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Abstract—Visual object tracking is a fundamental and chal-
lenging task in many high-level vision and robotics applications.
It is typically formulated by estimating the target appearance
model between consecutive frames. Discriminative correlation fil-
ters (DCFs) and their variants have achieved promising speed
and accuracy for visual tracking in many challenging scenarios.
However, because of the unwanted boundary effects and lack of
geometric constraints, these methods suffer from performance
degradation. In the current work, we propose hierarchical spa-
tiotemporal graph-regularized correlation filters for robust object
tracking. The target sample is decomposed into a large number of
deep channels, which are then used to construct a spatial graph
such that each graph node corresponds to a particular target
location across all channels. Such a graph effectively captures
the spatial structure of the target object. In order to capture the
temporal structure of the target object, the information in the
deep channels obtained from a temporal window is compressed
using the principal component analysis, and then, a temporal
graph is constructed such that each graph node corresponds
to a particular target location in the temporal dimension. Both
spatial and temporal graphs span different subspaces such that
the target and the background become linearly separable. The
learned correlation filter is constrained to act as an eigenvector
of the Laplacian of these spatiotemporal graphs. We propose a
novel objective function that incorporates these spatiotemporal
constraints into the DCFs framework. We solve the objective
function using alternating direction methods of multipliers such
that each subproblem has a closed-form solution. We evaluate
our proposed algorithm on six challenging benchmark datasets
and compare it with 33 existing state-of-the art trackers. Our
results demonstrate an excellent performance of the proposed
algorithm compared to the existing trackers.

Index Terms—Discriminative correlation filters (DCFs), graph
regularization, visual object tracking (VOT).
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I. INTRODUCTION

V ISUAL object tracking (VOT) is one of the most funda-
mental tasks in vision and robotics having a wide range

of applications across several domains, such as surveillance
and security, autonomous driving, abnormality detection, med-
ical imaging, and augmented reality [17], [19], [28]–[31], [33],
[36], [70]. The major challenges encountered by VOT include
significant scale and illumination variations, severe occlusion
and background clutter, blurring because of fast motion, and
deformation of the nonrigid targets [75]. To handle these chal-
lenges, numerous research directions have been investigated
in recent years [10], [14], [24], [25], [34], [44], [57], [69],
[74] and several review studies have also been presented [17],
[32], [37], [38], [70]. Moreover, many challenging datasets
have been proposed to facilitate evaluation and comparison
of VOT methods [41], [42], [52], [60], [75], [76]. Despite a
lot of research focus, VOT in challenging environments is
still an open problem, which needs to be further investi-
gated [17], [60].

Among the most popular tracking approaches,
Discriminative Correlation Filters (DCFs) have attained
significant attention because of their impressive performance
in terms of speed and accuracy [17], [70]. In most of the DCF
methods, an online correlation filter is trained from the region
of interest in the current frame, which is then employed to
track the target object in the subsequent frames by estimating
the maximum response [3], [17]. Henriques et al. proposed
kernelized correlation filter (KCF) which approximated a
dense sampling scheme using a circulant matrix in which
each row contains a circular shifted base sample [24]. The
regression model was estimated in the Fourier domain with
only a base sample; therefore, it achieved significant compu-
tational performance in both training and testing stages. Their
method exploited a single channel kernel and enabled efficient
learning and target detection between consecutive frames
with fast Fourier transform (FFT). Galoogahi et al. [18]
introduced multiple channels into the DCFs framework for
more accurate VOT. However, the periodic assumption of the
target training samples in these methods produces unwanted
boundary effects leading to inaccurate image representation
resulting in degraded VOT performance [10].

Several extensions of DCFs have been proposed to address
the unwanted boundary effects problem [10], [39], [44], [59].
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For example, Daneljan et al. [10] proposed a spatially regu-
larized DCFs tracker to investigate this problem by proposing
to learn filters from training examples with a large spa-
tial support. Although VOT performance improved in many
tracking scenarios, their method suffered from the computa-
tional complexity of the optimization function. Li et al. [44]
addressed this lack by incorporating spatiotemporal regular-
ization in the DCF objective function and solved the regres-
sion model using alternating direction methods of multipliers
(ADMM). Galoogahi et al. [40] proposed a correlation fil-
ter to restrain the boundary effects and also proposed a
background-aware correlation filter, which increases negative
examples by sampling background patches around the tar-
get [39]. Muller et al. [59] proposed the context-aware DCFs
method, which learns the filter by considering the contex-
tual patches surrounding the target object, and achieves a
good tradeoff between computational complexity and accu-
racy. Although, these approaches have reduced the boundary
effects and produced encouraging results on many large-scale
VOT datasets [42], most of these methods only focus on spa-
tial dependency in every frame and update the correlation
filter with a steady learning rate. Moreover, the constraints
employed in these approaches are usually fixed for the target
object and do not change during the tracking process; there-
fore, these approaches cannot fully exploit the diverse temporal
appearance variations. Dai et al. [7] proposed adaptive spa-
tially regularized correlation filters (ASRCF) to simultaneously
optimize the filter coefficients and the spatial regularization
weights. Huang et al. [27] proposed an aberrance repressed
correlation filter (ARCF) by enforcing a restriction on the rate
of alteration in response maps generated in the tracking phase.
Li et al. [51] proposed an online and adaptive method to learn
the spatiotemporal regularization term. The differences among
recent DCFs-based VOT methods handling boundary effects
are summarized in Table I in the supplementary material.

Inspired by the success of deep CNNs on a wide vari-
ety of visual-recognition tasks [64], several studies have also
been proposed to incorporate deep features into the DCFs
framework [11], [44], [57], [73]. For instance, Ma et al. [57]
achieved improved accuracy by employing hierarchical CNN
features with the DCFs. The DCFs are learned over the fine-,
middle-, and coarse-level deep features to capture both spatial
and semantic information. While inferring the target location,
their method employed a coarse-to-fine search strategy on
a multilevel response map. It has been observed that deep
features-based DCF methods have outperformed the hand-
crafted features-based DCF methods on publicly available
VOT datasets [17], [42]. Although feature-level fusion meth-
ods [10], [44], [57], [62] have been widely used to boost
the VOT performance, the initial weights of coarse-level fea-
tures are usually high resulting dominant role of semantic
features, which may be justified because of more effective-
ness of coarse-level information compared to fine level [57].
However, in these approaches, a transient drift may get ampli-
fied by the inadequate online update process. Therefore, the
feature-level fusion approaches may fail to fully explore the
true relationship of multilevel features [17], [70]. Also, relying
on spatial feature fusion strategy limits the model diversity;

Fig. 1. Many existing tracking methods, including SRDCF [10], HCF [57],
STRCF [44], UDT [72], and TADT [48], are not able to effectively handle
VOT in the presence of challenging scenarios. For example, Bird1 sequence
suffers from motion blur, Motorbike and Ironman from illumination variations,
Girl2 from scale variation (SV) and out-of-plane rotation (OPR), Skating2
from fast motion (FM) and OPR, and Biker from low resolution (LR) and
OPR. These sequences are selected from the OTB100 dataset [75]. In contrast
to the compared methods, the proposed hierarchical spatiotemporal graph reg-
ularized DCFs (HSG-DCF) with scale estimation (HSG-DCF-SE) using HOG
features algorithm has better handled these challenges.

therefore, target appearance variations may not be appropri-
ately handled in challenging tracking scenarios. Fig. 1 depicts
instances of these limitations for the HCF method [57].

Manifold learning methods have also been employed
to estimate the geometric and topological properties of
the target object [20]. The spatial constraints preserve
local structures while spatiotemporal constraints preserve
global geometric structures embedded in high-dimensional
spaces [35], [79], [85]. The spatial and temporal target struc-
tures may be considered as points on high-dimensional mani-
folds. It has been assumed that if two data samples are close
in the intrinsic manifold of the data distribution, then the rep-
resentations of these two points in a new space are also close
to each other [22], which has often been achieved by using
graph-based regularizations [1], [79]. This notion has also been
employed for VOT in [26] and [53]. Inspired by these find-
ings, we also propose graph-based regularization to improve
the VOT performance by preserving local as well as global
data structures embedded in high-dimensional manifolds.

In the current work, we address the aforementioned chal-
lenges by proposing the HSG-DCF tracker. In the proposed
algorithm, a target object is represented using hierarchical deep
features, and at each level of the hierarchy, a DCF is trained
by jointly minimizing the sum of least squares loss with struc-
tural constraints enforced by spatial and temporal graphs. The
spatial graph encodes local appearance variations of the target
in the current frame while the temporal graph encodes global
appearance variations over a temporal window. For this pur-
pose, we propose the spatial graph to be constructed using
deep features across different spatial components of the target
object to capture target spatial structure such that the neigh-
borhood connections are preserved, thus resulting in a more
discriminative model. In order to capture temporal appearance
variations of the target, we propose a temporal graph to be con-
structed using compressed information capturing variations of
different target appearances in a temporal window. The tempo-
ral constraint preserves the relationship between global target
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Fig. 2. Correlation filter response of the existing tracking methods, including
HCF [57], CACF-MOSSE [59], SRDCF [10], STRCF [44], BACF [39], and
the proposed HSG-DCF-SE on frame no. 117, Ironman sequence (Fig. 1).
The correlation filter responses of compared methods show multiple peaks
and lack of localization resulting in degraded VOT performance. Compared
to these methods, the response map of the proposed HSG-DCF algorithm has
a single peak with better localization resulting in improved VOT performance.

appearance at different time instances, which further enhances
the tracking ability of the target object.

The resulting DCF is constrained to be aware of both the
spatial and temporal target structure by enforcing it to be the
eigenvectors of the spatiotemporal Laplacian matrices com-
puted from both spatial and temporal graphs. Indeed, the
eigenvectors of the Laplacian matrices contain the structure
captured by the corresponding graphs. Therefore, enforcing
a DCF to be the eigenvectors of these matrices ensures that
the DCF will capture the target structure. As an example,
the eigenvector corresponding to the minimum nonzero eigen-
value, also known as the Fiedler vector, defines two partitions
of the graph based on the signs of its coefficients [58]. By
incorporating these spectral clustering-based constraints into
the DCF framework, the correlation filters are enabled to be
aware of the target structure both in the spatial and the tem-
poral domain. By encoding the target spatial and temporal
structure, our tracker is able to better discriminate the target
object from distractors as well as the background and thus,
improving the tracking performance. We solve the proposed
objective function using the ADMM method [4], because of
its computational efficiency.

To explicitly handle SVs of the target object, we employ the
simple strategy based on HOG features to estimate the target
scale. The maximum filter response is estimated across a scale
range, which is then implicitly refined by using three deep fea-
ture levels in the detection step. The use of HOG features has
ensured low-computational complexity of the scale estimation
(SE) step. The proposed algorithm with the SE step is referred
as HSG-DCF-SE.

Despite the DCFs-based tracking being explored in numer-
ous dimensions, the structure of the target object has not
been fully exploited to obtain structure-aware correlation fil-
ters. More specifically, we propose DCFs that are consistent
with the spatial and temporal structure of the target object. We
define the target structure by capturing the relationship among
different hierarchical features of the target both in spatial and

temporal domains. The structural correlation filters proposed
by Liu et al. [54] are the closet work to ours. In their approach,
they considered dividing a target object into a set of patches
and estimated a different DCF for each patch [54]. In contrast,
we propose to capture the similarity of different target com-
ponents by using two graphs. To the best of our knowledge,
graph-based structure-aware DCFs have not been proposed
before us.

The proposed HSG-DCF-SE algorithm is able to robustly
track target in the presence of many challenging scenarios. For
example, if the target appearance changes rapidly, it is difficult
to handle using existing trackers (Bird1, Ironman, and Biker
sequences in Fig. 1). A comparison of the DCF visualization
is shown in Fig. 2 for the sequence Ironman selected from the
OTB100 dataset [75]. Most of the response maps have a low
signal-to-noise ratio where the signal is the maximum peak
and the noise is the second highest peak. For the proposed
algorithm, the signal-to-noise ratio is significantly higher than
the compared methods. Also, the shape of the response map
suggests a quick convergence to the optimal value, better local-
ization, and less chances of the algorithm to be stuck in local
maxima. The experimental evaluations on seven benchmark
tracking datasets demonstrate an excellent performance of the
proposed algorithm compared to the 33 existing state-of-the-
art trackers. The main contributions of the current work are as
follows.

1) We enable DCFs to capture the spatial target structure
by integrating graph-based regularization into the DCFs
framework.

2) We extend our algorithm to make the DCFs tempo-
ral target structure aware by extending the structural
constraint in the temporal dimension. For this purpose,
we compress the deep features in the temporal window
using principal component analysis (PCA) and construct
a graph capturing different temporal variations across
target components. To the best of our knowledge, such
graph-based spatiotemporal constraints have not been
investigated before in the DCFs framework for VOT.

3) We propose a novel objective function that encodes
spatiotemporal structural constraints into a DCFs
optimization model. We jointly optimize the DCFs con-
straints and structural regularization using the ADMM
method in a computationally efficient manner.

4) We performed extensive evaluations using seven publicly
available tracking benchmark datasets, and we compared
our algorithm with 33 existing state-of-the-art methods,
and provide rigorous analysis of the results.

The remainder of this article is organized as follows. In
Section II, we review related work. In Section III, we describe
the HSG-DCF-SE algorithm in detail. The experimental results
are presented in Section IV. Finally, the conclusion is drawn
in Section V.

II. RELATED WORK

Over the past decade, VOT has remained an active research
area, and numerous methods have been proposed [17], [23],
[46], [47], [53]. The main focus of the current work is to

Authorized licensed use limited to: Khalifa University. Downloaded on October 20,2022 at 08:05:59 UTC from IEEE Xplore.  Restrictions apply. 



12262 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022

improve the VOT performance using the DCF framework;
therefore, in this section, we mainly discuss the DCF-based
methods. Interested readers may explore more details about the
other tracking methods in recent studies [70]. We broadly cat-
egorize the DCFs-based VOT methods into classical DCFs [3],
[24], [25], deep features-based DCFs [8], [12], [57], [62], and
structural regularized DCFs [6], [10], [44], [54], [59].

Classical DCFs Methods: The classical DCF methods have
been widely employed for VOT because of low computa-
tional cost and good performance. Bolme et al. [3] proposed
MOSSE filters by minimizing the error between the actual
and the desired correlation output on a set of gray-scale
patches. By using circular correlation, the resulting filter
was efficiently computed using FFTs and pointwise oper-
ations. Henriques et al. [24] extended the MOSSE filters
and proposed the KCF method using HOG descriptors, and
Zhang et al. [80] further improved the KCF for VOT. These
tracking methods were limited to determine the target loca-
tion, and observed degraded performance in the presence
of SVs and target rotation. Therefore, lot of efforts have
been put to address these issues using multidimensional fea-
tures [13], context learning [82], scale estimation [9], and
efficient filter mining [8]. Rout et al. [63] trained differ-
ent orientation-specific filters using rotated target patches to
address the orientation variations. Li and Zhu [49] proposed
a scale adaptive feature fusion scheme to handle the fixed
size template problem. Danelljan et al. [13] developed adap-
tive multiscale correlation filters using color attributes by
mapping multichannel features into a Gaussian kernel space.
Zhang et al. [82] modeled SVs using consecutive correlation
responses by incorporating context information into a DCF
framework. Zhu et al. [86] proposed a collaborative DCF
method that combines multiscale KCF to handle SV using
an online filter.

Most of these trackers aim an adaptive model and do not uti-
lize long-term target appearance variations. As a result, these
models are prone to target drift in the presence of occlu-
sion and target disappearance. Moreover, these approaches
are also unable to recover from tracking failures [70]. To
address these limitations, Hong et al. [25] proposed a biology-
inspired approach employing a set of cooperating long-term
and short-term trackers. Ma et al. [56] also proposed a
long-term tracker using an online random fern classifier to
address these problems. Moreover, hierarchical spatiotemporal
context-aware DCFs are also proposed for efficient VOT [74].

Deep Features-Based DCFs Methods: Many researchers
have used deep feature representations for improving the VOT
performance due to their robustness against photometric and
geometric variations [8], [12], [57], [62]. For instance, DCF
trackers show state-of-the-art performance when deep convolu-
tion features are used [12]. Mostly, pretrained deep networks
are employed to obtain deep features of the target and the
search space, and they are also used to develop scale-invariant
VOT methods. Danelljan et al. [11] extended the spatially reg-
ularized correlation filter to use deep convolution features.
They also proposed continuous convolution filters for track-
ing with multiscale deep features to account for appearance
variation [12]. Ma et al. [57] estimated the position of the

target by fusing the response maps obtained from the deep
convolution features of various resolutions in a coarse-to-fine
scheme. Qi et al. [62] tracked the target by employing an
adaptive hedge method on the response maps obtained from
deep features. Liu et al. [44] also incorporated deep features
in the spatiotemporal DCFs. However, even though each cor-
relation filter works fast, deep features have large dimensions
to be handled in real time. Furthermore, to recognize scale
changes of the target, correlation filter-based methods need
to train scalewise filters or apply the same filter repeatedly,
leading, thus, to a significant increase of the computational
complexity. Valmadre et al. [68] have obtained computational
efficiency by using end-to-end lightweight architectures. They
proposed to implement DCF as a differentiable layer in a deep
neural network enabling deep features tightly coupled with
correlation filters.

Structural Regularized DCFs Methods: The circular corre-
lation employed by classical DCF assumes the periodic target
appearance model in both training and detection stages. This
assumption results in unwanted boundary effects, which leads
to an inaccurate target description that degrades the VOT
performance [10], [70]. To address this problem, Liu et al. [54]
proposed the part-based tracking method, which is robust
against partial occlusion (POC) and better preserves the target
structure. Li et al. [50] presented a method based on tar-
get patch reliability of being tracked and exploited the patch
trajectories for VOT. Danelljan et al. [10] proposed spatial
regularization in the DCF framework to penalize the filter
coefficients in the background regions. Choi et al. [6] exploited
spatial attention to weight the filter coefficients to handle
undesired boundary effects. Han et al. [21] proposed a target
state-aware correlation filter for improved VOT performance.
The context-aware and temporal regularized DCFs are also
proposed in [44] and [59], and recent improvements can be
explored in [66] and [77].

These approaches have achieved encouraging VOT
performance by enforcing either spatial or temporal structural
constraints; however, these constraints result in a computa-
tional burden on the optimization models. Wang et al. [74]
attempted to obtain real-time performance by exploiting spa-
tiotemporal constraints; however, the performance is degraded
in complex scenes due to the weak target features repre-
sentation. In contrast to the aforementioned DCF methods,
we propose the spatiotemporal structural regularized DCFs
algorithm by incorporating graph-based constraints into the
DCFs objective function. Our proposed algorithm is different
from the previous methods [7], [27], [51], [66], [74], [77]
because we consider the similarity relationship among the
deep features extracted from different target components both
in the spatial and temporal domain as shown in Table I in the
supplementary material.

III. PROPOSED METHODOLOGY

The block diagram and notations of the proposed HSG-
DCF algorithm are shown in Fig. 3 and Table I. Our proposed
algorithm consists of three main steps: 1) deep features extrac-
tion; 2) the construction of spatiotemporal graphs; and 3) DCF
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Fig. 3. Block diagram of the proposed HSG-DCF tracking algorithm. Steps (a) and (b) show the template image and cropped target patch, steps (c) and
(d) show the corresponding temporal tracking window of q previous tracking observations with target patches, step (e) shows the circulant shifts of the target
patch in (b), steps (f) and (g) show the deep features extraction and their visualizations, and step (h) shows the construction of spatial graphs for each deep
feature hierarchy. The nodes in each spatial graph correspond to target spatial locations. Step (i) shows the construction of temporal graphs for each level of
hierarchy. The nodes in each temporal graph correspond to the target spatiotemporal locations. Step (j) shows the proposed objective function where spatial
and temporal graph-based regularizations are encoded. Steps (k)–(n) in pink color show the target detection on the test image, where step (k) shows a search
image, step (l) is the computation of three filter response maps using convolution operator ∗, step (m) is the selection of maximum response map, and step
(n) is the tracking output.

TABLE I
DESCRIPTION OF IMPORTANT SYMBOLS USED IN HSG-DCF

objective function minimization. In the following sections, we
explain each step of the proposed algorithm in detail.

A. Deep Features Extraction

Given the target object location in the first frame, we crop
the region of interest A ∈ R

m×n, where m and n denote the
height and width of the target object. Similar to Ma et al. [57],
using VGG-19 as features extractor [65], we extract deep
features from the last three layers, including: 1) conv3-4;
2) conv4-4; and 3) conv5-5 for the target object. We create
our feature matrices Xl ∈ R

p×d, where p = m × n and d is
the number of channels in the lth layer of the VGG-19. In

VOT, the target object may suffer from large appearance vari-
ations; therefore, the features using the output of conv5-4 are
able to discriminate the target even when it undergoes severe
background changes while the features using the output of
conv4-4 and conv3-4 encoding more spatial details are useful
to localize the target.

B. Proposed HSG-DCF Model

The DCFs learn discriminative patterns of the target object
and estimate its position in the subsequent frames by search-
ing maximum correlation response. DCFs allow for dense
sampling around the target at a very low computational cost,
which is achieved by using all possible translations of the tar-
get within a search window as circulant shifts to form a data
matrix X0 ∈ R

p×p×d, where p is the size of the target patch.
The circulant structure of this matrix facilitates a very effi-
cient solution to the ridge regression problem in the Fourier
domain [24]. The multichannel correlation filter for a particular
layer can then be formulated as follows [18]:

arg min
w

∥
∥
∥
∥
∥

d
∑

i=1

X0iwi − y

∥
∥
∥
∥
∥

2

+ λ1

d
∑

i=1

‖wi‖2 (1)

where wi ∈ R
p is the correlation filter for the ith channel, X0i

contains all circulant shifts of the ith channel of the feature
map, y ∈ R

p is the vectorized Gaussian response, and λ1 is
the regularization parameter.

The DCFs formulation given by (1) observes undesirable
boundary effects because of the periodic assumption of the tar-
get patch [10]. In addition, the minimization of the objective
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function given by (1) has been considered as the minimization
of p×d independent problems where each problem only min-
imizes a particular correlation filter coefficient [44]. However,
different filter coefficients are not independent of each other
because each correlation filter encodes a particular target struc-
ture. Therefore, one may preserve the relationships among
different filter coefficients by enforcing intrinsic constraints
based on the target object structure. The target structure can be
preserved in the spatial domain considering spatial appearance
variations as well as in the temporal domain by considering
the temporal appearance variations of the target. Therefore,
we propose to incorporate new constraints to enforce the spa-
tiotemporal structure of the target within the DCFs framework
to improve the VOT performance by alleviating the undesir-
able boundary effects. Our proposed objective function is then
formulated as follows:

arg min
w

1

2

∥
∥
∥
∥
∥

d
∑

i=1

X0iwi − y

∥
∥
∥
∥
∥

2

+ λ1

2

d
∑

i=1

‖Bswi‖2

+ λ2

2

d
∑

i=1

‖Btwi‖2 (2)

where Bs encodes the spatial target structure and Bt encodes
the temporal target appearance variations. λ1 and λ2 assign
relative importance to the different terms in the regression
model. Both matrices Bs and Bt are estimated from spatial
and temporal graphs, and are further explained in the following
sections.

C. Hierarchical Spatial Appearance Regularization

The hierarchical deep features are computed from a deep
neural network and for each level of the hierarchy, a different
spatial graph Gl

s is computed capturing the target appearance
variations at that level.

Let Gl
s = (Vl

s, Al
s) be an undirected weighted spatial graph

at lth layer of the hierarchy, where Vl
s and Al

s contain the ver-
tices and the edge weighted adjacency matrix of the graph.
Each vertex Vl

s(i) ∈ R
d contains feature values across d chan-

nels corresponding to the ith target location and represented
as a column vector in features matrix Xl.

The motivation of the spatial appearance constraint comes
from the observation that DCF preserves the target structure
on the Riemann manifold [79]. That is, if two vertices Vl

s(i)
and Vl

s(j) are close on the data manifold, then their corre-
sponding coefficients in wi should also be close. Here, we
consider spatial closeness among the feature maps, encoded,
in the graph Gl

s using the h-nearest neighbor strategy [61]. The
first step involves searching for the closest neighbors for all
the columns in the features matrix Xl based on the Euclidean
distance, where each vertex is connected to its h-nearest neigh-
bors, so that if Vl

s(i) and Vl
s(j) are in the h-nearest neighbors

of each other, we set

Al
s(i, j) = exp

⎛

⎝−
∥
∥Vl

s(i) − Vl
s(j)
∥
∥

2
2

2σ 2
s

⎞

⎠ (3)

where σs is a normalizing parameter set as the average distance
among the vertices in Gl

s. If two vertices Vl
s(i) and Vl

s(j) are

connected, then Al
s(i, j) > 0, otherwise, Al

s(i, j) = 0. Based on
the weighted adjacency matrix Al

s, we compute the normalized
spatial Laplacian matrix Sl of the graph Gl

s by

Sl = I − D
− 1

2
s Al

sD
− 1

2
s (4)

where I is a p×p identity matrix and Ds is a p×p spatial degree
matrix with its ith diagonal element being equal to the sum of
the ith row of Al

s (i.e.,
∑

j Al
s(i, j) ) and all nondiagonal values

are zero. The spatial Laplacian matrix Sl encodes the spatial
structure of the target object. The eigenvectors of Sl act as
cluster indicators in the graph Gl

s. To encode this information
in the correlation filter, we enforce wi to act as the eigenvector
of Sl. To this end, we minimize the generalized eigenvalue
problem w�

i Slwi, which is independently minimized for each
channel

�l
s =

d
∑

i=1

w�
i Slwi. (5)

The normalized Laplacian matrix Sl can be symmetrically
decomposed as

Sl = Y�Y� =
(

�
1
2 Y�)�

�
1
2 Y� = Bl�

s Bl
s (6)

where Y is a p × p orthonormal matrix with each column
being an eigenvector of Sl, and � is a p × p diagonal matrix
with its diagonal element �ii being a singular value of Sl

(sorted as 0 ≤ �ii ≤ · · · �pp). The matrix Bl
s = �(1/2)Y� is

computed using all eigenvectors of Sl. It may be considered as
a combination of scaled basis of the graph-Laplacian matrix
Sl and thus, defining a manifold structure of the target object.
Substituting Sl = Bl�

s Bl
s in (5), we obtain

�l
s =

d
∑

i=1

w�
i Bl�

s Bl
swi =

d
∑

i=1

∥
∥
∥Bl

swi

∥
∥
∥

2
. (7)

The spatial structural constraint above can be interpreted as
enforcing the correlation filter wi in each channel to be orthog-
onal to the eigenvectors of Sl. Assuming that the manifold
spanned by the background patches will be different from
the manifold spanned by the target object, therefore, such
DCFs will be able to better discriminate the target object
from its background, resulting in the improvement of VOT
performance.

D. Hierarchical Temporal Appearance Regularization

The temporal appearance variations of the target object
are often different from the background region and may be
exploited to improve the VOT performance. Therefore, we
propose to incorporate target temporal appearance variations
into our proposed DCFs objective function by using a graph
constructed over a temporal window of q previous tracking
observations. The corresponding deep features are computed
and a features matrix Ml ∈ R

p×d×q is created. The feature
matrix Ml is rearranged as a 2-D matrix Ml ∈ R

p×(dq), where
each column of size dq is a spatiotemporal feature corre-
sponding to a particular target location. In order to reduce
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the computational complexity of the temporal graph con-
struction, we employ PCA to reduce the dimensionality of
spatiotemporal features [66].

Considering the hierarchy of deep features at each level, a
different temporal graph Gl

t is computed capturing the target
temporal appearance variations at that level. Let Gl

t = (Vl
t, Al

t)

be an undirected weighted temporal graph at the lth layer of the
hierarchy. Each vertex Vl

t(i) corresponds to a spatiotemporal
feature contained as a column vector in the feature matrix Ml.

Similar to the spatial graph, we compute Euclidean distances
among the columns of Ml and consider k-nearest neighbors for
the construction of temporal graph. Based on the estimated
temporal adjacency matrix Al

t [similar to (3)], we compute
the normalized temporal Laplacian matrix Tl of the graph Gl

t

as Tl = I − D
− 1

2
t Al

tD
− 1

2
t , where Dt is a p × p temporal degree

matrix. Since the temporal Laplacian matrix Tl encodes the
temporal structure of the target object, its eigenvectors encode
the structure of the target object based on temporal appearance
variations. The temporal Laplacian matrix can also be decom-
posed using SVD as Tl = Y�Y� = (�(1/2)Y�)��

1
2 Y� =

Bl�
t Bl

t. Similar to spatial structural constraints, the temporal
appearance constraint is then given as follows:

�l
t =

d
∑

i=1

w�
i Bl�

t Bl
twi =

d
∑

i=1

∥
∥
∥Bl

twi

∥
∥
∥

2
(8)

where Bl
t is a basis of the temporal manifold containing the

target object variations. The temporal appearance constraints
enforce the correlation filter to be orthogonal to the manifold
basis. Thus, discriminating the target temporal variations from
the background temporal variations.

E. Objective Function Minimization

We optimize the HSG-DCF model (2) using the ADMM
method by solving one variable and fixing others [4]. We first
introduce two auxiliary variables as a spatial filter gs = w and
a temporal filter gt = w to make the objective function separa-
ble. The constrained optimization problem is then formulated
as follows:

arg min
w

∥
∥
∥
∥
∥

d
∑

i=1

X0iwi − y

∥
∥
∥
∥
∥

2

+ λ1

2

d
∑

i=1

∥
∥Bsgs

i

∥
∥2

+ λ2

2

d
∑

i=1

∥
∥Btgt

i

∥
∥

2
. (9)

The Lagrangian form of model (9) is then formulated as
follows:

L(w, gs, s, gt, r
) = 1

2

∥
∥
∥
∥
∥

d
∑

i=1

X0iwi − y

∥
∥
∥
∥
∥

2

+ λ1

2

d
∑

i=1

∥
∥Bsgs

i

∥
∥

2

+ λ2

2

d
∑

i=1

∥
∥Btgt

i

∥
∥2 +

d
∑

i=1

(

wi − gs
i

)�si

+ γ

2

d
∑

i=1

∥
∥wi − gs

i

∥
∥

2

+
d
∑

i=1

(

wi − gt
i

)�ri + γ

2

d
∑

i=1

∥
∥wi − gt

i

∥
∥

2

(10)

where s and r are the Lagrangian multipliers and γ is a
penalty factor. Putting h = (1/γ )s and m = (1/γ )r, the above
equation can be written as

L(w, gs, s, gt, r
) = 1

2

∥
∥
∥
∥
∥

d
∑

i=1

X0iwi − y

∥
∥
∥
∥
∥

2

+ λ1

2

d
∑

i=1

∥
∥Bsgs

i

∥
∥2

+ λ2

2

d
∑

i=1

∥
∥Btgt

i

∥
∥

2 + γ

2

d
∑

i=1

∥
∥wi − gs

i + hi
∥
∥

2

+ γ

2

d
∑

i=1

∥
∥wi − gt

i + mi
∥
∥2

. (11)

Then, each subproblem w, gs, gt, m, and h can be solved
efficiently using ADMM.

Solving Subproblem w: By fixing other variables in (11)
excluding w, the subproblem w(k+1) at the (k + 1)th iteration
can be written as

w(k+1) = arg min
w

1

2

∥
∥
∥
∥
∥

d
∑

i=1

X0iwi − y

∥
∥
∥
∥
∥

2

+ γ

2

d
∑

i=1

∥
∥wi − gs

i + hi
∥
∥2

+ γ

2

d
∑

i=1

∥
∥wi − gt

i + mi
∥
∥

2
. (12)

Using Parseval’s theorem, the above equation can be rewritten
in the Fourier domain as

argmin
ŵ

1

2

∥
∥
∥
∥
∥

d
∑

i=1

x̂i � ŵi − ŷ

∥
∥
∥
∥
∥

2

+ γ

2

d
∑

i=1

∥
∥ŵi − ĝs

i + ĥi
∥
∥

2

+ γ

2

d
∑

i=1

∥
∥ŵi − ĝt

i + m̂i
∥
∥

2 (13)

where xi is the ith column vector of deep features matrix
Xl and ŵ denotes the DFT of the filter w. From the above
equation, we can see that the jth element of the label ŷ only
depends on the jth element of the filter ŵ and sample x̂ across
all d channels. Therefore, it can be further decomposed into
p subproblems. Let xj, wj, gsj, gtj, hj, mj ∈ R

d be the vectors
consisting of the jth elements of x, w, gs, gt,h, and m along
all d channels. Each subproblem is given by

min
ŵj

∥
∥
∥̂xj�ŵj − ŷ(j)

∥
∥
∥

2 + γ

∥
∥
∥ŵj − ĝsj + ĥ

j
∥
∥
∥

2

+ γ
∥
∥ŵj − ĝtj + m̂j

∥
∥

2
. (14)

By taking the derivative with respect to ŵj and setting it zero,
we can obtain a closed-form solution

ŵj =
(

x̂ĵxj� + 2γ I
)−1

α

α = x̂ĵy(j) + γ
(

ĝsj − ĥ
j + ĝtj − m̂j

)

. (15)
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Algorithm 1: Pseudocode of HSG-DCF Tracker

Input: Video with region of interest A ∈ R
m×n.

Initialization: Input features matrix Xl ∈ R
p×d, q

tracking temporal window, features matrix
Ml ∈ R

p×d×q, λ1, λ2, γ = 10, γmax = 100, ρ = 1.2,
w0 = 0, r0 = 0, and s0 = 0.

Compute Bs and Bt ∈ R
p×p using Eqs. (3)-(6).

while not converged (k = 0, 1, ..) do
1. Compute wk+1 using (16).
2. Compute gs(k+1) using (18)
3. Compute gt(k+1) using (20).
5. Update h(k+1) using (21).
7. Update m(k+1) using (21).
8. Update γ (k+1) using (21)

end
Output: w, gs, gt

Use w in (22) to get each layer response map.
Find maximum across all maps for target localization.

Since x̂ĵxj� is a rank-1 matrix, (15) can be solved more
efficiently using the Sherman–Morrison formula [44]. We have

ŵj = 1

2γ

(

I − x̂ĵxj�

2γ + x̂j�x̂j

)

α. (16)

Note that (16) only contains the vector multiply-add operation
and, thus, can be computed efficiently. The filter w can then
be obtained by the inverse DFT of ŵ.

Solving Subproblem gs: In (11), fixing other variables
excluding gs, the subproblem gs(k+1) at the (k + 1)th iteration
can be written as

gs(k+1) = argmin
gs

λ1

2

d
∑

i=1

∥
∥Bsgs

i

∥
∥2 + γ

2

d
∑

i=1

∥
∥wi − gs

i + hi
∥
∥2

.

(17)

By taking the derivative and setting it to zero, each element of
gs can be computed independently, and thus, the closed-form
solution of gs can be computed by

gs(k+1) =
(

B̃sB̃
�
s + λ1I

)−1(

γ w̃ + γ h̃
)

(18)

where B̃s represents the dp×dp diagonal matrix concatenated
with d diagonal matrices Diag(Bs). The vectors w̃ and h̃ denote
the concatenated vectors of wi and hi accross d-channels.

Solving Subproblem gt: In (11), fixing other variables
excluding gt, the subproblem gt(k+1) at the (k + 1)th iteration
can be written as

gt(k+1) = argmin
gt

λ2

2

d
∑

i=1

∥
∥Btgt

i

∥
∥2 + γ

2

d
∑

i=1

∥
∥wi − gt

i + mi
∥
∥2

.

(19)

By taking the derivative and setting it zero, each element of
gt can be computed independently, and thus, the closed-form
solution of gt is given by

gt =
(

B̃tB̃
�
t + λ2I

)−1(
γ w̃ + γ m̃

)

(20)

where B̃t represents the dp × dp diagonal matrix concatenated
with d diagonal matrices Diag(Bt).

Similarly, the variables h, m, and γ can be updated
iteratively in (11) as

h(k+1) = w(k+1) − gs(k+1) + h(k)

m(k+1) = w(k+1) − gt(k+1) + m(k)

γ (k+1) = min
(

γ max, ργ k
)

(21)

where ρ is a scalar term. Algorithm 1 summarizes the
optimization procedure.

Scale Estimation: A simple approach to handle SVs is to
train CFs at multiple resolutions and then, maximum response
is used to estimate the best target scale [10], [39]. However, in
contrast to these approaches, we propose a two-step process,
which is more efficient as well as SE is more refined. Our
approach consists of a coarse and a fine search. In the coarse
search, we explicitly search for the target scale by training
five correlation filters at different scales using HOG features.
In this approach, we only estimate a coarse scale of the target
by using the maximum filter response. This strategy is com-
putationally attractive because the HOG features have smaller
computational cost and low dimensionality compared to the
deep features. However, the SE in this step is a coarse scale
that further needs to be refined. In the fine scale search, we
further refine the scale search by computing CFs at three dif-
ferent scales of deep features extracted from three different
VGG-19 layers as discussed above. The best fine scale is esti-
mated by choosing the maximum response across these three
different sets of CFs. The coarse SE may be considered as an
explicit estimation step, while the fine SE is an implicit step
embedded within our proposed algorithm.

Model Update: We train our filters with an online tem-
plate update strategy as employed by other CF-based trackers
such as those proposed in [27] and [39]. The template update
scheme of the model is as follows: x̂f = (1 − η)̂x(f −1) + η̂xf ,
where x̂f and x̂(f −1) are a template model at frame f and (f −1),
respectively, and η is the online learning rate. We observe that
the update scheme makes our model effective for pose and
lighting variations.

Detection Step: Given an image patch in the next frame, the
correlation response at the lth layer Rl is then computed by

Rl = F−1

(
d
∑

i=1

ŵi � x̂i

)

(22)

where x̂i is the complex conjugate of x̂i, which is the Fourier
transform of the input feature representation at the ith channel
at the lth layer, xi. The maximum response is then com-
puted over all the convolutional layers to obtain the resulting
response map [57].

IV. EXPERIMENTAL EVALUATIONS

The performance of the proposed algorithms is evaluated
on seven challenging datasets, including: 1) OTB50 [76];
2) OTB100 [75]; 3) Temple-Colors 128 (TC-128) [52];
4) UAV123 [60]; 5) VOT2017 [41]; 6) VOT2018-LT [42];
and 7) LaSOT dataset [15]. The description of each dataset is
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TABLE II
DETAILS OF THE DATASETS USED IN EXPERIMENTAL EVALUATIONS

presented in Table II. These datasets comprise of the follow-
ing tracking challenges: occlusion (Occ), background clutter
(BC), SV, deformation (DEF), in-plane rotation (IPR), OPR,
out of view (OV), illumination variation (IV), FM, motion blur
(MB), and LR. The UAV123 and LaSOT datasets contain addi-
tional challenges, including the aspect ratio change (ARC), full
occlusion (FOC), POC, similar object (SOB), camera motion
(CM), and viewpoint change (VC).

For the proposed algorithm, two main variants are evaluated,
including: 1) HSG-DCF with deep features and 2) HSG-DCF-
SE using HOG features. The performance of the proposed
trackers HSG-DCF and HSG-DCF-SE is compared with 33
existing state-of-the-art trackers divided into four categories
as follows.

1) DCFs with handcrafted features, including BACF [39],
SRDCF [10], STRCF [44], MEEM [81], MUSTer [25],
DSST [9], LCT [56], STAPLE [2], and MCCT [73].

2) DCFs with deep features, including HCF [57],
HCFT [55], HDT [62], DeepSRDCF [11],
DeepSTRCF [44], CCOT [12], ECO [8], MCPF [84],
PTAV [16], DeepMCCT [73], RPCF [66], ASRCF [7],
and GFS-DCF [77].

3) End-to-end DCFs, including FCNT [71], CFNET [68],
TADT [48], UDT [72], and TRACA [5].

4) Other methods, including DSTN [67], GradNet [45],
SPLT [78], DGL [43], DeepRSLT [34], and
DeepRSST [83].

The VOT performance evaluation is measured using the
precision and success rates (SRs) [75] for OTB50, OTB100,
TC128, UAV123, and LaSOT datasets. The precision rate
(PR) is defined as the percentage of frames with the
Euclidean distance between the predicted and ground-truth
target location less than 20 pixels threshold [75]. The SR
is defined as the percentage of frames with an overlap ratio
[(b1 ∩ b2)/(b1 ∪ b2)] > 0.5 [75], where b1 and b2 are the
predicted and the ground-truth bounding boxes, respectively.
By varying the threshold from 0 to 1, the success plots are
generated and the area under the curve is estimated.

A. Experimental Settings

Our proposed HSG-DCF-SE model (2) requires only two
regularization parameters λ1 and λ2. In our experiments, we
performed sensitivity analysis on the OTB50 dataset to esti-
mate appropriate values of λ1 and λ2 as shown in Fig. 4.
For each parameter, we define a discrete set of values, 
 =
{0.06, 0.09, 0.1, 0.2, 0.3, 0.5, 1, 5}. For a particular value of
λ1, the SR is computed by varying λ2 over this set, and the

Fig. 4. Sensitivity analysis for the selection of λ1 = 0.2 and λ2 = 0.5. Blue
circles denote the best performance by fixing λ1 and λ2.

TABLE III
PERFORMANCE IMPROVEMENT IN STATE-OF-THE-ART TRACKERS USING

OUR PROPOSED TEMPORAL GRAPH-BASED REGULARIZATION ON

OTB-100 AND TC-128 DATASETS. SRDCF-TC STANDS FOR SRDCF
TRACKER WITH TEMPORAL CONSTRAINTS AND SIMILARLY BACF-TC
STANDS FOR BACF TRACKER WITH OUR TEMPORAL CONSTRAINTS.

THE PERFORMANCE IS REPORTED IN TERMS OF AUC

maximum SR is plotted in Fig. 4. For OTB50 sequences, aver-
age SR is computed by taking average over 50 sequences for
each combination of λ1 and λ2. We empirically find that the
parameters, λ1 = 0.2 and λ2 = 0.5, are the best combination,
which are then used in all experiments.

We crop the square region centered at the target, in which
the side length of the region is

√
5mn (m × n represents the

width and the height of the target) and the input features are
weighted by a cosine window to reduce the boundary discon-
tinuities as suggested by SRDCF [10]. For scale estimation,
HOG-based DCF is used as discussed above. We use 4 × 4
cell size for HOG features with 31 dimensions. The number
of scales is set to 5 with a scale step of 1.01 [39]. For the
construction of spatial and temporal graphs, we used h = 15
nearest neighbors. For the Gl

t construction, a temporal win-
dow of size q = 20 previous target objects is used. PCA is
employed to compress the features to 100 dimensions. The
optimization hyperparameters are set as γ = 10, γ max = 100,
and ρ = 1.2, as suggested in [44]. The model learning rate
is set as η = 0.012 [39], [62] and the number of ADMM
iterations k = 3 is used in all our experiments.
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Fig. 5. Visual results of the proposed HSG-DCF-SE tracker and its comparison with current state-of-the-art trackers, including TADT [48], HCF [57],
SRDCF [10], STRCF [44], BACF [39], ECO [8], MUSTer [25], UDT [72], GradNet [45], and DSST [9] on 12 challenging sequences selected from OTB50 [76]
and OTB100 [75] datasets. Frame indexes and sequence names are shown for each sequence. Our proposed HSG-DCF-SE tracker has consistently performed
well against these challenges as compared to the other trackers. (a) Location error threshold (b) Overlap threshol (c) Location error threshold (d) Overlap
threshol

B. Ablation Study

We perform the following ablation studies, including
VOT performance comparison of different components
(Table II in the supplementary material), VOT attributes-
based performance comparison (Table III in the supplementary
material), performance comparison between different feature
configurations (Fig. 1 in the supplementary material), and
performance and speed comparison at varying ADMM iter-
ations (Table IV in the supplementary material). For more
details, see Section II in the supplementary material.

In addition to the ablation study of the proposed algorithm,
we also perform experiments by incorporating the graph-
based temporal regularization on two existing SOTA trackers,
including: 1) SRDCF [10] and 2) BACF [39]. The purpose
of this study is to demonstrate the capability of the tempo-
ral regularization for performance improvement of existing
trackers. Table III shows the performance obtained by SRDCF-
TC and BACF-TC trackers compared to the original versions
on two datasets. On the OTB-100 dataset, SRDCF-TC has
achieved 3.7% improvement while BACF-TC has obtained
2.9% performance gain. On the TC-128 dataset, SRDCF-TC
has obtained 3.3% improvement while BACF-TC has obtained
3.4% performance gain.

C. Qualitative Results

To evaluate the performance of the proposed HSG-DCF-SE
tracker, we present rigorous results on key frames of 12 chal-
lenging sequences selected from the OTB100 dataset (Fig. 5),

and 12 sequences from TC128 and UAV123 datasets [Fig. 2
(supplementary material)]. The bounding boxes of the tracked
objects are overlaid on the input images and the comparisons
are shown with ten existing trackers, including TADT, HCF,
BACF, SRDCF, STRCF, ECO, UDT, MUSTer, GradNet, and
DSST. See Section III in the supplementary material for more
discussion. Overall, HSG-DCF-SE has performed much bet-
ter than the compared trackers in all sequences, which can be
attributed to spatial and temporal graph-based regularizations
in the proposed objective function.

D. Quantitative Evaluations

1) Results on OTB50 Dataset: Fig. 6(a) and (b) shows
the comparative performance in terms of precision and suc-
cess plots of the proposed trackers with other state-of-the-art
trackers on the OTB50 dataset. In terms of precision plot,
HSG-DCF-SE has obtained 94.7% accuracy, which is 1.7%
better than the second best performer ECO ( 93.0% accu-
racy). Most trackers obtaining precision of more than 85.0%
are based on deep features and deep neural networks. In con-
trast to that, HSG-DCF has obtained 92.9% precision, which
is also better than many deep trackers.

In terms of success plot, HSG-DCF-SE obtained 75.3%
accuracy, which is 4.40% better than the second best per-
former ECO (70.9%). It can be observed that most of the
trackers using deep features, including DeepSRDCF, etc.,
have performed better than end-to-end training-based track-
ers, including GradNet and FCNT. This fact justifies the use
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(a) (b) (c) (d)

Fig. 6. Precision and success plots using OPE of the proposed HSG-DCF-SE and HSG-DCF trackers against other state-of-the-art trackers on OTB50 and
OTB100 datasets. The legend of precision plot contains threshold scores at 20 pixels, while the legend of SR contains area-under-the-curve score for each
tracker. The proposed tracker, HSG-DCF-SE, performs better against the state-of-the-art trackers. (a) Location error threshold. (b) Overlap threshold

of deep features in our proposed tracker. The HCFT tracker
with SE has obtained 63.8% SR, which is 11.50% less than
the HSG-DCF-SE tracker. This huge difference highlights the
significance of our proposed spatial and temporal graph-based
constraints for improving the VOT performance.

2) Results on OTB100 Dataset: Fig. 6(c) and (d) shows the
performance comparison of the proposed trackers with cur-
rent state-of-the-art trackers on the OTB100 dataset. In terms
of precision plot [Fig. 6(c)], the HSG-DCF-SE tracker has
obtained 92.5% accuracy, which is better than DeepMCCT,
ECO, and other trackers. Our proposed HSG-DCF tracker has
obtained 88.1% accuracy, which is competitive with many
state-of-the-art trackers. An overview of the performance com-
parison shows that most of the deep features-based trackers
perform better than the end-to-end deep trackers.

In terms of success plot [Fig. 6 (d)], HSG-DCF-SE tracker
has obtained 73.1% accuracy, which is 3.1% better than ECO.
The HSG-DCF tracker has obtained 70.4% accuracy and out-
performed ECO and DeepSTRCF trackers. It shows that in
addition to using deep features and scale estimation, the spa-
tial and temporal graph-based constraints generalize better on
large datasets and show performance boost compared to the
baseline HCFT (59.8%).

3) Attribute-Based Performance Evaluation on the OTB100
Dataset: We also performed the attribute-based performance
evaluation on the OTB100 dataset containing 11 different chal-
lenges, including IV, SV, Occ, DEF, MB, FM, IPR, OPR, OV,
BC, and LR. Table V (supplementary material) shows this
comparison in terms of PR and SR with existing state-of-
the-art trackers. In terms of the PR comparison, the proposed
HSG-DCF-SE tracker achieves the best results under 4 out of
11 attributes while in terms of SR comparison, HSG-DCF-SE
has achieved the best performance under 9 out of 11 attributes.
For more details, see Section IV in the supplementary
material.

4) Results on TC128 Dataset: Table IV shows the
performance comparison of the proposed HSG-DCF-SE
tracker with existing state-of-the-art trackers on the TC128
dataset. In terms of PR, the HSG-DCF-SE tracker has obtained
the best performance of 84.8%, which is 4.8% and 4.9% bet-
ter than the ECO and DeepMCCT trackers. In terms of SR,
the proposed HSG-DCF-SE tracker has obtained best SR of
69.4%, which is 8.9% and 9.3% better than the ECO and

TABLE IV
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART TRACKERS ON

TC-128 DATASET. THE PERFORMANCE IS REPORTED IN TERMS OF PR AT

A THRESHOLD OF 20 PIXELS AND AUC FOR SR

DeepMCCT trackers. The TC128 dataset is more challeng-
ing compared to OTB50 and OTB100 datasets; therefore,
the performance of all compared trackers has reduced. These
results demonstrate the advantages of incorporating spatial
and temporal appearance consistency constraints. The best
performance of the proposed tracker suggests that it can handle
various challenging factors more effectively than the compared
trackers.

5) Results on UAV123 Dataset: Many state-of-the-art
trackers have not evaluated their performance on the UAV123
dataset. We, therefore, compare our performance with only
those ten trackers who reported results on this dataset. Table V
shows the performance comparison in terms of PR and SR of
the proposed HSG-DCF-SE tracker with existing state-of-the-
art trackers, including GCT, SRDCF, STRCF, MEEM, BACF,
MUSTer, DSST, ECO, MCCT, and Staple. In terms of PR,
the HSG-DCF-SE tracker has obtained the best performance
of 83.6% and HSG-DCF has obtained 80.2%. Among the com-
pared trackers, ECO has obtained the best performance of
74.1%, which is 9.5% less than HSG-DCF-SE. In terms of
SR, the HSG-DCF-SE tracker has obtained best performance
of 78.2% and HSG-DCF has obtained 76.1%, which is better
than the ECO (52.5%) tracker.
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TABLE V
PERFORMANCE COMPARISONS WITH EXISTING STATE-OF-THE-ART TRACKERS ON UAV123 DATASET. THE PERFORMANCE IS

REPORTED IN TERMS OF PR AT A THRESHOLD OF 20 PIXELS AND AUC FOR SR

6) Results on VOT2017/VOT2018 Short-Term Datasets: We
have evaluated our proposed tracker HSG-DCF-SE on short-
term challenge of the VOT2018 dataset [42], which are the
same sequences as in the VOT2017 dataset [41]. The 60
sequences contain more deformations and noise compared to
the aforementioned datasets. The main aim is to evaluate track-
ing performance such that if a failure happens that tracker is
reinitialized.

Following the protocols defined in VOT2017/
VOT2018 [42], we used three primary measures, including:
1) expected average overlap (EAO); 2) robustness (R); and
3) accuracy (A), to compare the performance of different
trackers. The EAO estimates the average overlap a tracker is
expected to obtain on a large set of short-length sequences
with the same visual properties as a given dataset. The
robustness measures the number of times a tracker fails (loss
the target) during tracking while accuracy is the average
overlap between the ground truth and estimated bounding
box during the successful tracking periods.

Table VI compares the tracking performance of the proposed
tracker with 12 existing state-of-the-art trackers that partici-
pated in the VOT2017/VOT2018 challenge. In terms of EAO,
both HSG-DCF-SE and GFS-DCF trackers have obtained the
best score of 39.0% while HSG-DCF is the nearest com-
petitor obtaining 37.0%. In terms of accuracy measure, the
HSG-DCF-SE tracker has attained the best accuracy of 57.0%,
which is 6.0% better than the second best performing tracker
GFS-DCF (51.0%). In terms of robustness, GFS-DCF and
DeepSTRCF trackers have obtained better performance of
14.0% and 21.0% while our proposed HSG-DCF-SE tracker
remained the third best tracker in terms of robustness. It is
because the proposed tracker does not have the redetection
strategy, which would have increased all measures, especially
the robustness score.

7) Results on VOT2018-LT Dataset: The VOT2018-LT
dataset is used to evaluate the long-term performance of
different trackers [42]. We evaluate the performance of the
trackers using precision (Pr), recall (Re), and F-score as
defined in the VOT2018-LT evaluation protocol [42] and
shown in Table VII. In the VOT2018-LT dataset, the high-
est F-score achieved by a particular tracker is used to rank
different trackers; therefore, in Table VII, the highest F-score
and the corresponding precision and recall values are shown.
It can be noticed that our proposed HSG-DCF-SE tracker has
achieved the best F-score of 69.0%. Besides the proposed
tracker, TADT, UDT, and CCOT trackers have also achieved
comparative performance of 68.0%, 68.0%, and 62.0%,
respectively.

8) Results on LaSOT Dataset: The LaSOT dataset is com-
paratively a large-scale dataset consisting of 1400 sequences.
We evaluate our trackers on the test set consisting of 280

(a) (b)

Fig. 7. Precision and success plots using OPE of the proposed HSG-DCF-
SE and HSG-DCF trackers against other state-of-the-art trackers on LaSOT
dataset [15]. The legend of precision plot contains threshold scores at 20
pixels, while the legend of SR contains area-under-the-curve score for each
tracker.

Fig. 8. Failure cases of the proposed tracker in the case of FOC and rotated
bounding box challenges. Sequence person19 is taken from the UAV123
dataset while sequence Hand is taken from the VOT2017 dataset.

videos [15]. Fig. 7(a) and (b) shows the performance compar-
ison of the proposed HSG-DCF-SE with existing state-of-the-
art trackers in terms of precision and success plots using OPE.
In terms of precision, HSG-DCF-SE has obtained 35.6% accu-
racy, which is 5.5% better than the second best ECO tracker
(30.1% accuracy). All of the compared trackers, except ECO,
have obtained precision score less than 30.0%, which demon-
strates that they were not able to handle long-term tracking
challenges.

In terms of success, HSG-DCF-SE has obtained 37.1%
accuracy, which is 4.7% better than ECO (32.4%) and 6.3%
better than DeepSTRCF. The HSG-DCF tracker has obtained
31.8% accuracy and outperformed DeepSTRCT, BACF, and
TRACA trackers. These results demonstrate that the proposed
spatial and temporal graph-based regularization assisted our
trackers for performance improvement over long-term tracking
challenges.

E. Failure Cases

In Fig. 8, we demonstrate two different failure cases of the
proposed tracker. In sequence person19, our tracker was not
able to track the person in the case of long-term and full occlu-
sion. It is because, there is no target redetection module in
our proposed tracker. In sequence Hand, the intersection over
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TABLE VI
PERFORMANCE EVALUATION ON THE VOT2017/VOT2018 DATASETS [41], [42] IN TERMS OF EXPECTED AVERAGE OVERLAP (EAO),

ACCURACY (A), AND ROBUSTNESS (R). THE BEST TWO RESULTS ARE SHOWN IN RED AND BLUE COLORS, RESPECTIVELY

TABLE VII
PERFORMANCE COMPARISON ON VOT2018-LT DATASET [42] IN TERMS OF PRECISION (PR), RECALL (RE), AND F-SCORE

union of the proposed tracker significantly reduced because of
the rotated ground-truth bounding box. The proposed tracker
only generates axis aligned bounding boxes, which results in
degraded performance if the target object undergoes IPR with
rotated bounding box challenge. Inclusion of target orienta-
tion detection module would have improved the performance
in such scenarios.

F. Computational Complexity and Execution Time

We evaluate the execution time and computational com-
plexity of the proposed trackers, which mainly depend on the
optimization process and graph construction. We used FLANN
libraries for the graph construction using the nearest neighbor
strategy [61]. The spatial graph Gl

s complexity is O(pd log(p))

and temporal graph Gl
t is O(pd log(d)), where p = m × n is

the number of pixels and d is the number of channels in each
deep features hierarchy.

Since (13) is separable in each pixel location, we solve p
subproblems and each is a system of linear equations with d
variables. Each subproblem can be solved in O(d) using the
Sherman–Morrison formula. Thus, the complexity of solving
ŵ is O(dp). Taking the DFT and inverse DFT into account, the
complexity of solving w is O(dp log(p)). The computational
cost for solving both gs and gt is O(dp). Hence, the complexity
of our HSG-DCF is O(kdp log(p)), where k is the number of
ADMM iterations.

The execution time of the proposed trackers is measured
on a PC with an Intel core i7 4.0 GHz, Titan Xp GPU, and
64-GB RAM. The proposed HSG-DCF-SE tracker is able to
track a target object at 5.64 frames per second while the
proposed HSG-DCF tracker can track target object at 8.28
frames per second for the OTB100 dataset. Similarly, the HOG
version of our proposed trackers, HSG-DCF-HOG-SE and
HSG-DCF-HOG, takes 14.91 and 20.28 FPS to track the tar-
get object, as in Table IV (supplementary material). Compared
to that the other trackers, including HCF, HCFT, HDT, Staple,
LCT, SRDCF, DeepSTRCF, BACF, DeepSRDCF, STRCF, and
DeepMCCT have reported 10.4, 6.70, 10, 80, 20.7, 5.62, 5.3,
26.7, 0.2, 24.3, and 8.0 frames per second, respectively, on
their machines using the OTB100 dataset. Although, because
of the difference of hardware used by each author, a direct

comparison may not be very meaningful, and our process-
ing speed shows the practical significance of the proposed
algorithms.

V. CONCLUSION

In this work, a new set of constraints based on spatial and
temporal consistency of the target object is proposed in the
DCF framework to handle challenging VOT scenarios. The
proposed spatial constraint incorporates the spatial structure of
the target object by constructing a dense graph across different
target components based on hierarchical deep features. The
other constraint incorporates the temporal appearance varia-
tions of the target object in a temporal window into the DCF
framework. The temporal graph is also constructed using hier-
archical deep features where PCA is applied to compress the
dimensionality of the feature vector. A pair of spatial and tem-
poral graphs is computed at each resolution level of the deep
features. The proposed objective function containing spatial
and temporal graph-based constraints in the DCF framework
is solved using the ADMM optimization method and a closed-
form solution of each subproblem is derived in an efficient
manner. At each level, we independently compute the con-
strained correlation filter response and a maximum is seeked
across all levels. The SE is performed by computing maximum
filter response at five different scales using HOG features. The
proposed tracker, called HSG-DCF-SE, has shown significant
performance improvement on seven challenging datasets com-
pared to 33 existing state-of-the-art trackers. In the future, we
aim to incorporate saliency-based target object specific con-
straints into the DCF framework with a redetection strategy to
further boost the VOT performance.
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