
Shortened LLaMA: Depth Pruning for Large Language Models
with Comparison of Retraining Methods

Anonymous EMNLP Submission

Abstract001

Structured pruning of modern large language002
models (LLMs) has emerged as a way of de-003
creasing their high computational needs. Width004
pruning reduces the size of projection weight005
matrices (e.g., by removing attention heads)006
while maintaining the number of layers. Depth007
pruning, in contrast, removes entire layers or008
blocks, while keeping the size of the remaining009
weights unchanged. Most current research fo-010
cuses on either width-only or a blend of width011
and depth pruning, with little comparative anal-012
ysis between the two units (width vs. depth)013
concerning their impact on LLM inference effi-014
ciency. In this work, we show that simple depth015
pruning can effectively compress LLMs while016
achieving comparable or superior performance017
to recent width pruning studies. Our prun-018
ing method boosts inference speeds, especially019
under memory-constrained conditions that re-020
quire limited batch sizes for running LLMs,021
where width pruning is ineffective. In retrain-022
ing pruned models for quality recovery, con-023
tinued pretraining on a large corpus markedly024
outperforms LoRA-based tuning, particularly025
at severe pruning ratios. We hope this work can026
help build compact yet capable LLMs.027

1 Introduction028

The advancement of large language models029

(LLMs) (Touvron et al., 2023; OpenAI, 2023;030

Chowdhery et al., 2022; Zhang et al., 2022; Scao031

et al., 2022) has brought significant improvements032

in language-based tasks, enabling versatile appli-033

cations such as powerful chatbots (Google, 2023;034

OpenAI, 2022). However, the deployment of LLMs035

is constrained by their intensive computational de-036

mands. To make LLMs more accessible and effi-037

cient for practical use, various optimization strate-038

gies have been actively studied over recent years039

(see (Zhu et al., 2023; Wan et al., 2023) for survey).040

This work focuses on structured pruning (Fang041

et al., 2023; Li et al., 2017a), which removes groups042

M8

M16

M32

M64

M128
M256

M: Batch Size

4.9B Parameters

12 Input Tokens

128 Output Tokens

M1

Original Vicuna-7B

>40: omitted

Figure 1: Results of pruned Vicuna-7B models on an
NVIDIA H100 GPU. Left: Compared to width pruning
(W✂) of FLAP (An et al., 2024) and LLM-Pruner (Ma
et al., 2023), our depth pruning (D✂) achieves faster
inference. Right: Continued pretraining is crucial for
restoring the quality of heavily pruned models with
fewer than 3.7B parameters, enabling our method to sur-
pass the baselines, including SLEB (Song et al., 2024).

of unnecessary weights and can facilitate hardware- 043

agnostic acceleration. 044

In the context of compressing recent LLMs, 045

LLM-Pruner (Ma et al., 2023) and FLAP (An et al., 046

2024) narrow the network width by pruning cou- 047

pled structures (e.g., attention heads and their as- 048

sociated weight connections) while maintaining 049

the number of layers. Sheared-LLaMA (Xia et al., 050

2024) reduces not only the network width but also 051

its depth by entirely removing some layers. Despite 052

the existence of pruning methods (Xia et al., 2022; 053

Kurtic et al., 2023; Xia et al., 2024) that incorporate 054

both width and depth aspects, there remains a gap 055

in detailed analysis comparing these two factors 056

(width vs. depth), specifically in relation to their 057

impact on LLM inference efficiency. 058

In addition to substantial model sizes, LLM in- 059

ference is distinguished by an autoregressive de- 060

coding mechanism, which predicts tokens one by 061

one based on the input and the previously gener- 062

ated tokens. This sequential generation process 063

often exhibits a memory-bound nature, leading to 064

considerable underutilization of GPU compute abil- 065

1

(a) 7B’s RTX3090 Utilization [%] (b) 7B’s A100 Utilization [%] (c) 7B’s H100 Utilization [%] (d) 13B’s H100 Utilization [%]

L512 L512L512L512L128 L128 L128 L128

Figure 2: Top: GPU compute utilization of (a)–(c) running LLaMA-7B on different NVIDIA GPUs and that of (d)
Vicuna-13B. Increasing batch sizes can enhance GPU utilization and throughput, but pushing this too far triggers
OOM issues. Bottom: Latency results (L: target output length). Our depth pruning (blue lines) improves generation
speeds over the original models (gray), while width pruning (Ma et al., 2023) is ineffective (green). The dotted lines
show that pruned models can operate with larger batch sizes that cause OOM errors for the original model. The
results are obtained with pruning ratios of 27% for the 7B model and 29% for the 13B model.

ities (Kwon et al., 2023; Jin et al., 2023). While066

expanding batch sizes is a standard way to enhance067

GPU utilization and throughput, this approach is068

unfeasible for low-specification GPUs with mem-069

ory constraints. We aim to improve inference070

speeds of LLMs, especially under hardware limi-071

tations that demand small batch sizes, where we072

observe that width-only pruning is inadequate.073

Depth pruning is often regarded as being less074

effective in generation performance compared to075

width pruning, due to the elimination of bigger and076

coarse units. Contrary to the prevailing view, this077

study reveals that depth pruning is a compelling078

option for compressing LLMs, and it can achieve079

comparable or superior performance to prior stud-080

ies depending on the retraining setups. Our contri-081

butions are summarized as follows:082

◦ In scenarios with limited batch sizes, our work083

demonstrates that width pruning is difficult to084

attain actual speedups in LLM’s autoregressive085

generation. This aspect has been underexplored086

in previous works.087

◦ We introduce a simple yet effective method for088

depth pruning of LLMs by exploring various089

design factors. Our compact LLMs, obtained by090

excluding several Transformer blocks, achieve091

actual speedups.092

◦ We show that under moderate pruning ratios,093

our depth pruning method with LoRA retrain-094

ing can rival recent width pruning studies for095

LLMs in zero-shot capabilities. For more ag-096

gressive pruning (over 40% removal), intensive097

retraining with a full-parameter update is cru-098

cial for recovering performance.099

QKV𝐻

Transformer Block1

Transformer BlockN

LM Head

Output Logit

Input Embedding

M
H

A
F

F
N

Norm

Down

Up & Gate

Norm

Out

QKV1 QKVℎ

Width Pruning Depth Pruning

Transformer Blockn-1

Transformer Blockn

Figure 3: Comparison of pruning units. Width pruning
reduces the size of projection weight matrices. Depth
pruning removes Transformer blocks, or individual
MHA and FFN modules.

2 Problem: Small-batch LLM Inference 100

Most LLMs are autoregressive models that se- 101

quentially produce tokens, based on the initial 102

prompt and the sequence of tokens previously gen- 103

erated. The token-by-token generation process of- 104

ten involves multiplying large matrices (weights) 105

with smaller matrices or vectors (activations). The 106

primary bottleneck for inference efficiency is mem- 107

ory access operations rather than the speed of math- 108

ematical computations (referred to as ‘memory- 109

bound’), leading to suboptimal use of GPU com- 110

puting power (Kwon et al., 2023). Though increas- 111

ing batch sizes is a standard way to enhance GPU 112

computation and throughput, it poses a risk of out- 113

of-memory (OOM) errors (see Figure 2)1 unless 114

1Using the HF-Transformers library (Wolf et al., 2020), we
ran the LLMs with 12 input tokens for 20 batched runs after
10 warm-ups. Top: Peak GPU compute utilization (NVIDIA,
2018). Bottom: Mean latency over 20 runs.

2

advanced system-level optimizations (Kwon et al.,115

2023; Sheng et al., 2023) are applied.116

In this study, our focus is on accelerating the117

inference of LLMs under small-batch conditions118

caused by hardware restrictions. Such situations119

are relevant for deploying LLMs on memory-120

constrained local devices, which can enhance user121

experience and data privacy protection. We show122

that (i) reducing weight shapes via width pruning123

does not improve generation speeds and can even124

degrade it when the resulting weight dimensions125

are unsuitable for GPU capabilities, and (ii) notable126

speed gains are only achievable through depth prun-127

ing that excludes a number of modules entirely.128

3 Method: Block Pruning129

An LLM is a stack of multiple Transformer130

blocks (Vaswani et al., 2017), each of which con-131

tains a pair of multi-head attention (MHA) and132

feed-forward network (FFN) modules (see Fig-133

ure 3). We choose this Transformer block as the134

prunable unit to prioritize reducing inference la-135

tency. Our approach is simple: after identifying136

unimportant blocks with straightforward metrics,137

we perform simple one-shot pruning.138

3.1 Evaluation of Block-level Importance139

We consider the following criteria to evaluate140

the significance of each block, ultimately select-141

ing the Taylor+ and PPL metrics (see Table 5).142

Specifically, the linear weight matrix is denoted as143

Wk,n =
[
W k,n

i,j

]
with a size of (dout, din), where144

k represents the type of operation (e.g., a query145

projection in MHA or an up projection in FFN)146

within the n-th Transformer block. The weight147

importance scores are calculated at the output neu-148

ron level (Sun et al., 2024), followed by summing2149

these scores to assess the block-level importance.150

Magnitude (Mag). This metric (Li et al., 2017b)151

is a fundamental baseline in the pruning literature,152

assuming that weights with smaller norms are less153

informative. For the block-level analysis, we com-154

pute InMagnitude =
∑

k

∑
i

∑
j

∣∣∣W k,n
i,j

∣∣∣.155

Taylor. Assessing the error caused by the re-156

moval of a weight parameter helps in identifying157

its significance. For a given calibration dataset158

D, this can be expressed as the alteration in the159

2In our exploration of various aggregation strategies (i.e.,
sum, mean, product, and max operations), summing the scores
was effective at different pruning ratios.

Figure 4: Estimated importance of each Transformer
block on the calibration set. We prune blocks that have
lower (better) PPL scores, as their removal causes less
disruption to the output.

training loss L (LeCun et al., 1989; Molchanov 160

et al., 2019):
∣∣∣L(W k,n

i,j ;D)− L(W k,n
i,j = 0;D)

∣∣∣ ≈ 161∣∣∣∣ ∂L(D)

∂Wk,n
i,j

W k,n
i,j

∣∣∣∣, where we omit the second-order 162

derivatives by following Ma et al. (2023). 163

We define the block score as InTaylor = 164∑
k

∑
i

∑
j

∣∣∣∣ ∂L(D)

∂Wk,n
i,j

W k,n
i,j

∣∣∣∣. 165

Mag+ and Taylor+. Upon using the aforemen- 166

tioned metrics, the early blocks are labeled as unim- 167

portant, but their removal leads to severe perfor- 168

mance drops. Similar to a popular heuristic (Gale 169

et al., 2019; Lee et al., 2021), we preserve the first 170

four and the last two blocks (Ma et al., 2023) by 171

excluding them from the pruning candidates. 172

Perplexity (PPL). Redundant blocks contribute 173

less to the model’s outputs, and their removal 174

leads to smaller degradation in PPL, a com- 175

monly used metric for language modeling tasks. 176

In this context, we eliminate each block from 177

the source model and monitor its influence on 178

PPL using the calibration set D: InPPL = 179

exp
{
− 1

SL

∑
s

∑
l log pθn(x

(s)
l |x(s)<l)

}
, where θn 180

denotes the model without its n-th block, and 181

s = 1, . . . , S and l = 1, . . . , L are the indices 182

for sequences and tokens in D. The PPL can be 183

derived from the next-token prediction loss and re- 184

quires only forward-pass computation. As shown 185

in Figure 4, several blocks are removable with only 186

a slight effect on the PPL metric. Pruning initial 187

and final blocks significantly degrades the perfor- 188

mance, which necessitates keeping them unpruned. 189

3.2 One-shot Pruning 190

After sorting the block-level importance scores, 191

we prune the less crucial blocks in a single step. 192

Since every block has an identical configuration 193

3

and it is easy to calculate the number of parameters194

for one block, we readily decide how many blocks195

should be removed to meet the target model size.196

Iterative pruning with intermediate updates of197

block importance can be applied as in SLEB (Song198

et al., 2024). However, it requires much longer199

computing time than one-shot pruning as the num-200

ber of blocks increases. Furthermore, we empir-201

ically observed that retraining strategies matter202

more than whether the pruning scheme is iterative203

or one-shot, especially under severe pruning ratios.204

3.3 Retraining for Performance Restoration205

Some recent studies suggest that structured prun-206

ing of LLMs can be retraining-free (Song et al.,207

2024; An et al., 2024) or feasible with low retrain-208

ing budgets (Ma et al., 2023). However, the types209

of retraining over different pruning rates have been210

underexplored. Here, we compare several retrain-211

ing strategies and their implications for regaining212

the quality of pruned models.213

Low-Rank Adaptation (LoRA). LoRA (Hu214

et al., 2022) enables the efficient refinement of215

LLMs with less computation. Ma et al. (2023) has216

applied LoRA to enhance moderately width-pruned217

models (e.g., with 20% of units removed) on an218

instruction tuning dataset. In this work, we show219

that LoRA can also recover the ability of depth-220

pruned models; however, it does not perform well221

for extensive compression rates (e.g., with over222

50% removal) in either width or depth pruning.223

Continued Pretraining (CPT). We leverage224

CPT, which involves updating all parameters, on225

a large-scale pretraining corpus. This powerful226

retraining is critical for severely depth-pruned mod-227

els, extending its proven effectiveness for width- or228

hybrid-pruned models (Xia et al., 2024). Though229

requiring greater resources than LoRA, CPT on230

pruned networks significantly accelerates learning231

and yields superior results compared to training the232

same architectures from random initialization.233

CPT⇒LoRA Once CPT on the pretraining data234

is completed, LoRA with the instruction set is ap-235

plied to observe whether further performance im-236

provement can be achieved.237

4 Experimental Setup238

Source Model. Our testbed includes LLaMA-239

7B (Touvron et al., 2023) and Vicuna-{7B, 13B}-240

v1.3 (Chiang et al., 2023), which are famous LLMs.241

Model #Param #Block‡ #Head‡ FFN-D‡

Original 7B 6.7B 32 32 11008

35%†

Wanda-sp 4.5B 32 21 7156
FLAP 4.5B 32 23.0±8.8 6781.1±2440.6

LLM-Pruner 4.4B 32 18 6054
Ours 4.5B 21 32 11008

Original 13B 13.0B 40 40 13824

37%†

Wanda-sp 8.4B 40 26 8710
FLAP 8.3B 40 27.5±11.3 8326.6±2874.9

LLM-Pruner 8.2B 40 22 7603
Ours 8.3B 25 40 13824

†Reduction ratio for the number of parameters.
‡#Block: #Transformer blocks; #Head: #attention heads of MHA; FFN-D: intermediate
size of FFN.

Table 1: Examples of pruned architectures on 7B-
parameter (top) and 13B-parameter (bottom) models.
While Wanda-sp (Sun et al., 2024; An et al., 2024),
FLAP (An et al., 2024), and LLM-Pruner (Ma et al.,
2023) reduce the network width, our method reduces
the network depth. See Table 14 for the details.

Baseline. LLM-Pruner (Ma et al., 2023), 242

FLAP (An et al., 2024), and Wanda-sp (i.e., a 243

structured variant (An et al., 2024) of Wanda (Sun 244

et al., 2024)) serve as the baselines for width 245

pruning. Table 1 shows the pruned architectures 246

under similar numbers of parameters. We also 247

examine SLEB (Song et al., 2024), a retraining- 248

free block pruning method for LLMs, which 249

has been concurrently introduced with our study. 250

Section D.1 describes the baselines in detail. 251

Data. Following Ma et al. (2023), we randomly 252

select 10 samples from BookCorpus (Zhu et al., 253

2015) to compute block-level significance during 254

the pruning stage. We also use this calibration 255

dataset for the baseline methods to ensure a fair 256

comparison. In LoRA retraining, 50K samples of 257

the refined Alpaca (Taori et al., 2023) are used for 258

instruction tuning. In CPT retraining, we leverage 259

SlimPajama (Soboleva et al., 2023), which consists 260

of 627B tokens for LLM pretraining. 261

Evaluation. Following Touvron et al. (2023), we 262

measure zero-shot accuracy on commonsense rea- 263

soning datasets (i.e., BoolQ (Clark et al., 2019), 264

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 265

2019), WinoGrande (Sakaguchi et al., 2019), ARC- 266

easy (Clark et al., 2018), ARC-challenge (Clark 267

et al., 2018), and OpenbookQA (Mihaylov et al., 268

2018)) using the lm-evaluation-harness pack- 269

age (EleutherAI, 2023). We also report zero- 270

shot PPL on WikiText2 (Merity et al., 2017) and 271

PTB (Marcus et al., 1993). 272

Latency and Throughput. We follow Sheng 273

et al. (2023) to measure the metrics. Given a batch 274

4

Zero-shot Performance H100 80GB‡ RTX3090 24GB‡

PPL↓#Param & Method
WikiText2 PTB

Ave Acc↑
(%)†

Latency↓
(s)

Throughput↑
(tokens/s)

Latency↓
(s)

Throughput↑
(tokens/s)

LLaMA-7B: 6.7B (Original) 12.6 22.1 66.3 2.4 53.7 5.1 25.0
Wanda-sp 21.4 47.2 51.8 3.1 41.7 7.6 16.7

FLAP 17.0 30.1 59.5 3.2 40.5 7.7 16.5W✂

LLM-Pruner 17.6 30.4 61.8 3.0 43.2 6.0 21.4
SLEB 18.5 31.6 57.6 1.9 66.0 4.5 28.4

Ours: Taylor+ 20.2 32.3 63.5 1.9 66.0 4.5 28.4

5.5B
(20%

Pruned)
D✂

Ours: PPL 17.7 30.7 61.9 1.9 66.0 4.5 28.4
Wanda-sp 133.6 210.1 36.9 3.1 41.6 8.0 16.1

FLAP 25.6 44.4 52.7 3.2 40.5 8.1 15.8W✂

LLM-Pruner 24.2 40.7 55.5 2.9 44.4 6.1 21.1
SLEB 34.2 49.8 50.1 1.6 80.1 3.4 37.8

Ours: Taylor+ 33.2 58.5 55.4 1.6 80.1 3.4 37.8

4.5B
(35%

Pruned)
D✂

Ours: PPL 23.1 38.8 55.2 1.6 80.1 3.4 37.8

Zero-shot Performance H100 80GB RTX3090 24GB
PPL↓#Param & Method

WikiText2 PTB
Ave Acc↑

(%)†
Latency↓

(s)
Throughput↑

(tokens/s)
Latency↓

(s)
Throughput↑

(tokens/s)
Vicuna-13B: 13.0B (Original) 14.7 51.6 68.3 2.8 45.5 OOM OOM

Wanda-sp 19.0 71.8 63.6 3.8 34.1 9.8 12.9
FLAP 18.8 65.3 63.3 3.9 32.6 10.2 12.6W✂

LLM-Pruner 16.0 57.0 65.3 3.8 34.0 7.5 17.3
SLEB 20.5 68.7 60.4 2.3 55.7 5.4 23.9

Ours: Taylor+ 18.1 61.6 66.7 2.3 55.7 5.4 23.9

10.5B
(21%

Pruned)
D✂

Ours: PPL 16.1 56.5 64.9 2.3 55.7 5.4 23.9
Wanda-sp 36.6 123.5 52.7 3.8 33.8 10.5 12.6

FLAP 28.7 96.2 58.3 3.9 32.9 9.7 13.2W✂

LLM-Pruner 22.2 74.0 59.7 3.6 35.6 7.1 18.0
SLEB 41.6 116.5 49.4 1.8 69.7 4.0 31.7

Ours: Taylor+ 34.2 90.4 61.4 1.8 69.7 4.0 31.7

8.3B
(37%

Pruned)
D✂

Ours: PPL 22.1 73.6 59.1 1.8 69.7 4.0 31.7
†Average accuracy on seven commonsense reasoning tasks.
‡Measured with 12 input tokens, 128 output tokens, and a batch size of 1 on a single GPU.

Table 2: Results with moderate-level pruning on LLaMA-7B (top) and Vicuna-13B-v1.3 (bottom). Our depth
pruning (D✂) with LoRA retraining achieves similar performance to width pruning (W✂) methods (Sun et al.,
2024; An et al., 2024; Ma et al., 2023) and outperforms the recent SLEB (Song et al., 2024), while effectively
accelerating LLM inference. See Table 9 for detailed results.

size M and an output sequence length L (excluding275

the input length), the latency T represents the time276

required to handle the given prompts and produce277

ML output tokens. The throughput is computed278

as ML/T . We report the average results from 20279

runs after the initial 10 warm-up batches.280

Implementation. We use the Hugging Face’s281

Transformers library (Wolf et al., 2020). For prun-282

ing and LoRA retraining, an NVIDIA A100 GPU283

is employed. For CPT retraining, eight NVIDIA284

H100 GPUs are utilized, with a training duration285

of less than two weeks for each model size. For286

inference, we opt for the default setup of the Trans-287

formers library. See Section D.2 for the details.288

5 Results289

5.1 Moderate Pruning and LoRA Retraining290

Tables 2 and 9 show the zero-shot performance291

and inference efficiency of differently pruned mod-292

els. Here, our models are obtained using a light 293

LoRA retraining setup. The width pruning meth- 294

ods (Ma et al., 2023; An et al., 2024; Sun et al., 295

2024) do not improve LLM inference efficiency. 296

Under limited input (batch) scales, the processing 297

speed largely hinges on the frequency of memory 298

access operations. Addressing this issue by merely 299

reducing matrix sizes is challenging, unless they 300

are completely removed. The speed even wors- 301

ens compared to the original model due to GPU- 302

unfriendly operation dimensions (e.g., the hidden 303

sizes of FFN are often not divisible by 8 (Table 14), 304

which hinders the effective utilization of GPU Ten- 305

sor Cores (Andersch et al., 2019)). 306

On the contrary, our depth pruning exhibits 307

speedups through the complete removal of several 308

Transformer blocks, resulting in fewer memory 309

access and matrix-level operations between acti- 310

vations and weights. Moreover, under the same 311

LoRA retraining protocol as Ma et al. (2023), our 312

5

Metric PPL↓ on WikiText2 Ave Acc↑ (%)† Throughput↑ (tokens/s)‡

#Param after Pruning⋆ 5.5B 3.7B 2.7B 1.5B 5.5B 3.7B 2.7B 1.5B 5.5B 3.7B 2.7B 1.5B
Wanda-sp 24.4 364.5 1370.1 8969.3 58.5 36.7 37.0 35.6 41.7 40.5 40.7 43.5

FLAP 22.0 63.1 589.3 28727.9 61.4 47.3 36.7 34.5 40.5 41.2 41.2 42.3W✂

LLM-Pruner 19.6 38.8 66.4 202.9 60.1 50.1 44.3 38.4 43.2 43.4 43.9 44.8
SLEB 25.1 110.4 731.5 18730.8 55.6 40.2 39.1 37.4 66.0 84.0 107.4 182.5

Ours, LoRA 18.8 37.0 68.9 1002.2 60.7 47.0 40.1 37.1
Ours, CPT 14.3 16.0 17.1 20.5 61.5 57.1 55.0 49.2D✂

Ours, CPT⇒LoRA 14.8 16.5 17.8 21.1 63.1 57.4 55.0 49.0

66.0
(1.2×)

84.0
(1.6×)

107.4
(2.0×)

182.5
(3.4×)

Vicuna-7B: 6.7B (Original) 17.1 65.9 53.7
⋆The pruning ratios of 20%, 45%, 60%, and 80% lead to 5.5B, 3.7B, 2.7B, and 1.5B parameters, respectively. The PPL criterion is used to obtain our models.
†Average accuracy on seven commonsense reasoning tasks.
‡Measured with 12 input tokens, 128 output tokens, and a batch size of 1 on an NVIDIA H100 GPU.

Table 3: Effectiveness of CPT under high compression rates on Vicuna-7B-v1.3. CPT is essential to regain the
performance of extensively pruned models (e.g., fewer than 3.7B parameters), whereas retraining-free (An et al.,
2024; Song et al., 2024) and LoRA-based (Ma et al., 2023) approaches yield unsatisfactory results.

Model Generated Text
Vicuna-7B AI can create a logo in seconds! You choose the design elements you like best from pre-made templates, and then the

AI generates a unique logo design just for you. This is a great way to get a professional-looking logo without hiring ...

Wanda-sp AI can create a logo in seconds now. Inso Ison Im Ison Im I I was able can do do do now do now do now Innowhere
you ...

FLAP AI can create a logo in seconds The V Just ing A A A A A A A A A, A A A A A S Just a. : S . No An , A A the A The
The... The The... A, A A A A. A A A This A The Just A A A A The A A The A A A. and The A All T A A.. A the ...

LLM-Pruner AI can create a logo in seconds: 10 seconds! I’ve created a logo in minutes using an AI. It has only one image in front
for 8 minutes. 4 hours = 65.000 + 12 hours Words: English Speech: 100 words in 5 minutes 1. 60 hours 2. 492 ...

SLEB AI can create a logo in seconds while. :). I have put. I believe it . →.]. Here least →. . . </<erus known). See
→www.giftoings . </<.next]; info. I’ve don-> erutex“ Here for. to “Itin.g for the next.0.>1260070uro.‘s- ...

Ours, CPT AI can create a logo in seconds. Even if you don’t have a designer who knows the best layouts to use or what colors
work best together, AI is already hard at work creating the perfect combination to your artwork. AI is also capable of ...

Table 4: Generation examples from the original Vicuna-7B and the 60%-pruned models with 2.7B parameters.

Figure 5: Training progress of the 2.7B-parameter
model from Vicuna-7B. Using the pruned network as
initialization (blue lines) for CPT accelerates the learn-
ing process and yields better results than starting from
scratch (purple).

models achieve zero-shot scores on par with finely313

width-pruned models. Although SLEB (Song et al.,314

2024) enhances inference efficiency similar to our315

method, its approach without retraining falls short316

in developing proficient small LLMs. See Sec-317

tion B for detailed results.318

5.2 Aggressive Pruning and CPT Retraining319

Table 3 compares different retraining methods.320

Our models are obtained using the PPL crite-321

rion. Under high pruning ratios (e.g., yielding 322

fewer than 3.7B parameters), LoRA-based tuning 323

(LLM-Pruner (Ma et al., 2023); Ours, LoRA) and 324

retraining-free approaches (Wanda-sp (Sun et al., 325

2024; An et al., 2024), FLAP (An et al., 2024), 326

SLEB (Song et al., 2024)) fail to recover model 327

performance. In contrast, CPT proves effective 328

in regaining the quality of heavily pruned models. 329

CPT⇒LoRA slightly improves zero-shot accuracy 330

for some pruning ratios, but with a minor drop in 331

PPL. Table 4 presents samples produced by 2.7B- 332

parameter models (60% pruned). In contrast to the 333

baselines, our model can generate text that is fluent 334

and appropriately aligned with the context. 335

Compared to LoRA retraining, the computa- 336

tional costs for CPT are considerably higher: LoRA 337

can be completed within a day using just one GPU, 338

while CPT requires about two weeks with eight 339

GPUs in our experiments, with the option to use 340

more if needed. However, utilizing a pruned net- 341

work for initialization in CPT leads to faster learn- 342

ing and better results than building the same-sized 343

models from scratch (see Figure 5), highlighting 344

its efficacy for smaller LLMs. 345

6

Figure 6: Further compression with GPTQ. Our pruned
models following 4-bit weight quantization exhibit re-
duced VRAM usage without significant performance
decline. The results for the original Vicuna-7B are pre-
sented for reference. See Section C for the details.

5.3 Applicability with Quantization346

Leveraging post-training quantization (PTQ) ef-347

fectively lowers the memory consumption for in-348

ference of LLMs. Figure 6 shows the results of ap-349

plying GPTQ (Frantar et al., 2023), a well-known350

PTQ method, to our depth-pruned models after351

CPT. The 4-bit weight quantization significantly352

reduces the VRAM demands across various model353

sizes without noticeable degradation in zero-shot354

accuracy. See Section C for further results.355

5.4 Ablation Study356

We explore various design factors, including the357

criteria for importance evaluation, the choice of358

units for depth pruning, and the impact of calibra-359

tion data volume. The results presented in this360

section were obtained through LoRA retraining.361

5.4.1 Importance Criteria for Block Pruning362

Table 5 presents the results of block pruning363

using various significance criteria. The basic meth-364

ods without the ‘+’ label fail to maintain essential365

initial blocks, causing a decline in performance.366

The Mag+ method, which preserves these critical367

blocks, partially improves the scores; however, its368

effectiveness is still inferior compared to the other369

methods, indicating that relying solely on weight370

magnitude could be improper for pruning decisions.371

The Taylor+ criterion enhances accuracy in com-372

monsense reasoning tasks, while the PPL method373

leads to better generation quality without relying374

on heuristic selection of pruning candidates.375

5.4.2 Structural Unit for Depth Pruning376

Pruning individual MHA and FFN modules,377

which are more fine-grained units than Transformer378

blocks, is also possible. To examine its effect, we379

measure the impact of removing each module on380

Block Pruning
Criterion

PPL↓ Ave Acc↑
(%)†WikiText2 PTB

5.5B
(20%

Pruned)

Mag 7720.7 10618.7 34.4
Mag+ 19.4 36.3 56.1
Taylor 3631.7 4327.9 35.5

Taylor+ 20.2 32.3 63.5
PPL 17.7 30.7 61.9

4.5B
(35%

Pruned)

Mag 8490.1 14472.1 34.9
Mag+ 36.9 61.1 49.3
Taylor 7666.8 10913.1 35.3

Taylor+ 33.2 58.5 55.4
PPL 23.1 38.8 55.2

†Average accuracy on seven commonsense reasoning tasks.

Table 5: Comparison of pruning criteria on LLaMA-7B.
The Taylor+ method excels in commonsense reasoning
accuracy, while the PPL criterion leads to better genera-
tion performance.

Depth Pruning
Unit

#Param
PPL↓ Ave Acc↑

(%)†WikiText2 PTB
Individual MHA & FFN 5.7B 20.8 34.8 63.1

Transformer Block 5.7B 16.9 29.3 62.8
Individual MHA & FFN 5.3B 25.2 41.3 61.1

Transformer Block 5.3B 18.6 33.1 60.6
Individual MHA & FFN 4.6B 38.9 58.7 52.5

Transformer Block 4.5B 23.1 38.8 55.2
Individual MHA & FFN 4.0B 63.2 88.9 48.3

Transformer Block 3.9B 31.1 47.3 50.6
†Average accuracy on seven commonsense reasoning tasks.

Table 6: Comparison of depth pruning granularities
on LLaMA-7B. Removing entire Transformer blocks
instead of individual MHA and FFN modules generally
yields better results.

the PPL of the calibration set and selectively elim- 381

inate the unnecessary modules. The same LoRA 382

retraining procedure is conducted. 383

Table 6 shows the results of depth pruning at 384

different granularities. For the models with more 385

than 5B parameters, removing individual MHA 386

and FFN modules results in better downstream task 387

accuracy but worse PPL compared to removing 388

entire Transformer blocks. For smaller models than 389

5B, block-level pruning achieves superior results 390

in terms of all the examined metrics. This differs 391

from the common belief that removing finer units 392

yields better performance. 393

Given the collaborative roles of the modules 394

(i.e., MHA captures dependency relations (Vaswani 395

et al., 2017), while skip connections and FFN pre- 396

vent the rank collapse in purely attention-driven 397

networks (Dong et al., 2021)), it may be subop- 398

timal to treat them in isolation. Taking the 5.3B 399

model in Table 6 as an example, module-level prun- 400

ing results in consecutive FFNs in some positions, 401

potentially impairing the model’s ability to han- 402

dle word interactions. In contrast, with block-level 403

7

removal, the loss of information could be com-404

pensated by neighboring blocks that serve similar405

functions.406

5.4.3 Calibration Data Volume407

The calibration set is employed to assess the408

weight significance of width pruning baselines and409

the block-level importance of our method during410

the pruning phase. Table 7 presents the results411

obtained by varying the number of calibration sam-412

ples in the BookCorpus dataset. The scores remain413

relatively stable for the examined methods, suggest-414

ing that 10 samples could be sufficient. However,415

our Taylor+ method encounters a drop in down-416

stream task accuracy when 1K samples are used,417

leaving the exploration of calibration data charac-418

teristics for future research.419

6 Related Work420

Numerous techniques have been developed to-421

wards efficient LLMs, including knowledge distil-422

lation (Fu et al., 2023; Hsieh et al., 2023), quantiza-423

tion (Frantar et al., 2023; Dettmers et al., 2022), and424

system-level inference acceleration (Dao, 2023;425

Kwon et al., 2023). In this study, we focus on426

network pruning (LeCun et al., 1989), which has427

a long-standing reputation in the model compres-428

sion field. Beyond its use in relatively small-429

scale convolutional networks (Li et al., 2017b; He430

et al., 2019) and Transformer models (Yu et al.,431

2022; Xia et al., 2022; Kurtic et al., 2023), prun-432

ing has recently begun to be applied to contempo-433

rary LLMs. Several studies (Frantar and Alistarh,434

2023; Sun et al., 2024) employ unstructured and435

semi-structured (Aojun Zhou, 2021) pruning by436

zeroing individual neurons. SparseGPT (Frantar437

and Alistarh, 2023) addresses the layer-wise re-438

construction problem for pruning by computing439

Hessian inverses. Wanda (Sun et al., 2024) intro-440

duces a pruning criterion that involves multiplying441

weight magnitudes by input feature norms. Despite442

the plausible performance of pruned models using443

zero masks, they necessitate specialized support for444

sparse matrix operations to ensure actual speedups.445

In contrast, structured pruning removes orga-446

nized patterns, such as layers (Fan et al., 2020;447

Jha et al., 2023), MHA’s attention heads (Voita448

et al., 2019; Michel et al., 2022), FFN’s hidden449

sizes (Nova et al., 2023; Santacroce et al., 2023),450

and some hybrid forms (Lagunas et al., 2021;451

Xia et al., 2022; Kwon et al., 2022; Kurtic et al.,452

2023), thereby improving inference efficiency in453

Evaluation
Metric

Method
Calibration Samples

10 50 100 1000

PPL↓ on
WikiText2

Wanda-sp 21.4 21.4 21.7 20.8
FLAP 17.0 17.5 17.5 17.3

LLM-Pruner 17.6 17.2 17.0 OOM‡

Ours: Taylor+ 20.2 20.2 19.0 19.6
Ours: PPL 17.7 17.2 17.4 17.4

Ave Acc↑
(%)†

Wanda-sp 51.8 52.9 52.0 53.0
FLAP 59.5 59.7 59.9 60.8

LLM-Pruner 61.8 61.6 61.7 OOM‡

Ours: Taylor+ 63.5 63.5 63.9 61.7
Ours: PPL 61.9 61.5 61.7 61.7

†Average accuracy on seven commonsense reasoning tasks.
‡Out-of-memory error on an A100 (80GB) using the official code.

Table 7: Impact of calibration data volume. The results
of 20%-pruned LLaMA-7B are reported.

a hardware-agnostic way. To compress LLMs, 454

FLAP (An et al., 2024) and LLM-Pruner (Ma et al., 455

2023) eliminate coupled structures in the aspect of 456

network width while retaining the number of lay- 457

ers. Sheared-LLaMA (Xia et al., 2024) introduces 458

a mask learning phase aimed at identifying prun- 459

able components in both the network’s width and 460

depth. Our study explores the relatively untapped 461

area of depth-only pruning for multi-billion param- 462

eter LLMs, which can markedly accelerate latency 463

while attaining competitive performance. 464

Strategies for skipping layers (Schuster et al., 465

2022; Corro et al., 2023; Raposo et al., 2024) ef- 466

fectively serve to decrease computational burdens. 467

Moreover, depth pruning approaches (Song et al., 468

2024; Men et al., 2024; Tang et al., 2024) for LLMs 469

have been proposed concurrently with our work, 470

based on the architectural redundancy in LLMs. 471

7 Conclusion 472

By introducing a block pruning method, we con- 473

duct an in-depth comparative analysis on the im- 474

pact of network width and depth on LLM com- 475

pression. Our work involves the one-shot removal 476

of Transformer blocks. Despite its simplicity, our 477

method with light LoRA retraining matches the 478

zero-shot capabilities of recent width pruning tech- 479

niques under moderate pruning levels. Moreover, 480

it offers significant inference speedups in resource- 481

constrained scenarios that require running LLMs 482

with limited batch sizes, where width pruning falls 483

short. When comparing retraining strategies, con- 484

tinued pretraining on a large-scale dataset signifi- 485

cantly surpasses LoRA-based tuning, particularly 486

in cases of severe pruning. We hope this study will 487

support the development of potent small LLMs. 488

8

Limitations489

Due to constraints in computational resources,490

we could not test our method on LLMs exceed-491

ing 13B parameters. We plan to explore larger492

models in future research, given that our method493

can be applied to any model size. Secondly, we494

found that continued pretraining was essential for495

performance recovery after extensive pruning. Fur-496

ther exploration of different training corpora and497

hyperparameters could lead to additional perfor-498

mance improvements. Lastly, commercially avail-499

able LLMs are optimized for human preferences,500

such as safety and helpfulness, through alignment501

tuning. We have yet to assess human preferences502

throughout the entire process of pruning, retrain-503

ing, and quantization. We hope future research will504

address this aspect.505

References506

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao507
Wang. 2024. Fluctuation-based adaptive structured508
pruning for large language models. In AAAI.509

Michael Andersch, Valerie Sarge, and Paulius Micike-510
vicius. 2019. Tensor core dl performance guide. In511
NVIDIA GTC.512

Junnan Zhu Jianbo Liu Zhijie Zhang Kun Yuan Wenxiu513
Sun Hongsheng Li Aojun Zhou, Yukun Ma. 2021.514
Learning n:m fine-grained structured sparse neural515
networks from scratch. In ICLR.516

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng517
Gao, and Yejin Choi. 2020. Piqa: Reasoning about518
physical commonsense in natural language. In AAAI.519

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,520
Zhanghao Wu, Hao Zhang, Lianmin Zheng, et al.521
2023. Vicuna: An open-source chatbot impressing522
gpt-4 with 90%* chatgpt quality.523

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,524
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul525
Barham, Hyung Won Chung, et al. 2022. Palm:526
Scaling language modeling with pathways. arXiv527
preprint arXiv:2204.02311.528

Christopher Clark, Kenton Lee, Ming-Wei Chang,529
Tom Kwiatkowski, Michael Collins, and Kristina530
Toutanova. 2019. BoolQ: Exploring the surprising531
difficulty of natural yes/no questions. In NAACL.532

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,533
Ashish Sabharwal, Carissa Schoenick, and Oyvind534
Tafjord. 2018. Think you have solved question an-535
swering? try arc, the ai2 reasoning challenge. arXiv536
preprint arXiv:1803.05457.537

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, 538
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher- 539
jee. 2023. Skipdecode: Autoregressive skip decoding 540
with batching and caching for efficient llm inference. 541
arXiv preprint arXiv:2307.02628. 542

Tri Dao. 2023. Flashattention-2: Faster attention with 543
better parallelism and work partitioning. arXiv 544
preprint arXiv:2307.08691. 545

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke 546
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multipli- 547
cation for transformers at scale. In NeurIPS. 548

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas 549
Loukas. 2021. Attention is not all you need: Pure 550
attention loses rank doubly exponentially with depth. 551
In ICML. 552

EleutherAI. 2023. Language model evaluation harness 553
(package version 3326c54). https://github.com/ 554
EleutherAI/lm-evaluation-harness. 555

Angela Fan, Edouard Grave, and Armand Joulin. 2020. 556
Reducing transformer depth on demand with struc- 557
tured dropout. In ICLR. 558

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi 559
Mi, and Xinchao Wang. 2023. Depgraph: Towards 560
any structural pruning. In CVPR. 561

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas- 562
sive language models can be accurately pruned in 563
one-shot. In ICML. 564

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 565
Dan Alistarh. 2023. OPTQ: Accurate quantization 566
for generative pre-trained transformers. In ICLR. 567

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and 568
Tushar Khot. 2023. Specializing smaller language 569
models towards multi-step reasoning. In ICML. 570

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The 571
state of sparsity in deep neural networks. In ICML 572
Workshop. 573

Google. 2023. An important next step on our ai 574
journey. https://blog.google/technology/ai/ 575
bard-google-ai-search-updates/. 576

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and 577
Yi Yang. 2019. Filter pruning via geometric median 578
for deep convolutional neural networks acceleration. 579
In CVPR. 580

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 581
Hootan Nakhost, et al. 2023. Distilling step-by-step! 582
outperforming larger language models with less train- 583
ing data and smaller model sizes. In Findings of 584
ACL. 585

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 586
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 587
Weizhu Chen. 2022. Lora: Low-rank adaptation of 588
large language models. In ICLR. 589

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/

Ananya Harsh Jha, Tom Sherborne, Evan Pete Walsh,590
Dirk Groeneveld, Emma Strubell, and Iz Beltagy.591
2023. How to train your (compressed) large language592
model. arXiv preprint arXiv:2305.14864.593

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon594
Wei. 2023. S3: Increasing gpu utilization during gen-595
erative inference for higher throughput. In NeurIPS.596

Eldar Kurtic, Elias Frantar, and Dan Alistarh. 2023. Zi-597
plm: Inference-aware structured pruning of language598
models. In NeurIPS.599

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney,600
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.601
2022. A fast post-training pruning framework for602
transformers. In NeurIPS.603

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying604
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.605
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-606
cient memory management for large language model607
serving with pagedattention. In SOSP.608

François Lagunas, Ella Charlaix, Victor Sanh, and609
Alexander M. Rush. 2021. Block pruning for faster610
transformers. In EMNLP.611

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-612
mal brain damage. In NeurIPS.613

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and614
Jinwoo Shin. 2021. Layer-adaptive sparsity for the615
magnitude-based pruning. In ICLR.616

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,617
and Hans Peter Graf. 2017a. Pruning filters for effi-618
cient convnets. In ICLR.619

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,620
and Hans Peter Graf. 2017b. Pruning filters for effi-621
cient convnets. In ICLR.622

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.623
Llm-pruner: On the structural pruning of large lan-624
guage models. In NeurIPS.625

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann626
Marcinkiewicz. 1993. Building a large annotated cor-627
pus of English: The Penn Treebank. Computational628
Linguistics, 19(2):313–330.629

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,630
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng631
Chen. 2024. Shortgpt: Layers in large language632
models are more redundant than you expect. arXiv633
preprint arXiv:2403.03853.634

Stephen Merity, Caiming Xiong, James Bradbury, and635
Richard Socher. 2017. Pointer sentinel mixture mod-636
els. In ICLR.637

Paul Michel, Omer Levy, and Graham Neubig. 2022.638
Are sixteen heads really better than one? In NeurIPS.639

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 640
Sabharwal. 2018. Can a suit of armor conduct elec- 641
tricity? a new dataset for open book question answer- 642
ing. In EMNLP. 643

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri 644
Frosio, and Jan Kautz. 2019. Importance estimation 645
for neural network pruning. In CVPR. 646

Azade Nova, Hanjun Dai, and Dale Schuurmans. 2023. 647
Gradient-free structured pruning with unlabeled data. 648
In ICML. 649

NVIDIA. 2018. Useful nvidia-smi queries. 650
https://enterprise-support.nvidia.com/ 651
s/article/Useful-nvidia-smi-Queries-2. 652

OpenAI. 2022. Introducing chatgpt. https://openai. 653
com/blog/chatgpt. 654

OpenAI. 2023. Gpt-4 technical report. arXiv preprint 655
arXiv:2303.08774. 656

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 657
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 658
Wei Li, and Peter J Liu. 2020. Exploring the limits 659
of transfer learning with a unified text-to-text trans- 660
former. JMLR, 21(140):1–67. 661

David Raposo, Sam Ritter, Blake Richards, Timothy 662
Lillicrap, Peter Conway Humphreys, and Adam San- 663
toro. 2024. Mixture-of-depths: Dynamically allocat- 664
ing compute in transformer-based language models. 665
arXiv preprint arXiv:2404.02258. 666

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga- 667
vatula, and Yejin Choi. 2019. Winogrande: An ad- 668
versarial winograd schema challenge at scale. arXiv 669
preprint arXiv:1907.10641. 670

Michael Santacroce, Zixin Wen, Yelong Shen, and 671
Yuanzhi Li. 2023. What matters in the structured 672
pruning of generative language models? arXiv 673
preprint arXiv:2302.03773. 674

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie 675
Pavlick, Suzana Ilić, Daniel Hesslow, et al. 2022. 676
Bloom: A 176b-parameter open-access multilingual 677
language model. arXiv preprint arXiv:2211.05100. 678

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, 679
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler. 680
2022. Confident adaptive language modeling. In 681
NeurIPS. 682

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo- 683
han Li, Max Ryabinin, et al. 2023. Flexgen: High- 684
throughput generative inference of large language 685
models with a single gpu. In ICML. 686

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja- 687
cob R Steeves, Joel Hestness, and Nolan Dey. 2023. 688
SlimPajama: A 627B token cleaned and deduplicated 689
version of RedPajama. https://huggingface.co/ 690
datasets/cerebras/SlimPajama-627B. 691

10

https://enterprise-support.nvidia.com/s/article/Useful-nvidia-smi-Queries-2
https://enterprise-support.nvidia.com/s/article/Useful-nvidia-smi-Queries-2
https://enterprise-support.nvidia.com/s/article/Useful-nvidia-smi-Queries-2
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun692
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb:693
Streamlining llms through redundancy verification694
and elimination of transformer blocks. In ICML.695

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.696
2024. A simple and effective pruning approach for697
large language models. In ICLR.698

Yehui Tang, Fangcheng Liu, Yunsheng Ni, Yuchuan699
Tian, Zheyuan Bai, Yi-Qi Hu, Sichao Liu, Shangling700
Jui, Kai Han, and Yunhe Wang. 2024. Rethinking op-701
timization and architecture for tiny language models.702
arXiv preprint arXiv:2402.02791.703

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang,704
Yann Dubois, Xuechen Li, Carlos Guestrin,705
et al. 2023. Stanford Alpaca: An Instruction-706
following LLaMA model. https://github.com/707
tatsu-lab/stanford_alpaca.708

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier709
Martinet, Marie-Anne Lachaux, et al. 2023. Llama:710
Open and efficient foundation language models.711
arXiv preprint arXiv:2302.13971.712

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob713
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz714
Kaiser, and Illia Polosukhin. 2017. Attention is all715
you need. In NeurIPS.716

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-717
nrich, and Ivan Titov. 2019. Analyzing multi-head718
self-attention: Specialized heads do the heavy lifting,719
the rest can be pruned. In ACL.720

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,721
Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu722
Zhang, Mosharaf Chowdhury, and Mi Zhang. 2023.723
Efficient large language models: A survey. arXiv724
preprint arXiv:2312.03863.725

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien726
Chaumond, Clement Delangue, et al. 2020. Trans-727
formers: State-of-the-art natural language processing.728
In EMNLP: System Demonstrations.729

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi730
Chen. 2024. Sheared llama: Accelerating language731
model pre-training via structured pruning. In ICLR.732

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.733
Structured pruning learns compact and accurate mod-734
els. In ACL.735

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan,736
Jianchao Tan, Sen Yang, Ji Liu, and Zhangyang Wang.737
2022. Unified visual transformer compression. In738
ICLR.739

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali740
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a741
machine really finish your sentence? In ACL.742

Susan Zhang, Stephen Roller, Naman Goyal, Mikel743
Artetxe, Moya Chen, et al. 2022. Opt: Open pre-744
trained transformer language models. arXiv preprint745
arXiv:2205.01068.746

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip- 747
ing Wang. 2023. A survey on model compres- 748
sion for large language models. arXiv preprint 749
arXiv:2308.07633. 750

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut- 751
dinov, et al. 2015. Aligning books and movies: 752
Towards story-like visual explanations by watching 753
movies and reading books. In ICCV. 754

11

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Appendix — Shortened LLaMA: Depth Pruning for LLMs755

756

A Additional Results of Inference Efficiency757

A.1 Latency-Throughput Trade-Off758

As shown in Figure 7, our depth pruning achieves a superior latency-throughput trade-off for various759

sequence lengths of input and output. In contrast, the width pruning of FLAP (An et al., 2024) and LLM-760

Pruner (Ma et al., 2023) degrades efficiency results due to GPU-unfriendly weight dimensions (Andersch761

et al., 2019) (e.g., the hidden sizes of FFN are often not divisible by 8). The markers labeled with M762

represent batch sizes. The dotted lines indicate that pruned models can operate with larger batch sizes,763

avoiding out-of-memory errors encountered by the original model.764

LLaMA-

7B

Vicuna-

13B

128 Output Tokens 512 Output Tokens

12 Input Tokens 82 Input Tokens 12 Input Tokens 82 Input Tokens
Model

M1

M8

M16

M32

M64

M128
M256

M384

M1

M8

M16

M32

M64
M128

M256

M1

M8

M16

M32

M64

M1

M8

M16

M32

M64

M1

M8

M16

M32

M64

M128
M256

M1

M8

M16

M32

M64
M128

M1

M8

M16

M32

M64

M1

M8

M16

M32

Figure 7: Inference efficiency of pruned models on an NVIDIA H100 GPU.

A.2 GPU Memory Requirements765

Table 8 shows the gains in VRAM usage from our pruned models on an NVIDIA H100 given 12 input766

tokens. The larger the batch size, the greater the improvement observed. Notably, our pruned models can767

handle an output length of 512 and a batch size of 64, unlike the original 13B-parameter model.768

#Param
L128 L512

M1 M16 M64 M1 M16 M64
6.7B (Original) 12.8GB 16.0GB 25.8GB 13.3GB 25.0GB 61.8GB

5.5B (20% Pruned) 10.5GB 13.1GB 21.1GB 10.9GB 20.4GB 50.4GB
4.9B (27% Pruned) 9.4GB 11.6GB 18.8GB 9.7GB 18.1GB 44.6GB
4.5B (35% Pruned) 8.6GB 10.7GB 17.2GB 9.0GB 16.6GB 40.8GB

13.0B (Original) 24.8GB 29.6GB 44.9GB 25.5GB 43.7GB OOM
10.5B (21% Pruned) 19.9GB 23.8GB 36.0GB 20.5GB 35.0GB OOM
9.5B (29% Pruned) 18.1GB 21.7GB 32.7GB 18.6GB 31.8GB 73.5GB
8.3B (37% Pruned) 15.7GB 18.8GB 28.3GB 16.1GB 27.5GB 63.5GB

Table 8: GPU memory requirements for varying sequence lengths (L) and batch sizes (M). The results of the 7B
and 13B models and our models with different pruning ratios are reported. Our approach effectively reduces the
memory demands of the original models.

12

B Further Results of Moderate Pruning and LoRA Retraining 769

B.1 Zero-shot Downstream Task Performance 770

PPL↓ Commonsense Reasoning Accuracy↑ (%) Thr↑ (tokens/s)‡
#Param & Method

Wiki2 PTB Average BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA H100 RTX3090
LLaMA-7B: 6.7B 12.6 22.1 66.3 75.0 78.7 76.2 69.9 75.3 44.7 44.4 53.7 25.0

Wanda-sp 21.4 47.2 51.8 61.5 70.4 53.2 56.0 58.7 31.4 31.0 41.7 16.7
FLAP 17.0 30.1 59.5 69.4 74.7 66.9 66.3 64.6 36.5 38.2 40.5 16.5

LLM-Pruner 17.6 30.4 61.8 66.2 77.6 71.4 66.1 70.5 39.3 41.2 43.2 21.4
SLEB 18.5 31.6 57.6 65.0 75.0 65.7 57.9 67.6 36.6 35.8 66.0 28.4

Ours: Grad+ 20.2 32.3 63.5 75.7 75.7 71.5 69.1 69.9 41.6 40.8 66.0 28.4

5.5B
(20%

Pruned)

Ours: PPL 17.7 30.7 61.9 72.7 75.7 70.4 63.6 69.5 40.1 41.2 66.0 28.4
Wanda-sp 50.4 106.9 42.1 62.0 60.4 33.2 52.8 37.6 23.0 25.4 41.7 16.0

FLAP 21.3 37.1 55.8 68.2 70.6 61.0 64.1 58.8 31.4 36.8 40.2 16.5
LLM-Pruner 20.5 36.1 58.7 62.8 75.5 67.2 64.9 63.5 36.8 40.2 44.0 22.9

SLEB 25.3 41.3 52.6 62.1 71.1 57.2 53.3 57.5 31.6 35.6 73.9 34.9
Ours: Grad+ 29.9 42.0 59.8 70.6 73.0 65.7 68.5 63.9 39.3 37.4 73.9 34.9

4.9B
(27%

Pruned)

Ours: PPL 20.7 36.0 57.6 66.6 73.1 63.7 60.4 64.3 36.0 39.2 73.9 34.9
Wanda-sp 133.6 210.1 36.9 44.5 56.8 29.6 49.6 31.7 20.7 25.6 41.6 16.1

FLAP 25.6 44.4 52.7 68.3 68.1 55.9 61.1 52.3 29.4 33.8 40.5 15.8
LLM-Pruner 24.2 40.7 55.5 62.9 72.8 62.3 62.7 57.4 33.0 37.6 44.4 21.1

SLEB 34.2 49.8 50.1 62.2 69.0 52.7 52.9 51.6 29.9 32.2 80.1 37.8
Ours: Grad+ 33.2 58.5 55.4 62.5 69.2 60.7 66.8 57.4 34.5 36.8 80.1 37.8

4.5B
(35%

Pruned)

Ours: PPL 23.1 38.8 55.2 64.3 71.4 59.4 59.3 62.2 32.8 37.0 80.1 37.8

PPL↓ Commonsense Reasoning Accuracy↑ (%) Thr↑ (tokens/s)‡
#Param & Method

Wiki2 PTB Average BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA H100 RTX3090
Vicuna-7B: 6.7B 17.1 63.2 65.9 78.1 77.3 73.9 69.5 74.3 44.3 43.8 53.7 25.0

Wanda-sp 24.4 104.0 58.5 63.9 72.0 67.4 65.2 64.8 38.3 37.8 41.7 16.7
FLAP 22.0 74.9 61.4 73.1 74.8 67.9 65.8 67.5 40.2 40.6 40.5 16.5

LLM-Pruner 19.6 76.4 60.1 65.4 76.2 68.9 64.4 68.9 37.4 39.4 43.2 21.4
SLEB 25.1 77.0 55.6 63.2 72.1 61.2 59.4 64.3 34.1 35.2 66.0 28.4

Ours: Grad+ 21.0 72.3 62.5 78.7 74.8 69.4 68.5 68.2 38.7 39.6 66.0 28.4

5.5B
(20%

Pruned)

Ours: PPL 18.8 67.9 60.7 71.7 74.4 67.6 63.6 69.3 38.9 39.4 66.0 28.4
Wanda-sp 36.5 177.6 50.9 49.0 67.1 57.2 59.2 57.6 33.7 32.4 41.7 16.0

FLAP 27.9 88.3 57.1 72.0 71.5 62.0 61.2 61.2 35.4 36.6 40.2 16.5
LLM-Pruner 22.7 87.9 57.1 60.8 74.3 65.9 60.9 64.4 34.6 38.8 44.0 22.9

SLEB 34.0 98.0 49.9 47.9 68.7 54.6 56.1 58.4 31.3 32.4 73.9 34.9
Ours: Grad+ 29.8 92.0 60.2 78.8 71.8 64.4 67.7 64.3 36.4 37.6 73.9 34.9

4.9B
(27%

Pruned)

Ours: PPL 23.0 78.2 56.1 66.4 72.9 60.6 59.2 63.1 33.8 37.0 73.9 34.9
Wanda-sp 73.2 386.5 39.4 43.1 58.4 36.3 53.3 34.5 23.7 26.4 41.6 16.1

FLAP 34.6 104.8 53.7 65.1 68.1 57.0 63.1 56.9 32.0 34.0 40.5 15.8
LLM-Pruner 27.6 102.0 53.5 52.0 72.4 61.6 59.9 58.0 33.3 37.0 44.4 21.1

SLEB 43.5 117.3 45.4 41.3 65.9 47.3 51.5 51.6 28.0 32.2 80.1 37.8
Ours: Grad+ 35.0 110.3 55.0 64.0 69.6 59.3 66.5 57.5 33.3 35.2 80.1 37.8

4.5B
(35%

Pruned)

Ours: PPL 26.6 89.4 53.3 65.2 70.4 56.5 56.6 59.8 31.5 33.4 80.1 37.8

PPL↓ Commonsense Reasoning Accuracy↑ (%) Thr↑ (tokens/s)‡
#Param & Method

Wiki2 PTB Average BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA H100 RTX3090
Vicuna-13B: 13.0B 14.7 51.6 68.3 82.8 78.3 77.0 71.2 75.4 47.7 45.4 45.5 OOM

Wanda-sp 19.0 71.8 63.6 78.6 75.6 73.5 68.4 68.5 42.2 38.4 34.1 12.9
FLAP 18.8 65.3 63.3 77.2 75.1 72.0 70.2 69.4 40.3 38.8 32.6 12.6

LLM-Pruner 16.0 57.0 65.3 75.5 78.6 75.0 69.8 70.6 43.6 44.4 34.0 17.3
SLEB 20.5 68.7 60.4 71.3 73.4 68.3 63.9 66.8 38.7 40.2 55.7 23.9

Ours: Grad+ 18.1 61.6 66.7 83.0 76.8 75.1 72.8 72.5 44.5 42.4 55.7 23.9

10.5B
(21%

Pruned)

Ours: PPL 16.1 56.5 64.9 75.0 77.1 73.7 68.9 71.5 43.8 44.2 55.7 23.9
Wanda-sp 23.4 84.9 60.0 71.5 74.2 68.7 65.1 64.3 36.8 39.4 33.7 13.5

FLAP 22.8 78.8 61.6 75.9 73.7 67.9 66.4 67.3 38.0 42.0 33.0 12.1
LLM-Pruner 19.0 66.4 62.7 68.3 77.1 72.0 69.7 68.6 40.0 43.4 35.8 15.0

SLEB 26.2 85.0 56.0 61.3 71.4 64.1 59.6 60.0 37.0 38.4 62.0 24.2
Ours: Grad+ 22.0 70.3 65.1 82.6 75.1 73.3 70.9 69.9 43.8 40.2 62.0 24.2

9.5B
(29%

Pruned)

Ours: PPL 18.1 62.2 62.0 67.5 75.6 70.6 65.5 70.9 43.3 40.2 62.0 24.2
Wanda-sp 36.6 123.5 52.7 59.6 67.5 59.5 59.7 55.2 33.5 33.8 33.8 12.6

FLAP 28.7 96.2 58.3 72.5 70.0 62.5 65.4 63.8 36.3 37.8 32.9 13.2
LLM-Pruner 22.2 74.0 59.7 67.1 75.6 67.7 63.2 65.5 38.8 39.8 35.6 18.0

SLEB 41.6 116.5 49.4 47.8 67.8 54.5 56.1 53.8 32.2 33.6 69.7 31.7
Ours: Grad+ 34.2 90.4 61.4 78.5 71.3 69.2 69.9 64.2 40.5 36.6 69.7 31.7

8.3B
(37%

Pruned)

Ours: PPL 22.1 73.6 59.1 69.4 73.8 64.4 62.5 65.1 39.2 39.0 69.7 31.7
‡Throughput measured with 12 input tokens, 128 output tokens, and a batch size of 1 on a single GPU.

Table 9: Results of pruned LLaMA-7B (top), Vicuna-7B-v1.3 (middle), and Vicuna-13B-v1.3 (bottom). The width
pruning of Wanda-sp (Sun et al., 2024; An et al., 2024), FLAP (An et al., 2024), and LLM-Pruner (Ma et al., 2023)
often degrades inference efficiency due to the GPU-unfriendly weight sizes (Andersch et al., 2019). In contrast, our
depth pruning delivers actual speedups while performing comparably with light LoRA retraining.

13

B.2 Generation Examples771

Tables 10 and 11 present generation examples where some input prompts were sourced from Ma et al.772

(2023). In terms of linguistic flow and topical consistency, the pruned models yield sentences on par with773

those from the original model. However, as also noted in Ma et al. (2023), the output quality deteriorates774

when responding to factual questions or producing longer content. To overcome this challenge, it is775

essential to apply a more powerful retraining method on a large-scale corpus.776

Model Generated Text
LLaMA-7B What’s great about the holiday season, it’s a time when people focus less on work and more on families and friends.

The holidays are a time when people can really focus on giving and helping others, which is something that the
holidays are supposed to be about. In my blog post this week, I’ll be taking a look at a variety of causes that ...

Wanda-sp What’s great about the holiday season, though, is its warm and inviting people, and what a chance to meet and share
a cuppa with others who understand and have shared similar experiences, a feeling of empathy if you will, and a
great opportunity to help others on a difficult journey. So I can say, all is well. But I’m not giving up the fight ...

FLAP What’s great about the holiday season, and what makes it such an awesome time of the year, is that it’s the time of
the year when people are so generous, and so goodhearted. When you get together with friends and family, and you
go through the various things that you’re able to do, when you’re able to give people gifts, when people can see ...

LLM-Pruner What’s great about the holiday season, is you can enjoy the company of friends and family. This is the perfect
opportunity to gather together, and share all the special memories that you have together. These moments are the
ones that make the holiday special. No matter what happens, or what you end up doing, it’s always good to get ...

Ours: Taylor+ What’s great about the holiday season, is that it’s a time of year when people can actually take a step back from the
normal day-to-day routines and take some time out to relax and enjoy some well-deserved rest and rejuvenation.
This might include indulging in a more comfortable or luxury holiday experience and this article aims to help ...

Ours: PPL What’s great about the holiday season, in my mind, is that it brings together friends, family, and food. The holiday
season is a great time to show some love and have some fun with the people that matter most. Whether you are
celebrating Christmas, Hanukah, or New Years, the festivities will be full of joy and memories that will last ...

LLaMA-7B AI can create a logo in seconds. Why are these new technologies threatening our jobs? AI can do most menial tasks
in just a few seconds or minutes. These tasks can be very tedious for human beings to do. For instance, AI can
identify patterns in large amounts of data so that complex statistical analysis can be carried out faster than a ...

Wanda-sp AI can create a logo in seconds rather than years. To this point, this is only the beginning of what AI will do to
change our human lives. As time goes on, it’s quite likely that we’ll see even greater use of robots. Even if this all
sounds too dramatic, this may still happen. And AI is the best thing that can make it to happen. in 2019. All you ...

FLAP AI can create a logo in seconds and it doesn’t cost you a penny. The new era of technology has opened up many
exciting opportunities. Technology, like AI is being utilized for different purposes in different ways, and now,
technology is becoming a solution to problems that would have been tedious or expensive only a few years ago. ...

LLM-Pruner AI can create a logo in seconds, design a website from scratch and even write blog posts without any human
intervention. This revolution is changing the way humans communicate and express ideas. In our view, this
technology is a great asset but we’ll need to be smart in how we use it to prevent abuse or automation leading to ...

Ours: Taylor+ AI can create a logo in seconds or design a new website. There is a lot of software that exists in these two categories.
It has become easier and faster for people to use. However, there is still the requirement for the designer or creative
director to ensure that the designs are relevant and meaningful to the brand. The Future: AI for creative design ...

Ours: PPL AI can create a logo in seconds, and it can design entire websites, all without human intervention. However, there is
still a lot of work to be done to perfect this technology, including the development of natural language processing,
machine learning and computer vision, as well as ensuring that AI designers are creating work that can be ...

LLaMA-7B Neural network pruning is defined as the process of removing certain weights or neurons in a neural network to
reduce the size of the neural network, and improve the training process. Neural networks pruning techniques have
been applied successfully on classification, optimization, planning, and speech recognition tasks. A pruned ...

Wanda-sp Neural network pruning is defined as any method that removes the redundant information by applying the neural
network network. It is the term used to identify the systematic variables when an individual tries to find an algorithm.
In addition, it is the method of classification used to define any set of algorithms that have been ...

FLAP Neural network pruning is defined as a selection of neurons or weights in a neural network so that the information
of the network is reduced to a specified level, and a process of re-training a neural network. The latter one is the
most popular method, especially the neural network pruning. In recent years, this field has been studied in ...

LLM-Pruner Neural network pruning is defined as reducing the complexity and size of an over-parameterized neural network.
The pruning reduces the FLOPs and improves performance for the particular task. Pruning techniques have gained
popularity in recent years due to their wide range of applications. This paper aims to explore the pruning ...

Ours: Taylor+ Neural network pruning is defined as reducing the weight connections and biases of a neural network, while retaining
high performance. Pruning is an effective approach to reducing the number of parameters and improving the efficiency
of neural networks. Recently, the concept of neural network shrinking has gained considerable ...

Ours: PPL Neural network pruning is defined as the process of removing redundant neurons and connections between nodes in
a neural network, while keeping the performance or accuracy to the maximum extent possible. This optimization is
aimed at reducing the size and memory consumption of the network while maintaining its ability to perform task ...

Table 10: Generation examples from the original LLaMA-7B and 20%-compressed models.

14

Model Generated Text
Vicuna-13B What’s great about the holiday season, beyond the obvious time off and the chance to spend time with loved ones, is

the opportunity to slow down and reflect on the year that’s passed. It’s a time to look back at all the accomplishments
and growth you’ve experienced, and to set your sights on the year ahead. As a small business owner, the ...

Wanda-sp What’s great about the holiday season, besides spending time with family and friends, is that it’s a time of giving.
It’s a time to show appreciation for those in your life who make a difference and bring joy to your world. Whether
it’s a gift of love, a gift of time, or a gift of money, it’s important to remember that giving is not just about ...

FLAP What’s great about the holiday season, especially the days leading up to Christmas, is the opportunity to take a pause
and recharge. It’s a time to reflect on the year and all the experiences we’ve had, good or bad. It’s a time to reflect on
the people we love and the impact they’ve had on our lives. It’s a time to reflect on what we want ...

LLM-Pruner What’s great about the holiday season, aside from the gifts and the holiday parties, is the opportunity to spend time
with family and loved ones. One of the things that I love most about holiday seasons is the traditions that surround
them, from decorating the tree to making special holiday meals, there’s a sense of nostalgia and warmth that ...

Ours: Taylor+ What’s great about the holiday season, is that it allows us to reflect on the year gone by and reflect on the moments
that made it special. And while some people might choose to celebrate with the traditional traditions, some choose to
do something different. One way to spice up your holiday season is by taking a trip to a far-off place. Why not ...

Ours: PPL What’s great about the holiday season, in addition to the fun food, festivities, and spending time with loved ones, is
that it creates the perfect opportunity to show people how much you appreciate them. From giving them a gift, to
baking their favorite treat, or just taking a moment to acknowledge them in front of others – there’s something ...

Vicuna-13B AI can create a logo in seconds with its complex algorithms and pre-set designs. But it can never truly understand
the essence of a business, the emotions that go into creating a logo or the creativity and uniqueness that comes from
human input. It’s time to put the human touch back into branding, where a designer and client can collaborate to ...

Wanda-sp AI can create a logo in seconds using a logo design tool. However, a talented graphic designer can create a unique
and meaningful logo that stands out from the crowd, captures the essence of the business, and appeals to the target
audience. A good logo can also make a difference in how customers perceive the business and can even increase ...

FLAP AI can create a logo in seconds. If you don’t like it, you can change it yourself or pay for a designer to do it for
you. However, it’s important to note that a logo is more than just an image. It’s a visual representation of a brand or
organization, and it communicates certain values and characteristics to the viewer. Therefore, it’s essential to ...

LLM-Pruner AI can create a logo in seconds with just one click, but design is a human art, something that is beyond AI capabilities.
The logo design is an important part of a company’s identity, and it’s a decision that affects the company’s visual
branding and reputation for years to come. The logo is the visual representation of a company’s values ...

Ours: Taylor+ AI can create a logo in seconds, with or without a human’s input. Some people might like this, because they can
create a logo for a small business on a budget. Other people, like myself, think that the human touch is important in
art and design. A human designer can create a unique and meaningful logo by incorporating personal ...

Ours: PPL AI can create a logo in seconds by combining a variety of different styles and shapes and patterns that make up the
logos. However, a logo that is truly a reflection of your brand needs to be designed by a human, a graphic designer.
They will bring a creative vision that will make your logo unique, appealing and memorable. They can add ...

Vicuna-13B Neural network pruning is defined as the process of removing redundant or unnecessary connections in a neural
network to reduce its size and computational complexity while preserving its performance. The primary motivation
behind pruning is to improve the efficiency of deep learning models, especially in resource-constrained ...

Wanda-sp Neural network pruning is defined as a method for removing connections in order to reduce the model size, thus
allowing for computationally efficient models while retaining accuracy. This technique is useful in reducing the
number of neurons in a neural network, which allows for fewer computations during training and reduces the ...

FLAP Neural network pruning is defined as the process of reducing the size of a neural network by removing the least
significant weights or neurons. The main motivation for pruning is to reduce the computational cost of neural
networks while maintaining their accuracy. The key challenge of pruning is to identify the most effective ...

LLM-Pruner Neural network pruning is defined as a technique that aims to reduce the size of a neural network by removing
redundant and irrelevant connections between the neurons in the network. This approach is based on the observation
that a large portion of the connections within the network is redundant and does not contribute to the overall ...

Ours: Taylor+ Neural network pruning is defined as the removal of redundant connections within a neural network to achieve a
better model fit while retaining the network’s general accuracy. The goal of pruning is to reduce the computational
cost and memory footprint of the network. One commonly used pruning method is called weight magnitude ...

Ours: PPL Neural network pruning is defined as the task of removing unnecessary or redundant connections in a neural network
while retaining its accuracy and performance. This is often done to reduce the memory usage and computational
complexity of a neural network, which can be critical when running on devices with limited resources. In ...

Table 11: Generation examples from the original Vicuna-13B-v1.3 and 21%-compressed models.

15

C Compatibility with PTQ777

Our pruning approach can be combined with quantization to further decrease memory usage. To778

validate this aspect, we apply 4-bit GPTQ (Frantar et al., 2023) to our pruned models, using 128 randomly779

sampled sequences with 2048 tokens from the C4 dataset (Raffel et al., 2020) as calibration data for PTQ.780

The results demonstrate that quantization does not cause a noticeable degradation in zero-shot model781

performance while leading to additional computational reductions.782

C.1 Zero-shot Performance after Applying Quantization783

Model PPL ↓ Commonsense Reasoning Accuracy↑ (%)
#Param Retraining Quantization Wiki2 PTB Average BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

6.7B
(Original)

-
✗ 17.1 63.2 65.9 78.1 77.3 73.9 69.5 74.3 44.3 43.8
✓ 17.3 64.8 63.6 72.5 76.4 72.4 67.6 72.8 42.7 40.4

5.5B
(20%

Pruned)

LoRA
✗ 18.8 67.9 60.7 71.7 74.4 67.6 63.6 69.3 38.9 39.4
✓ 19.7 70.7 60.1 70.2 74.6 66.9 64.4 67.6 38.6 38.4

CPT
✗ 14.3 56.2 61.5 70.5 75.7 69.9 65.7 70.4 39.2 39.2
✓ 15.1 59.3 60.6 69.7 75.9 68.9 63.9 68.5 38.5 38.6

CPT⇒LoRA
✗ 14.8 60.2 63.1 72.5 77.5 71.1 66.0 72.1 41.1 41.0
✓ 15.5 64.1 61.7 71.1 76.4 70.3 64.2 71.5 40.9 37.6

3.7B
(45%

Pruned)

LoRA
✗ 37.0 113.2 47.0 54.3 67.1 45.3 53.4 52.2 27.6 28.8
✓ 38.0 117.6 46.8 55.3 66.2 45.1 53.5 50.5 27.6 29.2

CPT
✗ 16.0 60.0 57.1 62.6 74.5 63.5 62.4 66.0 34.4 36.4
✓ 16.6 61.5 57.1 63.8 74.5 62.7 61.0 65.8 34.2 37.8

CPT⇒LoRA
✗ 16.5 60.5 57.4 62.0 74.9 64.8 61.7 65.2 34.1 39.0
✓ 17.0 61.8 56.9 61.0 74.5 64.1 61.8 64.7 34.1 38.4

2.7B
(60%

Pruned)

LoRA
✗ 68.9 196.4 40.1 41.3 61.0 33.9 53.0 40.4 25.2 26.0
✓ 71.5 205.9 40.1 42.7 60.4 33.7 52.6 40.7 24.9 25.8

CPT
✗ 17.1 63.1 55.0 61.8 73.5 58.6 58.2 62.4 31.8 38.6
✓ 17.7 64.7 54.6 61.9 73.1 58.4 58.8 62.5 31.8 35.6

CPT⇒LoRA
✗ 17.8 65.1 55.0 61.4 73.9 59.7 58.0 61.3 32.3 38.0
✓ 18.4 66.1 55.0 61.9 73.8 59.0 58.3 62.1 32.0 38.0

1.5B
(80%

Pruned)

LoRA
✗ 1002.2 1874.9 37.1 51.6 53.5 26.4 49.3 27.8 27.5 24.0
✓ 1014.3 1932.4 37.5 53.7 53.3 26.5 50.0 28.2 26.5 24.6

CPT
✗ 20.5 77.4 49.2 53.5 70.7 48.9 54.5 56.7 27.0 33.0
✓ 21.4 80.0 48.5 48.9 70.1 48.8 54.1 55.7 26.8 35.0

CPT⇒LoRA
✗ 21.1 79.0 49.0 52.5 70.7 49.6 52.7 55.6 28.0 34.0
✓ 21.8 82.0 48.6 51.7 70.2 49.8 52.7 55.0 27.6 33.4

Table 12: Zero-shot results from applying PTQ to various pruned and retrained models derived from Vicuna-7B-v1.3.

C.2 Further GPU Memory Reduction from Quantization784

Model L128 L512
Param Quantization M1 M16 M64 M256 M1 M16 M64 M256

6.7B
(Original)

✗ 12.8GB 16.0GB 25.8GB 65.0GB 13.3GB 25.0GB 61.8GB OOM
✓ 4.8GB 7.8GB 17.7GB 56.9GB 5.3GB 16.9GB 53.7GB OOM

5.5B
(20% Pruned)

✗ 10.5GB 13.1GB 21.1GB 52.9GB 10.9GB 20.4GB 50.4GB OOM
✓ 4.1GB 6.6GB 14.7GB 46.5GB 4.5GB 14.0GB 43.9GB OOM

3.7B
(45% Pruned)

✗ 7.1GB 8.7GB 14.0GB 34.9GB 7.4GB 13.5GB 33.2GB OOM
✓ 3.1GB 4.8GB 10.1GB 31.0GB 3.4GB 9.6GB 29.2GB OOM

2.7B
(60% Pruned)

✗ 5.1GB 6.3GB 10.1GB 24.9GB 5.3GB 9.7GB 23.6GB OOM
✓ 2.6GB 3.8GB 7.5GB 22.3GB 2.8GB 7.2GB 21.0GB 76.4GB

1.5B
(80% Pruned)

✗ 2.8GB 3.4GB 5.4GB 12.9GB 2.9GB 5.1GB 12.1GB 39.9GB
✓ 1.9GB 2.5GB 4.5GB 12.0GB 2.0GB 4.2GB 11.2GB 39.0GB

Table 13: VRAM reduction by applying quantization after using our pruning method. The results of the pruned
Vicuna-7B models and their 4-bit weight-quantized counterparts are reported under varying sequence lengths (L)
and batch sizes (M).

16

D Experimental Setup 785

D.1 Baseline Methods 786

We primarily compare the two pruning units, focusing on ‘network width vs. depth,’ and also include a 787

very recent depth pruning method in our analysis. The baseline methods are described below, where we 788

use their official code for implementation. To ensure a fair comparison, we employ the same calibration 789

dataset across all methods. Table 14 shows the pruned architectures under similar numbers of parameters. 790

◦ LLM-Pruner (Ma et al., 2023) employs a Taylor-based importance metric to remove attention heads 791

from MHA and intermediate neurons from FFN. Local pruning is performed to select removable 792

groups within the same module while maintaining uniform dimensions across the examined blocks. 793

Adhering to their practice, the first and last few blocks remain unpruned. Their pruned models and 794

ours are identically retrained with LoRA. 795

◦ FLAP (An et al., 2024) uses a fluctuation-based importance metric to explore the recoverability of 796

feature maps after removing weight columns. Global pruning is applied, leading to different widths 797

over distinct modules (see Table 14 for mean and standard deviation values). Instead of retraining, 798

extra bias terms are added into pruned feature maps for performance restoration. 799

◦ Wanda-sp is presented in An et al. (2024) as a variant of Wanda (Sun et al., 2024) adjusted for 800

structured pruning. The original metric was based on the product of weight magnitudes and input 801

activation norms, which can be interpreted as addressing a local reconstruction objective. Wanda-sp 802

extends this in a structured way while using common dimensions among different modules. 803

◦ SLEB (Song et al., 2024) prunes Transformer blocks in LLMs and has been introduced concurrently 804

with our study. It uses a logit-based method to find unnecessary blocks, similar to our PPL criterion, 805

and updates the importance scores after each block is removed. Although SLEB pursues a retraining- 806

free setup, we observed that it fails to sustain adequate performance as the pruning ratio increases. 807

D.2 Implementation Details 808

Our implementation employs the Transformers library (Wolf et al., 2020). An NVIDIA A100 (80GB 809

VRAM) GPU is used for the pruning and LoRA retraining phases. For CPT retraining, eight NVIDIA 810

H100 (80GB) GPUs are utilized, with each model size trained in under two weeks. 811

◦ At the pruning phase, we assess the significance of Transformer blocks using a small calibration set 812

(containing 10 samples from BookCorpus (Zhu et al., 2015) with a sequence length of 128). For 813

the PPL-based criterion, the calibration samples are fed into networks with a single block removed, 814

and this step is iterated across all the blocks in the target model. For the Taylor+ method, we feed 815

the calibration data into the original network to collect backward-gradient matrices. The pruning is 816

completed efficiently within 1 to 2 hours for the 7B- and 13B-sized models. 817

◦ At the LoRA retraining phase, we apply a LoRA adapter (Hu et al., 2022) to every projection weight 818

matrix by following Ma et al. (2023). We employ a LoRA rank of 8, a learning rate of 0.0001, and a 819

batch size of 64 over 2 epochs. The retraining costs are notably low, with the entire process being 820

executed on a single GPU. For example, retraining a 20%-pruned model from 7B parameters takes 821

about 2 hours and utilizes 22GB GPU memory, while a 21%-pruned model from 13B parameters 822

requires approximately 3 hours and 35GB VRAM. 823

◦ At the CPT retraining phase, we utilize the AdamW optimizer with (β1, β2) values of (0.9, 0.95), 824

under a weight decay of 0.1 and a learning rate of 0.0001. A global batch size of 512 is used, with a 825

micro-batch size of 2 for 32 gradient accumulation steps over 8 GPUs. Gradient clipping with a max 826

norm value of 1 is applied. The CPT for the 5.5B-parameter model takes only 6 days (covering 37B 827

tokens) due to early convergence. On the other hand, the CPT for the 3.7B, 2.7B, and 1.5B models 828

takes 8 days (74B tokens), 12 days (150B tokens), and 11 days (271B tokens), respectively. Due to 829

constrained resources, we restricted our CPT procedure to not exceed two weeks for each model size; 830

however, extending the training duration could further improve performance. 831

17

◦ At the inference stage, we maintain the default configuration of the Transformers library, without832

using xFormers-optimized attention or advanced options.833

Model #Param #Block‡ #Head‡ FFN-D‡

Original 7B 6.7B 32 32 11008

20%
Pruned†

Wanda-sp 5.5B 32 26 8807
FLAP 5.4B 32 26.9±7.5 8577.4±2078.4

LLM-Pruner 5.4B 32 24 8256
Ours 5.5B 26 32 11008

27%
Pruned†

Wanda-sp 4.9B 32 23 7816
FLAP 4.9B 32 24.6±8.6 7497.1±2358.0

LLM-Pruner 4.9B 32 21 7155
Ours 4.9B 23 32 11008

35%
Pruned†

Wanda-sp 4.5B 32 21 7156
FLAP 4.5B 32 23.0±8.8 6781.1±2440.6

LLM-Pruner 4.4B 32 18 6054
Ours 4.5B 21 32 11008

45%
Pruned†

Wanda-sp 3.7B 32 17 5835
FLAP 3.7B 32 18.9±8.0 5506.8±2444.7

LLM-Pruner 3.7B 32 14 4513
Ours 3.7B 17 32 11008

60%
Pruned†

Wanda-sp 2.7B 32 12 4128
FLAP 2.7B 32 12.7±5.2 4083.6±2359.1

LLM-Pruner 2.7B 32 8 2421
Ours 2.7B 12 32 11008

80%
Pruned†

Wanda-sp 1.5B 32 6 2059
FLAP 1.5B 32 6.7±2.5 1988.2±852.0

LLM-Pruner 1.5B 32 1 11
Ours 1.5B 6 32 11008

Model #Param #Block‡ #Head‡ FFN-D‡

Original 13B 13.0B 40 40 13824

21%
Pruned†

Wanda-sp 10.5B 40 32 11060
FLAP 10.5B 40 33.7±8.9 10778.7±2316.0

LLM-Pruner 10.3B 40 30 10368
Ours 10.5B 32 40 13824

29%
Pruned†

Wanda-sp 9.5B 40 29 9954
FLAP 9.5B 40 31.1±10.6 9570.8±2601.0

LLM-Pruner 9.2B 40 26 8985
Ours 9.5B 29 40 13824

37%
Pruned†

Wanda-sp 8.4B 40 26 8710
FLAP 8.3B 40 27.5±11.3 8326.6±2874.9

LLM-Pruner 8.2B 40 22 7603
Ours 8.3B 25 40 13824

†Reduction ratio for the number of parameters.
‡#Block: #Transformer blocks; #Head: #attention heads of MHA; FFN-D: intermediate size of
FFN.

Table 14: Pruned architectures on LLaMA-7B and Vicuna-{7B, 13B}-v1.3. While Wanda-sp (Sun et al., 2024; An
et al., 2024), FLAP (An et al., 2024), and LLM-Pruner (Ma et al., 2023) reduce the network width, our method
reduces the network depth. For moderate pruning ratios under 40%, we used the parameter numbers from LLM-
Pruner’s module-level removal ratios of 25%, 35%, and 45% as references and adjusted the pruning ratios for our
method and the other baselines.

18

	Introduction
	Problem: Small-batch LLM Inference
	Method: Block Pruning
	Evaluation of Block-level Importance
	One-shot Pruning
	Retraining for Performance Restoration

	Experimental Setup
	Results
	Moderate Pruning and LoRA Retraining
	Aggressive Pruning and CPT Retraining
	Applicability with Quantization
	Ablation Study
	Importance Criteria for Block Pruning
	Structural Unit for Depth Pruning
	Calibration Data Volume

	Related Work
	Conclusion
	Additional Results of Inference Efficiency
	Latency-Throughput Trade-Off
	GPU Memory Requirements

	Further Results of Moderate Pruning and LoRA Retraining
	Zero-shot Downstream Task Performance
	Generation Examples

	Compatibility with PTQ
	Zero-shot Performance after Applying Quantization
	Further GPU Memory Reduction from Quantization

	Experimental Setup
	Baseline Methods
	Implementation Details

