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ABSTRACT

Heterogeneous Information Networks (HINs) provide a powerful framework
for modeling multi-typed entities and relations, typically defined under a fixed
schema. Yet, most research assumes this structure is given, overlooking the fact
that alternative designs can emphasize different aspects of the data and substan-
tially influence downstream performance. As a theoretical foundation for such
designs, we introduce the principle of entity-attribute duality: attributes can be
atomized as entities with their associated relations, while entities can, in turn,
serve as attributes of others. This principle motivates atomic HIN, a canonical
representation that makes all modeling choices explicit and achieves maximal ex-
pressiveness. Building on this foundation, we propose a systematic framework
for task-specific schema refinement. Within this framework, we demonstrate that
widely used benchmarks correspond to heuristic refinements of the atomic HIN—
often far from optimal. Across eight datasets, refinement alone enables a simpli-
fied Relational GCN (sRGCN) to reach state-of-the-art performance on node- and
link-level tasks, with further gains from advanced HGNNs. These results high-
light schema design as a key dimension in heterogeneous graph modeling. By
releasing the atomic HINs, searched schemas, and refinement framework, we en-
able principled benchmarking and open the way for future work on schema-aware
learning, automated structure discovery, and next-generation HGNNSs.

1 INTRODUCTION

Heterogeneous Information Networks (HINs) provide a powerful abstraction for modeling sys-
tems with multiple types of entities and relations. Such graphs naturally arise in bibliometrics,
e-commerce, knowledge graphs, and social networks, where diverse node and edge types yield rich
semantics. To leverage these structures, Heterogeneous Graph Neural Networks (HGNNs) extend
Graph Neural Networks (GNNs) with type-aware message passing across heterogeneous schemas.

Despite this progress, most research relies on a few benchmark HINs with manually specified
schemas, often chosen heuristically. In practice, however, multiple valid schemas can be derived
from the same data. For instance, the IMDB benchmark is constructed from a single movie table{ﬂ
columns such as actor and director are processed to be entities, while others (e.g., keyword, lan-
guage, country) remain attributes (Figure [Ib). In some variants, keywords are treated as entities
rather than mere attributes (Figure [Ic), while additional unexplored variants are equally possible

(Figure[Id).

The ambiguity in schema design has received limited attention. Some recent efforts (Fey et al.,
2024) explore schema construction from relational databases, but they still rely on database-specific
design choices, each of which corresponds to different schema variants. Consequently, the broader
problem of designing HIN schemas remains open.

We introduce atomic HIN, grounded in the principle of entity-attribute duality: attributes can be
atomized as entities, and entities can in turn serve as attributes of others. This duality maximizes
expressiveness by making all schema choices explicit, but also increases modeling complexity.

'https://www.kaggle.com/datasets/karrrimba/movie-metadatacsv
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Figure 1: Illustration of multiple heterogeneous schemas derived from the same IMDB source table.

To address this, we propose fask-specific schema refinement, which selects or discards node types
(entities) and edge types (relations) to tailor the schema. Node-type selection determines which
entities are assigned unique identities, while edge-type selection removes relations of limited utility,
simplifying both the schema and the model. From this perspective, widely used benchmark schemas
are merely heuristic node- and edge-type selections, as essentially all schema variants can be viewed
as refinements of the atomic form.

Empirically, pairing the atomic form with SRGCN—a simplified RGCN with stronger parameter
sharing—achieves state-of-the-art results on eight datasets spanning node classification and link
prediction. On node classification, Macro-F1 improves by up to 6.2% over recent advanced HGNNSs,
and on link prediction, ROC-AUC increases by an average of 4.9%. Our systematic search further
shows that benchmark schemas often diverge from optimal ones, highlighting the effectiveness of
atomic HINs with schema refinement. Moreover, schemas refined with SRGCN generalize well to
advanced HGNNSs, with subsequent refinement under stronger models yielding additional gains.

‘We summarize our contributions as follows:

* We introduce the principle of entity—attribute duality, which motivates the aromic HIN, a canon-
ical representation that makes all schema choices explicit and achieves maximal expressiveness.

L]

To manage the resulting complexity, we propose task-specific schema refinement, formulated as
node- and edge-type selection. Existing benchmark schemas emerge as particular refinements
of the atomic form, but our systematic search shows that such heuristic choices often diverge
from optimal ones, underscoring the central role of schema design in HGNN development and
evaluation.

Extensive experiments on eight benchmarks demonstrate that atomic HINs with refined
schemas consistently improve HGNN performance. Even a simplified RGCN (sRGCN)
achieves state-of-the-art results, while advanced HGNNs obtain further improvements. Analy-
sis of the search results further confirms the importance of atomic HINs and schema refinement.

2 PRELIMINARIES

Attributed Heterogeneous Information Networks

An undirected HIN is a graph G = (V, &) consisting of a node set V and an edge set £. Each node
v € V and edge e € £ is assigned a type through mappings ¢ : V — T and ¢ : £ — R, where

T=A{7} l:]l andR = {r} E‘l denote the sets of node types (entities) and edge types (relations).

Edges are represented by adjacency matrices { A, € RIVIXIVI } l:i‘l, where A, corresponds to edges
withrelationr { e € £ | ¢(e) = r }. When |T| = |R| = 1, the network G reduces to a homogeneous
graph.

An attributed HIN is further associated with an attribute set F, where each f € F is assigned
to an owner node type via ¢ : F — 7. Attributes are then represented as feature matrices
{ X e RIVenIxds }pr where Ve(py = {v eV |d(v) =((f) } and dy is the dimension of f.

Spectral heterogeneous graph convolution (SHGC). |Defferrard et al.|(2016) showed that spec-
tral filters on homogeneous graphs can be parameterized as L-order polynomials of the Laplacian
eigenvalues. Butler et al| (2023) extended the formulation to heterogeneous graphs, introducing
spectral filters based on non-commutative polynomials over relation-specific shift operators. For an



Under review as a conference paper at ICLR 2026

input signal & € R!VI, the filter is defined as

L
H(I,S,...,S%;:0)z=0Ix+> >  On .1 (S S)z, (1)
[4

=1 71,...,m
where S, is the shift operator for relation 7. A common choice is the row-normalized adjacency
A, = D;'A,, where D, [i,i] = Z‘j\il |A,[2, 7]| is the degree matrix of A,.. The learnable param-
eters are collected in © = {6y } U {0, . ., }n,..‘,re’ where each coefficient 6y, 0,, .. ,, € R. In
this paper, we adopt SHGC as a general formulation of HGNNS.

,,,,,

3 METHODOLOGY

3.1 FROM ATTRIBUTE ATOMIZATION TO ATOMIC HINS

Constructing graph structure from attributes is a long-standing but often implicit technique in HIN
schema design. In practice, this is typically applied during preprocessing to attributes that can be
represented by one-hot or multi-hot encodings, thereby introducing additional node and edge types.
A widely used example is the IMDB dataset (Figure|[T)). Formally, the process can be applied to each
attribute independently. For a given attribute, the procedure is defined as follows:

Definition 3.1 (Attribute Atomization). Given an attribute f € F of a HIN G with feature matrix
X, atomizing f produces an augmented HIN G' = (VUU,E U Ey), where U = {uy, ..., uq, } is
the set of new nodes with cardinality corresponding to attribute dimensions and

Er={(vi,uy) | Xypl[i,j]#0, 1 <i<|V,|, 1<) <df}.
Here v; denotes the i-th node of V¢(y) and u; is the j-th node of the induced set U. Each edge
(v, u;) is weighted by X f[i, j]. This introduces a new node type ' and a new edge type ', yielding
T =T U{r'} with ¢/ (v) = 7" ifv € U and ¢'(v) = ¢(v) otherwise; and R' = R U {r'} with
V' (e) =1"ife € Ef and Y’ (e) = Y (e) otherwise.

In this way, atomization replaces nonzero entries of X ; with explicit edges to induced nodes, thereby
converting attributes into structure and relation. This enables HGNNSs to exploit structural dependen-
cies and relational patterns (e.g., metapaths (Sun et al.,[2011)). The common practice of constructing
edges by ID matching across relational tables (Fey et al.,[2024) is a special case where X is sparse
and binary.

Applying atomization to all attributes yields the atomic HIN, a canonical representation in which
all information is expressed structurally, achieving maximal expressiveness and making explicit all
modeling choices. This representation serves as the foundation for our next step: task-specific
schema refinement.

3.2 SCHEMA REFINEMENT VIA NODE- AND EDGE-TYPE SELECTION

Xo,a Xa
Xop Xp

Xov Author Xy
Xo Xt

Term

(a) Atomic HIN (b) Pre-propagated HIN (c) Refined HIN

Figure 2: Toy example of schema refinement on atomic HINs: pre-propagation ensures indepen-
dence between node-type and edge-type selection.

We then propose the schema refinement problem, a binary selection problem over node types (enti-
ties) and edge types (relations), aiming to harness the expressiveness of atomic HINs while control-
ling complexity. To this end, we first define two basic operations:
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* Node-type selection. For each node type 7 € {1,...,|7|}, a binary parameter 3, € { 0,1} de-
termines whether nodes of this type are assigned a unique identity and thus contribute as attributes
to the HIN.

» Edge-type selection. For each relation » € {1,...,|R|}, a binary parameter o, € {0,1}
specifies whether the relation is retained and modeled in the schema.

Under the SHGC framework (Equation [I)), which we use as a general form of HGNNSs, refinement
on an atomic HIN is expressed as:

Z = I?I(I7 0[151,...,0&|R‘S|R‘;@) X(ﬂl,...,ﬂ‘fﬂ), (2)

where H (-) denotes the SHGC filter, and X (31, ..., 87|) € RIVIXIV is the feature matrix after
node-type selection.

The edge-type selectors «,. directly control which relations and edges participate in message passing.
Setting o, = 0 removes relation 7 and its edges entirely, equivalent in practice to dropping that
relation from the constructed HIN. This makes refinement compatible with any HGNN in a plug-
and-play manner, without requiring architectural modifications.

Node-type selection specifies which node types are assigned unique identities, i.e., learnable em-
beddings. A straightforward construction is to assign the identity matrix as node features for the
selected node types:

Xo(B1, .. Br)) = By + Bodo + - + B L 7, 3)

where I, € RIVI*Vl is the type-specific identity matrix, with I, [i,4] = 1if the i-th node v; € V has
type ¢(v;) = 7, and 0 otherwise. When all types are selected, X(1,...,1) = Ij,. The motivation
is to learn embeddings only for informative node types, thereby reducing parameters and mitigating
overfitting.

However, this naive construction can induce dependencies.

Definition 3.2 (Dependency relative to a node type). For a node type ; € {1,...,|T|}, we say

that T; has a dependency on 7; sz ZOI = 0 for some 7; with 3,, = 1, where ZO =H()Xo(")
is the output of SHGC on the naive feature initialization.

Dependencies arise because pruning certain edge types can disconnect selected nodes from the rest
of the graph. For example, in Figure[2] if all edges incident to ferm nodes are removed, their embed-
dings become isolated and cannot contribute to downstream predictions. Thus, although edge-type
pruning improves efficiency and compatibility, it may inadvertently invalidate node-type selections
by cutting off identity propagation.

To mitigate this issue, we introduce a pre-propagation feature initialization, which ensures that em-
beddings of selected node types remain accessible regardless of subsequent edge-type choices.

3.3 PRE-PROPAGATION FEATURE INITIALIZATION

To address the dependency issue in Definition[3.2] we introduce a pre-propagation feature initializa-
tion. The idea is straightforward: prior to refinement, each selected node type propagates its identity
once to other node types, ensuring that its signal remains accessible even if incident edge types are
subsequently removed. Formally, we define pre-propagated features as

X(B1,--5B7) = (I+ z Am,*,m)Xo(&w--,5|T|)7 “)
Ti 757']‘

where A<n «,r;) denotes the adjacency of the shortest path from type 7; to 7;, defined as the shortest
product of adjacency matrices satisfying I. A<T w7y Ir; # 0. We provide details for the imple-
mentation of this pre-propagation step in Appendlx
This initialization effectively distributes each identity embedding beyond its original source node,
ensuring its availability across node types and thereby eliminating hidden dependencies.
Lemma 3.1 (Independence of Selections). With pre-propagation, for any node type T; and any

selected type T; with 3;, = 1, jTi VA ij # 0. Hence, node-type selection is independent of edge-type
selection: even if all edges incident to T; are removed, no dependency arises.
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Lemma 3.2 (Neutrality of Pre-Propagation). Consider an SHGC with row-normalized adjacencies
S, = A, as shift operators and convolution order L sufficiently large. If raw identity features
Xo(1,...,1) = I are replaced with pre-propagated features X (1,...,1), the effect is merely a
reparameterization of the filter coefficients {0, .. v, }r,....r,. Hence, pre-propagation does not alter
the expressive power of the model.

Proofs are deferred to Appendix [B]

In summary, pre-propagation resolves node dependencies (Lemma without reducing expres-
sive power (Lemma [3.2), ensuring that edge types can be pruned without invalidating node type
selections. We illustrate this with row-normalized adjacency, while in practice we adopt a general-
ized union via element-wise maximum (Lv et al.,[2021) (see Appendix [B.4). Pre-propagation thus
provides a principled basis for schema refinement without manual adjustments for each choice.

3.4 SYSTEMATIC SEARCH FOR SCHEMA REFINEMENT

Schema refinement reduces to a binary selection over node and edge types, but the search space of
2IRI+ITI candidates is prohibitively large. Moreover, the space is highly skewed: retaining more
edge types generally increases expressiveness (Lemma [3.3), while sparse or high-cardinality node
types often introduce excessive parameters and risk overfitting. Hence, naive grid or random search
is ineffective.

To address this, we formulate schema refinement as a hyperparameter optimization problem and
adopt a genetic algorithm (GA)-based search strategy. While GAs have been widely studied for
binary optimization, to our knowledge, they have not been applied to HIN schema refinement. Our
formulation naturally enables this approach, providing a practical and effective means to explore
the skewed binary space and achieve near-optimal solutions within reasonable budgets (Deb et al.,
2002; [Katoch et al.,|2021). We initialize the population with the vanilla schema and jointly optimize
schema parameters with model depth L, consistent with Lemma [3.2] Full algorithmic details are

provided in Appendix

3.5 HGNNS FOR ATOMIC HINS

Atomizing attributes enhances expressiveness by establishing additional structure and relations, en-
abling HGNN s to capture richer semantics. With all information represented structurally, assigning
unique identities to entities allows them to act as attribute signals for others. In particular, the new
relations introduced through attribute atomization enlarge the filter space, as formalized below:
Lemma 3.3 (Attribute Atomization Enlarges Filter Space). Let R be the original set of edge types,
and let R’ O R denote the set obtained after attribute atomization. Under the SHGC formulation,
the space of heterogeneous filters spanned by

Nu{s, ---S, |r,...,mmeR,1<¢<L
1 4

is strictly larger than the corresponding space defined with R. Hence, attribute atomization strictly
enlarges the filter space by converting attributes into entities with associated relations.

To connect with existing HGNNs and illustrate the broad utility of atomic HINs, we observe that
many architectures can be viewed as instances or approximations of SHGC.

Proposition 3.1 (RGCN (Schlichtkrull et al., 2018)) as a First-Order Approximation of SHGC).
RGCN can be expressed as a first-order approximation of SHGC under row-normalized adjacencies
S, = A,, with filter coefficient matrices {Wy}t U {W,@}M.

Proposition 3.2 (GTN (Yun et al.l |2019) as a First-Order Approximation of SHGC). GTN can be
expressed as a first-order approximation of SHGC under row-normalized adjacencies, with scalar
filter coefficients {0y} U {95"')},0,4.

These cases show that widely used HGNNSs, despite differing in interpretation, are first-order SHGC

with distinct parameter-sharing schemes (e.g., GTN enforces Wr(e) = HSE)I ). Detailed deriva-
tions, along with extensions to higher-order variants such as SeHGNN (Yang et al., 2023) and
PSHGCN (He et al.| [2024), are provided in Appendix [C|
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On atomic HINs, SHGC particularly favors architectures with stronger parameter sharing (e.g.,
GTN-style), since all inputs reduce to unique identity embeddings. In this setting, heavy feature
transformations or MLP layers become largely redundant—consistent with the empirical findings of
He et al.| (2020) that shallow parameterization can outperform deeper transformations when natural
features are absent.

Motivated by this perspective, we introduce a simplified variant of RGCN, denoted sRGCN. It
preserves the RGCN structure but replaces feature transformation matrices with relation-specific
scalars,

w =9,

This design yields a minimal yet effective baseline, naturally aligned with the requirements of atomic
HINs. Full update rules and implementation details are provided in Appendix [D}

4 EXPERIMENTS

In this section, we conduct experiments to address the following research questions:

* RQ1: Do atomic HINs improve performance over benchmark schemas and advanced HGNNs?

* RQ2: How does the entity-attribute duality in the atomic view benefit HGNNs?

* RQ3: Is schema refinement truly necessary? How does it affect node-level and link-level tasks?

* RQ4: How large is the performance gain across schema variants when using the same HGNN? Do
schemas refined on SRGCN generalize across HGNNS, and can they be further improved through
subsequent refinement?

* RQ5: How efficient is schema refinement when optimized through a genetic algorithm?

4.1 EXPERIMENT SETUP

Datasets.  We evaluate on eight heterogeneous benchmarks drawn from diverse domains, includ-
ing bibliometrics, e-commerce, knowledge graphs, social networks, and biomedicine. Dataset statis-
tics and corresponding vanilla schemas are listed in Table 4] and Table 2] respectively. Full dataset
descriptions are provided in Appendix[A.T] For all datasets, we perform attribute atomization on ev-
ery available attribute. When datasets include initial embeddings (e.g., pretrained language-model
(PLM) embeddings), we treat them as numerical attributes and likewise atomize them into feature
nodes. For OGBN-MAG, following |Yang et al.|(2023), we initialize large-scale node types with
256-dimensional random embeddings to approximate learnable ID embeddings.

Evaluation Setting. = We follow the experimental protocols of each dataset, as specified by its
benchmark or commonly adopted in the literature. For schema refinement, we employ a GA al-
gorithm with 1024 candidates, and subsequently fine-tune HGNN hyperparameters on the derived
optimal schema with 256 trials. Full details of experimental setup, baseline implementations, and
hyperparameter space are provided in Appendix

4.2 PERFORMANCE ON AToMIC HINS (RQ1)

We first evaluate the effectiveness of atomic HINs using SRGCN across eight benchmarks for node
classification and link prediction. We compare against recent state-of-the-art HGNNs under their
vanilla schemas. As shown in Table[I} sSRGCN on refined atomic schemas consistently outperforms
advanced HGNNs. Gains are more significant on datasets with rich attributes or complex schemas
(e.g., IMDB, Amazon, Freebase), where attribute atomization increases expressiveness while re-
finement tailors complexity. ACM is already in atomic form with a simple schema, leaving little
room for improvement. Yet, LastFM benefits substantially from refinement despite also being in
atomic form with an even simpler schema. On the large-scale OGBN-MAG, improvements are
mainly driven by relations induced from PLM embeddings—atomized as relation nodes—together
with schema refinement, showing that even numerical attributes can yield useful relational patterns.

Overall, Macro-F1 improves by up to 6.2% for node classification and ROC-AUC by an average of
4.9% for link prediction over the strongest baselines.
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Table 1: Performance comparison on different datasets. Top panel reports node classification results; bottom
panel reports link prediction results. Best results are in bold, second-best are underlined. Statistical signifi-
cance is marked by T (p < 0.001) and ¥ (p < 0.01). OOM indicates out-of-memory.

IMDB Freebase DBLP ACM OGBN-MAG
HGNN Macro-F1  Micro-F1  Macro-F1  Micro-F1 Macro-F1  Micro-F1 Macro-F1 Micro-F1  Acc. (Val)  Acc. (Test)
RGCN 58.85+026  62.05+0.15 46.78+0.77 58.33+157 91.52+050 92.07+050 91.55+074 91.41+075 48.35+036 47.37+048
HGT 63.00+£1.19  67.20+057 29.28+252 60.51+1.16 93.01+023  93.49+025 91.12+076 91.00+0.76 49.89+047  49.27+0.61
SimpleHGN ~ 63.53+1.36  67.36+0.57 47.72+148 66.29+045 94.01+024 94.46+022 93.424044 93.35+045 OOM OOM
HINormer 64.65+0.53  67.83+034  52.1840.39 64.92+043 94.57+023 94941021 93.91+042 93.83+045 OOM OOM
SeHGNN 66.63+£034 68.21+£032 50.71+044 63.41+047 94.86+0.14 95242013 93.95+048 93.87+050 55.95+0.11 53.99+0.18
SlotGAT 64.05+£0.60 68.64+£033 49.68+197 66.83+030 94.95+020 9531019 93.99+0.23 94.06-£0.22 OOM OOM
PSHGCN 67.10+£0.60  69.79+052  40.01+826 62.70+£077 95.274+0.13  95.6140.12 94.35+023 94.27+023 56.16+021  54.5740.16
SRGCNawmic  68.9740.09° 71.20+0.177 55.40+1.257 67.32+0.66 95.55+0.13* 95.85+0.12¢ 94.36+0.22 94.29+0.22 57.35+0.12" 55.21+0.23"
Amazon LastFM PubMed
HGNN ROC-AUC MRR ROC-AUC MRR ROC-AUC MRR
RGCN 86.34+024 93.92+0.16 57.21+009 77.68+0.17 84.624+033  94.27+0.51
HGT 88.26+2.06 93.87+0.65 54.99+028 74.96+146 8538+120 94.98+0.69
SimpleHGN  93.40+0.62 96.94+029 67.594+023 90.81+032 85.48+1.08 93.67+1.06
SeHGNN 91.67+094  95.83+058 66.59+0.62 88.61+125 85.86+1.11 95.09+0.74
SlotGAT 95.17+0.11  98.00+£0.09  70.33+0.13  91.72+050 88.07+0.20 94.7140.33
PSHGCN 94.12+0.58  97.93+046  69.25+063 91.19+051 87.16+1.89 95.01+1.26
SRGCNawomic  97.85+0.077  99.26:£0.057  77.10+0.17"  93.70+0.16"  90.11£0.19"  96.14=0.04!

Table 2: Schema refinement results on sSRGCN. Edge types with underline are weighted, and with double
underline are weighted and dense. Node type aliases are listed in Appendix@}

Dataset Variant Node types \ Edge types
N R D W CL A OKM| MD MK MW MA MR MN ML MO M-C
IMDB Vanilla | v v - Vv Vv Vv - V V - v v - v - - - - -
Refined | vV v v Vv Vv V - - - - v v v v v v — - =
Bk Or Bs Mu Sp Lo Fi Pe ‘Bk-Bk Bk-Pe Bk-Or Bk-Bs Pe-Sp Bk-Fi Mu-Bs Pe-Or
Freebase Vanilla | v v v Vv Vv Vv V V v v v v v v v v
Refined | v v v vV v - - - v v v v - - - -
V Fp Fa P T Te A | PPA PFp PT PV A-Fa TTe
DBLP Vanilla | v vV Vv - - V - v = v v = =
Refined | v v - - - - - v v v v - -
T A S P | PP P-A PS P-T
ACM Vanilla | v - - - v v v v
Refined | v - - - v v v v
F E Y A I | PP P-A PF Al P-E P-Y
OGBN-MAG Vanilla | v v - - V v v v v — —
Refined | v v v - - - v v v v v -
I P B R C | I, I-I, I-R ILP P-C P-B
Amazon Vanilla | - v v V v v = = =
Refined | v - - - - v v v v - -
T A U | AT UU UA
LastFM Vanilla | v v v v v
Refined | vv - — v - _
C G Eq D S E E; E ¢S ¢C GS GG -~ CD DEs CG SE
PubMed Vanilla | v v - Vv v - - - v v v v e v - v -
Refined | vvo v v vV v - - - = = = = = = = =

4.3 HoOW THE ATOMIC VIEW BENEFITS HGNNs? (RQ2)

Table 2 summarizes the refined schemas from atomic HINs using SRGCN across datasets derived
from the proposed GA algorithm, comparing with the vanilla schemas. Details on how each vanilla
schema corresponds to specific selections are provided in Appendix We make the following

observations:

Obs 1: Attribute atomization introduces meaningful relations. Refined schemas frequently
preserve relations created when attributes are converted into entities—relations absent in vanilla
schemas but induced through atomization. This pattern consistently appears in IMDB, DBLP,
OGBN-MAG, and Amazon, where refined schemas select edges from atomized attributes, indi-
cating that such induced relations provide valuable semantic signals for HGNNS.

Obs 2: Entities can act as strong attributes. In Amazon, for example, ifem is originally de-
scribed by attributes such as price or sales-rank. Refined schemas, however, benefit from directly
learning ID embeddings for item nodes, while still retaining attributes like price and sales-rank.
Similar effects are also observed in IMDB and PubMed.

Obs 3: Relations from numerical attributes can be surprisingly useful. We atomize all
attributes, including numerical ones, which induce relations corresponding to dense adjacen-
cies. Although such dense edges may appear unintuitive, many are consistently selected in re-
fined schemas (highlighted with double underlines in Table [2). A plausible explanation is that
these edges encode similarity relations through metapaths (Sun et al., [2011). For example, the
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Table 3: Performance of HGNNs under different schema variants. Vanilla: the original benchmark schema.
Refined(HGNN): schema refined using the corresponding HGNN. The best results within each HGNN are in
bold, the second-best are underlined, and global best across all HGNNS are highlighted with blue bold.

Schema IMDB Freel A OGBN-MAG
HGNN Macro-F1 Micro-F1 Macro-F1 Micro-F1 ROC-AUC MRR Acc. (Val) Acc. (Test)
SRGCN Vanilla 67.64+041 70.05£0.50 52.13+1.78 67.094£043 95.94+028 98.43+0.18 56.73+021 54.63+0.23
Refined (SRGCN) 68.97+0.09 71.204+0.17 55.40+1.25 67.32+0.66 97.85+0.07 99.26+0.05 57.35+0.12 55.21+0.23
Vanilla 63.53+136 67.36+£057 47.72+148 66.29+045 93.40+062 96.94+0.29 OOM OOM
SimpleHGN  Refined (sSRGCN) 65.89+0.67 68.60+1.13 53.45+1.88 67.83+0.33 96.50+0.87 98.61+0.49 OOM OOM
Refined (SimpleHGN) 67.38+0.80 70.02+0.62 53.51+1.39 67.94+0.80 97.40+1.11  99.05+0.08 OOM OOM
Vanilla 67.10+£0.60 69.79+0.52 40.01+£826 62.70+£0.77 94.12+0.58 97.93+046 56.61+0.11 54.53+0.20
PSHGCN Refined (sSRGCN) 67.89+0.56 69.87+1.04 45.53+3.02 65.66+025 96.73+053 98.79+023 57.65+0.18 55.28+0.19

Refined (PSHGCN) 67.89+0.56 69.87+1.04 48.19+145 66.36+0.75 97.13+0.11 98.91+£0.05 57.65+0.09 55.34+0.21

paper—author—paper metapath in the citation network captures co-authorship, while the paper—
embedding—paper metapath in OGBN-MAG approximates paper similarity, akin to dot-product
signals between embeddings.

4.4 1S SCHEMA REFINEMENT NECESSARY? (RQ3)

Having examined the role of atomic HINs and attribute atomization, we now turn to the necessity
of schema refinement. Using the refined schemas reported in Table [2] we analyze how selectively
retaining or discarding node and edge types affects performance.

Obs 4: Schema refinement remains important even for fully atomic schemas. Some datasets,
such as Freebase and LastFM, are already in atomic form and therefore cannot benefit from fur-
ther atomization. Nevertheless, simple refinement strategies—selectively dropping node or edge
types—still yield significant improvements, highlighting the value of schema selection beyond
atomization alone.

Obs 5: Schema refinement for link prediction favors pruning relations, even target ones.
For link prediction tasks, refinement often requires more aggressive relation removal. In LastFM,
dropping the user—artist relation (the prediction target) improves results, while in PubMed, dis-
carding all edges yields the best performance. This behavior aligns with the over-smoothing ef-
fect observed by Butler et al.| (2023): link prediction is more sensitive to excessive connectivity,
whereas node classification typically benefits from homophily. Pruning relations that reduce con-
nectivity can therefore lead directly to performance gains.

4.5 GENERALIZATION OF REFINED SCHEMAS (RQ4)

We now examine the quantitative benefits of schema refinement and its transferability across differ-
ent HGNN s (Table [3). Beyond SRGCN, we evaluate two additional models: SimpleHGN, a repre-
sentative attention-based HGNN, and PSHGCN, a recent precomputation-based HGNN that models
SHGC without first-order approximation. Further discussion of these models and their connections
to SHGC is provided in Appendix

Obs 6: Schema variants yield substantial performance differences. Across all three HGNNSs,
refined schemas consistently outperform vanilla ones (first row of each HGNN), showing that
schema choice can be as influential as model architecture.

Obs 7: Refined schemas transfer effectively across HGNNs. Schemas discovered with SRGCN
generalize well to other HGNNs (second row of each HGNN), often delivering strong results
without re-optimization. A notable case is PSHGCN on OGBN-MAG, where the transferred
schema achieves even better performance.

Obs 8: Subsequent refinement provides small but consistent gains. Re-optimizing schemas
for each HGNN (third row of each HGNN) yields additional improvements, though the margin is
modest compared to the leap from vanilla to refined (SRGCN). This suggests that schemas found
with SRGCN are already near-optimal for other HGNNSs.

4.6 HoOW EFFICIENT IS SCHEMA REFINEMENT AS A SEARCH PROBLEM? (RQ5)

We assess the efficiency of schema refinement by tracking performance over search trials (Figure[3).
Starting from the vanilla schema, refinement converges rapidly even on relation-rich datasets. For
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Figure 3: Performance improvement across schema search trials on four datasets.

instance, IMDB and PubMed reach near-optimal performance within 512 trials, despite the exhaus-
tive search space containing up to 2'? and 222 candidates, respectively.

5 RELATED WORK

5.1 HETEROGENEOUS GRAPH NEURAL NETWORKS

Heterogeneous graph neural networks (HGNNs) extend GNNs to exploit the semantic richness of
heterogeneous information networks (HINs). Early models such as HAN (Wang et al., 2019) and
MAGNN (Fu et al 2020) rely on hand-crafted metapaths to define composite relations. RGCN
(Schlichtkrull et al.} 2018), HGT (Hu et al., 2020b), and Simple-HGN (Lv et al.| 2021} instead di-
rectly model heterogeneity through relation-specific transformations or attention. GTN (Yun et al.,
2019), MHGCN (Yu et al.| [2022), and RE-GNN (Wang et al 2023) further learn soft weights over
edge types, effectively performing differentiable subgraph or metapath selection. More recently,
SeHGNN (Yang et al., [2023)), PSHGCN (He et al.,|2024)), and LMSPS (Li et al., 2024) precompute
propagation along metapaths, enabling mini-batch training for large-scale HINs. Together, these
methods capture relational information at the level of relations, metapaths, or soft subgraphs, opti-
mized through manual design or differentiable learning.

5.2 HETEROGENEOUS GRAPH SCHEMA DESIGN

Compared to HGNN architectures, relatively little attention has been devoted to the construction of
heterogeneous graph schemas. Common strategies include augmenting the schema with metapath-
based edges (Wang et al., 2019} [Fu et al., 2020; Hu et al., 2024) or introducing metapath-derived
features (Lv et al.,|2021} |Fey et al., 2024). Benchmark datasets implement these strategies in differ-
ent ways. For example, HGB (Lv et al.l 2021) typically assigns identity matrices or metapath-based
features to attribute-less entities, and selectively promotes some attributes (e.g., actors, keywords)
while leaving others (e.g., language, country) as plain features. OGB (Hu et al.,[2020a)) similarly av-
erages embeddings of textual terms into paper nodes but omits constructing the corresponding term
nodes and relations. RelBench (Fey et al., [2024) moves toward more systematic construction, yet
still admits multiple valid schemas. In contrast, we provide a principled framework for schema
design. The atomic HIN unifies ad-hoc practices into a canonical representation where all design
choices are explicit. On this foundation, schema refinement becomes a systematic, optimizable pro-
cess rather than a heuristic one—establishing not only a complement to HGNN architectures but
also a basis for rigorous benchmarking and schema-aware model development.

6 CONCLUSION

We introduced the atomic HIN, grounded in the principle of entity-attribute duality, where attributes
can be atomized as entities and entities can in turn serve as attributes of others. This duality maxi-
mizes expressiveness by making schema choices explicit. On this foundation, we proposed schema
refinement, a systematic procedure for selecting or discarding node- and edge-types to yield task-
specific schemas. Across eight datasets, even a simplified RGCN (sRGCN) trained on refined atomic
HINs achieves state-of-the-art performance, with further gains from advanced HGNNs. These re-
sults establish atomic HINs as a powerful representation for heterogeneous graph learning and high-
light schema as a central dimension of HGNN design and evaluation. Looking ahead, we hope this
work provides a foundation for principled schema-aware learning, automated schema discovery, and
next-generation HGNN architectures.
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REPRODUCIBILITY

To ensure reproducibility and facilitate future research, we provide detailed descriptions of the ex-
perimental setup in Appendix [A.3] and the hyperparameter search space in Appendix [A.4] The
complete source code, together with processed datasets and search configurations, is temporarily
hosted at https://anonymous.4open.science/r/AtomHIN-0D19. Datasets must be
downloaded separately from the supplementary materials. We commit to releasing it publicly upon
acceptance to enable transparent benchmarking and follow-up work.
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A  EXPERIMENTAL SETUP

A.1 DATASETS

We provide detailed descriptions of the eight heterogeneous datasets used in our experiments. For
each dataset, we highlight the vanilla schema, the preprocessing conventions used in prior bench-
marks, and how our atomization modifies the schema.

* IMDB (Lv et al.;,2021): A movie network with entities including movie, actor, director, keyword,
word, color, country, content rating, and language. In the vanilla setting, only movie, actor,
director, and keyword are retained as explicit node types. The remaining entities—word, color,
country, content rating, and language—are collapsed into attributes of the primary nodes (movie,
actor, or director), while keyword nodes are assigned unique identity vectors. Within our schema
refinement framework, this corresponds to selecting keyword, word, color, country, content rating,
and language, while the entities movie, actor, and director are unselected. Note that keyword and
word are distinct: for example, a keyword might be “coming of age,” while the corresponding
words are “coming,” ”of,” and “age,” with frequency counts. For clarity in the main text, we
consistently refer to keywords rather than words to avoid terminological confusion, though both
choices carry practical performance impact in downstream tasks. In the atomic form, all attributes
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Table 4: Dataset statistics for benchmark and atomic HIN.

Benchmark (vanilla) Atomic HIN
#Nodes #Node-Types  #Edges  #Edge-Types #Nodes #Node-Types #Edges #Edge-Types Dense Adj.

Dataset Target (type / etype) #Classes

Node Classification (NC)

IMDB Movie 5 21,420 4 43,321 6 24,909 10 94,384 9 4,932x16
Freebase Book 7 180,098 8 1,057,688 36 180,098 8 1,057,688 36 —
DBLP Author 4 26,128 4 119,783 3 30,743 7 263,623 6 7,723x50
ACM Paper 3 10,942 4 279,221 4 10,942 4 279,221 4 —
OGBN-MAG  Paper 349 1,939,743 4 21,111,007 4 1,939.879 6 21,740,578 6 736,389x128
Link Prediction (LP)

Amazon item-item — 10,099 1 121,470 2 11,256 5 151,729 6 10,0992
LastFM artist-user — 20,612 3 111,796 3 20,612 3 111,796 3 —
PubMed disease-disease — 63,109 4 233,047 10 63,909 8 233,047 14 200x13,561

are expanded into explicit node types, ensuring that every entity—including word, color, country,
content rating, and language—is represented relationally.

* Freebase (Lv et al.,2021): A knowledge graph with 8 node types and 36 edge types, constructed
without attributes. Since no attributes are available, the vanilla and atomic schemas coincide.

* DBLP (Lv et al.l[2021): A bibliographic network with node types author, paper, venue, and term.
In the vanilla form, authors and papers are assigned undocumented multi-hot sparse features;
venues have no attributes, while terms are initialized with 50-dim PLM embeddings. Thus we
atomize them into dedicated author-feat and paper-feat nodes, together with term-feat nodes for
pretrained embeddings.

* ACM (Lv et al.| 2021): A citation network with node types paper, subject, author, and term.
In the vanilla form, only terms are directly assigned unique identity vectors; other node types
(subject, author, paper) are preprocessed with propagated term IDs as their attributes. Thus, only
term nodes are selected in the vanilla schema. The benchmark schema is already atomic, and no
further atomization is allowed.

* OGBN-MAG (Hu et al.| |2020a): A large-scale academic graph targeting venue classification.
Papers are annotated with publication year and pretrained text embeddings. In the vanilla form,
embeddings are obtained by mean-pooling over term nodes that are not explicitly constructed.
Following current practice (e.g.,| Yang et al.|(2023)), we assign each node type a 256-dim random
embedding table as an approximation for larget-scale node types (paper, author, institution, field-
of-study). In addition, we atomize the 128-dim PLM embeddings into feature nodes and expand
year information into discrete year nodes, restricted to training papers due to the chronological
split.

* Amazon (Cen et al., 2019): An e-commerce graph with a single node type ifem and edge types
co-view and co-purchase. Items are annotated with attributes including price, sales-rank, category,
and brand. The price attribute is a one-dimensional numerical feature. Direct normalization pro-
duces trivial results (all values collapse to £1); to avoid this, we append a dummy column with
values equal to the mean absolute price, ensuring non-trivial normalization. All attributes are then
atomized into corresponding feature nodes.

* LastFM (Het, 2011): A music network with node types user, artist, and tag, targeting user-artist
edge prediction. No attributes are provided in the benchmark form, so the graph is already atomic.

* PubMed (Yang et al.l [2020): A biomedical knowledge graph with node types disease, gene,
chemical, and species. All nodes are provided with 256-dim pretrained embeddings, which are
often replaced by learnable ID embeddings in literatures (we thus mark this variant as vanilla in
Table [2|as most baselines adopt such variant). We atomize these embeddings into separate feature
nodes for each entity type, yielding a fully relational schema.

A.1.1 ALIASES FOR NODE TYPES

Aliases for node types used in Table [2}

e IMDB: N = numerical, R = content rating, D = director, W = word, C = country, L = language, A
= actor, O = color, K = keyword.

* Freebase: Bk = book, Or = organization, Bs = business, Mu = music, Sp = sports, Lo = location,
Fi = film, Pe = people.

* DBLP: A = author, P = paper, V = venue, T = term, Ay = author-feature, Py = paper-feature, Ty =
term-feature.
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* ACM: P = paper, A = author, S = subject, T = term.
* Amazon: | = item, P = price, B = brand, R = sales-rank, C = category.
e LastFM: U = user, A = artist, T = tag.

* PubMed: D = disease, G = gene, C = chemical, S = species, D¢ = disease-feature, Gy = gene-
feature, C¢ = chemical-feature, Sy = species-feature.

* OGBN-MAG: P = paper, A = author, I = institution, F = field-of-study, E = term-embedding, Y =
year.

A.2 BASELINES HGNNSs

We briefly describe the HGNN baselines used in our experiments:

* RGCN (Schlichtkrull et al. 2018)): One of the earliest HGNNSs, extending GCNs to relational
graphs by introducing relation-specific feature transformations. Each edge type is assigned a
distinct projection matrix, enabling type-aware message passing.

* HGT (Hu et al., 2020b): An early attention-based HGNN. It models heterogeneity through
relation-specific attention with node-type-aware key/query projections, combined with learnable
relation-specific priors to capture the varying importance of different relations.

» SimpleHGN (Lv et al.|[2021): A simple extension of GAT without heavily modeling heterogene-
ity. It incorporates relation-aware information through relation embeddings, achieving competitive
performance.

* HINormer (Mao et al.| 2023): Adapts Graph Transformers to HINs by combining them with
GCN-style propagation. It first encodes local structure through neighborhood aggregation, then
applies a heterogeneous relation encoder to model relation-specific information.

* SeHGNN (Yang et al, [2023)): Extends SGC-style precomputation to HINs, enabling efficient
precomputation-based training. This design allows mini-batch learning without information loss
from subgraph sampling or GPU memory overhead, making it well-suited for large-scale settings.

* SlotGAT (Zhou et al.||[2023): A GAT-based model for heterogeneous graphs. It conducts message
passing separately across node-type-specific “slots,” preserving distinct semantics in different fea-
ture spaces.

* PSHGCN (He et al.,[2024): A spectral HGNN that models heterogeneous graphs under positive
semi-definite constraints on spectral filters. Its framework also extends to precomputation-based
settings, enabling scalable and efficient training on large-scale HINS.

A.3 EVALUATION SETTING

For node classification datasets (IMDB, Freebase, DBLP, ACM, OGBN-MAG), we follow the offi-
cial splits and evaluation metrics provided by each benchmark. On OGBN-MAG, we report classifi-
cation accuracy on both validation and test sets, following the official protocol, and present the mean
and standard deviation over 10 runs. On the other datasets, we report both Macro-F1 and Micro-Fl1,
averaged over 5 runs.

For link prediction datasets (Amazon, LastFM, PubMed), the task is cast as binary classification
on node pairs. We evaluate with ROC-AUC and MRR, using negative samples drawn from 2-hop
neighbors of each positive pair, following the protocol of |Lv et al.|(2021). All datasets use official
splits except PubMed, which was originally introduced by |Yang et al.| (2020). We found its official
split suffers from severe distribution shift, and thus re-split the dataset (with the same ratio). All
experiments are conducted on a single RTX A6000 GPU with 48GB memory or smaller GPUs.

A.4 HYPERPARAMETER SETTING

As discussed in Section[3.2] we treat schema parameters and model depth as hyperparameters. Hy-
perparameter optimization is carried out using optuna (Akiba et al.,[2019). We adopt a two-stage
tuning process: (1) schema tuning with a budget of 1024 trials, followed by (2) HGNN hyperparam-
eter tuning with 256 trials.
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Schema Tuning.  We use a genetic algorithm (Deb et al.| [2002) with default parameters, except
that mutation probability is set to 1/8 for datasets with more than eight schema parameters. The
search is initialized from the vanilla schema configuration, and explores 1024 candidate points.

HGNN Hyperparameter Tuning. We apply the Tree-structured Parzen Estimator (TPE) (Ozaki
et al., [2020) implemented in optuna, using default parameters. For each model, we define the
following search spaces:

* SRGCN: number of layers, hidden dimension, number of heads, dropout rate, edge dropout (or
input dropout for precomputation-based setting on OGBN-MAG), learning rate, weight decay,
decoder MLP layers.

* SimpleHGN (Lv et al., 2021): number of layers, hidden dimension, number of heads, dropout
rate, edge dropout, learning rate, weight decay.

* PSHGCN (He et al., [2024): number of layers/hops, hidden dimension, embedding dimension,
dropout rate, input dropout, learning rate, weight decay.

B DETAILS OF PRE-PROPAGATION FEATURE INITIALIZATION

This section provides further motivation and proofs for the lemmas stated in Section[3.3] along with
additional technical details.

B.1 PROOF OF LEMMA[3.]]

Lemma (Independence of Selections). With pre-propagation, for any node type 7; and any selected
type 7j with 3., = 1, I, ZITj = 0. Hence, node-type selection is independent of edge-type selec-
tion: even if all edges incident to T; are removed, no dependency arises.

Proof.  To prove independence, we must show that whenever 3, = 1, there must exist at least
one non-zero term in Z that connects 7; to every other node type 7;. Formally, if 3, =1,

I,ZI.,#0, vrne{l..|T|}, (5)
where Z is the SHGC polynomial (from Equation .
Expanding the polynomial gives

Z = H(I,al,S'l,...,aRSR;@)X(Blfl +—|—/8|7—|j|7-‘)

L
- <QOI+Z Z 9741 ..... r[(arl"'aw)(srl "'Srg)> I+ Z A(Ti,*ﬂ'j) (ﬂ1j1++ﬁ|7—\j\7_|)

l=17T1,...,7¢ TiFT)

(6)
The second factor in Equation [6]arises from pre-propagation and includes terms of the form
jTi (I + Z A(Ti,*,‘rj>>j7—j 7’é 0, VTiaTj € { L..., |T| } .
TiFETj
These terms remain non-zero regardless of the values of «..

Hence, even if all relations incident to 7; are deselected (i.e., o, = 0), the pre-propagated features
still allow 7; to contribute to other node types. This shows that node-type and edge-type selections
are independent once pre-propagation is applied.

B.2 PROOF OF LEMMA[3.2]

Lemma (Neutrality of Pre-propagation). Consider an SHGC with row-normalized adjacencies
S, = A, as shift operators and convolution order L sufficiently large. If raw identity features
Xo(1,...,1) = I are replaced with pre-propagated features X (1,...,1), the effect is merely a
reparameterization of the filter coefficients {0y, .. r,}ri,...r,. Hence, pre-propagation does not al-
ter the expressive power of the model.
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Proof. Let S, = A, denote row-normalized adjacency operators. For sufficiently large convolu-
tion depth L, the SHGC representation on identity features I can be written as

Z 901+Z Z erl ..... rg n"'SW)I'

L=17T1,...,T¢

When pre-propagation is applied, the identity features are replaced by

X@1,...,1) = (I—i— 3 Am,*m)I

TiFETj
so that
(901+ Z 3 by (Sn, --~S”))X(1, 1)
=1r1,.., T
= (901+Z Z erl, ) Tl"'STg))Iv (7N

=1ry1,..,
where the coefficients 6, . are obtained by reparametrizing 6., . ., after expanding the product
with X (1,...,1).

Equation equation [7| shows that pre-propagation merely reweights the convolution coefficients, but
the span of operators {S,, "'Sw}rl,...,m remains unchanged. Thus, the filter space of SHGC
with pre-propagated features coincides with that of SHGC on raw identity features, provided L is
sufficiently large.

Therefore, pre-propagation is neutral with respect to expressive capacity, while simultaneously en-
abling the independence property established in Lemma [3.1] O

B.3 REMARKS

We highlight two further observations related to the role of pre-propagation:

* The proposed pre-propagation is not the only possible way to resolve the dependency between
node-type and edge- type selection. For example, in node-level tasks with a designated target type

74, it suffices to ensure I A I. , # 0 for the selected type 7;. Our formulation, however, provides
a general and convenient solution that applies uniformly across tasks.

* Pre-propagation does not introduce additional learnable parameters. Feature transformation op-
erates on X (31, ..., 8r)W, and the effective number of parameters in W depends only on the

non-zero columns of X (-), i.e., le;ll B7|Vr|. Thus, the number of embeddings is determined
entirely by node-type selection, independent of whether pre-propagation is applied.

B.4 GENERALIZED UNION AGGREGATION.

We first demonstrate pre-propagation using row-normalized adjacencies A,., which corresponds to
mean or weighted-sum pooling:

Ti= > Alijl=, ®)
jGJ\fi(r)
where ./\/Z.(T) denotes the neighbors of node ¢ under relation 7.

In practice, however, union-based aggregation is often adopted for initializing features, as in|Lv et al.
(2021)). In the unweighted case, this is equivalent to an element-wise maximum across neighbors:

z;[k] = max [k]. )

JEN;

We extend this to a generalized union operator that performs element-wise maximization while
ignoring sign. This variant naturally handles weighted adjacencies and empirically yields more
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Algorithm 1 Pre-propagation of features

Input: {A }»: row-normalized adjacency matrices of relations in the heterogeneous graph
Input: {X, }\T\ raw feature matrices for each node type
Output: {X/ }m1 pre-propagated feature matrices

1: procedure PREPROPAGATE({ A, },, { X, }IT\
2 Initialize { X }\7'\1 — {0}'7—‘
3 for 7; < 1to 7| do
4 Construct {X(T")}‘T| | where X(Tj < X, and X(Tj) «—Ofor7; #
5: {Zn}'ﬂl < PROPAGATEFEATURES({ A, },, {Xg’ }‘TTll
6: for 7, <+ 1to |7 | do
7: X X +Z,
8 end for
9: end for -
10 return { X/ }‘ !
11: function PROPAGATEFEATURES({A, },, { X, }'T|
12: while 37; such that X;, = 0 do
13: forall A, € {A,}, do
14: (15, 7T¢) < source and target node types of relation r
15: if X, # 0and X, = 0 then
16: X, — A X,
17: end if
18: end for
19: end while
20: return { X, }I !
21: end function
22: end procedure
stable performance when used for pre-propagation:
zi[k] = Anfi, t] 2 [K], t = arg max_ A,[i, 5] x;[k]. (10)
JEN; (r)

Here the chosen neighbor ¢ is the one with the maximum (magnitude) contribution on dimension
k. Overall, we find that union-based pre-propagation tends to yield more consistent performance

across datasets compared to mean or weighted-sum pooling with A,..

B.5 IMPLEMENTATION.

Pre-propagation is performed prior to schema refinement. This procedure is independent of edge-
type selection and thus only needs to be pre-computed once for each dataset.

The computation proceeds independently for each node type. For a given node type 7;, we initialize

its feature matrix as X, = I, i.e., identity features for nodes of type 7; and zeros elsewhere. Prop-
agation is then applied along any relation whose source node type already has non-empty features
and whose destination node type is still empty. This process is repeated iteratively until all node
types have received non-empty features, yielding the pre-propagated initialization X (1, ..., 1)f T
for node type 7;.

The full procedure is summarized in Algorithm|[I]

C SHGC PERSPECTIVE ON HGNNSs

This appendix provides detailed case analyses of how representative HGNNs relate to the Spectral
Heterogeneous Graph Convolution (SHGC) formulation introduced in Equation [T, We show that
several widely used models can be interpreted as first-order approximations of SHGC under different
parameter-sharing schemes.
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Table 5: Representative HGNNSs interpreted under SHGC. Approximation indicates whether the
model corresponds to a first-order approximation of SHGC or models SHGC directly. Shift opera-

tors: A, denotes relation-specific row-normalization, and A, denotes cross-type row-normalization.

Model Approximation  Shift Operator =~ Parameter Sharing
RGCN (Schlichtkrull et al,[2018)  First-order A, =3, 0, W
SRGCN (ours) First-order A, Wr([) =0,1

GTN (Yun et al, 2019) First-order A, w9 =01
SimpleHGN (Lv et al., 2021) First-order A, w =W
SeHGNN (Yang et al.. [2023) - A, Wi om,

PSHGCN (He et al}[2024) - A, Weiriirg = O e W

Formally, extending SHGC (Equation to multi-channel features X € RIVI*? yields

L
Z=IXWy+> > 8.5, 8,XW, ., (11)

=1 7r1,...,1¢

where W,., ., € RIx4" are generalized filter coefficients for multi-channel features and S, de-
notes the shift operator associated with relation r.

C.1 FIRST-ORDER APPROXIMATIONS

Relational GCN (RGCN). RGCN (Schlichtkrull et al.l 2018)) extends GCN (Kipf & Welling,
2017) to heterogeneous graphs. Following GCN, which adopts a first-order approximation of spec-
tral convolution (i.e., L = 1) and realizes higher-order convolution by stacking multiple layers,
RGCN can likewise be viewed as a first-order approximation of SHGC:

%)
H) = THOW + Y A, HOWO,

r=1
where A, denotes the normalized adjacency matrix for relation r

Even with this first-order approximation, the number of parameters {Wr(é) e RIxd }r¢ can still be
prohibitive in relation-rich graphs. To address this, RGCN introduces a basis-decomposition scheme
for parameter sharing:

B
WT(Z) = Z 07',1) Wb)
b=1

where B € N is the number of basis transformations, W € R2%d" are shared across all relations,
and 0,., € R are relation-specific coefficients.

Graph Transformer Network (GTN). GTN (Yun et al,2019) learns weighted combinations of
adjacency matrices to construct meta-relations, producing a meta-path adjacency Ap on which a
GCN can be applied.

Formally, A p is learned for an arbitrary meta-path of length at most L as

L IR
Ap=T] 61+ 00 A,

(=1 r=1

where self-loops are included to allow paths shorter than L hops. A GCN is then applied using the
row-normalized adjacency A p as the propagation operator:

Z=(I+Ap)XW.

2RGCN considers different normalization choices depending on the task: relation-specific normalization for

node-level tasks, and cross-relation normalization for link-level tasks. Here, A, corresponds to the relation-
specific normalization.
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Expanding A p shows that Z can be written as

Z—HOIXW+Z Z 0 o Ar Ay, XW,
=1 71,..

where each coefficient 0;, . is a product of up to L scalars {952)}7«7@. For example, 6, = 1 +

H};‘:l 9(()5) corresponds to the identity term.

This expansion demonstrates that GTN is another example of a first-order approximation of SHGC,
but with stronger parameter sharing:
W =1

In practice, GTN further introduces multiple sets of scalars Hﬁe’b) forb=1,..., Bto capture diverse
meta-relational structures. We omit this extension here for clarity.

SimpleHGN. Attention-based HGNNs, such as SimpleHGN (Lv et al.,, [2021), extend
GAT (Velickovi¢ et all [2018)) by introducing relation-aware attention through a relation-specific
bias in the attention mechanism.

Empirically, attention models behave similarly to spectral graph convolution with row-
normalization (Chen et al.| [2020). Assuming further that the relation-specific bias acts effectively
as a multiplicative scalar, SimpleHGN can be interpreted as a first-order SHGC approximation with
parameter-sharing as:

WO — gOw ), (12)

£)

where W) ¢ R9*4" is a shared projection and 0 e Risa relation-specific scalar.

Concretely, SimpleHGN incorporates edge-type information by introducing a learnable relation em-
bedding w, € R%: (with d,. a hyperparameter) and a projection Wy,. For an edge (i, j) of type
r = ({4, j)), the modified attention score is

& =a [Wihi | WTh; | Ww, ]

i,
= & j + ag Wgw,,

where 1) : V x V — R is the edge-type indicator, &; ; = a{ [W " h; | W T h;] is the vanilla GAT

attention score, and @ = a1 || a2. (For readability, we omit the layer index (¢) in this part; it is

reintroduced in the update equations below.)

Although this formulation is an intuitive extension of GAT, the relation-specific term a) W, el Wr

can be reparametrized by a single scalar 6,., yielding

N ~
o, ;. = ai,j+9r.

]

Just as GTN introduces multiple scalar coefficients per relation, SimpleHGN extends to use multi-
head attention, each head learning its own 6, ;.

Following the empirical observation that attention resembles row-normalized spectral convolu-
tion (Chen et al.,[2020), we may approximate the relational bias as multiplicative scalar edge weights

éf«z). This yields the SimpleHGN update rule

IR|
h(f'f‘l) Z Z 9(5 W(£ Th(e) Wéé)Th“)

r=1 jENi(T)

where ./\/i(T) denote the neighbors of ¢-th node via edge type r. Or equivalently in matrix form,

IR|
D — Ze Z)A HOW®O + IH(Z)W(Z)
r=1

where A, is the cross-type row-normalized adjacency matrix for relation r, approximating the soft-
max normalization of GAT. This shows the parameter-sharing introduced earlier in Equation
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C.2 BEYOND FIRST-ORDER APPROXIMATIONS

While many HGNNs adopt first-order approximations, several recent works learn SHGC
more directly without truncation. These models are often precomputation-based, computing
(84, Sy, -+ Sy, )X offline. Such precomputation is advantageous when the number of relations is
moderate, as it enables efficient mini-batch training: precomputed features (S, S, - - - S,,) X can
be sliced directly without subgraph sampling, thereby avoiding the trade-off between information
loss (few hops or few sampled neighbors) and GPU memory overhead.

SeHGNN. SeHGNN (Yang et al. [2023) is one of the earliest and most representative
precomputation-based HGNNs, extending SGC (Wu et al.| |2019) to heterogeneous graphs. It di-
rectly parameterizes spectral filters of the form S, S,, - - - S,,, with S, = Ar the row-normalized
adjacency of relation r, and learns a projection W,., ., € R%4" for each such sequence.

Thus, SeHGNN follows Equation [IT]exactly, while further applying a Transformer-based semantic
fusion followed by an MLP prediction head. The semantic fusion can equivalently be viewed as part

of a general decoder Y = MLP(Z), since the metapath sequences (i.e., polynomial terms) form a
fixed-length, orderless set.

PSHGCN. PSHGCN (He et al), 2024) is another HGNN that directly learning the coefficients
60, 0r,.... », of SHGC (as in Equation without first-order approximation, while additionally con-
straining the polynomial coefficients to be positive semi-definite, ensuring the optimization objective
convex.

PSHGCN also adopts stronger parameter sharing:
WO = 90W7 Wr17...,7‘g = erl,.A.,rgWa

where W e R4 js a node-type-specific projection. Since heterogeneous graphs often have
features in different spaces and dimensions, W decomposes as XW = ZEI X, W._, where

X = EB|21 X is the direct sum of features across node types and W is the corresponding block
of W applied to type 7.

C.3 SUMMARY

The above analyses show that representative HGNNs can all be interpreted within the SHGC for-
mulation, differing mainly in (i) the order of approximation and (ii) the degree of parameter shar-
ing. This perspective highlights two key insights: (1) representative models such as RGCN, GTN,
and SimpleHGN correspond to first-order SHGC approximations with different parameter-sharing
schemes, while SeHGNN and PSHGCN directly instantiate higher-order SHGC; (2) these results
provide theoretical justification that atomic HINs are broadly compatible with diverse HGNN de-
signs.

Table [5]provides a concise taxonomy of representative HGNNs under the SHGC lens.

D SRGCN: SIMPLIFIED RELATIONAL GCN

As discussed in Section we propose a simplified variant of RGCN under strongest parameter
sharing, where relation-specific weights collapse to scalars:

w =971

Propagation rule.  The update rule of SRGCN is

IR
HED =g H®O 13" 00 A,HO + HO, (13)

r=1

with initial features H(®) = X W . Here 91()[), {9~,(-£)} are relation coefficients normalized through a
softmax, following Yun et al.|(2019)), for numerical stability.
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Multi-head extension.  Following |Yun et al.[(2019); [Lv et al.| (2021)), we employ a multi-head

scheme, where multiple sets of coefficients {07(}’1))},.,@,;7 are learned in parallel, thereby increasing
model capacity.

Training enhancements. = We incorporate model-agnostic techniques commonly adopted in ad-
vanced HGNN:S, including: (i) L2-normalization of output logits (Lv et al.,|2021), (ii) edge dropout
(or input dropout in the precomputation setting), and (iii) residual connections across layers.

Decoders. Following existing practices, for node classification tasks, we apply an MLP decoder
on the learned embeddings. For link prediction tasks, we use either a dot-product decoder or Dist-
Mult (Yang et al.,2014).

Precomputation setting.  Following the idea of precomputation-based HGNNs (Yang et al.} 2023},
He et al.| 2024), SRGCN can be further simplified by removing intermediate non-linear activations
and expanding the layerwise updates into polynomial terms:

L
Z = (H((éo + 1)1+ éﬁ“Ar)) XW,

¢=1
where (éo + 1) corresponds to the residual connection.

This enables efficient training on large-scale HINs such as OGBN-MAG, and also permits the use
of labels as attributes, as proposed by Yang et al.| (2023)).

E LIMITATIONS & FUTURE DIRECTIONS

While our study highlights the benefits of aromic HINs, several limitations remain. Our treatment
of attributes primarily relies on metadata, whereas attributes could in principle be divided into finer-
grained entities. For example, numerical columns are currently grouped into a single node type, even
though each column may carry distinct semantic meaning. Such granularity introduces additional
complexity, which remains challenging even for mainstream HGNNS.

Looking ahead, we outline several directions where atomic HINs may enable further advances:

Soft relaxation of selection.  Schema refinement in Section [3.2]is framed as binary selections
ar, By € {0,1}. These can be relaxed beyond binary: node-type selectors (3, could interpolate
between no identity embedding (5, = 0) and full-rank embeddings (5, = 1), with low-rank em-
beddings corresponding to intermediate values. Similarly, edge-type selectors c,. could be relaxed
into continuous meta-weights over relations, particularly suitable for models that parameterize het-
erogeneity through relation scalars.

Inductive bias of human-defined schemas. Heuristically constructed schemas in common
benchmarks often follow practical principles: sparser node types (with larger cardinality) are mod-
eled as structural entities without identity embeddings, while denser node types (with smaller car-
dinality) are left as attributes. These design choices implicitly define the inductive bias of current
HGNNs and may hinder fair evaluation of new models. At the same time, counterexamples high-
light the limitations of these heuristics. For instance, the venue relation in DBLP and the subject
relation in ACM provide consistent gains despite their low cardinality, while high-cardinality nodes
such as keyword or director in IMDB also contribute positively when modeled with ID embeddings.
These cases underscore the importance of minimizing heuristic assumptions in schema design. More
broadly, less conventional structures—such as bottleneck nodes or numerical attributes atomized
into dense relation nodes—call for tailored architectural mechanisms in future HGNNSs, rather than
relying solely on adaptations of existing designs.

LARGE LANGUAGE MODELS
Large Language Models (LLMs) were used for linguistic polishing and editing of the manuscript.

All technical content, theoretical results, and experiments were designed and implemented indepen-
dently by the authors.
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