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Abstract

This study investigates the convergence of Stein variational gradient descent (SVGD), which
is used to approximate a target distribution based on a gradient flow on the space of proba-
bility distributions. The existing studies mainly focus on the convergence in the kernel Stein
discrepancy, which doesn’t imply weak convergence in many practical settings. To address
this issue, we propose to introduce a novel analytical approach called (ϵ, δ)-approximate
gradient flow, extending conventional concepts of approximation error for the Wasserstein
gradient. With this approach, we show the sub-linear convergence of SVGD in Kullback–
Leibler divergence under the discrete-time and infinite particle settings. Finally, we validate
our theoretical findings through several numerical experiments. The code to reproduce our
experiments is available at https://github.com/msfuji0211/svgd_convergence.

1 Introduction

Sampling from an unnormalized target distribution, such as posterior distribution in Bayesian inference, is a
fundamental problem in machine learning. The mainstream approaches for obtaining such samples is using
Markov Chain Monte Carlo (MCMC) methods (Hastings, 1970; Welling & Teh, 2011) or approximating
the target distribution by variational inference (VI) (Jordan et al., 1999; Blei et al., 2017). While MCMC
provides guarantees of producing asymptotically unbiased samples from the target density, it tends to be
computationally intensive (Robert & Casella, 2004). On the other hand, VI achieves a computationally
efficient approximation of the target distribution through stochastic optimization under a simpler alternative
distribution; however, it does not come with a guarantee of obtaining unbiased samples (Blei et al., 2017).

To alleviate such sample bias while maintaining computational efficiency of VI as much as possible, Liu &
Wang (2016) introduced Stein variational gradient descent (SVGD), which allows the direct approximation
of the target distribution without the need for alternative distributions. SVGD iteratively updates correlated
samples, referred to as particles, by minimizing the Kullback–Leibler (KL) divergence between a distribution
of particles and the target distribution through a gradient flow on the space of probability distributions.
Since the Wasserstein gradient is intractable in practice, SVGD approximates it through a kernel method.

On the theoretical front, analysis has been actively conducted ever since Liu (2017) elucidated the asymp-
totic behavior of SVGD from the perspective of gradient flow within the reproducing kernel Hilbert space
(RKHS). Korba et al. (2020) showed sub-linear convergence in kernel Stein discrepancy (KSD) under infinite
particles assuming that KSD at each step is bounded. Salim et al. (2022) contributed a proof of sub-linear
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convergence in KSD without the necessity of bounded KSD assuming that the target distribution satisfies
T1 inequality (Villani, 2008), and Sun et al. (2023) provided the proofs of this convergence property by
relaxing the smoothness assumption of the target distribution. A common thread in these analyses is seeing
SVGD’s update rule as the approximation of the Wasserstein gradient in the RKHS and showing that the KL
divergence to target distribution monotonically decreases like gradient descent. Beyond the infinite particle
setting, Shi & Mackey (2023) has recently shown that the SVGD with n finite particles and an appropriate
step size converges in KSD at the O(1/

√
log logn) order if the target distribution is sub-Gaussian with a

Lipschitz score.

However, the convergence analysis in terms of KSD is insufficient to understand the weak convergence
property of SVGD because the convergence in KSD holds under highly restrictive conditions for the kernel and
the target distribution under practical settings as shown by Gorham & Mackey (2017). This fact underscores
the importance of conducting convergence analysis using criteria other than KSD to provide more realistic
guarantees for the obtained particles. A natural candidate for the criterion is the KL divergence itself, which
is the objective function of SVGD. Recently, Liu et al. (2023) showed that SVGD with finite particles achieves
linear convergence in KL divergence under a very limited setting where the target distribution is Gaussian.
However, the analytical approach presented in previous studies makes it difficult to conduct convergence
analysis based on KL divergence in a more global setting. The reason for this lies in the fact that while
the logarithmic Sobolev inequality (LSI) (Gross, 1975) is typically employed to show the linear convergence
in KL divergence for a gradient flow in the space of probability distributions (Villani, 2008), it becomes
apparent that the inequality similar to the LSI (see Eq. (7)) does not hold in practical settings (Duncan
et al., 2023) when considering SVGD as a gradient flow in the RKHS.

In this study, we introduce a novel analytical approach that allows us to circumvent the aforementioned
issue. A key idea in our analysis is to consider SVGD as an approximation of the gradient flow in the
space of probability distributions, as opposed to the conventional analytical approach that views SVGD as
a gradient flow in the RKHS. To express the degree of this approximation, we introduce a new concept
called (ϵ, δ)-approximate gradient flow, which extends the concept of approximation error widely used in the
gradient estimation context such as score gradient estimation (Lee et al., 2022; 2023) and particle-based
VI (Liu et al., 2019; Dong et al., 2022).

With our concept, we offer new insights into the convergence of SVGD in the settings of discrete-time and
an infinite number of particles. We first analyze the degree of the approximation error {ϵ, δ} between the
Wasserstein gradient of the KL divergence and the update rule in SVGD by focusing on spectral decompo-
sition specified via a kernel function. With this approximation error analysis, we show that SVGD exhibits
sub-linear convergence in the KL divergence for the first time, to the best of our knowledge. At last, we
conduct a numerical study to examine the convergence behavior of SVGD across various metrics and validate
the soundness of our theoretical findings.

2 Preliminaries

Random variables are denoted by capital letters like X, while deterministic values are denoted by lowercase
letters like x. The Euclidean inner product and distance are expressed as ⟨·, ·⟩ and ∥ · ∥, respectively. Let
X = Rd and let Cl(X ,Y) be the space of l continuously differentiable functions from X to a Hilbert space
Y. We abbreviate Cl(X ,R) as Cl(X ). The set of smooth functions with compact support is expressed as
C∞

c (X ). If ϕ ∈ C1(X ), its gradient is ∇ϕ. For ϕ ∈ C1(X ,X ), the Jacobian is represented as Jϕ(x), a d× d
matrix at each point x ∈ X . We define divϕ(x) = TrJϕ(x). The Hilbert–Schmidt and operator norm of a
matrix are denoted as ∥ · ∥HS and ∥ · ∥op.

2.1 Wasserstein space and continuity equation

Here we summarize some of the basics of optimal transport that underlie our analysis. We denote the set
of probability measures on X with finite second moments as P2(X ). For any µ ∈ P2(X ), we express the
set of measurable functions f : X → X with

∫
∥f∥2dµ < ∞ as L2(µ), with its norm and inner product

as ∥ · ∥L2(µ) and ⟨·, ·⟩L2(µ). Given a measurable map T : X → X and µ, we denote the pushforward
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measure of µ by T as T#µ ∈ P2(X ), which is characterized by
∫
ϕ(T (x))dµ(x) =

∫
ϕ(y)dT#µ(y) for any

measurable and bounded function ϕ. Given µ, ν ∈ P2(X ), the Wasserstein distance between µ and ν is
defined as W 2

2 (µ, ν) = infs∈S(µ,ν)
∫
∥x− y∥2ds(x, y), where S(µ, ν) is the set of couplings between µ and ν.

This distance defines a metric on P2(X ), making (P2(X ),W2) the Wasserstein space, which is complete and
separable.

Now we introduce a continuous equation. Let T > 0 and consider a weakly continuous map µ : (0, T ) →
P2(X ), t 7→ µt. The family (µt)t∈(0,T ) satisfies a continuity equation if there exists (vt)t∈(0,T ) such that
vt ∈ L2(µt) and ∂µt

∂t + div(µtvt) = 0 holds in the distribution sense (see Appendix B.1 for the formal
meaning of distribution sense). A family (µt)t∈(0,T ) that satisfies a continuity equation with integrable
∥vt∥L2(µt) over (0, T ) is referred to as absolutely continuous. Conversely, one can construct an absolutely
continuous (µt)t∈(0,T ) by selecting (vt)t∈(0,T ) such that they meet the above condition.

While the Wasserstein space does not inherently possess the characteristics of a Riemannian manifold,
it can be endowed with a Riemannian structure and interpretation (Otto, 2001). In this interpretation,
the tangent space of P2(X ) at µt, denoted as Tµt

P2(X ), forms a subset of L2(µt). When considering all
possible (vt)t∈(0,T ), we call vt that exhibits the minimal L2(µt) norm as the velocity field of (µt)t∈(0,T ). This
minimality condition can be characterized by the requirement that vt ∈ TµtP2(X )(⊂ L2(µt)).

2.2 Sampling-based Approximation via Gradient flow of KL divergence

We aim to obtain samples from the density π(x) ∝ e−V (x) in P2(X ) under the following assumption for the
potential function V : X → R.
Assumption 1. The Hessian of V ∈ C2(X ), HV , satisfies ∥HV ∥op ≤ L.

This task can be formulated as the optimization problem over a functional space, i.e., minimizing a functional,
KL divergence of µ from π defined on Wasserstein space, that is,

min
µ∈P2(X )

KL(µ|π), KL(µ|π) :=
∫

log dµ
dπ (x)dµ(x), (1)

where KL(·|π) : P2(X )→ [0,+∞), µ 7→ KL(µ|π) and µ is absolutely continuous with respect to (with respect
to) π. Thus, Radon–Nikodym 1 derivative dµ/dπ is available (KL(µ|π) = +∞ otherwise).

As a method for solving Eq. (1), a gradient-descent-like algorithm utilizing the differential structure of the
Wasserstein space and continuous equations (see Section 2.1) is often employed. Let the Wasserstein gradient
of KL(µ|π) at µ be ∇W2KL(µ|π) (the formal definition is presented in Appendix B.1). We then consider
how KL(µ|π) evolves by the continuity equation, i.e.,

d
dtKL(µt|π) = ⟨∇W2KL(µt|π), vt⟩L2(µt) , (2)

which shows that KL(µ|π) is minimized by choosing vt such that ⟨∇W2KL(µt|π), vt⟩L2(µt) ≤ 0 and using the
continuity equation. A natural choice is to use the Wasserstein gradient itself as vt = −∇W2KL(µt|π), which
results in d

dt KL(µ|π) = −∥∇W2KL(µt|π)∥2
L2(µt) ≤ 0. According to the fact that the Wasserstein gradient of

KL divergence is obtained as ∇W2KL(µ|π) = ∇ log µ
π ∈ L

2(µ) (Ambrosio et al., 2005), we have

d
dtKL(µt|π) = −

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
. (3)

Many existing studies analyzed Eq. (3) under the following assumption (Bakry et al., 2013).
Assumption 2. We say that the target distribution π satisfies the LSI, if, for any µ ∈ P2(X ), there exists
a positive constant CLS such that

KL(µ|π) ≤ 1
CLS

∥∥∥∇ log µ
π

∥∥∥2

L2(µ)
. (4)

1Suppose that µ is absolutely continuous with respect to π, i.e., µ ≪ π. Then, there exists a function f such that, for any
measurable set A, µ(A) =

∫
A

f(x)dπ(x). This function f is referred to as the Radon–Nikodym derivative of µ with respect to
π, denoted by f = dµ/dπ (Durrett, 2019).
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With the above inequality and Eq. (3), we have KL(µt|π) ≤ e−CLStKL(µ0|π), which implies linear conver-
gence. However, it is difficult to deal with the continuous-time equation of Eq. (3), and thus discretization
such as a forward Euler discretization (Ambrosio et al., 2005) is often used. This recursion is given by

µt+1 =
(
I − γt∇ log µt

π

)
#µt, (5)

at each iteration t 2, where γt > 0 is a stepsize and I is the identity map.

2.3 Stein variational gradient descent

Performing optimization based on Eq. (5) is still difficult because µ is often intractable and thus ∇ log µ
π is

hard to compute. SVGD is one of the alternative gradient flow approaches to avoid this issue by projecting
∇ log µ

π into the reproducing kernel Hilbert space (RKHS) by a kernel function.

Here, we briefly summarize the fundamental operations on the RKHS. Let k : X × X → R be a symmetric
and positive semi-definite kernel and H0 be its corresponding RKHS of real-valued functions X → R.
The inner product within H0 is denoted as ⟨·, ·⟩H0 , which satisfies f(x) = ⟨f, k(·, x)⟩H0

(∀f ∈ H0) by
the reproducing property of H0. We also define H as the Cartesian product of H0, whose elements are
expressed as f = (f1, . . . , fd) where fi ∈ H0 for i = 1, . . . , d. The inner product of f, g ∈ H is given by
⟨f, g⟩H =

∑d
i=1 ⟨fi, gi⟩H0

. If µ ∈ P2(X ) and
∫
k(x, x)dµ(x) < ∞, the integral operator associated to k

and µ can be defined as Sµ,kf(x) :=
∫
k(y, x)f(y)dµ(y), where Sµ,k : L2(µ) → H and thus H ⊂ L2(µ) 3.

We further define the inclusion map as ι : H → L2(µ), which is the adjoint of Sµ,k. Under the map ι, for
f ∈ L2(µ) and g ∈ H, we have ⟨f, ιg⟩L2(µ) = ⟨ι∗f, g⟩H = ⟨Sµ,kf, g⟩H, where ι∗ is the adjoint of ι. We finally
define the mapping function Pµ,k : L2(µ)→ L2(µ), where Pµ,k = ιSµ,k.

In SVGD, instead of using the Wasserstein gradient ∇ log µ
π , we employ −Pµ,k∇ log µ

π as vt in Eq. (2), leading
to the following discretized dynamics:

µt+1 =
(
I − γtPµ,k∇ log µt

π

)
#µt. (6)

The difference from Eq. (5) is that ∇ log µ
π is mapped by Pµ,k. If a kernel function satisfies

lim∥x∥→∞ k(x, ·)π(x) = 0, by using an integration by parts (Liu, 2017), we can obtain Pµ,k∇ log µ
π (x) :=

−
∫

[∇ log π(y)k(y, x) +∇yk(y, x)]dµ(y). By focusing on the continuous dynamics of the KL divergence, we
have

d
dtKL(µt|π) = −

〈
∇ log µt

π
, Pµt,k∇ log µt

π

〉
L2(µt)

= −
∥∥∥Sµt,k∇ log µt

π

∥∥∥2

H
=: −Istein(µt|π),

where Istein(µt|π) is called as the Stein–Fisher (SF) information (Duncan et al., 2023). It is known that
the square root of the SF information corresponds to the KSD. Now it is tempting to consider whether the
inequality similar to LSI in Eq. (4) holds for the SF information presented below:

KL(µ|π) ≤ cIstein(µ|π), (7)

where c is some positive constant. If this inequality holds, the linear convergence of SVGD holds. Unfortu-
nately, the conditions for the validity of this inequality are not as evident as in the case of LSI and Duncan
et al. (2023) has shown that Eq. (7) may not hold in many practical models with kernel functions like the
RBF kernel, where the tail of π is exponential. Hence, showing the linear convergence of KL divergence in
the geometry of H is not straightforward. We refer to Liu (2017) and Duncan et al. (2023) for a detailed
discussion of the geometry of SVGD.

Recently, Salim et al. (2022) showed the descent lemma, KL(µt+1|π) ≤ KL(µt|π) − cγIstein(µt|π) holds
where c is some positive constant that depends on the problem. Although we can obtain the convergence in
KSD from this inequality, the convergence KSD not necessarily means the weak convergence as discussed in
Gorham & Mackey (2017).

2For the sake of readability, we adopt t to express both continuous and discrete time.
3We introduce Sµ,k for vector inputs f = (f1, . . . , fd). When f is a scalar (d = 1), for simplicity, we consider Sµ,k to be

defined as applied to a single element, i.e., Sµ,k : L2
0(µ) → H0, allowing us to abuse the notation, where L2

0(µ) is the set of a
measurable function f1 : X → R with

∫
f2

1 dµ < ∞.
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3 Approximate gradient flow

Here, we introduce a new concept of approximation for the Wasserstein gradient, (ϵ, δ)-approximate gradient
flows (AGF). We then analyze the convergence of the KL divergence under our concept.

3.1 (ϵ, δ)-approximate gradient flow

Let us assume that a gradient flow on the Wasserstein space exists, which is induced by some velocity vt =
gµt

(x) ∈ L2(µt) for x ∈ X . Here, gµt
(x) represents a function of x only depending on µt. In the continuous-

time setting, such a gradient flow is obtained via the continuity equation given as ∂µt

∂t + div(µtgµt
(x)) = 0.

Under mild growth and regularity assumptions on gµt
(x) (Ambrosio et al., 2005; Bonnet & Frankowska,

2021), the existence and uniqueness of a gradient flow by gµt is guaranteed. When considering discrete time,
we assume that the recursion µt+1 = (I − γtgµt) #µt exists, which is similar to Eq. (6).

In the presence of these, we consider the time evolution of KL(µt|π) under the velocity vt = gµt
(x) as in

Section 2.2. In the continuous-time setting, we assume that d
dt KL(µt|π) =

〈
∇ log µt

π , gµt

〉
L2(µt). As for the

discrete-time setting, we assume the following inequality with a kind of descent property:

KL(µt+1|π) ≤ KL(µt|π)− ηt

〈
∇ log µt

π
, gµt

〉
L2(µt)

, (8)

where ηt is some positive constant. Such a descent property holds both in the Wasserstein gradient flow
(Ambrosio et al., 2005) and in SVGD as shown in Section 2.3.

From the above two (in)equalities, we can anticipate that when gµt(x) exhibits behavior close to that of
∇ log µt

π (x), i.e.,
〈
∇ log µt

π , gµt

〉
L2(µt) ≥ 0 is satisfied (recall the cosine similarity in the finite-dimensional

case), the KL divergence does not increase with t. In SVGD, for example, we set gµt
= Pµt,k∇ log µt

π , which
satisfies

〈
∇ log µt

π , gµt

〉
L2(µt) = Istein(µt|π) ≥ 0.

However, the condition
〈
∇ log µt

π , gµt

〉
L2(µt) ≥ 0 is insufficient for explicitly analyzing the convergence rate

since it doesn’t convey how accurate the approximation via gµt
is. To overcome this situation, we introduce

a new concept of the similarity between ∇ log µt

π (x) and gµt
(x) as follows.

Definition 1. Suppose that ∇ log µt

π (x) < ∞ (a.e.) and ∥∇ log µt

π ∥L2(µt) < ∞ for all t. Then, we say a
function gµt(x) ∈ L2(µt) is (ϵt, δt)-AGF if the following condition holds:

−
〈
∇ log µt

π
, gµt

〉
L2(µt)

≤ −ϵt
∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
+ δt, (9)

where ϵt, δt ≥ 0.

Eq. (9) evaluates the approximation quality of gµt
(x) for ∇ log µt

π via {ϵt, δt}, where ϵt and δt express the
relative and absolute bias of approximating ∇ log µt

π by gµt(x), respectively. This definition is motivated by
the inexact gradient descent methods in finite-dimensional parameter space such as (Jaggi, 2013; Schmidt
et al., 2011) and unifies some existing approximate flow methods (see Section 3.2).

Using the (ϵt, δt)-AGF, we can analyze the convergence in KL divergence qualitatively as follows.
Lemma 1. Suppose that Assumption 2 is satisfied. Then, under Eq. (8), for any T ∈ N, we obtain
KL(µT |π) ≤

∏T −1
t=0 (1− ηtϵtCLS)KL(µ0|π) +

∑T −1
t=0 δtηt

∏T −1
j=t+1(1− ηjϵjCLS).

Proof. By substituting Eq. (8) into Eq. (9) and applying the LSI, we obtain KL(µt+1|π) ≤ (1 −
ηtϵtCLS)KL(µt|π) + ηtδt. By induction in the above, we obtain the claim.

This lemma shows that ϵt and δt (as well as ηt) significantly impact the convergence rate.
Remark 1. When δt = 0 and ηtϵt is independent of t, linear convergence is achieved, indicating that gµt

(x)
provides a precise approximation of ∇ log µt

π . When δ = 0 and ηtϵt = O(1/tα) with a constant α ∈ (0, 1], it
indicates sub-linear convergence, which implies that the approximation quality is not so significant but it is
enough to ensure the convergence in KL divergence.
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Remark 2. If δt ̸= 0, the convergence is biased in terms of KL divergence. However, by employing the
technique in Lee et al. (2022), it remains feasible to mitigate the impact of bias on total variation.

3.2 Relation to existing approximate functional gradient flows

We now position our (ϵ, δ)-AGF framework as a general tool for analyzing a wide range of approximate
functional gradient methods. We demonstrate that it not only provides a unified lens to interpret existing
work but also clarifies the novelty of our analytical approach itself.

Dong et al. (2022) proposed the preconditioned functional gradient flow, where they considered approximat-
ing ∇ log µt

π by neural networks (NNs). The authors also assumed that gµt(x), which is the output of NNs,
satisfies ∥∥∥gµt

−∇ log µt

π

∥∥∥2

L2(µt)
≤ ϵ

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
, (10)

where ϵ < 1. This corresponds to a special case of our AGF with ϵt := (1 − ϵ)/2 and δt := 0, as confirmed
by expanding the left-hand side of Eq. (10). According to Remark 1, the above inequality implies linear
convergence in KL divergence. However, their method requires re-training NNs at each iteration, which
yields difficulty in ensuring δ = 0 in practice. Conversely, it later becomes evident that SVGD achieves
δt = 0 by using a kernel function that meets some conditions.

Lee et al. (2022; 2023) studied the score based diffusion models assuming that gµt
(x) = s(x) + logµt(x),

where the ∇ log π(x) in the Wasserstein gradient is approximated with some measurable function s(x) that
satisfies ∥∥∥(s(·) + logµt)−∇ log µt

π

∥∥∥2

L2(µt)
≤ δ. (11)

The equation above corresponds to our AGF with ϵt = 0, which signifies the presence of bias in the KL
divergence (see Remark 2).

From the perspective of convergence analysis, the significant difference between these studies lies in the
treatment of {ϵ, δ}. The convergence analysis in Dong et al. (2022), Lee et al. (2022), and Lee et al. (2023)
assumes that gµt

achieves sufficiently small ϵ or δ according to the criteria in Eq. (10) or (11). In our study,
we take the opposite approach — identifying {ϵ, δ} that SVGD achieves under the AGF, and then evaluating
its convergence properties.

Furthermore, this framework provides a structured path for future research. By decomposing the approxima-
tion error into ϵt that primarily governs the convergence rate and δt that introduces a final bias (as noted in
Remarks 1 and 2), it allows for a more precise diagnosis and comparison of new and existing algorithms. This
offers a more systematic methodology to guide future algorithmic improvements and theoretical analyses.

4 Application to Stein variational gradient descent

In this section, we present the main result, the convergence of SVGD in KL divergence, obtained by applying
the concept of (ϵ, δ)-AGF, and provide an overview of the proofs. Here, µt represents the t-th output of the
SVGD algorithm, where t ∈ N is the number of iterations as shown in Eq. (6).

4.1 Sub-linear convergence of SVGD in KL divergence

Our analyses are based on the following assumptions concerning the kernel function k.
Assumption 3. The feature map ∇k(·, x) : X → H is continuous. Moreover, for all x ∈ X , there exists
B > 0 such that ∥k(·, x)∥H0 ≤ B,

∑d
i=1 ∥∂ik(·, x)∥2

H0
≤ B2, and

∑d
i,j=1 ∥∂i∂jk(·, x)∥H0 ≤ B2 hold.

Assumption 4. The kernel k is integrally strictly positive definite (ISPD), which means that∫ ∫
k(x, y)dρ(x)dρ(y) > 0 holds for all finite nonzero signed Borel measures ρ.

Assumption 5. The trace of a kernel is bounded for any µ ∈ P2(X ), i.e.,
∫
k(x, x)dµ(x) <∞.
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Figure 1: Behavior of eigenvalues λt = {λi,t}m
i=1 (first row) and the dynamic time warping (DTW) (second

row) when we use the RBF kernel for SVGD with 1000 particles (m = 1000) in the multivariate normal
experiments, where the symbols m and t represent the number of particles and the (discrete) time steps,
respectively. The term β corresponds to the factor of learning rate decay (see Section 5 for the details of the
experimental settings). The eigenvalues were measured in increments of 100 for every iteration. We show
the results up to the point where the KL divergence has not converged (t = 200 to 103), as well as the results
after convergence (t = 104, 105) according to Figure 4.

Under Assumption 5, the Hilbert–Schimidt operator Pµ,k has positive eigenvalues {λi} (see Section 4.2 and
Appendix C). We thus further pose the following assumption according to this fact.
Assumption 6. Eigenvalues {λi} are constant order with respect to t and strictly positive, i.e., there exist
upper and lower bounds for {λi} that are independent of t and are greater than 0.

Assumptions 3-6 are satisfied in the RBF kernel commonly employed in SVGD. A detailed discussion of
these assumptions can be found in Appendix A.

We now show the main contribution of this paper, which establishes the sub-linear convergence of SVGD in
KL divergence.
Theorem 1. Suppose that Assumptions 1-6 are satisfied. Let α > 1 and the stepsize γt satisfies γt ≤
O(1/t2/3) and γt ≤ (α− 1)αB2(1 + ∥∇V (0) +LEπ∥x∥+L

√
2C−1

LS KL(µ0|π))(=: Cγ) for all t. Then, SVGD
is (c0, 0)-AGF and for any T ∈ N, we have

KL(µT |π) ≤
T −1∏
t=0

(1− c0γt) KL(µ0|π), (12)

where c0(> 0) is a problem-dependent constant that is independent of t.

This theorem guarantees the sub-linear convergence of SVGD in KL divergence because limt→∞
KL(µt+1|π)

KL(µt|π) =
limt→∞ 1− c0γt = 1. Moreover, by setting γt = c1

t for some positive constant c1 in the above, for example,
we obtain KL(µT |π) ≤ KL(µ0|π)

T c1c0 .
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Figure 2: Behavior of eigenvalues λt = {λi,t}m
i=1 (first row) and the dynamic time warping (DTW) (second

row) when we use the RBF kernel for SVGD with 1000 particles (m = 1000) in the Gaussian mixture
experiments. We show the results up to the point where the KL divergence has not converged (t = 200 to
103), as well as the results after convergence (t = 104, 105) according to Figure 6.

Before outlining the proof, we position our results in comparison to existing studies. As suggested by Korba
et al. (2021) and Duncan et al. (2023), it is difficult for SVGD to achieve linear convergence in KL divergence
and the difficulty also surfaces in our analysis. To show our results, the step size must be γt ≤ O(1/t2/3)
to control ∥∇ log µt

π ∥L2(µt), which highlights the difficulty of achieving convergence faster than sub-linear
order. While Huang et al. (2023) has shown the linear convergence in a continuous-time setting, the kernel
function utilized in their study is specifically designed to guarantee linear convergence and thus it is not
commonly employed in practice. On the other hand, our result is established within the discrete time setting
that corresponds to the SVGD algorithm, under realistic assumptions commonly met by the RBF kernel
frequently adopted in SVGD.

Expanding our sight to other deterministic sampling methods based on kernel functions, sub-linear conver-
gence has been demonstrated in the kernel herding (e.g., Chen et al. (2010); Bach et al. (2012)) and Bayesian
Quadrature context (e.g., Briol et al. (2015); Futami et al. (2019)) when employing infinite-dimensional kernel
functions like the RBF kernel. Our results are consistent with these facts.

4.2 Spectral decomposition and (ϵ, δ)-approximation

The main objective here is to provide an overview of the proof focusing on how we detect ϵt and δt in the
AGF. The complete proof is in Appendix C.

To conduct analyses based on our AGF, we need to show that
∥∥∇ log µt

π

∥∥
L2(µt) is bounded for all t in SVGD,

which is guaranteed by the following lemma (see Appendix C.2 for complete proof).
Lemma 2. Suppose that Assumptions 1-3 and 5 are satisfied. Let γt satisfies γt ≤ Cγ defined in Theorem 1.
Then, there exists a positive problem-dependent constant c and is independent of t such that, for any t ∈ (0, T ]
we have

∥∥∇ log µt

π

∥∥
L2(µt) ≤

∥∥∇ log µ0
π

∥∥
L2(µ0) + c

∑t−1
k=0 γk.
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Now we are ready to begin the analysis of the convergence of SVGD based on AGF. Substituting gµt
(x) =

Pµt,k∇ log µt

π into Eq. (9) and multiplying both sides by ηt(> 0) yields

−ηt

〈
∇ log µt

π
, Pµt,k∇ log µt

π

〉
L2(µt)

= −ηtIstein(µt|π) ≤ −ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
+ ηtδt. (13)

According to the fact that ηtIstein(µt|π) ≤ KL(µ0|π) (see Appendix C), we further obtain the following
inequalities:

KL(µ0|π) ≥ ηtIstein(µt|π) ≥ ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
− ηtδt. (14)

Therefore, our goal is to guarantee the existence of the above inequality. If Eq. (14) exists, we can qualitatively
analyze the convergence in KL divergence by specifying {ϵt, δt} and utilizing the property of AGF shown in
Lemma 1 and Remarks 1 and 2.

To focus on the discussion for detecting {ϵ, δ}, we first mention the necessary conditions for the existence of
Eq. (14) with respect to ηt under our final results. As can be seen from Theorem 1, we obtain ϵt = c0 and
δt = 0 through the proof that we explain later, where c0 is independent of t. In this case, from Eq. (13), it
is necessary for ηt

∥∥∇ log µt

π

∥∥2
L2(µt) to be uniformly upper bounded with respect to t to compensate for the

convergence based on AGF. This condition can be satisfied by setting ηt such that it fulfills γt ≤ O(1/t2/3)
from Lemma 2 (see Appendix C for this derivation).

Our strategy is to show the boundedness of the following equality expressed as

ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
− ηtIstein(µt|π) = ηt

〈
∇ log µt

π
, (ϵtI − Pµt,k)∇ log µt

π

〉
L2(µt)

. (15)

We adopt the spectral decomposition of the kernel operator to analyze the above. Since a Hilbert–Schmidt
operator Pµ,k is compact and self-adjoint, we have, for all i, Pµ,kϕi = λiϕi, where ϕi ∈ L2(µ) represents an
eigenfunction that satisfies a complete orthonormal system (CONS), and λi is an eigenvalue corresponding
to ϕi. Even if these eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . > 0, it does not compromise generality.
Moreover, the kernel function can be decomposed into k(x, y) =

∑∞
i=1 λiϕi(x)ϕi(y), where the convergence

of this infinite series holds in the norm of ∥ · ∥L2(µ).

Defining vt := ∇ log µt

π for simplicity in notation, we can obtain vt =
∑∞

i=1 ⟨vt, ϕi⟩L2(µ) ϕi and Pµ,kvt =∑∞
i=1 λi ⟨vt, ϕi⟩L2(µ) ϕi because the kernel function is dense in L2(µ) and thus its eigenvectors are complete.

We provide the discussion for non-complete eigenvectors in Appendix A. Substituting these equalities into
Eq. (15), we have

ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
− ηtIstein(µt|π) = ηt

∞∑
i=1

(ϵt − λi) ⟨vt, ϕi⟩2L2(µt) . (16)

In the right-hand side term of the above, there exists a index 1 < j such that λj > ϵt > λj+1
by setting sufficiently small ϵt. Hence, by regularizing {⟨vt, ϕi⟩2L2(µt)}∞

i=1, we can render the left-hand
side of Eq. (16) negative. For that purpose, we focus on the RKHS associated with k given as H ={
f ∈ L2(µ) | f =

∑∞
i=1 aiϕi,

∑∞
i=1 λ

−1
i ∥ai∥2 <∞, ai ∈ R

}
, where H is dense in L2(µ). In this RKHS, there

exists a function v
(l)
t ∈ H such that the sequence of v(l)

t → vt as l → ∞ in L2(µ) norm. Thus, by approxi-
mating the original vt with v

(l)
t in H, we can regularize {⟨vt, ϕi⟩2L2(µt)}∞

i=1.

Under the regularized {⟨vt, ϕi⟩2L2(µt)}∞
i=1 in the above and sufficiently small ϵt, we can obtain

ϵtηt

∥∥∇ log µt

π

∥∥2
L2(µt) − ηtIstein(µt|π) < 0, which implies that δt = 0 in the AGF. From Assumption 6,

we can show that ϵt is the constant order with respect to t and express it as c0 (see Appendix C). This
concludes the proof outline.
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Figure 3: The convergence behavior in terms of KL(µT |π) and 1
T

∑T
t=1 Istein(µt|π) for all T under two-

dimensional Gaussian distribution experiments (β = 0.67 ≈ 2/3).

Figure 4: Convergence in KL(µT |π) and 1
T

∑T
t=1 Istein(µt|π) for all T under different particles and stepsize

settings (β = {0., 0.5, 0.67, 1.}).

5 Numerical experiments

In this section, we aim to confirm the validity of our theoretical results. We only show the results of the
two-dimensional Gaussian experiments due to the page limitation. The details of the experimental settings
and additional results including the Gaussian mixture can be seen in Appendix E.

We set the target distribution as the two-dimensional Gaussian distribution. We adopted the RBF kernel
k(x, y) = exp( 1

h∥x − x
′∥2

2), which is commonly used in practice and satisfies the assumptions in Section 4.
The bandwidth h was selected by the median trick as in Liu & Wang (2016). To appropriately verify
our theoretical analysis, we simply set the decaying step size γt = 1/(1 + tβ)(= O(1/tβ)) suggested by
Theorem 1 and did not use the Adagrad-based stepsize, which is adopted in related studies such as Korba
et al. (2021) and others. We evaluated the KL divergence: KL(µT |π) and the cumulative mean of KSD:
1
T

∑T
t=1 Istein(µt|π), which are theoretically guaranteed sub-linear convergence.

Results: From Figures 3 and 4, we can see that SVGD with the RBF kernel tends to achieve sub-linear
convergence both in KL(µT |π) and in 1

T

∑T
t=1 Istein(µt|π), which supports Theorem 1. These results also

offer two key takeaways for practitioners.
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First, the empirical support for our Theorem 1 gives practitioners greater confidence that SVGD is indeed
converging towards the target distribution in terms of KL divergence. Furthermore, our use of a theoretically-
grounded step-size schedule, γt = 1/(1 + tβ), offers a principled alternative to purely heuristic choices, which
is a common challenge in practice.

Second, our experiments reveal a critical and non-intuitive trade-off between the number of particles and
convergence dynamics. As expected, increasing the number of particles reduces the final bias in the KL
divergence, since the approximation error δt in our AGF framework becomes smaller. However, we observe
that employing a substantial number of particles leads to slower convergence for both KSD and KL diver-
gence. This phenomenon is attributed to the properties of the RBF kernel; with more particles, the kernel
operator Pµ,k has more exceedingly small eigenvalues, which correspond to directions in the function space
where the gradient signal is weak, thus hindering the optimization process (see Appendix E for details). This
presents a crucial trade-off for practitioners: for a given computational budget, one must choose between
faster convergence to a slightly more biased solution (using fewer particles) and slower convergence to a more
accurate, lower-bias solution (using more particles). This choice directly depends on the specific application’s
requirements for accuracy versus computational efficiency.

6 Limitation & Conclusion

Ensuring the convergence of SVGD in KL divergence has proven challenging in finite and infinite particle
settings. Furthermore, while many studies have provided convergence guarantees for SVGD in KSD, these
do not necessarily ensure its weak convergence. As a first strategy to address this issue, we conducted
the convergence analysis of SVGD under the ideal conditions of an infinite particle setting that guarantees
an accurate gradient approximation. Then, we successfully elucidated the convergence of SVGD in KL
divergence in this setting. Our finding suggests weak convergence of SVGD with infinite particles, affirming
its capability to approximate the expectation by the target distribution without bias, akin to MCMC.

One of limitations in our paper is the challenge in furnishing a theoretical explanation for the convergence
of SVGD when employing a finite number of particles. Extending our analysis to finite particle settings
using AGF is being considered as our future study. The main challenge in this extension is expected to
be in determining the values of ϵ and δ, primarily due to the unknown theoretical properties of gradient
approximation on RKHS when dealing with correlated particles, as far as our current knowledge extends.
Given these theoretical hurdles, an empirical characterization of the bias term δt for finite, correlated particles
would be a valuable, albeit challenging, component of this future work.

Another limitation is that Assumption 6 is rather strong. This assumption, introduced to ensure that c0
remains of constant order with respect to t, is difficult to justify in the infinite particle setting. The pursuit
of convergence guarantees grounded in milder assumptions represents a crucial avenue for future research.
Furthermore, we aspire for this study to catalyze further research endeavors that aim to furnish better
convergence guarantee for SVGD in KL divergence.
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A Discussion regarding the assumptions

It should be mentioned that Assumptions 3-5 is satisfied in the RBF kernel commonly used in SVGD.
Assumption 3 requires the bounded twice differentiability of the kernel, which is stronger than existing work
(Salim et al., 2022) but is required to control ∥∇ log µt

π ∥L2(µt) in Lemma 2. The existence of the constant
B in this assumption depends on the choice of bandwidth for the RBF kernel and can be guaranteed by
adopting standard selection methods such as the median trick (Liu & Wang, 2016). Assumption 5 holds true
since the RBF kernel satisfies

∫
k(x, x)dµt(x) = 1. Assumption 6 is a crucial technical condition required

to prove Theorem 1. As outlined in Section 4.2 and detailed in the full proof in Appendix C, our analysis
aims to show that SVGD is a (c0, 0)-AGF, where c0 is a constant independent of the iteration time t. This
constant c0 is derived from the eigenvalues λi of the kernel operator. If the eigenvalues were allowed to
decay to zero as t→∞, then the relative approximation quality ϵt (which we show is a constant c0) would
also decay. This would prevent us from applying the LSI to obtain the final sub-linear convergence rate.
Thus, the assumption of time-invariant positive bounds on the eigenvalues is what allows us to establish a
time-independent ϵt = c0 > 0.

While formally proving this assumption in the infinite-particle setting is challenging, we, at the very least,
provide empirical justification in Appendix E. As our numerical experiments show (see Figures Figures 9-12),
the eigenvalues tend to become independent of time as the number of particles increases, supporting the use
of this assumption as a plausible idealization at least in the Gaussian and Gaussian mixture distribution
estimation experiments. The need for better proof remains an important future task.

Assumption 4 assures that the projection Pµ,k is injective and characteristic (Sriperumbudur et al., 2010),
and also implies certain types of universality (Sriperumbudur et al., 2011), which hold in the RBF kernel.
Thanks to these properties, we can expand the Wasserstein gradient via the eigenvectors as Eq. (16) since
the eigenvectors of Pµ,k can be CONS in L2(µ). Furthermore, SVGD ensures δt = 0 under Assumption 4,
a critical condition for convergence in KL divergence (see Section 3.2), which sets it apart from other
approximate flow methods that face challenges in achieving δt = 0. From these discussions, it is apparent
that Assumption 4 plays a pivotal role to guarantee sub-linear convergence of SVGD in KL divergence, while
being a stronger assumption than in existing studies (Korba et al., 2020; Salim et al., 2022; Sun et al., 2023).

If the eigenvectors of Pµ,k is not CONS in L2(µ), there is a bias to approximate vt := ∇ log µt

π in RKHS.
For instance, when we consider the null space of Pµ,k as Null(Pµ,k) := {f ∈ L2(µ)|Pµ,kf = 0}, we have
vt =

∑∞
i=1 ⟨vt, ϕi⟩L2(µ) ϕi + Ψ, where Ψ ∈ Null(Pµ,k) is some appropriately chosen function. In this case,

we can express the right-hand side of Eq. (15) as ηt

∑∞
i=1(ϵt − λi) ⟨vt, ϕi⟩2L2(µ) + ηt∥Ψ∥2

L2(µ), which implies
δt = ∥Ψ∥2

L2(µ)(̸= 0) in the AGF. Thus, from Remark 2, the KL divergence does not go to 0 even when
we increase T . Such cases may arise when using linear or polynomial kernels in SVGD since these do not
satisfy Assumption 4. Also, the eigenvectors are not guaranteed to be CONS when using a finite number of
particles. If we draw m independent and identically distributed (i.i.d.) samples from µ(x) and approximate
the kernel operator, we can only access the first m-dimensional eigenvectors (Rosasco et al., 2010) and thus
corresponding eigenvectors cannot be CONS in L2(µ). Note that when considering the SVGD with finite
particles, since the particles are not i.i.d. and correlated significantly, the approximation quality is much
worse than the case of i.i.d. particles and results in larger δt.

B Preliminaries

B.1 Gradient flow

We are interested in sampling from the density π ∈ P2(X ) and proportional as π ∝ exp−V (x), where
V : X → R. We assume that V ∈ C2(X ) and its Hessian HV satisfies ∥HV ∥op ≤ L.

We are interested in sampling from π and formalizing the task as the optimization problem. For that purpose,
We define the Kullback-Leibler (KL) divergence. For any µ, π ∈ P2(X ), KL divergence of µ w.r.t π is defined
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by

KL(µ|π) :=
∫

log dµ
dπ (x)dµ(x), (17)

if µ is absolutely continuous w.r.t π and admits Radon-Nikodym derivative dµ/dπ and KL(µ|π) = +∞
otherwise. We consider a functional KL(·|π) : P2(X )→ [0,+∞), µ→ KL(µ|π) defined on over Wasserstein
space:

min
µ∈P2(X )

F(µ), F(µ) := KL(µ|π). (18)

The advantage of using Wasserstein space is its differential structure to minimize this kind of functional.

Before introducing the differential structure, we introduce the continuous map. Let T > 0 and consider a
weakly continuous map µ : (0, T )→ P2(X ), t→ µt. The family (µt)t∈(0,T ) satisfies a continuity equation if
there exists (vt)t∈(0,T ) such that vt ∈ L2(µt):

∂µt

∂t
+ div(µtvt) = 0, (19)

holds in the sense of distributions, i.e., for any ϕ ∈ C∞
c (X ),

d
dt

∫
ϕ(x)dµt(x) = ⟨∇ϕ, vt⟩L2(µt) =

∫
⟨∇ϕ(x), vt(x)⟩dµt(x), (20)

holds for any t ∈ (0, T ). And by integration parts, we have∫
ϕ(x)∂µt(x)

∂t
+
∫
ϕ(x)div(µt(x)vt(x)) = 0. (21)

Although the Wasserstein space is not a Riemannian manifold, it can be equipped with a Riemannian
structure and interpretation (Otto, 2001) and the tangent space of P2(X ) at µt denoted Tµt

P2(X ) is a subset
of L2(µt). Under this setting, among all possible (vt)t∈(0,T ), we call vt that has the minimal L2(µt) norm as
the velocity field of (µt)t∈(0,T ) and this minimality condition can be characterized by vt ∈ TµtP2(X ) ⊂ L2(µt).

To select the appropriate (vt)t∈(0,T ), it is useful to use the differential structure of the Wasserstein space.
Assume that given a proper lower semi-continuous functional F : P2(X ) → R and µ ∈ P2(X ), ξ ∈ L2(µ) is
a strong sub-differential of F at µ if for every ϕ ∈ L2(µ) and for every ϵ ∈ (0, 1],

F(µ) + ϵ ⟨ξ, ϕ⟩L2(µ) + o(ϵ) ≤ F((I + ϵϕ)#µ). (22)

where I is the identity map.

Then the important consequence is that under the mild regularity conditions, W2 gradient of F corresponds
to the first variation of the functional. Assume that given a functional F : P2(X )→ R, we call δF

δµ (µ) as the
first variation of F at µ ∫

δF
δµ

(µ)ϕdξ = d
dϵF(µ+ ϵξ)

∣∣∣
ϵ=0

= lim
ϵ→0

F(µ+ ϵξ)−F(µ)
ϵ

, (23)

for all ξ = ν − µ where ν ∈ P2(X ).

From Lemma 10.4.1 in Ambrosio et al. (2005), given µ ∈ P2(X ), which is absolutely continuous with respect
to the Lebesgue measure and its density is C1(X ) and assume that ∇W2F(µ)(x) belongs to the strong
sub-differential of F at µ. Then it is given as

∇W2F(µ)(x) = ∇δF
δµ

(µ)(x) for µ− a.e. x ∈ Rd, (24)
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and, for every vector field ξ ∈ C∞
c (Rd,Rd),

⟨∇W2F(µ), ξ⟩L2(µ) = −
∫
Rd

∇δF
δµ

(µ)(x)div(µ(x)ξ(x))dx, (25)

where ∇W2F(µ) belongs to TµP(Rd), which is a subset of L2(µ).

Now we are ready to leverage this differential structure of the Wasserstein space to minimize the functional
F . We consider how F evolves by the continuity equation.

Ḟ(µt) := d
dtF(µt) = ⟨∇W2F(µt), vt⟩L2(µt) . (26)

Thus, by choosing vt such that ⟨∇W2F(µt), vt⟩L2(µt) ≤ 0, we can minimize the functional by using the
continuity equation. A natural choice is to use the Wasserstein gradient itself as vt = −∇W2F(µt), which
results in

Ḟ(µt) := d
dtF(µt) = −∥∇W2F(µt)∥2

L2(µt) ≤ 0. (27)

B.2 KL divergence

Now we focus on minimizing KL divergence. It is known that the Wasserstein gradient of the KL divergence
is given as ∇W2KL(µ|π) = ∇ log µ

π ∈ L
2(µ). Then by setting vt = −∇W2KL(µ|π) = −∇ log µ

π as the velocity
field of the continuity equation, we have that

d
dtKL(µt|π) = −

∥∥∥∇ log µ
π

∥∥∥2

L2(µt)
. (28)

When considering the forward discretization, we obtain the gradient descent algorithm in the Wasserstein
space

µt+1 =
(
I − γ∇ log µn

π

)
#µt, (29)

where γ > 0 is a stepsize.

To analyze this time evolution in the continuous dynamics, many existing work assumes that π satisfies the
logarithmic Sobolev inequality (LSI) (Bakry et al., 2013). The important consequence of this inequality is
that there exists a positive constant CLS such that

KL(µt|π) ≤ 1
CLS

∥∥∥∇ log µ
π

∥∥∥2

L2(µt)
. (30)

With this inequality, we have that

KL(µt|π) ≤ e−CLStKL(µ0|π). (31)

Thus, the Wasserstein gradient flow of the KL divergence achieves linear convergence.

How can we implement∇W2KL(µ|π) = ∇ log µ
π ∈ L

2(µ) in practice ? It is known that the Langevin dynamics
are given as

dXt = ∇ log π(Xt)dt+
√

2dBt, (32)

where dBt is the standard Brownian motion in Rd can be seen as the implementation of the Wasserstein
gradient flow in a probabilistic way. We can easily confirm that the probability density induced by SDE
of Eq. 32 is given as the Fokker–Planck(FP) equation and that of the FP equation is equivalent to the
continuity equation given by the Wasserstein gradient flow in a distributional sense Jordan et al. (1998).
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B.3 Stein variational gradient descent (SVGD)

The LD method was successfully used as an MCMC method, however, it suffers from large bias when using
obtained samples. To alleviate this, an alternative gradient flow approach has been developed. Among those
methods, SVGD has been used extensively in practice. Since SVGD is a kind of projection of the Wasserstein
gradient into the reproducing kernel Hilbert space (RKHS), here we first introduce the settings of RKHS.

Let a semi-positive definite kernel k : X ×X → R and H0 is its corresponding RKHS of real-valued functions
X → R. We express the inner product ⟨·, ·⟩H0 . Due to the reproducing property ∀f ∈ H0, f = ⟨f, k(x, ·)⟩H0

.
We define by H as the Cartesian product of H0, its element f ∈ H, f = (f1, . . . , fd) and fi ∈ H0 for
i = 1, . . . , d. Then the inner product of H is given as ⟨f, g⟩H =

∑d
i=1 ⟨fi, gi⟩H0

. Let µ ∈ P2(X ) and if∫
k(x, x)dµ(x) < ∞, then the integral operator associated to k and µ denoted by Sµ,k : L2(µ) → H is

defined as

Sµ,kf :=
∫
k(x, ·)f(x)dµ(x). (33)

By definition, note that H ⊂ L2(µ). We also define the inclusion map as ι : H → L2(µ) and it is the adjoint
of Sµ,k. Thus for f ∈ L2(µ) and g ∈ H, we have

⟨f, ιg⟩L2(µ) = ⟨ι∗f, g⟩H = ⟨Sµ,kf, g⟩H . (34)

We also define Pµ,k : L2(µ)→ L2(µ), Pµ,k = ιSµ,k.

In SVGD, instead of using the Wasserstein gradient directly, we consider using Pµ,k∇ log µ
π as vt. Then we

obtain the discretized dynamics of SVGD

µt+1 =
(
I − γPµ,k∇ log µn

π

)
#µt, (35)

and if the kernel satisfies lim∥x∥→∞ k(x, ·)π(x) = 0, we obtain

Pµ,k∇ log µ
π

(·) := −
∫

[∇ log π(x)k(x, ·) +∇xk(x, ·)]dµ(x), (36)

by using an integration by parts (Liu, 2017). Then, approximating the expectation of µ as in Liu & Wang
(2016), preparing initial samples {xm

0 }M
m=1 and iteratively updating them by a transformation, resulting in

xm
t+1 = xm

n −
1
M

M∑
m′=1

∇ log π(xm′

n )k(xm′

n , xm
n ) +∇xk(xm′

n , xm
n ), (37)

where we approximate µn by a finite set of particles µ̂n = 1
M

∑M
m=1 δxm

n
where δx is the Dirac measure

with its mass at x. Originally, Liu & Wang (2016) derived the push forward as follows. Assume that the
pushforward is given as T (x) = x−γϕ(x), where γ is a positive constant ϕ(·) ∈ H is a perturbation direction.
Then the update direction, which maximally decreases the Kullback–Leibler (KL) divergence between the
particles and the target distribution,

ϕ∗(x) = arg max
ϕ∈H,∥ϕ∥H≤1

{
− d

dγKL(T#µ|π)|γ=0

}
, (38)

then the solution of this is ϕ∗(·) = Sµ,k∇ log µ
π .

Going back to the continuous dynamics, we have
d
dtKL(µt|π) = −

〈
∇ log µt

π
, Pµt,k∇ log µt

π

〉
L2(µt)

= −
〈
ι∗∇ log µt

π
, Sµt,k∇ log µt

π

〉
H

= −
〈
Sµt,k∇ log µt

π
, Sµt,k∇ log µt

π

〉
H

= −
∥∥∥Sµt,k∇ log µt

π

∥∥∥2

H
:= −Istein(µ|π), (39)
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where Istein(µ|π) is called as the Stein–Fisher (SF) information (Duncan et al., 2023). It is known that the
square root of the SF information corresponds to the KSD. Then it is natural to examine the inequality like
LSI as follows:

KL(µ|π) ≤ cIstein(µ|π), (40)

where c is some positive constant and this is called Stein log-Sobolev inequality (Duncan et al., 2023).
Unfortunately, the condition of this inequality is less clear compared to the LSI and Duncan et al. (2023)
showed that it might fail to hold this inequality in many practical models like the RBF kernel function with
exponential tail of π.

Thus it is difficult to consider the linear convergence of KL divergence under the geometry of H. See Liu
(2017) and Duncan et al. (2023) for a detailed discussion of the geometry of SVGD.

C Proofs of theories in Section 4

C.1 Proof of Theorem 1

Under Assumptions 1 and 3-5, we have the following results from Theorem 3.2 in Salim et al. (2022):

KL(µt+1|π) ≤ KL(µt|π)− γt

(
1− γtB

2(α2 + L)
2

)
Istein(µt|π), (41)

where ηt := γt

(
1− γtB2(α2+L)

2

)
. Substituting gµt

(x) = Pµt,k∇ log µt

π into Eq. (9) yields

−ηtIstein(µt|π) ≤ −ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
+ ηtδt. (42)

To show that the above inequality exists and to evaluate ϵt and δt, we study the following equality obtained
via Eq. (42):

ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
− ηtIstein(µt|π) = ηt

〈
∇ log µt

π
, (ϵtI − Pµt,k)∇ log µt

π

〉
L2(µt)

. (43)

As written in the main paper, we discuss the necessary conditions for the existence of Eq. (42) with respect
to ηt under our final results. As can be seen from Theorem 1, we obtain ϵt = c0 and δt = 0 through the
proof that we explain later, where c0 is independent of t. In this case, as written in the main paper, it is
necessary for ηt

∥∥∇ log µt

π

∥∥2
L2(µt) to be uniformly upper bounded with respect to t to compensate for the

convergence based on AGF. To satisfy this condition, from Lemma 2, when we set γt ≤ O(1/t2/3), the
second term is the order of

∑
t γt ≤ O(η1/3). Then

∥∥∇ log µt

π

∥∥2
L2(µt) ≤ O(η2/3). Then we can easily find

that ηt

∥∥∇ log µt

π

∥∥2
L2(µt) ≤ O(1) with respect to t.

From here, we analyze Eq. (43) by using the spectral decomposition of the kernel operator. Since a Hilbert–
Schmidt operator Pµ,k is compact and self-adjoint and we use the real-valued kernel function, we can de-
compose Pµ,k by spectral theorem. Thus, we have, for all i,

Pµ,kϕi = λiϕi, (44)

where ϕi ∈ L2(µ) represents an eigenfunction that satisfies a complete orthonormal system (CONS), and λi

is an eigenvalue corresponding to ϕi. Even if these eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . > 0, it does not
compromise generality. Moreover, the kernel function can be decomposed into k(x, y) =

∑∞
i=1 λiϕi(x)ϕi(y),

where the convergence of this infinite series holds in the norm of ∥ · ∥L2(µ).

From the spectral theorem, all the eigenvalues of a positive-definite kernel function are positive real values
and their multiplicity (the dimension of the eigenspace) is finite. Under Assumption 4 (ISPD assumption), a

19



Published in Transactions on Machine Learning Research (08/2025)

kernel function is dense in L2(µ) (Steinwart & Christmann, 2008; Sriperumbudur et al., 2011; Carmeli et al.,
2010). Therefore, the eigenfunctions {ϕn} are CONS in L2(µ). Then, for any f ∈ L2(µ), we have

f =
∞∑

i=1
⟨f, ϕi⟩L2(µ) ϕi. (45)

We should note that the above discussions overly simplify the eigenvalues and eigenvectors for vector functions
because we treat the kernel function as the vector-valued one. As we mentioned in the main paper, since
f = (f1, · · · , fd) ∈ L2(µ) is the vector valued function, each f1, . . . , fd ∈ L2

0(µ) are measurable function
f1 : X → R with

∫
f2

1 dµ <∞. Abusing the notation, Pµ,k : L2
0(µ)→ H0, which projects the scalar function

to H0. In this case, the eigenvalues and eigenvectors are given as

Pµ,kψi = λiψi, (46)

where ψi ∈ L2
0(µ) is an eigenfunction which is a scalar value function. When considering Pµ,k :

L2(µ) → H, the operator Pµ,kϕ is regarded as the elementwise projection defined as Pµ,kϕi =
(
∫
k(x, y)ϕ1(y)dµ(y), · · · ,

∫
k(x, y)ϕd(y)dµ(y)). Since the eigenfunctions {ψi} are CONS in L2

0(µ) and the
vector functions are in L2(µ), we focus on each dimension and apply a spectral decomposition, that is,

f = (f1, . . . , fd) =
( ∞∑

i=1
⟨f1, ψi⟩L2

0(µ) ψi, . . . ,

∞∑
i=1
⟨fd, ψi⟩L2

0(µ) ψi

)
. (47)

By applying the kernel projection, we have

Pµ,kf = (Pµ,kf1, . . . , Pµ,kfd) =
( ∞∑

i=1
λi ⟨f1, ψi⟩L2

0(µ) ψi, . . . ,

∞∑
i=1

λi ⟨fd, ψi⟩L2
0(µ) ψi

)
. (48)

The above equality corresponds to the setting when ϕi = (ψi, · · · , ψi) ∈ L2(µ). Then, for any f ∈ L2(µ), we
have

f =
∞∑

i=1
⟨f, ϕi⟩L2(µ) ϕi, (49)

and

Pµ,kf =
∞∑

i=1
λi ⟨f, ϕi⟩L2(µ) ϕi. (50)

From the above equalities, we can be seen as the same calculation for Pµ,t : L2
0(µ)→ H0 and Pµ,t : L2(µ)→

H.

In this paper, for simplicity, we do not work on Pµ,t : L2
0(µ) → H0 with eigenvectors {ψi}, but work on

Pµ,t : L2(µ) → H with eigenvectors {ϕi} as shown in Eq. (44). For completeness, we remark the norm
calculation as follows:

∥f∥2
L2(µ) =

d∑
j=1
∥fj∥2

L2
0(µ) =

d∑
j=1

∞∑
i=1
⟨fj , ψi⟩2L2

0(µ) =
∞∑

i=1

d∑
j=1
⟨fj , ψi⟩2L2

0(µ) , (51)

where
∑d

j=1 ⟨fj , ψi⟩2L2
0(µ) is the multiply ψi in an elementwise way and summing it up. Based on the above,

we have

∥Pµ,kf∥2
L2(µ) =

d∑
j=1
∥Pµ,kfj∥2

L2
0(µ) =

d∑
j=1

∞∑
i=1

λi ⟨fj , ψi⟩2L2
0(µ) =

∞∑
i=1

λi

d∑
j=1
⟨fj , ψi⟩2L2

0(µ) . (52)
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By using the spectral decomposition and the Hilbert–Schmidt theorem, we obtain

k(x, y) =
∞∑

i=1
λiϕi(x)ϕi(y), (53)

where the convergence of this infinite series holds in the norm of ∥ · ∥L2(µ). If X is a compact space, then
from Mercer’s theorem, the convergence of the above infinite series holds absolutely and uniformly. However,
we do not assume that X is compact.

Let us show that, in our analysis, it is sufficient to study the convergence of k(x, y) =
∑∞

i=1 λiϕi(x)ϕi(y) in
L2(µ) since our analysis is based on the norm of ∥ · ∥L2(µ). From Eq. (43), we have

ηt

〈
∇ log µt

π
, (ϵtI − Pµt,k)∇ log µt

π

〉
L2(µt)

≤ ηt

〈
∇ log µt

π
,

(
ϵtI −

∞∑
i=1

λiϕi(x)ϕi(·) +
∞∑

i=1
λiϕi(x)ϕi(·)− Pµt,k

)
∇ log µt

π

〉
L2(µt)

≤ ηt

〈
∇ log µt

π
,

(
ϵtI −

∞∑
i=1

λiϕi(x)ϕi(·)
)
∇ log µt

π

〉
L2(µt)

+ ηt

〈
∇ log µt

π
,

( ∞∑
i=1

λiϕi(x)ϕi(·)− Pµt,k

)
∇ log µt

π

〉
L2(µt)

, (54)

and the last term can be bounded by using the Cauchy–Schwartz inequality as follows:〈
∇ log µt

π
,

( ∞∑
i=1

λiϕi(x)ϕi(·)− Pµt,k

)
∇ log µt

π

〉
L2(µt)

≤

∥∥∥∥∥
∞∑

i=1
λiϕi(x)ϕi(·)− Pµt,k

∥∥∥∥∥
op

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
. (55)

Eq. (55) can be arbitrarily small since
∥∥∇ log µt

π

∥∥2
L2(µt) is bounded (Lemma 2), the operator norm is bounded

by HS norm, and property of the convergence in L2(µ) norm. By setting ∥
∑∞

i=1 λiϕi(x)ϕi(·)−Pµt,k∥op = ϵ0,
we have

ηt

〈
∇ log µt

π
, (ϵtI − Pµt,k)∇ log µt

π

〉
L2(µt)

≤ ηt

〈
∇ log µt

π
,

(
ϵtI −

∞∑
i=1

λiϕi(x)ϕi(·)
)
∇ log µt

π

〉
L2(µt)

+ ϵ0ηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
, (56)

where ϵ0 is arbitrarily small and negligible for the convergence. Thus, it is sufficient to focus on the conver-
gence of the spectral decomposition of Pµ,k in L2(µ) norm.

Defining vt := ∇ log µt

π for simplicity in notation, we can obtain vt =
∑∞

i=1 ⟨vt, ϕi⟩L2(µ) ϕi and Pµ,kvt =∑∞
i=1 λi ⟨vt, ϕi⟩L2(µ) ϕi because the kernel function is dense in L2(µ) and thus its eigenvectors are complete.

Using these, we obtain

ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
− ηtIstein(µt|π) = ηt

∞∑
i=1

(ϵt − λi) ⟨vt, ϕi⟩2L2(µt) . (57)

By setting ϵt sufficiently small, there exists a index 1 < j such that λj > ϵt > λj+1. Hence, by regularizing
{⟨vt, ϕi⟩2L2(µt)}∞

i=1, we can render the left-hand side of Eq. (57) negative. For that purpose, we focus on the
RKHS associated with k given as

H =
{
f ∈ L2(µ) | f =

∞∑
k=1

aiϕi,

∞∑
i=1

∥ai∥2

λi
, ai ∈ R

}
, (58)
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where H is dense in L2(µ). Thanks to this property of H, there exists a function v(l) ∈ H such that the
sequence of v(l) → v as l→∞ in L2(µ) norm. We express such v(l) as

v
(l)
t =

∞∑
i=1

b
(l)
i ϕi ∈ H (59)

Note that we have that
∑∞

i=1
∥b

(l)
i

∥2

λi
<∞ since v(l)

t ∈ H.

We consider replacing vt by v(l)
t to control the coefficient of {ϕn}. By definition, for any ϵ > 0, we can obtain

∥vt − v(l)
t ∥L2(µt) < ϵ by choosing sufficiently large l. According to this fact, we obtain〈

∇ log µt

π
, (ϵtI − Pµt,k)∇ log µt

π

〉
L2(µt)

=
〈
vt − v(l)

t + v
(l)
t , (ϵtI − Pµt,k) vt − v(l)

t + v
(l)
t

〉
L2(µt)

=
〈
v

(l)
t , (ϵtI − Pµt,k) v(l)

t

〉
L2(µt)

+ 2
〈
v

(l)
t , (ϵtI − Pµt,k) vt − v(l)

t

〉
L2(µt)

+
〈
vt − v(l)

t , (ϵtI − Pµt,k) vt − v(l)
t

〉
L2(µt)

=
〈
v

(l)
t , (ϵtI − Pµt,k) v(l)

t

〉
L2(µt)

+ 2ϵtϵ ∥vt∥2
L2(µt) + ϵtϵ

2 (60)

According to Lemma 2, ∥vt∥2
L2(µt) is bounded for t < ∞, and the second and the third term can

be arbitrarily small by ϵ. Thus, we now focus on the term
〈
v

(l)
t , (ϵtI − Pµt,k) v(l)

t

〉
L2(µt)

to analyze〈
∇ log µt

π , (ϵtI − Pµt,k)∇ log µt

π

〉
L2(µt).

From the above augments and the fact in Eq. (59), we can be rewritten Eq. (57) as

ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
− ηtIstein(µt|π) = ηt

∞∑
i=1

(ϵt − λi)(b(l)
i )2 + o(ϵ), (61)

where the residual term o(ϵ), which comes from Eq. (60), can be arbitrarily small and thus it is trivial in
our discussion.

Next, we consider to choose appropriate ϵt. Recall that, by setting ϵt sufficiently small, there exists a index
1 < j such that λj > ϵt > λj+1. Then, we can expand the right-hand side term of Eq. (61) as

∞∑
i=1

(ϵt − λi)(b(l)
i )2 = −

j∑
i=1

(λi − ϵt)(b(l)
i )2

︸ ︷︷ ︸
=:A

+
∞∑

i=j+1
(ϵt − λi)(b(l)

i )2

︸ ︷︷ ︸
=:B

, (62)

where A,B > 0 by definition. We now show that there exists ϵt > 0 such that
∞∑

i=1
(ϵt − λi)(b(l)

i )2 = −A+B < 0. (63)

This can be easily confirmed by the definition of b(l)
i . Since v(l)

t ∈ H, we have
∑∞

i=1
∥b

(l)
i

∥2

λi
< ∞. This

implies that supi≤m(b(l)
m )2 goes to 0 at least as the same order as λi. By setting ϵt sufficiently small, the

corresponding index j becomes large and then {(b(l)
i )2}i≥j+1 becomes small. With this procedure, we obtain

ϵtηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
− ηtIstein(µt|π) < 0. (64)
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This implies that δt = 0 in our AGF.

Finally, we show that we can choose ϵt so as to be independent of t. We would like to find the smallest index
m ∈ N such that

m∑
i=1

(b(l)
i )2 >

∞∑
i=m+1

(b(l)
i )2, (65)

holds. Thus, by definition

m−1∑
i=1

(b(l)
i )2 ≤

∞∑
i=m

(b(l)
i )2, (66)

holds. Actually, we can find such index if we pick up sufficiently large m because supi≤m(b(l)
m )2 goes to 0 at

least as the same order as λi from
∑∞

i=1
∥b

(l)
i

∥2

λi
<∞. Under such m, we obtain

∞∑
i=1

(ϵt − λi)(b(l)
i )2 = −

m∑
i=1

(λi − ϵt)(b(l)
i )2 +

∞∑
i=m+1

(ϵt − λi)(b(l)
i )2

≤ −
m∑

i=1
λi(b(l)

i )2 + 2ϵt
m∑

i=1
(b(l)

i )2

≤ (−λm + 2ϵt)
m∑

i=1
(b(l)

i )2. (67)

By setting ϵt ≤ λm/2 and taking o(ϵ)(> 0) into account, we have the relationship as in Eq. (65).

Ifmmonotonically increases with respect to some sequence of t, them-th eigenvalue λm would become smaller
as t increases, leading to a decreasing upper bound of ϵt ≤ λm/2 as t increases. To ensure convergence with
the LSI, we must demonstrate that m satisfying Eq. (65) and (66) does not monotonically increase with
respect to the iteration t. This can be shown through a proof by contradiction as follows.

We assume that there exists a subsequence of t, {tk}∞
k=1, such that m satisfying Eq. (65) and (66) monoton-

ically increases. Also, for any k, let m corresponding to tk be denoted as mtk
. Furthermore, we define the

right-hand side of Eq. (66) as Sm, where Sm :=
∑∞

i=m(b(l)
i )2. From the definition of the index m, we have

mt1 < mt2 < · · · < mtk
< . . . , for all k. In this case, there exists a sequence in Smt1

, . . . , Smtk
, . . . that goes

to 0 because supi≤m(b(l)
m )2 goes to 0 at least as the same order as λi from

∑∞
i=1

∥b
(l)
i

∥2

λi
< ∞. However, a

contradiction arises since Smtk
approaching 0 does not satisfy Eq. (66).

This contradiction suggests that m might increase for some range of t, but it is upper bounded with respect
to t. This allows us to identify a largest m as m′ that does not depend on t. Recalling Assumption 6,
which provides a strictly positive lower bound for λi denoted as λ̂m′ , we see that this lower bound is also
independent of t. Combining the above discussions, we can establish that ϵt can be upper-bounded by λ̂m′ ,
meaning that ϵt ≤ λ̂m′ . This implies that we can set a positive constant c0 as an upper bound for ϵt, and
this constant is independent of t.

In conclusion, we have

KL(µt+1|π) ≤ KL(µt|π)− c0ηt

∥∥∥∇ log µt

π

∥∥∥2

L2(µt)
≤ (1− c̃0ηt) KL(µt|π), (68)

where we used the LSI and summarized the LSI constants in c̃0. By recursively applying the above inequality,
we obtain

KL(µT |π) ≤
T −1∏
t=1

(1− c0ηt) KL(µ0|π). (69)
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We final note that if we have ηt = c1/T ,

T∏
t=1

(
1− c0c1

t

)
≤

(
1− 1

T

T∑
t=1

c0c1

t

)T

≤ e−
∑T

t=1
c0c1

t ≤ e−c0c1 log T ≤ 1
T c0c1

. (70)

This concludes the proof.

C.2 Proof of Lemma 2

For simplicity, we express ηt as γ is this proof. Let us define the mapping ρs := ϕs#µt for s ∈ [0, γ] with
ϕs := I − svt and vt = Pµ,k∇ log µt

π . Then, by the change of variable formula, we have

ρs = |Jϕs(ϕ−1
s (x))|−1µt(ϕ−1

s (x)), (71)

where ργ = µt+1.

Our goal is to bound the following equality:∥∥∥∇ log ρs

π

∥∥∥2

L2(ρs)
=
∫ 〈
∇ log ρs

π
(x),∇ log ρs

π
(x)
〉

dρs(x)

=
∫ 〈
∇ log µt(x)|Jϕs(x)|−1

π(ϕs(x)) ,∇ log µt(x)|Jϕs(x)|−1

π(ϕs(x))

〉
dµt(x). (72)

First, we apply the mean value theorem (as known as Taylor expansion of order 1) to ψ(s) :=
∇ log µt(x)|Jϕs(x)|−1

π(ϕs(x)) as a function of s. According to this theorem, there exists a constant c ∈ [0, γ] such that

ψ(s) = ψ(0) + γ
d
dsψ(s)

∣∣∣
s=c

. (73)

This implies∥∥∥∇ log µt+1

π

∥∥∥
L2(ρt+1)

=
∥∥∥∇ log ργ

π

∥∥∥
L2(ργ )

=
∥∥∥∥∇ log µt(x)|Jϕs(x)|−1

π(ϕs(x))

∥∥∥∥
L2(µt)

≤
∥∥∥∇ log µt

π

∥∥∥
L2(µt)

+ γ

∥∥∥∥ d
dsψ(s)

∣∣∣
s=c

∥∥∥∥
L2(µt)

, (74)

where we used the triangle inequality. The second term in the right-hand side of Eq. (74) can be expressed
as ∥∥∥∥ d

dsψ(s)
∥∥∥∥

L2(µt)

=
∥∥∥∥− d

ds∇ log |I − sJvt|+
d
ds∇V (ϕs(x))

∥∥∥∥
L2(µt)

=
∥∥∇Tr

[
(Jϕs(x))−1Jvt(x)

]
+∇⟨∇V (ϕs(x)), vt(x)⟩

∥∥
L2(µt)

=

∥∥∥∥∥∥∇
∑

ij

(
(Jϕs(x))−1)

ij
(Jvt(x))ji +∇2V (ϕs(x))vt(x) + Jvt(x)∇V (ϕs(x))

∥∥∥∥∥∥
L2(µt)

, (75)

where ∇ = (∂1, . . . , ∂d)⊤ and vt = (v1, · · · , vd)⊤. For derivation, we first swap the time derivative and the
gradient, and using the time derivative of Ψ(s) that is shown in Appendix B of Salim et al. (2022) and Sun
et al. (2023).
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To bound Eq. (75), we use the following existing bounds. From Appendix B and Lemma C.1. in Salim et al.
(2022), we have

∥vt(x)∥ ≤ B∥vt∥H ≤ BC1, (76)
∥vt∥H ≤ BC1 (77)

C1 :=

1 + 2L

√
2KL(µ0|π)

CLS
+ LW2(µ0, δx∗)

 (78)

where x∗ = arg minx∈X V (x). In Salim et al. (2022), they assumed that T1 inequality holds for π, whereas
we assumed that the LSI holds. Since T1 inequality is satisfied if the LSI is available, their bound also holds
in our setting. Also, from Appendix B in Salim et al. (2022), we have

∥Jvt(x)∥2
HS ≤ B2∥vt∥2

H ≤ B4C2
1 . (79)

Moreover, from the proof of Lemma C.1. in Salim et al. (2022), for any µ ∈ P2(X ), we have

∥∇V ∥L2(µ) ≤ 2L

√
2KL(µ0|π)

CLS
+ LW2(µ0, δ

∗
x) =: C2. (80)

From Appendix B in Salim et al. (2022), we have∥∥(Jϕs(x))−1∥∥
HS ≤ α. (81)

where this α is defined in the Assumption of Theorem 1. Using this result, the following relation holds∥∥(Jϕs(x))−2∥∥
HS ≤ α

2. (82)

In addition to these upper bounds (Eqs. (76)-(82)), we use the following fact:
d∑

i,j,k=1
(∂i∂jvk(x))2 =

d∑
i,j,k=1

⟨∂i∂jk(x, ·), vk⟩2H0
=

d∑
i,j,k=1

∥∂i∂jk(x, ·)∥2
H0
∥vk∥2

H0

=
d∑

i,j=1
∥∂i∂jk(x, ·)∥2

H0
∥vt∥2

H

≤ B2∥vt∥2
H ≤ B4C2

1 , (83)

where we used Assumption 3 in the last line.

To upper bound Eq. (75), we apply triangle inequality. Then we focus on the square of the first term in
Eq. (75),∑

k

(∂k(
∑

ij

(
(Jϕs(x))−1)

ij
(Jvt(x))ji))

2

=
∑

k

((
∑

ij

(
(Jϕs(x))−2)

ij
∂k(−tJvt(x))ij (Jvt(x))ji) + (

∑
ij

(
(Jϕs(x))−1)

ij
∂k (Jvt(x))ji))

2

≤
∑

k

((
∑

ij

α2|∂k(−tJvt(x))ij |B2C1 + (α|∂k (Jvt(x))ji |))
2

≤
∑

k

((
∑

ij

(α+ tα2B2C1)|∂k(Jvt(x))ij |)2

≤ (α+ tα2B2C1)2d2
∑
ijk

(∂k(Jvt(x))ij)2

≤ (α+ tα2B2C1)2d2B2∥vt∥2
H

≤ (α+ γα2B2C1)2d2B4C2
1 =: D2

1 (84)
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where D1 > 0 and it is not depend on t.

Now we are ready for bounding Eq. (75). First, the second and third term in Eq. (75) can be upper bounded
by ∥∥∇2V (ϕs(x))vt(x) + Jvt(x)∇V (ϕs(x))

∥∥
L2(µt)

≤
∥∥∇2V (ϕs(x))vt(x)

∥∥
L2(µt) + ∥Jvt(x)∇V (ϕs(x))∥L2(µt)

≤
∥∥∇2V (ϕs(x))∥op∥vt(x)

∥∥
L2(µt) + ∥Jvt(x)∥op∥∇V (ϕs(x))∥L2(µt)

≤ LB∥vt∥H + C2∥vt∥H

≤ (LB2 + C2B)C1. (85)

Substituting the upper bounds in Eqs. (84) and (85), we have∥∥∥∥ d
dsψ(s)

∥∥∥∥
L2(µt)

=
∥∥∥∥− d

ds∇ log |I − sJvt|+
d
ds∇V (ϕs(x))

∥∥∥∥
L2(µt)

≤ ((α+ γα2B2C1)dB + LB + C2)∥vt∥H

≤ ((α+ γα2B2C1)dB + LB + C2)BC1 =: C3. (86)

Thus, ∥∥∥∇ log µt+1

π

∥∥∥
L2(µt+1)

=
∥∥∥∇ log ργ

π

∥∥∥
L2(ργ )

≤
∥∥∥∇ log µt

π

∥∥∥
L2(µt)

+ γ((α+ γα2B2C1)dB + LB + C2)∥vt∥H

≤
∥∥∥∇ log µt

π

∥∥∥
L2(µt)

+ γC3 (87)

By induction, we have the following results:

∥∥∥∇ log µT

π

∥∥∥
L2(µT )

≤
∥∥∥∇ log µ0

π

∥∥∥
L2(µ0)

+
T −1∑
t=0

γtC3. (88)

This completes the proof.

D Details of experimental settings

We set the target distribution as p(x) = N (x|µ∗,Σ∗) with µ∗ = [1, 1] and Σ∗ = diag(1, 1), where diag is a
diagonal matrix. For the Gaussian mixture distribution, we set p(x) = 2

3N (x|µ∗
1,Σ∗

1) + 1
3N (x|µ∗

2,Σ∗
2) with

µ∗
1 = [2,−2], µ∗

2 = [−2, 2], Σ∗
1 = Σ∗

2 = diag(1, 1), which is the extension of the experimental settings in Liu
& Wang (2016) for the two-dimensional setting. We generated the initial particles from N (x|µ0,Σ0) with
µ0 = [0, 0] and Σ0 = diag(1, 1) or µ0 = [−5,−5] and Σ0 = diag(1, 1) for the Gaussian and the Gaussian
mixture experiments, respectively.

We adopted the RBF kernel k(x, y) = exp( 1
h∥x−x

′∥2
2), which is commonly used in practice and satisfies the

assumptions in Section 4. The bandwidth h was selected by the median trick, i.e., med2/ logn as in Liu &
Wang (2016), where med is the median of the pairwise distance between the current particles.

As we stated in Section 5, we simply set the decaying step size γt = 1/(1 + tβ)(= O(1/tβ)) suggested by
Theorem 1 and did not use the Adagrad-based stepsize, which is adopted in related studies such as Korba
et al. (2021) and others. We set the initial stepsize as γ0 = 0.01 for all experiments. We evaluated the
KL divergence: KL(µT |π) and the cumulative mean of KSD: 1

T

∑T
t=1 Istein(µt|π), which are theoretically

guaranteed sub-linear convergence.

We conducted our experiments based on the above settings using {5, 10, 100, 1000} particles.
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E Additional experimental results

In this section, we provide the additional experimental results.

We confirmed in Section 5 that SVGD with the RBF kernel tends to achieve sub-linear convergence both in
KL(µT |π) and in 1

T

∑T
t=1 Istein(µt|π) (see Figures 3 and 4). As for the Gaussian mixture settings, we can

observe the same behavior (see Figures 5 and 6), which also supports Theorem 1.

As discussed in Appendix A, the bias in the KL divergence persists as we increase the value of T because
we utilized a finite number of particles, leading to δt ̸= 0 in AGF. Such a bias can be reduced by increasing
the number of particles increases (see Figures 3-6, 7, and 8). On the flip side, even in the Gaussian mixture
experiments, using a large number of particles results in slower convergence for both the KSD and KL
divergence.

This phenomenon can be attributed to the existence of extremely small eigenvalues of Pµ,k when a larger
number of particles is used, as the eigenvalues of the RBF kernel decay exponentially fast (Wainwright,
2019). To confirm this fact, we measured the eigenvalues of the Gram matrix obtained from the RBF kernel
function at three points: the initial stage of learning (t = 1), the midpoint (t = 5 ∗ 104), and the final stage
(t = 105). We summarize these results in Figures 9 and 10. We can see that the exponential decay of the
eigenvalues tends to be occurring as the number of particles increases.

Assumption 6, which states that the eigenvalues have a strictly positive lower bound and upper bound that
are independent of t, is crucial for showing the sub-linear convergence of SVGD in KL divergence under
the setting of an infinite number of particles. Since it is difficult to theoretically show this fact, we instead
conducted numerical experiments to confirm that the dependence of the upper bound (maximum value) and
lower bound (minimum value) of the eigenvalues on the variable t diminishes as the number of particles
increases. As a metric for measuring time-dependence, we employed the following growth rate for the time
interval [t1, t2](t2 > t1):

|λ̃t2 − λ̃t1 |
t2 − t1

,
|λ̄t2 − λ̄t1 |
t2 − t1

,

where {λ̃tj
, λ̄tj
} (j = 1, 2) is the maximum and minimum value of the eigenvalues at iteration tj . In the

above metric, if the dependence of the eigenvalues for t is small, meaning that the changes in {λ̃tj , λ̄tj}
with the progression of t are small, then the value will be small. Furthermore, when the overall behavior
indicates minimal fluctuation in this value throughout the training process, it signifies that the changes in
the eigenvalues with the progression of t are small. This, in turn, reflects the small dependence of {λ̃tj

, λ̄tj
}

with respect to t.

We summarized the experimental results under the following three case: (t1, t2) = (0, 5 ∗ 104) (refer to case
(i)), (5 ∗ 104, 105) (refer to case (ii)), and (0, 105) (refer to case (iii)) in Figures 11 and 12. To begin with, we
can see that the change between the midpoint and endpoint of t, i.e., the case (ii), yields the smallest value
for all particle settings. This suggests that during this period, SVGD is gradually approaching convergence,
which seems to align with the results of 1

T

∑T
t=1 Istein(µt|π) in Figures 3-6. On the other hand, in the low

number of particles setting, there is a significant difference in the amount of change for each configuration,
whereas when a large number of particles are used, this difference becomes small. This key finding—that
the fluctuations of both maximum and minimum eigenvalues with respect to t decrease as the number of
particles increases—provides empirical backing for Assumption 6. The trend strongly suggests that in the
infinite-particle limit (m→∞), the particle distribution µt stabilizes as it converges, and consequently, the
eigenvalue spectrum of the operator Pµ,k becomes independent of time t. This supports that there is a case
when our use of Assumption 6 is valid.
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Figure 5: The convergence behavior in terms of KL(µT |π) and 1
T

∑T
t=1 Istein(µt|π) for all T under two-

dimensional Gaussian mixture experiments (β = 0.67 ≈ 2/3).

Figure 6: Convergence in KL(µT |π) and 1
T

∑T
t=1 Istein(µt|π) for all T under different particles and stepsize

settings (β = {0., 0.5, 0.67, 1.}).

Figure 7: Change in convergence for variations in the order of stepsize with β = {0., 0.5, 0.67, 1.} under
Gaussian distribution estimation experiments.
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Figure 8: Change in convergence for variations in the order of stepsize with β = {0., 0.5, 0.67, 1.} under
Gaussian distribution estimation experiments.

Figure 9: Eigenvalues of the Gram matrix in the two-dimensional Gaussian distribution experiments (β =
0.67 ≈ 2/3).

Figure 10: Eigenvalues of the Gram matrix in the two-dimensional Gaussian mixture experiments (β =
0.67 ≈ 2/3).

Figure 11: Difference between {maximum, minimum} eigenvalues of the Gram matrix in the two-dimensional
Gaussian distribution experiments (β = 0.67 ≈ 2/3). In this figure, (t, T ) represents (5 ∗ 104, 105).
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Figure 12: Difference between {maximum, minimum} eigenvalues of the Gram matrix in the two-dimensional
Gaussian mixture experiments (β = 0.67 ≈ 2/3). In this figure, (t, T ) represents (5 ∗ 104, 105).
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F Additional Experiments on a Real-World Dataset

This section details the experiments conducted to evaluate the performance of SVGD with a finite number of
particles on a real-world dataset. We describe the model specification, the procedure for generating reference
posterior samples via MCMC for evaluation, and the specific configurations of the SVGD experiments.

F.1 Model: Hierarchical Bayesian Logistic Regression

The model used is a Hierarchical Bayesian Logistic Regression for binary classification. The goal is to infer
the posterior distribution of the regression coefficients β ∈ RD and a global precision parameter τ > 0.

Parameterization To ensure the positivity constraint on the precision parameter τ and to improve the
stability of the inference process, we reparameterize it by using its logarithm. The inference is performed on
the parameter vector θ = [βT , ϕ]T ∈ RD+1, where ϕ = log τ .

Model Hierarchy The model is defined by the following hierarchy:

• Likelihood: The binary labels yn ∈ {0, 1} for each observation xn are modeled by a Bernoulli
distribution with a logistic link function (sigmoid function σ(·)).

yn|xn,β ∼ Bernoulli(σ(xT
n β))

• Priors: A hierarchical prior structure is employed.

– The regression coefficients β are drawn from a zero-mean Normal distribution, with precision
τ = eϕ:

β|ϕ ∼ N (0, e−ϕ/2ID)

– The precision parameter τ is drawn from a Gamma distribution:

τ ∼ Gamma(α0, β0)

For the SVGD inference operating on ϕ = log τ , the prior for ϕ is derived using the change of
variables formula, p(ϕ) = p(τ = eϕ) · |dτ/dϕ| = p(eϕ) · eϕ.

F.2 Reference Posterior Samples via MCMC

To evaluate the SVGD particles, we first generate a set of reference samples from the posterior distribution
p(β, τ |X,y) using MCMC. These samples serve as an empirical representation of the true posterior. We use
the No-U-Turn Sampler (NUTS), as implemented in CmdStanPy.

The sampling process involves running multiple independent chains in parallel. After discarding an initial
set of warmup samples from each chain, the remaining post-warmup samples are combined. To ensure
consistency with the SVGD parameterization, the samples of the precision parameter, τMCMC, are log-
transformed to ϕMCMC = log τMCMC. The final collection of reference samples, denoted {θMCMC

j }NMCMC
j=1 =

{[βMCMC
j , ϕMCMC

j ]}NMCMC
j=1 , is saved and used to compute various divergence measures, such as KSD and KL

divergence estimated via KDE.

To validate that the MCMC samples form a reasonable approximation of the true posterior, we evaluated
their predictive performance. The average log-likelihood over the posterior samples was −0.5186 per data
point, while the mean prediction accuracy reached 75.57% on the training data and 75.52% on the test data.
These performance metrics are consistent with results from related SVGD studies, such as Liu & Wang
(2016) and Wang et al. (2019). This confirms that our MCMC procedure converged to a sensible posterior
distribution, justifying the use of its samples as a reliable benchmark for our SVGD experiments.
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Table 1: Experimental Setup
Component Parameter Value
Dataset Name Covertype (UCI Repository)

Preprocessing Binary classification, pre-scaled features
Data size for MCMC 10,000 samples
Splitting 80% training, 20% testing

Model Type Hierarchical Bayesian Logistic Regression
Parameterization θ = [βT , log τ ]T
Feature dimensions (D) 54
Total parameters (D + 1) 55

MCMC Sampler NUTS (via CmdStanPy)
Chains 4
Samples per chain 2,000 (post-warmup)
Warmup per chain 1,000
Prior Hyperparameters (α0, β0) (1.0, 0.1)

SVGD Iterations 10,000
Number of particles (N) Varied across {5, 10, 20, 50}
Optimizer Gradient Ascent
Base step size (ϵ0) 1× 10−2

Decay factor (d) 1.0
Decay exponent (β) Varied across {0.0, 0.5, 0.67, 1.0}
Kernel RBF with median heuristic
Particle Initialization β ∼ N (0, 0.1I), ϕ = log τ ∼ N (log(0.1), 0.12)
Prior Hyperparameters (α0, β0) (1.0, 0.01)

F.3 Inference via SVGD

We use SVGD to approximate the target posterior distribution. SVGD iteratively transports a set of particles
{θi}N

i=1 in the reparameterized space RD+1 to match the target distribution. The update for each particle
θi is a gradient ascent step:

θi ← θi + ϵtϕ(θi)

where ϵt is the learning rate at iteration t, and ϕ(·) is the velocity field.

We adopt the same kernel function and optimization algorithm in our experiments in Section 5 as follows.
We use the RBF kernel k(x,y) = exp

(
−∥x−y∥2

2h2

)
. The bandwidth h is set at each iteration using the median

heuristic. The particles are updated using standard gradient ascent. The learning rate ϵt is not fixed but
follows a decay schedule, which is detailed in the experimental setup.

F.4 Experimental Setup

The detailed experimental settings for the dataset, MCMC, and SVGD are summarized in Table 1. The
learning rate at each iteration t is determined by a decay schedule described in Appendix D.

F.5 Results

In this section, we discuss the experimental results for the BLR model, which represents a more complex
and practical scenario.
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Figure 13: Convergence in KL(µT |π) and 1
T

∑T
t=1 Istein(µt|π) for all T under different particles and stepsize

settings (β = {0., 0.5, 0.67, 1.}).

As shown in Figures 13 and 14, the BLR experiment also demonstrates that SVGD with an RBF kernel
achieves sub-linear convergence for both the time-averaged KSD and the KL divergence. This aligns with the
theoretical insights of Theorem 1 and confirms that this behavior is not limited to simpler target distributions.

Consistent with our previous findings, the bias in the KL divergence, stemming from the use of a finite
number of particles, is evident. Figure 14 shows that this bias tends to diminish as the number of particles
increases from 5 to 50 at least under the well-controlled stepsize. We also observe the same trade-off: while
a larger number of particles leads to a better final approximation of the target distribution, it can result in
slower initial convergence for both KSD and KL divergence, as seen in Figure 13.

This phenomenon is again attributable to the spectral properties of the RBF kernel’s Gram matrix. We
investigated the eigenvalues at the initial (t = 1), middle, and final stages of the learning process, with the
results summarized in Figure 15. Just as in the simpler MVN and GM experiments, the eigenvalues exhibit
exponential decay, and this decay becomes more pronounced as the number of particles increases. This leads
to extremely small eigenvalues that can slow down the convergence of the particle system.

To provide further empirical support for Assumption 6—the time-independence of the eigenvalue bounds
in the infinite-particle limit—we analyzed the growth rate of the maximum and minimum eigenvalues over
time. The results for the BLR experiment are presented in Figure 16. The observations are threefold and
mirror the previous experiments: (1) The rate of change of the eigenvalues is smallest in the latter half of
the training (case (ii)), corresponding to the period where the algorithm approaches convergence; (2) The
overall magnitude of the eigenvalue fluctuations tend to be smaller for a larger number of particles; (3) The
difference in the rate of change between the early and late stages of training becomes less pronounced as the
number of particles increases.
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Figure 14: Change in convergence for variations in the order of stepsize with β = {0., 0.5, 0.67, 1.} under
Gaussian distribution estimation experiments.

Figure 15: Eigenvalues of the Gram matrix in the Bayesian logistic regression experiments (β = 0.67 ≈ 2/3).

Figure 16: Difference between {maximum, minimum} eigenvalues of the Gram matrix in the Bayesian logistic
regression experiments (β = 0.67 ≈ 2/3). In this figure, (t, T ) represents (5 ∗ 104, 105).
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