
dimension.

1ANONYMIZED
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Table 1: Standard deviation and learning rate scaling in µP
fan-out→∞ fan-in, fan-out→∞ fan-in→∞

s 1/
√

fan-in 1/
√

fan-in 1/fan-in
γ (SGD) fan-out 1 1/fan-in
γ (Adam) 1 1/fan-in 1/fan-in

2. Convolutional filters are a kernel_width × kernel_height-sized collection of parameter matrices,
where every such matrix has fan-in = input_channels and fan-out = output_channels.

3. Biases and weights of layer normalization layers are treated the same as biases of linear layers.

4. The class embedding of Vision Transformers (ViTs) has fan-in = 1 and fan-out = d, where d is the
model dimension.

5. The embedding operation of a transformers is viewed as a matrix multiplication between the embed-
ding table and a one-hot vector representing a token of the vocabulary. Therefore, the embedding
table has fan-in = vocabulary_size and fan-out = d.

With these conventions, assume θ ∈ Rfan-in×fan-out is a parameter matrix of a neural network.

Under SP, the initialization and update rules are:

θ0 ∼

{
N (µ, c2) if fan-in = 1,

N (0, c2 · 1
fan-in ) if fan-in > 1,

(1)

θt+1 ← θt − k · f(∇θt), (2)

for a function f , where µ, c and k are hyperparameters that do not scale with width. Note that c = 0 is
possible (e.g. biases are often initialized to zero). Different choices of f lead to different optimizers (e.g. for
f = id we recover SGD, while another choice leads to Adam).

Under the µP, the initialization and update rules are instead:

θ0 ∼

{
N (µ, c2) if fan-in = 1,

N (0, c2 · s2) if fan-in > 1,
(3)

θt+1 ← θt − k · γ · f(∇θt), (4)

where s and γ are scaled with width as specified in Table 1. In addition, the scale in a self-attention layer
of dimension d should is changed from 1√

d
to 1

d .

The constants µ, c and k do not have to match between SP and µP. Moreover, they can be chosen arbitrarily
for every parameter matrix of the network. This allows us to make SP and µP exactly equivalent for a base
width. We can do so by inserting width-independent constants in front of µ, c and k in µP. The constants to
be inserted are obtained from equating the initializations (equation 1 and equation 3) and the update rules
(equation 2 and equation 4).

3 Experimental setup

We experimented with four architectures, across three tasks. Specifically, we tested a 3-layer MLP on the
California Housing dataset, a VGG11 CNN and a ViT on CIFAR-10, and a Transformer on Tiny Shakespeare.

For every architecture we chose a base width, and then trained networks of widths ζ × base_width while
varying ζ. We ran comprehensive experiments for each architecture and dataset combination. For every
combination, we picked multipliers to make SP and µP exactly equivalent for the base width ζ = 1 (as
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described in the previous section). We swept the learning rate hyperparameter k, training 16 networks for
every value.

In the MLP setting, we followed Yang et al. (2021, Figure 5) in plotting the norm of coordinate-wise outputs
to test µP’s stabilizing effect on them. We also did the same for weights and gradient updates.

In all settings, we compared performance for different hyperparameter values at varying width, producing
curves like those of Yang et al. (2021, Figure 1). Specifically, we collected the minimum training and valida-
tion losses, and plotted their mean, along with one standard deviation error bars for both parametrizations.

For all the experiments, we set the initialization scale c to 1/10 and used the Adam optimizer (Kingma & Ba,
2017) with PyTorch’s defaults. Additionally, we trained without weight-decay or data augmentation.

In total, we trained 10752 neural networks, spanning from 500 to 0.5B parameters, which needed 2000 hours
when using an NVIDIA A100.

3.1 MLP on California Housing

The California Housing dataset (Pace & Barry, 1997) is a tabular regression dataset with the goal of predict-
ing the median house value for a geographical block in California from eight real-valued features. It consists
of 20640 samples, out of which we held out 2000 for validation and 2000 for testing.

We used a MLP with two hidden layers, and gave them a base width of 16 (this is the only width that scales
for this architecture). We trained networks corresponding to width multipliers from ζ = 1 (width = 16,
parameters = 433) to ζ = 512 (width = 8192, parameters = 67M). For each width we trained with 16
different learning rate multipliers k, geometrically spaced between 10−5 and one. Each training run consisted
of 50000 mini-batches of size 16.

Overall, we trained 5120 MLPs, which took around 200 hours on an NVIDIA A100.

3.2 VGG11 on CIFAR-10

The CIFAR-10 dataset (Krizhevsky et al., 2009) is an image classification dataset where one tries to classify
an image in one of ten classes. There are 60000 images, of size 3 × 32 × 32. We held out 10000 images for
validation and 10000 for testing.

We used the VGG11 architecture (Simonyan & Zisserman, 2014) with four convolutional stages. The stages
had base width2 4, 8, 16 and 32 respectively. The classifier head had base width 20, and 0.5 dropout
probability. We tested networks from ζ = 1 (max_channels = 32, parameters = 21K) to ζ = 128
(max_channels = 4096, parameters = 336M). We tried eight geometrically spaced values for the learn-
ing rate multiplier k, between 6 · 10−5 and 0.01. Each training run consisted of 50000 mini-batches, of size
32.

In aggregate, we trained 2048 CNNs, in about 500 GPU hours.

3.3 ViT on CIFAR-10

We used the ViT architecture (Dosovitskiy et al., 2020) with a patch size of four and six blocks of base width
32, eight heads, expansion factor of one and 0.1 dropout probability. For positional embeddings we used
sinusoidal positional encodings. We tested networks from ζ = 1 (width = 32, parameters = 34K) to ζ = 128
(width = 4096, parameters = 504M). The remaining training details follow Section 3.2.

Collectively, we trained 2048 ViTs, which took 1000 GPU hours.

3.4 Transformer on Tiny Shakespeare

The Tiny Shakespeare (Karpathy, 2015) dataset is a subset of Shakespeare’s works in a single 40000 lines
file. Language models trained from scratch on this dataset can produce samples that look very close to the

2The width of a convolutional layer is simply the number of its output channels.
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original. We tokenized the dataset with the GPT-2 (Radford et al., 2019) tokenizer, leading to 300K tokens.
We held out 25K tokens for validation and 25K tokens for testing.

We used the transformer architecture Vaswani et al. (2017) with a context of 128 tokens and six blocks
of base width 32, eight heads, expansion factor of four and no dropout. For positional embeddings we
used sinusoidal positional encodings. We tested networks from ζ = 1 (width = 32, parameters = 3.3M) to
ζ = 32 (width = 1024, parameters = 180M). We tried eight geometrically spaced values for the learning rate
multiplier k, between 6 · 10−4 and 0.1. Each training run consisted of 20000 mini-batches of size 32.

Overall, we trained 1536 transformers, in approximately 300 hours.

4 Main results

4.1 MLP on California Housing

4.1.1 Scale of activations

As our first experiment, we measured the average coordinate-wise norm of the output of our MLP architec-
ture, described in Section 3.1. We did this for width multipliers from ζ = 1 to ζ = 512 and for twelve batches.
We then compared SP with µP to see the impact of parametrization. According to theory, outputs should
be width-dependent under SP, and width-independent under µP. The results are presented in Figure 1. For
SP, we can see that the scale of the outputs rapidly increases as we increase the width. On the contrary, for
µP, the norm is stable with respect to the width. The results are as expected, and mirror Yang et al. (2021,
Figure 5).

We did the same for the gradient updates and the weight norms of the last hidden layer of our MLP. Results
are again presented in Figure 1. For the average coordinate-wise norm of the gradient updates, both under
SP and µP, we notice that there is an exponential decay with width. The curves are more stable under µP,
with small spikes appearing for nearly all batches under SP. Lastly, in terms of the average coordinate-wise
norm of the weight values, SP and µP behave similarly.
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Figure 1: Scale of outputs (left), gradient updates (middle) and weights (right) as function of the width
multiplier ζ
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4.1.2 Train and validation loss

The results for the stability of the hyperparameters with changing width are shown in Figure 2. We observe
that the training loss curves for both SP and µP are quite noisy, with the error bars for different widths
overlapping. This indicates that in some cases the benefits of µP are detectable only when averaging over
many training runs.

Under SP, the optimal learning rate multiplier k with respect to the training loss shifts around an order of
magnitude to the left as the width increases. On the other hand, it stays approximately constant under µP.
Moreover, under µP, the curves are somewhat flatter, which means that the networks are less sensitive to
the exact value of k.

For SP, wider networks do not consistently outperform narrower ones in terms of training loss, except for a
small range of low values of k, and the difference is slight. Meanwhile, this trend is much stronger for µP,
and observed for a wider range of k. The validation loss curves show similar behavior, but are less noisy.

Comparing best performing networks with respect to the training loss, we see that the best SP network has
ζ = 128, k = 10−4 and min_training_loss = 6.52 ·10−2, while the best µP network has ζ = 512, k = 3 ·10−4

and min_training_loss = 6.78 · 10−2. Thus, for SP the third widest network performs the best, while for µP
the widest network does. With respect to the validation loss, the best networks have ζ = 8, k = 6 · 10−4 and
min_val_loss = 0.48 for SP and ζ = 512, k = 0.1 and min_val_loss = 0.47 for µP. Hence, SP has a better
best performing network in terms of the training loss in comparison to µP, but a worse one in terms of the
validation loss.
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Figure 2: MLP on California Housing

4.2 VGG11 on CIFAR-10

The results for the VGG11 architecture on CIFAR-10 are shown in Figure 3.
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As in Figure 2, the training loss curves are quite noisy. Unlike Figure 2, here the noise levels of validation
and training loss curves are similar.

Under SP, the best learning rate multiplier k with respect to the training loss shifts around half an order
of magnitude to the left as the width increases. On the other hand, it stays roughly constant under µP.
For SP, wider networks consistently outperform narrower ones in terms of training loss only for k ≤ 10−4.
Meanwhile, for µP this trend is observed for every k. As for the validation loss curves, they are very similar
to the ones for the training loss.

Comparing best performing networks with respect to the training loss, we see that the optimal network for
SP has ζ = 128, k = 6 · 10−5 and min_training_loss = 2.61 · 10−5, while µP has ζ = 64, k = 3 · 10−3

and min_training_loss = 1.27 · 10−4. Hence, it is actually not the widest network that performs the best
for µP. With respect to the validation loss, the best performing network has ζ = 128, k = 6 · 10−1 and
min_val_loss = 0.74 for SP and ζ = 128, k = 10−3 and min_val_loss = 0.76 for µP. In summary, the best
performing SP networks outperform the best performing µP networks, in terms of both the training loss and
the validation loss.
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Figure 3: VGG11 on CIFAR-10

4.3 ViT on CIFAR-10

The results for the ViT architecture on CIFAR-10 are shown in Figure 4.

The error bars are much tighter than in Figure 2 and Figure 3, both for the training and for the validation
loss curves.

Under SP, we see that the best learning rate multiplier k with respect to the training loss shifts around two
orders of magnitude to the left as the width increases. On the other hand, it stays almost constant under
µP.
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For SP, for some k, we can see wider networks outperforming narrower ones in terms of training loss. However,
this can only be observed for a small range of learning rates close to the smallest we tried, and the difference
is slight. Meanwhile, for µP the loss is roughly monotonically decreasing for a larger range of k, centered on
the (approximately width-independent) optimum.

Comparing best performing networks with respect to the training loss, the best SP network was the second
widest, with ζ = 64, k = 3 · 10−5 and min_training_loss = 5.62 · 10−3, while for µP it was obtained for
the third widest, with ζ = 32, k = 3 · 10−3 and min_training_loss = 0.01. Hence, though the µP networks
exhibit better stability than the SP networks in terms of best learning rate, as well as higher monotonicity
of the train loss relative to width, the best SP network in fact outperforms the best µP in terms of training
loss by half an order of magnitude.

The shape of the validation loss curves is qualitatively similar to the training loss curves, with the notable
exception of the validation loss curve of the widest µP network. The pronounced spike is reminiscent of
double descent, though we have not investigated this further.

Furthermore, for both SP and µP wider networks perform worse in terms of validation loss. With respect
to the validation loss, the best performing SP network had ζ = 4, k = 10−4 and min_val_loss = 1.07, and
the best performing µP network had ζ = 4, k = 3 · 10−3 and min_val_loss = 1.09. Hence, also in terms of
validation loss, the best SP network outperforms the best µP network, though the difference is small.

Another interesting observation is that some SP networks diverged during training. Specifically, one network
diverged for ζ = 32, two networks diverged for ζ = 64 and five networks diverged for ζ = 128. By contrast, no
µP networks diverged. The pattern suggests that SP networks become increasingly unstable as we increase
the width, while µP networks are more stable, consistently with the theory behind µP. Eight networks is a
tiny number compared to the 1280 total networks we trained, so this could go unnoticed had the scale of
our experiments been smaller. However, this could prove crucial for the training of extremely big networks
(e.g. LLMs).
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Figure 4: ViT on CIFAR-10
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4.4 Transformer on Tiny Shakespeare

The results for the transformer on the Tiny Shakespeare dataset are shown in Figure 5.

The training curves are very similar to those reported for a transformer language model in Yang et al. (2021,
Figure 1). Moreover, we notice that the training and validation curves have significantly more noise for SP.

Under SP, we see that the best learning rate multiplier k with respect to the training loss shifts around two
orders of magnitude to the left as the width increases. On the other hand, it stays almost constant under µP.
Furthermore, like in Figure 2, under µP the curves are flatter, meaning that the networks are less sensitive
to the value of k. For a small range of k wider SP networks outperform narrower ones in terms of training
loss, while for µP this behavior is much more consistent, for almost every k.

Quantitatively, the best network for SP was obtained for ζ = 32, k = 3 ·10−4 with min_training_loss = 0.17,
while for µP it was obtained for ζ = 32, k = 6 · 10−3 with min_training_loss = 0.18. Hence, in terms of
training loss, the best SP network somewhat outperformed the best µP network.

The validation loss curves are qualitatively similar to their training loss counterparts. For SP, the best
network in terms of validation loss was obtained for ζ = 16, 10−4 with min_val_loss = 4.57, while for µP it
was obtained for ζ = 32, k = 6 · 10−3 with min_val_loss = 4.72. Hence, also in terms of validation loss, the
best SP network outperformed the best µP network.
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Figure 5: Transformer on Tiny Shakespeare

5 Conclusion

This paper is a head-to-head comparison between SP and µP. We independently reproduced the empirical
claims of Yang & Hu (2020) and Yang et al. (2021), while at the same time significantly increasing the scale
of the experiments. We confirm that µP indeed has a number of benefits over SP, even though one might
not observe all of them in every setup. In general, µP stabilizes the optimal learning rate as a function
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Table 2: Summary of our results
Architecture Parametrization min_train_loss min_val_loss Networks diverged

MLP SP 6.52 · 10−2 0.48 0
µP 6.78 · 10−2 0.47 0

VGG SP 2.61 · 10−5 0.74 0
µP 1.27 · 10−4 0.76 0

ViT SP 5.62 · 10−3 1.07 8
µP 0.01 1.09 0

Transformer SP 0.17 4.57 74
µP 0.18 4.72 0

of width and makes wider networks outperform narrow ones. Furthermore, it alleviates divergence issues.
However, in terms of both train and validation error, the best µP network is quite often worse than the best
SP network.

Our results do confirm that transferring hyperparameters from a narrow network to a wider ones works
under µP, but not under SP. In practice, for SP, it is more common to optimize hyperparameters by training
the same sized network for only a few iterations while varying the hyperparameters. It would be interesting
to compare that protocol to µTransfer for the same compute budget.

Since µP is theoretically well-founded and empirically has a consistent stabilizing effect, it merits further
investigation. In particular, future research should investigate under what circumstances µP is better than
SP in terms of absolute performance, and whether µP can be made to consistently outperform SP.
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